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Samenvatting
– Summary in Dutch –

Steeds meer hedendaagse toepassingen vereisen dat gegevens in een rijke vorm
worden gepresenteerd. De traditionele platte database die data-objecten onafhan-
kelijk van elkaar behandelt, is immers niet in staat om informatie over relaties
tussen objecten op te slaan. Het is dan ook geen verrassing dat patroondelving
gebaseerd op dit soort gegevens geen inzichten oplevert in een groot aantal toepas-
singen, vooral wanneer deze informatie over de interacties tussen objecten nodig
hebben. Daartoe moet men de gegevens in een rijkere vorm weergeven. Bij-
voorbeeld in toepassingen waarbij de opeenvolging van objecten van belang is,
delven we sequentiële gegevens (denk aan tijdreeksen, medische zorgtrajecten,
DNA-sequenties, browsegeschiedenis, . . . ). In toepassingen waarbij interacties
tussen koppels van objecten belangrijk zijn, delven we grafen (denk aan sociale
netwerken, biologische netwerken, citatienetwerken, epidemiologische netwerken,
. . . ). In toepassingen waarbij relaties in plaats en tijd van belang zijn, delven we
ruimtelijk-temporele gegevens (denk aan weerkaarten, trajecten van bewegende
objecten, draadloze communicatienetwerken, . . . ). Hoewel het dus kan lijken alsof
dat de manier waarop we patronen delven in deze soorten rijke gegevens erg toe-
passingsspecifiek is—we delven een ad hoc type gegevens, afhankelijk van het
soort informatie dat de toepassing vereist—stellen we vast dat patroondelving in
wezen gebruikersspecifiek is. Patronen zijn er om de gebruiker tot inzichten te
leiden die hem/haar de gegevens helpen te begrijpen, of om het resultaat van een
opvolgende taak van de gebruiker te verbeteren. Ze dienen dus de uiteindelijke ge-
bruiker. Deze kernfilosofie—de gebruiker is koning—zet onderzoekers binnen het
gebied van gegevensdelving ertoe meer praktische methoden te ontwikkelen met
een reeks gebruikersgerichte vragen in gedachten, zoals “wat als de ontdekte pa-
tronen correcte informatie opleveren die waardevol is voor de gebruiker A, maar
niet voor gebruiker B?”, “Wat moet ik doen als de patronen niet in een beknopte
vorm worden gepresenteerd waarin de gebruiker ze gemakkelijk kan verwerken?”,
“wat als ze overtollige informatie bevatten, die de gebruiker hindert?”, of “wat
als ze niet duidelijk zijn voor de gebruiker?”. Al deze zorgen komen neer op het
stellen van één enkele vraag: “zijn de verkregen patronen werkelijk interessant
voor de gebruiker?”.

Naar onze mening is een eerste stap voor het beantwoorden van deze vraag het
meten van hoe interessant patronen zijn op een subjectieve manier, d.w.z. voor
de gebruiker. Meer specifiek mogen gedolven patronen niet worden beoordeeld
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op basis van een objectieve norm die beperkt is tot een bepaalde probleemset-
ting, maar moet dit afhangen van hoeveel ze de gebruiker kunnen tegenspreken
of aanvullen gegevens diens voorkennis, en hoeveel moeite het kost om het pa-
troon te verwerken gegeven de complexiteit om deze te beschrijven. Via een me-
thode uitgerust met een dergelijke subjectieve maat voor interessantheid, kunnen
verschillende gebruikers (mogelijks) verschillende patronen verkrijgen die precies
aansluiten op hun behoeften en dus waardevol zijn, ook al analyseren ze ieder
dezelfde dataset.

Het begrijpen van rijke gegevens is een veeleisend probleem, en zoals gezegd
is patroondelving inherent gebruikersspecifiek. Deze inzichtelijke observaties ma-
ken nieuw onderzoek naar patroondelving mogelijk, maar stellen ook drie belang-
rijke uitdagingen voor: 1. Hoe gaan we om met rijke gegevens? 2. Hoe kunnen
we efficiënt patronen delven die ook rijke structuren of semantiek omvatten? 3.
Hoe kunnen we de koning—de gebruiker van de ontwikkelde methode—werkelijk
tevredenstellen?

In dit proefschrift gaan we deze uitdagingen aan. We introduceren nieuwe me-
thoden om subjectief interessante inzichten te verkrijgen over twee populaire soor-
ten van rijke gegevens: tijdreeksen en grafen met attributen. Hiertoe stellen bouw-
stenen voor om patroondelving uit te voeren (d.w.z. syntaxis van patronen, interes-
santheidsmaten, en algoritmes), specifiek bedoeld voor rijke gegevens. Hiermee
gaan we de bovengenoemde eerste en tweede uitdaging aan. De vooruitgang van
ons werk ten opzichte van bestaande methoden is dat we een interessantheidsmaat
op een subjectieve manier formaliseren, in plaats van één objectieve maat te intro-
duceren voor alle gebruikers. Hiermee wordt tevens de derde hierboven genoemde
uitdaging aangegaan. In wat volgt, vatten we de belangrijkste twee delen van ons
werk samen, overeenkomend met de twee onderzochte soorten van rijke gegevens.

Deel 1. Het eerste deel van dit proefschrift introduceert ons werk over patroon-
delving op basis van tijdreeksgegevens. Hier zijn de specifieke patronen die we
delven motieven, d.w.z. aangrenzende deelreeksen die vaak terugkeren in de tijd-
reeks. Motieven verwijzen meestal naar nuttige informatie over seizoensgebonden
of tijdelijke associaties tussen gebeurtenissen. In de praktijk is het dan ook erg
nuttig om deze motieven te ontdekken.

Het meest onderscheidende kenmerk van dit deel betrekt zich tot de inte-
ressantheid van motieven. Bestaande methoden gebruiken allemaal ‘objectieve’
maten, waarbij ofwel prioriteit wordt gegeven aan de gelijkenis tussen instanties
(soms definiëren ze zelfs een motief als het meest gelijkaardige paar van deel-
reeksen), ofwel aan de steun van een motief (d.w.z. het aantal instanties dat deze
bevat). Echter, wij kwantificeren de interessantheid van een motief op een subjec-
tieve manier, waarbij we steunen op informatietheorie om rekening te houden met
de eerdere verwachtingen die de gebruiker kan hebben over de tijdreeks. Dit resul-
teert in een zeer natuurlijke en elegante manier om een compromis te vinden tussen
het gelijkaardig zijn van motieven en het aantal instanties dat deze bevatten, en om
iteratief nieuwe motieven te delven (door eerder ontdekte motieven te beschouwen
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als onderdeel van de eerdere overtuigingen van de gebruiker). Hoewel onderzoek
naar de subjectieve interessantheid van patronen de laatste jaren een succesvolle
vooruitgang gekend heeft, is de toepassing ervan op tijdreeksen geheel nieuw.

Een tweede onderscheidend kenmerk is het volgende. Bestaande methoden
zijn doorgaans afhankelijk van twee essentiële bouwstenen: een maat voor gelij-
kenis zoals de Euclidische afstand of ‘Dynamic Time Warping’ (DTW), en een
specifieke representatie van tijdreeksen zoals ‘Symbolic Aggregate ApproXima-
tion’ (SAX), de discrete fouriertransformatie (DFT), of willekeurige projecties.
Onze informatietheoretische benadering vereist geen van deze bouwstenen en is
dus aantoonbaar minder willekeurig en eleganter dan reeds bestaande methoden.

Deel 2. Het tweede deel van dit proefschrift situeert zich op het gebied van pa-
troondelving in grafen. Meer specifiek introduceren we nieuwe methoden om sub-
jectief interessante lokale en globale deelgraafpatronen te vinden in een graaf met
knoopattributen.

Een graaf met knoopattributen is een veelzijdige datastructuur—het kan zowel
connectiviteitsrelaties tussen objecten (via knopen en bogen) alsook individuele
kenmerken van elk object (via knoopattributen) weergeven. In de meeste gevallen
is de connectiviteitsstructuur van grafen gerelateerd aan de attributen van de kno-
pen. Bijvoorbeeld in een klanten-aankopen-goederen-graaf hangt de waarschijn-
lijkheid op een link tussen een klant en een product af van een reeks attributen
die de klant kenmerken, zoals diens leeftijd, geslacht, salaris, en burgerlijke staat,
alsook een reeks attributen van het product, zoals diens prijs, functie, merk, en
recensies. Patronen van de vorm ‘de deelgroep van objecten met bepaalde ei-
genschappen X zijn vaak (of zelden) geconnecteerd aan objecten in een andere
deelgroep met bepaalde eigenschappen Y’, kunnen dus mogelijks bruikbare en
veralgemeenbare inzichten in grafen opleveren.

De methoden die wij zullen voorstellen kunnen dergelijke patronen delven.
Meer specifiek stellen ze iemand in staat om op een effectieve en begrijpelijke ma-
nier grafen te beschrijven, in termen van eenvoudig voor te stellen blokpartities
of lokale blokken, met interessante blokdensiteiten. Hierdoor zijn we in staat om
verschillende bekende problemen binnen het gebied van graafdelving aan te pak-
ken, waaronder het ontdekken van linkregels, het delven van dichte of schaarse
(bipartiete) deelgrafen, en het beschrijven van grafen. Bovendien benaderen we
de kwantificering van de interessantheid van de voorgestelde patronen op een sub-
jectieve manier, rekening houdend met de verschillende soorten voorkennis die
de gebruiker kan hebben over de graaf, inclusief inzichten verkregen uit eerdere
patronen.





Summary

Nowadays, an increasingly large number of applications necessitate presenting
data into a richer form. The traditional flat tabular form which treats data objects
independently from each other, cannot store the information about relationships
between objects. Not surprisingly, basing the pattern mining process on this kind
of data fails to gain insights for a wide spectrum of applications, especially those
relying on objects-interaction information. Richer data are thus brought into the
picture: In applications where sequential relationships matter, we mine sequen-
tial data (e.g., any time series, healthcare trajectory, DNA sequence, web surfing
history); In applications where pairwise interaction relationships matter, we mine
graph structured data (e.g., social networks, biological networks, citation network,
virus diffusion networks); In applications where spatial and temporal relationships
matter, we mine spatial-temporal data (e.g., weather maps, moving objects trajec-
tory, wireless communication networks).

Though it appears pattern mining in rich data is very application specific—
we mine an ad-hoc type of rich data depending on what types of information is
demanding in an application, we argue that pattern mining is intrinsically user
specific. Mined patterns are there to provide insights that can either improve the
user’s understanding about the data or boost his or her performance on a down-
stream task, and hence they ultimately serve for users. This core philosophy—user
is king—pushes researchers in data mining community to immerse themselves in
developing more practical mining tools, with a series of user-centered questions to
address in mind, such as: What if the discovered patterns provide correct informa-
tion that is valuable to the user A but not to another user B? What if they are not
presented in succinct form for the user to easily assimilate? What if they include re-
dundant information, getting the user bored? What if they are not self-explanatory
to the user? All these concerns boil down to asking a single question—Are these
obtained patterns truly interesting to the user?

A foremost move towards answering this key question, we believe, is to mea-
sure the interestingness of patterns in a subjective manner—i.e., taking the user
into account. More specifically, mined patterns should not be judged based on an
objective standard limited to a certain problem setting, but rather, this should de-
pend on how much they can contradict or complement what the user already held
(i.e., considering the prior knowledge) and how much effort assimilating them
needs (i.e., considering the descriptional complexity of the pattern). With a data
mining tool equipped with such subjective interestingness measure, different users
can obtain (potentially) different patterns that precisely match their needs and are
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thus truly useful, even though they are analyzing the same dataset.
As being said, making sense of richer data types is highly demanding, and

pattern mining is inherently user specific. These insightful observations provide a
springboard for pattern mining research but also set up three main challenges: 1.
How to handle richer data? 2. How to efficiently mine patterns that also carry
richer structures or semantics? 3. How to really satisfy the king—the user of the
data mining tool?

This thesis is a piece of work dedicated to handling these challenges—we
present novel methods to obtain subjectively interesting insights on two popu-
lar rich data types: time series and attributed graphs. In a high-level view, we
have proposed building blocks for the pattern mining process (i.e., pattern syn-
taxes, interestingness measures, mining algorithms) that are dedicated to rich data
types—this is to approach the aforementioned first and second challenges. More-
over, the leap of our work with respect to the state-of-the-art is a formalization of
a subjective interestingness measure, rather than an objective one for these data
types—this addresses the third challenge mentioned above. In what follows, we
summarize each of our two main works (corresponding to two rich data types we
have investigated).

Part 1. The first part of the thesis presents our pattern mining work on time series
data. Here, the specific patterns we consider to mine are motifs, i.e., contiguous
subsequences that recur in the time series. Motifs usually hint at useful information
about seasonal or temporal associations between events, and detecting them are
very useful in practice.

To summarize, the most distinctive feature of our work is regarding the inter-
estingness of motifs. Existing methods all use ‘objective’ measures, either prior-
itizing the similarity among instances (in some work even defining a motif as the
most similar subsequence pair), or prioritizing the support (i.e., the number of in-
stances in a motif). In contrast to this, we quantify the interestingness of a motif
in a subjective manner, relying on information theory to take into account prior
expectations the user may hold about the time series. This results in a very natural
and elegant way of trading of similarity with numerosity of the instances of a mo-
tif, and of iteratively mining motifs (by considering previously discovered motifs
as part of the prior beliefs of the user). While there is a growing and successful
body of work on the subjective interestingness of data mining patterns in recent
years, its application to time series is entirely novel.

A second distinctive feature is the following. State-of-the-art methods com-
monly depend on two essential building blocks: a similarity measure (e.g., Eu-
clidean distance, dynamic time warping) and a special representation for time se-
ries (e.g., Symbolic Aggregate approXimation (SAX), Discrete Fourier Transform
(DFT), Random projections). Our information-theoretic approach does not require
either of these building blocks, making it arguably less arbitrary and more elegant
than pre-existing methods.
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Part 2. The second part of the thesis is situated in the field of graph pattern
mining. More specifically, we present novel methods for finding subjectively in-
teresting local and global subgraph patterns in a vertex-attributed graph.

A vertex-attributed graph is a versatile data structure—it can represent both
connectivity relationships between objects (in terms of vertices and edges) and
individual characteristics of each object (in terms of vertex attributes). More often
than not, the connectivity structure of graphs is related to the attributes of the
vertices. In a customers-purchase-goods network for instance, the probability of a
link characterising a purchase relationship from a customer to an item depends on a
range of attributes, such as the age, gender, salary, marital status on the customer’s
side, and the price, function, brand, reviews on the item’s side. Thus, patterns of
the form ‘the subgroup of objects with certain properties X are often (or rarely)
connected with objects in another subgroup defined by properties Y’ can present
potentially actionable and generalisable insights into the graph.

Our proposed methods can mine such patterns. More specifically, they allow
one to effectively summarize graphs in an intelligible manner, in terms of an easy-
to-describe block partitioning of the graph with interesting block densities, or in
terms of easy-to-describe local blocks in the graph with interesting densities—
tackling several well-known graph mining tasks simultaneously including: link
rule discovery, dense/sparse (bipartite) subgraph mining and graph summarization.
Moreover, we approach the quantification of the interestingness of proposed pat-
terns in a subjective manner, with respect to several flexible types of prior knowl-
edge the user may have about the graph, including insights obtained from previous
patterns.





1
Introduction

1.1 Context

1.1.1 Why data mining?

In 1989, Gregory Piatetsky-Shapiro coined the term KDD (Knowledge Discovery
in Databases) [1], and organized the first workshop named also KDD (which then
grew into the annual ACM SIGKDD Conference in 1995, the most influential
forum in the field of data mining). At that time, the only people who had enormous
data sets and the motivation to make sense of them were members of the research
community.

Around the early 1990s, the term data mining appeared in the database commu-
nity to represent the application of specific algorithms for extracting useful knowl-
edge from data. The distinction between KDD and data mining is that the former
refers to the overall process of identifying knowledge from data while the latter
refers to a particular sub-process or a step within this process [2].

In no time, data mining came into prominence, not only in research commu-
nities, but also in industries. This was due to a megatrend commencing at that
time—data started to overwhelm the world. This trend was not accidental. On the
one hand, the extraordinary development of hardware technologies led to the huge
efficient data stores on hard disks, making the processing of immense volumes of
data possible. On the other hand, the explosive growth of Internet digitalized al-
most every aspect of our lives, making a data source to easily reach anyone who
cared to tap in. As a result, tremendous amounts of data are accumulated daily:
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health records, patient monitoring, customer transactions, web-visiting logs, call
data records, stock trading records, economic data, social network, search queries,
weather data, geo-spatial data, and so forth—Indeed, we live in a world of data.

Clearly, knowledge is the end product of a data-driven discovery that data ana-
lysts (who mine the data or apply the mining tool) want to obtain to leverage their
objectives. The explosively growing, gigantic body of data, nevertheless, has far
exceeded the human ability to comprehend manually. Tools that can automatically
unearth valuable knowledge from the big data are thus badly needed. Luckily, data
mining is such a tool, and is a powerful one.

1.1.2 Pattern mining

Often, data analysts clearly know what patterns of information from the data are
digestible and valuable to their end goals. Healthcare workers want to know how
certain variables are associated with the onset of diabetes. Geneticists want to
identify types of sequence segments upstream and downstream the gene region that
signal the gene expression. Retailers want to know purchase habits of customers to
provide them with more valuable and personalised services. Hence, data analysts
with well-defined goals often expect the data mining tool to output information
that is in certain patterns dedicated to end-goals rather than any knowledge, and
this brings pattern mining into picture.

Pattern mining is a pattern-based approach to data mining concerned with the
acquisition of patterns from data. According to Cambridge Dictionary, a pattern is
expressed as a particular way in which something usually happens or is done. This
agrees with our common perception of pattern—the one being based on (high)
occurrence frequency of object. Hence, the corresponding frequent pattern mining
[3], which aims to discover patterns with frequency of occurrence no less than a
user-specified threshold, has been the most well known and widely studied type
of pattern mining in recent decades. Here, a pattern can be a frequent itemset
[4] when given a tabular dataset (e.g., sets of frequent-buying-together items in
transaction data), or a frequent sequence [5] when given a sequential dataset (e.g.,
motifs representing normal heartbeats in time series of electrocardiodiagram), or
a frequent substructure such as subgraphs [6], subtrees [7] or sublattices if the
given dataset is a graph (e.g., graphlets related to specific biological functions in
biomolecule interaction network).

As various kinds of data, user requests and applications burst in recent years,
pattern is now a broader term that can be defined to represent any structure or a
characteristic form of information of particular interest. For example, in contrast
with frequent patterns which can also be mapped into association rules [8], a user
may want to identify exceptional patterns (i.e., patterns that occur rarely but signal
an important anomaly) [9, 10] or negative patterns (i.e., patterns that reveal a neg-
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ative correlation between objects) [11–13]. Different patterns to be mined spark
the development of different measures to quantify their interestingness along with
different methodologies to search them. A general road map on pattern mining
research classified along three dimensions (i.e., the kinds of patterns mined, inter-
estingness measures, and mining methodologies) is given in Chapter 2. Now we
take a look at two observations in today’s pattern mining research that motivate the
subject of this thesis.

1.1.3 The first motivation: mining richer data

When most people hear the word “data”, a tabular form springs to mind: a set
of objects arranged in horizontal rows and vertical columns such that each row
has the same set of column headers. One example can be an epidemiological
dataset comprised of infected patients (corresponding to rows). For each patient,
information about a bunch of attributes such as the gender, the age, the blood type,
the infection case and the health condition is stored (corresponding to columns).

Nevertheless, some objects often associate with each other. Data in this tra-
ditional tabular form which treats objects independently from each other is an in-
herently lossy representation. Not surprisingly, basing our mining process on this
kind of data can fail for a broad spectrum of applications.

Therefore, an increasing amount of work has been invested in mining patterns
on richer data—one taking a more complex form that enables to store various
kinds of dependency information correlated with temporal, spatial, sequential, and
social relationships such as sequential data, graphs, spatial-temporal data, multi-
media data, and so on. Among these richer data, sequential data and graphs are two
of the most popular types. We motivate mining patterns on them in the following.

Sequential data. In many domains, the sequential ordering of events or objects
plays an important role. For example, to predict a customer’s next purchase, it is
often relevant to consider a sequence of past purchases of this customer; For many
things being manufactured, a series of mechanical or manual operations must be
performed in certain order. Even, it is the order of nucleotides that defines DNA—
the code of life. To leverage sequential information of objects, sequential data is
thus proposed.

Two categories of sequential data are commonly used in pattern mining: time
series and symbolic sequence [14]. A time series is a sequence of numerical val-
ues in time order. Such data may provide useful information about trending, sea-
sonal, irregular or temporal associations between objects or events, and is thus
very pervasive, originating from sources as diverse as wearable devices, medical
equipment, sensors in industrial plants, and our mother nature. The other cate-
gory, symbolic sequence, is an ordered sequence of nominal data, recorded with or
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without a concrete notion of time. Common examples include web surfing logs,
customer purchase sequences, word sequences in texts and so on.

Graph data. Another kind of dataset that does not fit in the flat tabular setting
is one involving pairwise interactions or relationships between defined objects.
Rather, such dataset can be readily structured as graphs where objects are repre-
sented by vertices and relationships between them are represented by edges.

As a mounting body of applications rely on taking advantage of or making
sense of relationships between objects, graphs are pervasively used. Examples in-
clude social networks, Semantic Webs, citation networks, protein interaction net-
works, traffic flows, among others. Thus, a first reason to mine patterns in graphs
is their ubiquity.

A second reason is the fact that graph is a general model. Trees, lattices, se-
quences and items are all degenerated graphs. Moreover, graphs can be directed
or undirected, attributed or unattributed (on edges or vertices), weighted or un-
weighted, static or dynamic, homogeneous or heterogeneous (on edges or ver-
tices). Such flexibility makes graphs able to model not only pairwise relationships
but also other types of information.

1.1.4 The second motivation: user is king—subjective interest-
ingness

Once having data in hand which is in appropriate form, we then design the pattern
syntax such that it expresses the form of information that the user is looking for.
Now what we are confronted to mine is not the vast set of data objects, but rather
the vast set of patterns. With no doubt, not all of the patterns are interesting,
and only those most interesting ones which typically account for a small fraction
should be presented to the user. Then naturally, a new question is raised for pattern
mining—What makes a pattern interesting?

The vast majority of pattern mining research, especially those in early times,
tacitly quantify the interestingness in an objective way—i.e., they design the inter-
estingness measure with merely data or patterns to be mined in mind. Not surpris-
ingly, following this objective notion of interestingness has led to a large number
of diverse interestingness measures, each for a particular criteria of a specific task.
Even only regarding the task of frequent pattern mining, examples of interesting-
ness measures are numerous, including frequency, support, area, lift, growth rate
and so on. Nevertheless, what this raft number of differently proposed measures
for a same specific pattern mining task signifies is the wide void between available
interestingness measures and practical needs. Because of this void, researchers
usually quickly identified the old measures’ limitations and proposed new ones
which outperform or complement the old, again and again.
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The source of this void, we believe, is the objective notion of interestingness.
Patterns ultimately serve users, but users differ from each other. An objective stan-
dard may be able to represent a common sense or several similar users’ beliefs, but
cannot represent various users. That means, a pattern may be deemed interesting
by a user A but not by another user B, because this pattern is previously known
or can be easily implied by user B’s prior knowledge. To discover truly interest-
ing patterns, data mining tools therefore need to take users into account, such that
the discovered patterns should be surprising or unexpected to the user (as interests
are always caught by surprise), i.e., representing knowledge which contradicts or
complements the user’s prior knowledge to a sufficient extent.

To do that, an obvious method is to explicitly make the data mining tool an
interactive one such that it enables the user to control several relevant factors as
constraints of the results or send feedbacks about preliminary patterns as navi-
gations. Nevertheless, this is often a slow process of trial and error, and more
undesirably, this method requires a body of users’ efforts. One method which can
circumvent these issues is to make the interestingness measure a subjective one.
Ideally, such a measure should work as a function, with inputs as a pattern together
with the user’s prior knowledge, outputting a score accordingly. Here, the user’s
prior knowledge should be expressed in a form which requires users’ efforts as
minimal as possible for saving his or her efforts, because as always—user is king.

1.2 Contributions

Richer data types are powerful. Interestingness is inherently more subjective
than objective. These observations bring about actionable insights, but also new
challenges—how to handle richer data, how to efficiently mine patterns that also
carry richer structures or semantics, and how to really satisfy the king—the user
of the data mining tool. Driven by these, the research reported in this thesis joins
the line of investigating personalized pattern mining methods on richer data. This
thesis presents our contributions for that purpose—i.e., novel methods for obtain-
ing subjectively interesting insights on time series (first contribution) and graphs
(second contribution):

First contribution. Our first contribution is dedicated to mining one common
type of sequential data: time series. Numerical time series data is pervasive, origi-
nating from sources as diverse as wearable devices, medical equipment, to sensors
in industrial plants. In many cases, time series contain interesting information in
terms of subsequences that recur in approximate form, so-called motifs (see an ex-
ample of a motif in a household electric usage time series [15] in Fig 1.1). Major
open challenges in this area include how one can formalize the interestingness of
such motifs, and how the most interesting ones can be found.
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Figure 1.1: A motif of length 100 is discovered at two different locations (blue and green)
in a household electric usage time series.

We introduce a novel approach that tackles these issues. We formalize a notion
of such subsequence patterns in an intuitive manner, and present an information-
theoretic approach for quantifying their interestingness with respect to any prior
expectations a user may have about the time series. The resulting interestingness
measure is thus a subjective measure, enabling a user to find motifs that are truly
interesting to them. Although finding the best motif appears computationally in-
tractable, we develop relaxations and a branch-and-bound approach implemented
in a constraint programming solver. As shown in experiments on synthetic data
and two real-world data sets, this enables us to mine interesting patterns in small
or mid-sized time series. This contribution is mainly based on the manuscript that
appeared as:

• Junning Deng, Jefrey Lijffijt, Bo Kang and Tijl De Bie. SIMIT: Subjectively
Interesting Motifs in Time Series. Entropy, 21(6), 2019.

Early results were published in a workshop paper:

• Junning Deng, Jefrey Lijffijt, Bo Kang and Tijl De Bie. Subjectively Inter-
esting Motifs in Time Series. In 3rd International Workshop on Advanced
Analytics and Learning on Temporal Data, held with ECML/PKDD, 2018.

Second contribution. We also contribute to pattern mining on graphs, more pre-
cisely, graphs with attributes on vertices. The connectivity structure of graphs is
typically related to the attributes of the vertices. In social networks for example,
the probability of a friendship between any pair of people depends on a range
of attributes, such as their age, residence location, workplace, and hobbies. The
high-level structure of a graph can thus possibly be described well by means of
patterns of the form ‘the subgroup of all individuals with certain properties X are
often (or rarely) friends with individuals in another subgroup defined by properties
Y’, ideally relative to their expected connectivity. Such rules present potentially
actionable and generalizable insight into the graph.
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Prior work has already considered the search for dense subgraphs (‘communi-
ties’) with homogeneous attributes. The first contribution in this paper is to gener-
alize this type of pattern to densities between a pair of subgroups (e.g., a pattern
that describes the friendship between a particular subgroup of female and a sub-
group of male individuals in a social network), as well as between all pairs from
a set of subgroups that partition the vertices (e.g., a global pattern that describes
the friendship between any pair of subgroups selected from a set of subgroups
that form a partition of the individuals in a social network). Second, we develop
a novel information-theoretic approach for quantifying the subjective interesting-
ness of such patterns, by contrasting them with prior information a user may have
about the graph’s connectivity. We demonstrate empirically that in the special case
of dense subgraphs, this approach yields results that are superior to the state-of-
the-art. Finally, we propose algorithms for efficiently finding interesting patterns
of these different types. This contribution has been published as:

• Junning Deng, Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Mining Explainable
Local and Global Subgraph Patterns with Surprising Densities. Data Mining
and Knowledge Discovery, 2020.

A subset of results appeared earlier in a conference paper:

• Junning Deng, Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Explainable sub-
graphs with surprising densities : a subgroup discovery approach. In Pro-
ceedings of SIAM International Conference on Data Mining (SDM), 2020.

Outline. The thesis is outlined as follows:

• Pattern mining basics [Chapter 2]. This chapter introduces the reader to
the necessary background on pattern mining. More specifically, we start by
providing an overview of the pattern mining process that is composed of
three essential building blocks—pattern syntaxes, interestingness measure,
and mining algorithms. We then detail each building block by introducing
its role and relevant state-of-the-art along some key aspects.

• Subjectively interesting motifs in time series [Chapter 3]. This chapter
presents our first main contribution: mining subjective interesting motifs in
time series.

• Explainable local and global subgraph patterns with surprising densi-
ties [Chapter 4]. In this chapter, we presents our second main contribution:
mining explainable local and global subgraph patterns with surprising den-
sities.

• Conclusions [Chapter 5]. This chapter concludes our work and discusses
the future directions from a general view.
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1.3 Publications

Publications in international journals

• Junning Deng, Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Mining Explainable
Local and Global Subgraph Patterns with Surprising Densities. Data Mining
and Knowledge Discovery, 2020.

• Junning Deng, Jefrey Lijffijt, Bo Kang and Tijl De Bie. SIMIT: Subjectively
Interesting Motifs in Time Series. Entropy, 21(6), 2019.

Publications in archived proceedings

• Junning Deng, Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Explainable sub-
graphs with surprising densities : a subgroup discovery approach. In Pro-
ceedings of SIAM International Conference on Data Mining (SDM), 2020.

Publications in non-archived proceedings

• Junning Deng, Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Explainable sub-
graphs with surprising densities : a subgroup discovery approach. In 15th
International Workshop on Mining and Learning with Graphs, held with
SIGKDD, 2019.

• Junning Deng, Jefrey Lijffijt, Bo Kang and Tijl De Bie. Subjectively Inter-
esting Motifs in Time Series. In 3rd International Workshop on Advanced
Analytics and Learning on Temporal Data, held with ECML/PKDD, 2018.
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2
Pattern Mining Basics

2.1 Overview
Pattern syntaxes, interestingness measures, and mining algorithms are the three
building blocks for a pattern mining task.

The pattern syntax z is the abstract form of patterns that the user wishes to
find, defined as a Boolean function z : L → {true, false} where L is the overall
pattern space and z(π) , true if and only if the pattern π ∈ L follows the syntax.
For a given dataset D, we denote the pattern space subject to it (i.e., the set of all
patterns that are facts for D) by LD. Given a task of mining patterns with a syntax
z from a dataset D, we can determine the pattern language L(D,z), the domain of

patterns to be enumerated, i.e., L(D,z) =
{
π ∈ LD : z(π) , true

}
.

Needless to say, some patterns are more interesting than others and should thus
be prioritized as output. This prioritization is often navigated by the so-called in-
terestingness measure such that most interesting patterns should be those having
largest values of this measure. More formally, the interestingness measure is de-
fined as a function mD : L(D,z) → R≥0, that assigns a nonnegative numeric value
to a pattern π ∈ L(D,z), given a dataset D.

Once these two building blocks are properly determined, the next question is:
How to mine the most interesting patterns efficiently? The efficiency is explicitly
required here because more often than not, the pattern language exhibits large
search space due to the sheer size of the confronted data.

Example 1. Now let us illustrate these concepts by perhaps the most well-known
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example in pattern mining: frequent itemset mining problem in market basket anal-
ysis [1]. In this problem, a dataset D = (I,O) is given where I is a set of items
and O is a set of transactions such that each transaction o ∈ O is a subset of
items from I , i.e., o ⊆ I . Clearly, the pattern syntax z here is a form of itemset
(with the corresponding pattern language L((I,O),z) = 2I ). The interestingness
of a pattern π ∈ 2I can be straightforwardly measured by, for instance, the num-
ber of transactions that contain all the items in π i.e., mD(π) = freq(π) where
freq(π) = |{o ∈ O : π ⊆ o}|.

In a nutshell, pattern mining process is all about: to design the right pattern
syntax z and the right interesting measure mD according to the given dataset D
and the user’s need, and then use a mining algorithm to find interesting patterns
w.r.t. mD from the pattern language L(D,z).

Two categories. Depending on how an interesting pattern is defined, pattern
mining methods can be divided into two categories [2]: one is formulated as a
satisfaction problem (termed constraint-based pattern mining)—where a pattern
π is deemed interesting if mD(π) (i.e., the interestingness measure of this pattern
π) is larger than a user-specified threshold q, the other is formulated as an opti-
misation problem (termed preference-based pattern mining)—where a pattern π is
interesting when no other pattern (or only k patterns) has a larger value w.r.t. mD.

More formal definitions for constraint-based pattern mining and preference-
based pattern mining are provided in the following:

Problem 1. (Constraint-based pattern mining). Given a dataset D, a pattern
syntax z, an interestingness measure mD and a threshold q, constraint-based pat-
tern mining aims to find all patterns from the pattern language L(D,z) such that
their values w.r.t. mD are no less than q:

T hq(D, z,mD) = {π ∈ L(D,z) : mD(π) ≥ q}

Problem 2. (Preference-based pattern mining). Given a dataset D, a pattern
syntax z, an interestingness measurem and a threshold k, preference-based pattern
mining aims to find all patterns from the pattern language L(D,z) which are not
dominated by at least k patterns:

Bestk(D, z,mD) =
{
π ∈ L(D,z) : @Φ s.t., |Φ| ≥ k,
∀φ ∈ Φ, φ ∈ L(D,z) and mD(φ) ≥ mD(π)

}
Example 2. Back to our example of frequent itemset mining in market basket
analysis. The constraint-based pattern mining of this problem aims to find a item-
set with occurrence frequency no less than a user-defined threshold (denoted as
minfreq):

T hminfreq ((I,O), z, freq) = {π ∈ 2I : freq(π) ≥ minfreq}.
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The preference-based version is to find top-k frequent itemsets:

Bestk ((I,O), z, freq) =
{
π ∈ 2I : @Φ s.t., |Φ| ≥ k,
∀φ ∈ Φ, φ ∈ 2I and freq(φ) ≥ freq(π)

}
.

In recent decades, these two categories of pattern mining problems have been
instantiated in a vast number of data mining tasks—by specifying a pattern syntax,
an interestingness measure and a mining algorithm that match the dataset to be
mined, the user’s intention, or the application. Now let us take a look at some
main aspects of each of these three building blocks.

2.2 Building blocks for pattern mining

2.2.1 Pattern syntaxes

A myriad kinds of pattern syntaxes have been proposed, all for a specific problem
setting faced or imagined. Common examples include:

• emerging patterns [3, 4], association rules [1, 5, 6], subgroups [7–9] in flat
tabular data;

• motifs (or frequent subsequences) [10–13], time series shapelets [14–16],
outliers [17–21], episodes [22–25] in sequential data;

• frequent subgraphs [26–29], dense subgraphs [30–33], trees [34–36], cycles
[37, 38] in graph data;

• moving together patterns [39–41], sequential trajectories [42–44], outlier
trajectories [45, 46] in spatial-temporal data;

2.2.2 Interestingness measures

Interestingness measures are intended to quantify how good a discovered pattern
is deemed to be. Though contemporary research on formalizing interestingness
measures has been hugely active and well-established, so far there is no consensus
of how the interestingness should be precisely defined. Among this large number
of diverse definitions and approaches to interestingness proposed in the literature,
two major categories are exhibited [47]: objective and subjective interestingness
measures—according to whether the user’s prior knowledge is considered.

Objective interestingness measures only depend on the data and patterns. Most
of them are formalized based on theories in probability, statistics, or information
theory, and are intended to prioritize or consider factors such as conciseness (e.g.,
cardinality of a pattern set), coverage (e.g., support of an itemset [48]), reliability
(e.g., accuracy of a classification rule [49]), peculiarity (e.g., peculiarity of a data
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object [50]) or diversity (e.g., cover redundancy of a subgroup set [9]). Though
straightforward forms of objective measures often lend themselves to efficient min-
ing algorithms, the discovered patterns w.r.t. them are often either obvious or al-
ready known by the user (and are thus not truly interesting). This is due to the
ignorance of variations among users—what is interesting to one may be nothing
but useless information to another.

Subjective measures take into account the user, in addition to the data and pat-
terns. To do that, the user’s prior knowledge or expectations about the data are
modelled by the commonly called background knowledge, and then the interest-
ingness of a discovered pattern is measured by how much this pattern deviated
from the background knowledge. According to the way the background knowl-
edge is encoded and the deviation is defined, two major classes of methods can be
distinguished: the syntactical and the probabilistic methods. The former encodes
the background knowledge by a collection of independent patterns with the same
syntax as patterns to be mined (thus the user has to hold some explicit knowl-
edge of the required form), and then employs a distance measure to evaluate their
similarity or difference—the more distant, the more interesting (e.g., using fuzzy
matching [51], logical contradiction [52]). The latter utilizes a probability distri-
bution of the data (expressed explicitly or implicitly), called background model, to
encode the background knowledge. Then the interestingness can be either mea-
sured by the deviation between a statistic of the pattern calculated on the empirical
data and that on the background model (e.g., using Bayesian networks [53], swap
randomization [54, 55]), or directly by the probability of this pattern under the
background model (e.g., using maximal entropy models [56, 57]).

For excellent surveys of different interestingness measures, we refer interested
readers to [47, 58, 59].

2.2.3 Mining algorithms

An ideal mining algorithm is an effective and efficient one—i.e., it can identify
interesting patterns within a short response time. Existing algorithms can be cate-
gorized into three groups:

1. Candidate generation-and-test algorithms. The first line of research adopts
a candidate generation-and-test approach, where a sufficiently large enumeration
space (hopefully) guaranteed to contain all interesting patterns is generated, and
then a portion of top-scoring patterns are selected out by testing the quality of
each candidate. Existing algorithms of this paradigm can be further divided into
the following three types:

• Exhaustive search plus pruning strategies. Exhaustive search is often used
in tandem with some pruning strategies, in which the former serves for the
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effectiveness, and the latter serves for the efficiency. A bellwether algorithm
of this type is Apriori [48], also known as the level-wise algorithm. Though
originally designed for association rule mining, it has now been substantially
studied and extended to mine many other patterns. Basically, Apriori adopts
a breadth-first manner—i.e., pattern candidates of size k are generated using
size-(k − 1) candidates, along with a pruning strategy based on an anti-
monotone property—i.e., if a size-(k−1) itemset is not frequent, none of its
size-k super itemset can be frequent. Other algorithms of this type mostly
borrow the spirit of Apriori, but differ in the properties exploited to prune the
potentially complete search space (e.g., monotonicity [60], convertible con-
straints [12], succinctness [60, 61], condensed representation [62]). Though
equipped with pruning strategies, exhaustive enumeration may still be infea-
sible, especially when confronting gigantic data.

• Heuristic search. The second type explores the enumeration space
heuristically—i.e., picks most promising branches according to a certain
rule of thumb, termed heuristic. Typical examples include hill climb-
ing [63, 64], beam search [7, 9, 65], evolutionary algorithms [66, 67], among
others. These algorithms scale better than the exhaustive search with prun-
ing strategies, but they cannot guarantee the optimality. For many of them,
even an error bound cannot be given as well.

• Anytime algorithms. Anytime pattern mining algorithms are also enumer-
ative methods, but exhibit the so-called anytime feature [68]: they can be
interrupted at any point of time to supply patterns whose quality gradually
improves over time, and hence the whole process would converge to an ex-
haustive search if sufficient time is given, guaranteeing to return the exact re-
sult. Recently, this type of algorithms have been employed to mine frequent
itemset [69], interval patterns [70], outliers [71] and so on. Particularly in
Belfodil et al. [70], the proposed algorithm can always provide a guaranteed
bounding of the quality difference between the top found pattern and the top
possible pattern.

It is worth mentioning that Branch-and-bound (BnB) [72], a principal algo-
rithmic methodology which is usually used to find exact solutions to combi-
natorial optimization problems, can be naturally adapted as an anytime one:
BnB algorithms evaluate the search space in a gradual way such that a given
problem is decomposed into smaller subproblems (according to a certain
branching rule) and each of those subproblems may be further decomposed
or pruned (according to a certain bounding rule), and clearly they find better
solutions as less unexplored subproblems remain. BnB algorithms have also
been applied to mine patterns such as boxes [73], maximal cliques [74, 75],
discriminative patterns [76], and so forth.
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2. Pattern-growth algorithms. More often than not, the candidate set gener-
ation is costly. To circumvent this, the second main line of research follows a
pattern-growth paradigm [77–80] led by Han et al. [77] in handling frequent pat-
tern mining. The core of this paradigm is the construction of a highly compact
data structure, e.g., frequent pattern tree (FP-tree) [77], which stores compressed,
crucial information about frequent patterns. Then a pattern-growth method is per-
formed in a divide-and-conquer manner: the database is partitioned and projected
based on the currently discovered frequent patterns, and new longer patterns are
directly attained by growing discovered ones—through a traversal on that compact
data structure. Hence, unlike candidate generation-and-test approaches that re-
quire many scans of the entire database (the k-th scan checks the frequency of each
size-k candidate), pattern-growth approaches only need two scans (for construct-
ing the compact data structure), then the rest steps are mining rather the compact
structure than the (usually substantially larger) original data, which saves a huge
cost.

3. Algorithms applying the sampling strategy. Recent pattern mining ap-
proaches set up the third and elegant paradigm—i.e., relying on a (controlled)
sampling strategy [81–84]. More specifically, algorithms falling under this cate-
gory design an efficient sampling procedure to access the pattern language L, i.e.,
simulating a distribution s : L → [0, 1] that considers the corresponding interest-
ingness measure m, e.g., s(·) = m(·)

Z where Z is a normalizing constant. This
enables us to obtain a pattern collection that is of size under control and is rep-
resentative for the distribution s and hence for the underlying interestingness m,
without expensive candidate set generation. However, it is still very probable to
draw an uninteresting pattern, because the distribution s is long-tailed—there are
much more uninteresting patterns than interesting ones.

2.3 Positioning of our methods

Before we embark on the detailed reporting of our research work, let us point out
where the methods proposed in this work are situated with respect to the afore-
mentioned aspects of each building block.

Let us first look at the interestingness measures, as making them subjective is
what we value most. To this aim, we built upon De Bie’s FORSIED (Formalizing
Subjective Interestingness in Exploratory Data Mining) framework [56, 57] by in-
stantiating it towards the specific pattern mining problems of our interest. The key
idea of FORSIED is to model the user’s prior belief state of the data by a proba-
bilistic distribution (called background distribution), and this leads to an explicit
probabilistic method of formalizing subjective interestingness. The advantages of
FORSIED are manifold. We highlight two of them in the following. First, FOR-
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SIED is able to incorporate broad classes of user’s prior knowledge, whereas what
other methods can take into account are more limited, impractical and often ded-
icated to some specific problem settings. For example, syntactical methods can
only account for the user’s knowledge about the patterns he or she thinks exist in
the data; An implicit probabilistic method for finding frequent itemsets which uses
a Bayesian network model requires the user to encode his or her prior information
in a Bayesian network [53]. Another implicit probabilistic method which relies on
swap randomization can only account for the row and column sums of rectangular
databases [54]. Second, in FORSIED, the background distribution can be updated
efficiently to incorporate the user’s newly acquired patterns, and thus allows for
an iterative and interactive pattern mining process. Moreover, we want to stress
that, because of these advantages, FORSIED is not just a method for subjective
interestingness, but rather a data mining framework.

Our pattern syntaxes not only represent the formats of patterns we want to
mine (i.e., motifs in time series, as well as explainable local and global subgraph
patterns in attributed graphs), but also, more importantly, they are designed to be
in harmony with our formalization of the subjective interestingness (such that the
found patterns of these syntaxes can be contrasted with our model of the user’s
belief state about the data to quantify their interestingness to the user). Clearly, the
traditional syntaxes of motifs and subgraph patterns are not applicable here.

As for the mining algorithms, we went for the heuristic ones. This is to counter
the extra computational burdens injected by the adoption of subjective interesting-
ness measures.
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ner, N. Hurley, and G. Ifrim, editors, Machine Learning and Knowledge Dis-
covery in Databases, pages 500–516, 2019.

[71] A. Giacometti and A. Soulet. Anytime algorithm for frequent pattern outlier
detection. International Journal of Data Science and Analytics, pages 1–12,
2016.

[72] A. Land and A. Doig. An Automatic Method of Solving Discrete Program-
ming Problems. Econometrica, 28(3):497–520, 1960.

[73] Q. Louveaux and S. Mathieu. A combinatorial branch-and-bound algorithm
for box search. Discrete Optimization, 13:36–48, 2014.

[74] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for find-
ing a maximum clique with computational experiments. Journal of Global
optimization, 37(1):95–111, 2007.

[75] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A sim-
ple and faster branch-and-bound algorithm for finding a maximum clique.
In International Workshop on Algorithms and Computation, pages 191–203,
2010.

[76] H. Cheng, X. Yan, J. Han, and S. Y. Philip. Direct discriminative pattern min-
ing for effective classification. In 2008 IEEE 24th International Conference
on Data Engineering, pages 169–178, 2008.

[77] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate
Generation. ACM SIGMOD Record, 29(2):1–12, 2000.

[78] J. Han and J. Pei. Mining frequent patterns by pattern-growth: methodol-
ogy and implications. ACM SIGKDD Explorations Newsletter, 2(2):14–20,
2000.

[79] J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining
Frequent Closed Itemsets. In ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, 2000.

[80] Z. Ding, X. Ding, and Q. Wei. An improved FP-Growth algorithm based on
compound single linked list. In The 4th International Conference on Infor-
mation and Computing, volume 1, pages 351–353, 2009.

[81] M. Al Hasan and M. J. Zaki. Output Space Sampling for Graph Patterns.
Proceedings of the VLDB Endowment, 2(1):730–741, 2009.



PATTERN MINING BASICS 25

[82] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner. Direct Local Pattern
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3
Subjective Interesting Motifs in Time

series

3.1 Introduction

There exist a myriad of data mining methods for time series data, ranging from
fully automated change detection, classification, and prediction methods, to ex-
ploratory techniques such as clustering and motif detection. Change and motif
detection are related in the sense that local patterns (motifs) and longer-running
changes in the profile of the time series need to be evaluated against a prior that
specifies what the expected profile is, typically in the form of a probability distri-
bution.

Prior work on time series motif detection tends to evaluate a motif’s interest-
ingness by assessing its significance against some objectively chosen prior distri-
bution for the time series (either explicitly or implicitly). The result is that the most
‘interesting’ motifs found are often trivial, implied by the user’s prior expectations.
For example, given an Electrocardiogram (ECG) which records the electrical ac-
tivity of a patient’s heartbeat, a method that adopts an objective interestingness
measure always identifies the same best motif (e.g., the one signalling the normal
heartbeat), albeit for different users who typically hold different beliefs about this
patient’s heart condition. It is often the case that this best motif has already been
known by some users, and thus is of little interest to them.

In contrast to this, we introduce an approach to identify recurring subsequence
patterns that are subjectively interesting, i.e., interesting when contrasted with the
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user’s prior expectations. A recurring subsequence is a subsequence that is found
at several positions within the time series with some variation, and will be called a
motif.

To achieve this, we define subsequence patterns as local probabilistic mod-
els. The subjective interestingness of a subsequence pattern is then defined in
terms of the amount of information (in an information-theoretic sense) contained
in this local model, when contrasted with a background distribution that repre-
sents the user’s expectations. Initially, the background distribution is computed
as the distribution of maximum entropy subject to any prior user expectations as
constraints, such as constraints on the expected mean, variance, and co-variance
between neighboring points in the time-series. Upon revealing the presence of a
subsequence pattern, the background distribution is updated to account for this new
knowledge, such that it continues to represent the (now updated) expectations of
the user as subsequence patterns are revealed throughout an iterative analysis. The
amount of information gained by the time series can be computed by contrasting
the prior distribution and the updated distribution.

To find the most informative motifs and outliers efficiently, we develop re-
laxations, and propose an effective search algorithm implemented in a constraint
programming solver. Together with an additional heuristic pruning technique, this
enables one to mine subsequence patterns relatively efficiently.

Our specific contributions are:

– Novel definitions of motifs as probabilistic patterns. [Sect. 3.3]

– A quantification of their Subjective Interestingness (SI), based on how much
information a user gains when observing this pattern. [Sect. 3.4]

– A relaxation of the exact setting and an algorithm to efficiently mine the most
interesting subsequence patterns to a user. [Sect. 3.5.1]

– Several speedup techniques which result in a computational more efficient
algorithm [Sect. 3.5.2]

– An empirical evaluation of this algorithm on one synthetic data set and two
real-world data sets, to investigate its ability to encode the user’s prior beliefs
and identify interesting subsequence patterns. [Sect. 3.6]

3.2 Related work

Time series motifs usually hint at useful information about seasonal or temporal
associations between events, and detecting such patterns can be very useful in
practice. A myriad of techniques for motif discovery have been proposed. These
can be categorized from different perspectives, starting with the definition of the
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interestingness measure for a motif. In general, two main aspects for judging the
interestingness of a motif exist in literature, namely the similarity among instances
and the support (i.e., the number of instances in a motif) [1]. More specifically,
one prioritizes a motif whose instances exhibit maximum similarity, or even more
strictly, defining a motif as the most similar subsequence pair (e.g., [2–4]); whereas
the second prioritizes one with the highest support given a minimum similarity
between all instances of a motif (e.g., [5, 6]).

For existing work adopting either similarity-based or support-based interest-
ingness, the similarity measure plays a key role in the motif discovery algorithms,
and typical ones include Euclidean distance and dynamic time warping. Regarding
the massive computational cost, some efforts are made to representing time series
in low dimensional space. Examples of such representations include Symbolic
Aggregate approXimation (SAX), Discrete Fourier Transform (DFT), and random
projections. A review of motif discovery algorithms based on their similarity mea-
sure and representation is provided by Mueen [1].

In addition to these aspects, there exist several challenging issues in this pat-
tern discovery problem, including scalability [3, 7, 8], the detection of motifs with
various lengths [9, 10], multi-dimensional time-series [11], coping with streaming
data [12, 13] and handling distortions [14]. For a more comprehensive review of
existing publications regarding these issues, we refer interested readers to Torka-
mani & Lohweg [15].

Our work explores a new aspect, shining light on the essence of the inter-
estingness for a motif, which we believe depends on a user’s prior knowledge.
Previous measures that prioritize either the similarity or support are all objective.
However, for a user with prior information about the time series (a common situ-
ation), the resulting motifs may be trivial. Hence, we propose a novel subjective
interestingness measure, which enables one to identify motifs that contradict their
prior expectations and are truly interesting to them. Additionally, the information-
theoretic view that we take immediately provides a balance between the similarity
and numerosity for a set of subsequences to form a motif.

3.3 Pattern syntaxes for motifs and motif templates

We denote a time series as x̂ , (x̂1, . . . , x̂n)′ ∈ Rn, i.e., an ordered collection
of n real numbers x̂i ∈ R, where i ∈ [n] = [1, . . . , n]. We write x̂i,l for x̂ for
the subsequence of length l ≤ n − i + 1 starting from position i. That is, x̂i,l ,
(x̂i, . . . , x̂i+l−1)′ ∈ Rl. By sliding a window of size l along x̂ and extracting each
subsequence, we can obtain a set containing all the subsequences of length l. We
denote this set as Sl, i.e., Sl = {x̂i,l|i = 1, 2, . . . , n− l+ 1}. Note hatted symbols
represent empirical values and their non-hatted equivalents are used to denote the
respective random variables.
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3.3.1 Motif

A motif of length l denoted by Tl is a subset of Sl containing more than 2 non-
overlapping subsequences. That is, Tl ⊆ Sl, |Tl| ≥ 2, |i− j| ≥ l, ∀x̂i,l, x̂j,l ∈ T
and i 6= j.

Each subsequence in a motif is said to be an instance of the motif. As we focus
on identifying motifs of a fixed length (i.e., l), we write T for Tl in the rest of the
paper for convenience. Not every motif is equally interesting. The criterion by
which we judge the quality of a motif is explained below.

The index set of a motif T is denoted as IT, i.e., IT = {i|x̂i,l ∈ T}.

3.3.2 Motif template

Our general aim is to find subjectively interesting ‘motifs’. However, what one
typically means is not actually a set of subsequences that are similar, but a general
subsequence pattern that is reccurring in a time-series. To avoid working with
a set of subsequences, one could use a single exemplar. Here we introduce a
probabilistic local model as the target object, the motif template, instead.

Definition 1 (Motif template). A motif template is a probability distribution over
the space of motif instances, i.e., Rl.

More concretely, we propose a template where we capture the mean and vari-
ance statistics of instances and call this as a mean-variance motif template. We
deem the roles played by these two statistics essential, as the mean serves a fig-
ure about the motif shape and the variance tells the extent of the similarity among
these instances. A typical choice of model is multivariate Gaussian distribution pa-
rameterized by the mean and variance statistics. It is in principle straightforward
to also use covariance statistics, but such a model has O(l2) parameters and is not
interpretable. Thus, we define a mean-variance motif template as:

Definition 2 (Mean-variance motif template). A mean-variance motif template is
a multivariate Gaussian distributionN (µ,Σ) over the space of motif instances. Σ

is the diagonal matrix with the values of standard deviations as the main diagonal
and zero elsewhere. Hence, this distribution can be essentially parameterized by a
tuple (µ,σ), where µ is a vector of means and σ is a vector of standard deviations,
both of length l.

In this paper, we take µ,σ as the maximum likelihood parameters over the
set of instances in a motif. We denote the parameter tuple for motif template
learned from the motif T as (µT,σT). That is, µT = 1

|T|
∑
i∈IT x̂i,l, σT =

1
|T|−1

∑
i∈IT(x̂i,l − µT)2. Examples are given in Fig. 3.1, 3.2 and 3.3.
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3.4 Formalizing the subjective interestingness
Previous motif discovery work tended to quantify the interestingness in an objec-
tive way (See Sect. 3.2). For a data analyst with prior knowledge about the time
series, which we believe is common, the discovered patterns may be trivial to the
end user and could be easily implied. To pre-empt this, we propose to use a more
flexible subjective measure of interestingness.

3.4.1 The background distribution

We follow the so-called FORSIED1 framework [16, 17] to quantify the subjective
interestingness of a motif. The basic procedure is that a background distribution is
defined over the space of all possible data sets, which here would be all possible re-
alizations of a time series x. Since x ∈ Rn, the background distribution is defined
by a probability density function p. The background distribution essentially en-
codes the beliefs and expectations of the user about the data. More specifically, it
assigns a probability density to each possible data value according to how tenable
the user thinks this value to be. It was argued that a good choice for the back-
ground distribution is the maximum entropy distribution subject to constraints that
capture the user’s prior expectations about the data.

3.4.1.1 The initial background distribution

We wish to define constraints and compute a maximal entropy distribution such
that these constraints are preserved in expectation. For the initial background dis-
tribution, we consider three kinds of constraints. They respectively express the
user’s prior knowledge about the mean and the variance of each data point, as well
as the first order difference in x. Notice these expectation values can be anything,
here we equate them to the empirical values. With these three constraints, the
initial background distribution is the solution to Prob. 3 as stated as follows

Problem 3.

max
p

∫
−p(x) log(p(x))dx, (3.1)

s.t.
∫
p(x)

1

n

n∑
i=1

xidx = m̂1, (3.2)

∫
p(x)

1

n

n∑
i=1

(xi − m̂)2dx = v̂1, (3.3)

∫
p(x)

1

n− 1

n−1∑
i=1

(xi − xi+1)2dx = d̂1, (3.4)

1An acronym for ‘Formalizing subjective interestingness in exploratory data mining’
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where m̂ =
1

n

n∑
i=1

x̂i, v̂ =
1

n

n∑
i=1

(x̂i − m̂)2, d̂ =
1

n− 1

n−1∑
i=1

(x̂i − x̂i+1)2.

and 1 is a n-dimensional vector with all the entries as 1.
The solution to Prob. 3 is a multivariate Gaussian distribution parameterised

by a n-dimensional mean vector m and a n× n covariance matrix V. The values
of m and V can be derived by applying the Lagrange multiplier method. Also,
we further improve the computation efficiency by using the property that maxi-
mizing the entropy and maximizing the likelihood are the dual of each other in the
class of exponential form distributions [18]. The computation details are given in
Appendix 3.A.

3.4.1.2 Updating the background distribution

Once a motif template along with its instances is identified and shown to the
user, the user’s belief state changes, and the background distribution needs to
be updated. The background distributions p for all prior belief types discussed
in this paper are essentially multivariate Gaussian distributions each of which is
parametrized by m and V. As mentioned, the motif template is also described
by a multivariate Gaussian distribution, N (µT,ΣT). To make the updated back-
ground distribution reflect the user’s newly acquired knowledge, we simply set the
blocks of current m and V corresponding to the subsequence instances equal to
µT and ΣT, and the off-diagonal elements of V corresponding to instances equal
to 0. We denote the background distribution having incorporated T as pT.

3.4.2 A remark about no independence assumpation

Remark 1. We do not assume independence between time points. While in the
local motif model (i.e. the mean-variance motif template), time points are indeed
independently distributed (see Sect. 3.3.2), this is not the case for the model of the
whole time series x (indeed the full covariance matrix is not necessarily diagonal).
Moreover, it is important to realize that the background distribution is a model for
the user’s belief state—it is not a model for the stochastic source of the data. In
other words, if the background distribution does not exhibit a certain dependency,
this does not mean that the data may not come from a stochastic source that ex-
hibits this dependency. It only means that the user whose belief state is modelled
by this background distribution is not yet aware of it. As the covariance matrix
is not diagonal, it is indeed the case that updating the expected value even for
a single point in the time series can ripple across the sequences and modify the
expected values throughout.
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3.4.3 The subjective interestingness measure

Intuitively, a good motif is one whose instances are strongly similar to each other
and together account for a considerable portion on the whole time series. Consider
such a good motif T. If all instances are similar to each other, it directly follows
that the values of µT are similar to those of each instance, and the diagonal entries
of ΣT are small. After revealing the motif to the user, the background distribution
is updated to be pT. Since the parameters of pT consist of µT and ΣT, the new
background distribution pT will thus be a more accurate model for the time series.
More precisely, the probability of the data under pT is larger. To quantify the
amount of information gained by the motif, we can compare this probability to the
one under the previous background distribution p. The more strongly they differ,
the more this motif enhances with the user’s beliefs about the data.

Mathematically, we define the Information Content (IC) of a motif as the dif-
ference between the log probability for the whole time series x̂ under pT and that
under p:

IC(T) = log pT(x̂)− log p(x̂). (3.5)

The rationale is that minus the log probability of the data represents the number of
bits of information the data contains with respect to the probability distribution—
so this difference corresponds to the amount of information (in bits) the user has
gained by seeing the motif.

Note that the expected value of IC(T) w.r.t. pT(x̂) takes the same form as
the Kullback-Leibler divergence, but this does not mean IC and KL-divergence
are equivalent concepts. The KL-divergence measures the difference between two
probability distributions, but here the pT(x̂) and p(x̂) in the definition of IC(T) are
probabilities rather than distributions.

3.4.4 Finding the most subjectively interesting motif template

Now we can formalize our goal of finding the most interesting motif in a time
series as an optimization problem with the following objective:

Objective 1: argmax
T

log pT(x̂)− log p(x̂).

Objective 1 accounts for the probability of the whole data. This probability de-
pends on the parameter updating of p (i.e. m and V ) from incorporating sub-
sequences, and can thus embody the quality of the choice for template instances.
Note that the key changes of m and V only take place on part of their entries that
represent instances in T. That means, the rise in the probability of the whole data
is mostly related to the probability of those instances in T. Based on this obser-
vation, we propose a relaxed version of Objective 1 which only depends on the
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probability of instances in T. This objective is similar to Objective 1, but is more
straightforward to optimize efficiently.

Objective 2: argmax
T

∑
i∈IT

log pT(x̂i,l)−
∑
i∈IT

log p(x̂i,l).

3.5 Algorithm

3.5.1 Mining algorithm

In this work, we adopted a greedy search algorithm to identify the most interesting
motif. The general idea is to first seed T by finding a small set of k instances
according to Objective 2 and then greedily grow that set using Objective 1.

The algorithm consists of three major steps:

1. Model the user’s prior belief by the initial background distribution;

2. Seed by finding a small set of instances which optimizes Objective 2;

3. Grow that set by adding an instance which optimizes Objective 1, and iterate.

Remark 2. Although the three basic steps are for finding a single motif (i.e. the
most interesting one to the user), our algorithm is not limited to that. A new search
for another motif can be triggered by running step 2 and step 3 again based on an
updated background distribution, the one that has already incorporated the user’s
knowledge of the previous motif.

How we compute the initial background distribution (i.e., step 1) is described
in the above (see Sect. 3.4.1.1). In the following, we go into more details of step 2
and 3.

3.5.1.1 Step 2: finding a seed motif T(0) with k instances

The search starts by finding k non-overlapping optimal instances which constitute
a seed set for T. We denote such a seed set by T(0). The most subjectively interest-
ing T(0) is identified by optimizing Objective 2. This problem can be formulated
as
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Problem 4.

argmax
T(0)

∑
i∈IT(0)

log pT(0)(x̂i,l)−
∑
i∈IT(0)

log p(x̂i,l) ≡

argmax
T(0)

∑
i∈IT(0)

logN (x̂i,l|µT(0) ,ΣT(0))

−
∑
i∈IT(0)

logN
(
x̂i,l|m(i:i+l−1),V(i:i+l−1,i:i+l−1)

)
, (3.6)

where µT(0) =
1

k

∑
i∈IT(0)

x̂i,l, ΣT(0) = diag

 1

k − 1

∑
i∈IT(0)

(x̂i,l − µT(0))
2

 .

The superscript of a vector or matrix symbol is used to denote the correspond-
ing entry. Using the expression for the multivariate Gaussian distribution, we can
write Eqs. (3.6) as:∑

i∈IT(0)

logN (x̂i,l|µT(0) ,ΣT(0))

−
∑
i∈IT(0)

logN
(
x̂i,l|m(i:i+l−1),V(i:i+l−1,i:i+l−1)

)
=− kl

2
log(2π) +

kl

2
{log k + log(k − 1)}

−k
2

∑
h∈[l]

log


∑

i,j∈IT(0)
i<j

(x̂
(h)
i,l − x̂

(h)
j,l )2

︸ ︷︷ ︸
I

−1

2
(k − 1)l

−
∑
i∈IT(0)

logN
(
x̂i,l|m(i:i+l−1),V(i:i+l−1,i:i+l−1)

)
︸ ︷︷ ︸

II

. (3.7)

Note the parts related to the choice of instances in T(0) are underbraced and
numbered respectively as I and II . By taking a closer look, we can see part II
is essentially the sum of all the individual negative log probability of x̂i,l under p,
and the values for parameters m and V do not subject to which instances to incor-
porate. This allows to gain some computational benefits by simply pre-computing
each log probability. Nevertheless, I expresses a mutual relationship among all
the instances in T(0), due to it being in the summation form for the logarithm of
a summation. Pre-computation is not trivial, which makes the search for opti-
mal instances computationally demanding, reaching O(nkk2). We thus adopted a
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strategy to mitigate a certain factor of this time complexity, as well as a heuristic
to prune the search space. A detailed description is provided in Sect. 3.5.2.

3.5.1.2 Step 3: greedily searching for a new instance

The algorithm then continues to search for a new subsequence which optimizes
Objective 1. The search stops when no new subsequence exists such that incorpo-
rating it can increase the probability of the time series under the background distri-
bution, i.e., @i ∈ [n− l+1] s.t. T∪{xi,l} is a motif and pT∪{xi,l}(x̂)−pT(x̂) ≥ 0.

To gain some speedup, we prune subsequences which pose little potential ac-
cording to a heuristic (see Sect. 3.5.2).

3.5.2 Speedup techniques

In this section, we describe some speedup techniques applied to step 2

(Sect. 3.5.2.1) and step 3 (Sect. 3.5.2.2).

3.5.2.1 Speeding up the step 2

Strategy 1: Bounding the objective 2 and finding the submatrix with the max-
imal sum. Recall only term I and II in the objective of Prob. 4 (i.e. Eqs. (3.7))
are affected by the chosen of instances for T(0), and Term I makes the search com-
putationally expensive. To mitigate the time complexity, we consider optimizing a
relaxed objective of Prob. 4 based on bounding the term I . Via applying Jensen’s
inequality [19], term I can be upper bounded by a summation form taken from all
the instances pairs:

I :− k

2

∑
h∈[l]

log


∑

i,j∈IT(0)
i<j

(x̂
(h)
i,l − x̂

(h)
j,l )2


≤

∑
i,j∈IT(0)
i<j

− 1

k − 1

∑
h∈[l]

log
{

(x̂
(h)
i,l − x̂

(h)
j,l )2

}
︸ ︷︷ ︸

III

−kl
2

log

{
k(k − 1)

2

}
. (3.8)
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Substituting Eqs. (3.8) into Eqs. (3.7) yields:∑
i∈IT(0)

logN (x̂i,l|µT(0) ,ΣT(0))

−
∑
i∈IT(0)

logN
(
x̂i,l|m(i:i+l−1),V(i:i+l−1,i:i+l−1)

)
≤− kl

2
log(2π) +

kl

2
{log k + log(k − 1)}

+
∑

i,j∈IT(0)
i<j

− 1

k − 1

∑
h∈[l]

log{(x̂(h)
i,l − x̂

(h)
j,l )2}


︸ ︷︷ ︸

III

−kl
2

log

{
k(k − 1)

2

}

− 1

2
(k − 1)l−

∑
i∈IT(0)

logN
(
x̂i,l|m(i:i+l−1),V(i:i+l−1,i:i+l−1)

)
︸ ︷︷ ︸

II

. (3.9)

Finding the maximal value for the objective Eqs. (3.9) is essentially the same as
maximising term III+ term II . Then we construct a matrix M̂, with rows and
columns representing subsequence candidates, the i-th diagonal entry M̂i,i being
the part of the term II inside the summation (Eqs. (3.11) in the below), and the
entry at the i-th row and j-th column M̂i,j being the part of the term III inside
the outer summation (Eqs. (3.12) in the below).
Solving Prob. 4 corresponds to finding the upper triangular matrix inside M̂ with
the maximum sum, as expressed in the following problem:

Problem 5.

argmax
T(0)

∑
i∈IT(0)

∑
j∈IT(0)

M̂i,j , (3.10)

where M̂i,i = logN (x̂i,l|m(i:i+l−1),V(i:i+l−1,i:i+l−1)) for i ∈ IT(0) , (3.11)

M̂i,j = − 1

k − 1

∑
h∈[l]

log{(x̂(h)
i,l − x̂

(h)
j,l )2} for i, j ∈ IT(0) , (3.12)

T(0) ⊆ PrunedSubsequenceSet, (3.13)

|i− j| ≥ l, ∀i, j ∈ IT(0) and i 6= j. (3.14)

The fourth set of constraints (Eqs. (3.14)) is to ensure instances in T(0) are
non-overlapping to each other. This speedup technique enables us to compute the
matrix M̂ in advance and then do the search using the constraint programming
(CP). The time complexity of a relaxed Prob. 4 is O(nk), a factor of k2 less than
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the Prob. 4. Clearly, it still appears intractable for real-world applications. To
counter this, we deliberately reduce the search space so that each element of T(0)

is constrained to be in a pruned range, denoted by PrunedSubsequenceSet

(Eqs. (3.13)). The way we construct PrunedSubsequenceSet is described in the
following.

Strategy 2: Pruning. The exhaustive search for a solution to the relaxed Prob-
lem 4 is still computationally demanding for a large M̂. We thus adopt a heuristic
strategy so that the search is among a considerably reduced space but the quality
of the found motifs is guaranteed.

It appears that an off-diagonal entry at the i-th row and j-th column M̂i,j

models a sort of similarity between the subsequence x̂i,l and x̂j,l. As the transition
property of the similarity suggests, if M̂i,k and M̂j,k are large, then does the M̂i,j .
We can deduce that all the entries in M̂ mapped from IT(0) should have relatively
larger value. Hence, we can deliberately perform the search in a pruned range of
subsequences whose indices corresponding to largest entries in M̂. Specifically,
we fix the first instance to be a certain subsequence and search the others among
subsequences corresponding to the largest 1% entries at a row of M̂ correspond-
ing to this instance (i.e. pruning factor = 99%). To find the globally optimal k
instances for T(0), we fix the first instance to be each possible subsequence, and
solve the relaxed Problem 4 each time. The final solution should be the one that
leads to the maximal objective value.

3.5.2.2 Speeding up the step 3

In step 3, the exhaustive search for a new optimal instance requires checking the
result of Objective 1 value of incorporating every possible subsequence, which
is apparently time-consuming for large x̂. Clearly, incorporating subsequences
which bear strong similarity with instances in T(0) can result in a high value for
Objective 1. As the off-diagonal entries in M̂ encode a similarity between subse-
quence pairs, we apply a heuristic pruning strategy based on entries in M̂ to reduce
the search space.

Assume we are in the stage of having incorporated all the k instances in
T(0). Let us denote the current M̂ as M̂k. The new optimal instance must be
among those that can produce a relatively large value of the objective for Prob. 5,
but based on M̂k+1, whose entry at the i-th row and j-th column (i 6= j) is
− 1
k

∑
h∈[l] log{(x̂(h)

i,l − x̂
(h)
j,l )2} = k−1

k M̂k
i,j (recall M̂k

i,j is computed by Eqs.

(3.12)). The objective for Prob. 5 is in the form of summing some entries of M̂k+1

which correspond to instances in T(0) and the new subsequence (e.g. x̂r,l). Thus,
the potential of x̂r,l (i.e., Potential(x̂r,l)) can be captured by how much the value
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of objective for Prob. 5 (Eqs.(3.10)) increases if incorporating x̂r,l:

Potential(x̂r,l) =
∑
i∈IT(0)

M̂k+1
r,i + M̂k+1

r,r .

The algorithm ranks all possible subsequences in a descending order according to
their Potential values. Then the search is implemented in a greatly reduced space
(i.e. among those in the top 1% of the rank). Let us denote the optimal subsequence
which leads to the highest Objective 1 value by Tk+1. We first check whether the
probability of the time series increases under the new background distribution. If
so, we include Tk+1 in T. Nevertheless, for incorporating the next subsequence,
a further check is performed. First we update the search domain as well as the
potential rank by deleting all the subsequences overlapped with Tk+1. We do step
3 to identify the new optimal one. If this subsequence is still among the top 3

of the potential rank and incorporating it did not trigger the stop condition, we
make it the (k + 2)-th instance to T. Otherwise, we recompute the potential and
rank all the subsequences again, according to M̂k+2, the one considering Tk+1

as an incorporated instance. Then step 3 is done again among an updated search
domain. However, there might occur a situation where the new optimal one is still
not ranked among the top 3. In this case, if the stop condition is not reached, we
make it an instance to T anyway. By this lazy greedy strategy, the search space is
significantly reduced, while a good quality of the incorporated instance is ensured
to a satisfiable extent.

3.6 Experiments

This section describes the evaluation of our proposed algorithm on a synthetic
and two real-world datasets. In the following, we first describe the datasets
(Sect. 4.6.1). Then we discuss the results of the conducted experiments that are
directed at finding the answers to the following questions:

RQ1 Is our motif discovery algorithm sensitive to the pruning percentage in
the initial set selection? (Sect. 3.6.2)

RQ2 How does our algorithm scale? (Sect. 3.6.2)

RQ3 Is our method able to identify subjectively interesting motifs, such that
they are in contrast to what the user already knew? (Sect. 3.6.3)

All experiments were conducted on a PC with Ubuntu OS, Intel(R) Core(TM)
i7-7700K 4.20GHz CPUs, and 32 GB of RAM. The main algorithm was imple-
mented in Matlab R2016b. The step of identifying the initial motif template was
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coded in Python 3.5, in which the open source software OR-Tools 6.10 [20] devel-
oped by Google was used as the constraint programming solver. All the computer
codes are available at https://bitbucket.org/ghentdatascience/simit-public/src.

3.6.1 Data

• Synthetic time series. We synthesized a time series of length 15000. This
series includes 2 sorts of motif trends, and their prototypes are taken from
2 subsequence instances in the UCR Trace Data [21]. Both instances are of
the same length (i.e., 275), but belong to different classes. Subsequences
for each motif are generated by sampling from a Gaussian distribution with
the mean as the corresponding instance and a reasonably small variance as
0.01. There are in total 12 subsequences for each motif. The remaining
are standard Gaussian noises, and they constitute a major part in the whole
series. More details about the data synthesizing process are described in the
pseudo code Procedure 3.1 in Appendix 3.B.

• MIT-BIH arrhythmia ECG recording. This data set is recording #205 in
the MIT-BIH Arrhythmia DataBase [22]. This recoding was created from
digitalizing the ECG signals at 360 samples per second. We chose a part of
20 seconds (7200 samples) to experiment on that includes normal heartbeats
and ventricular tachycardia beats.

• Belgium Power Load Data. This data set is taken from Open Power System
Data [23]. The primary source of this data is ENTSO-E Data Portal/Power
Statistics [24]. Open Power System Data then resampled and merged the
original data in a large CSV file with hourly resolution. The part we selected
to experiment on records the total load in Belgium during the year 2007, for
a total length of 24 ∗ 365 = 8760.

3.6.2 Pruning and Scalability (RQ1 and RQ2)

For all the experiments, we first identify an initial motif T(0) with k = 4 instances.
As mentioned above, our algorithm searches among a space pruned in a particular
heuristic way to gain some relative amount of efficiency. The effects of pruning
in the initial set identification were tested on the synthetic time series, for which
the correct answers were known. The results indicate the optimal one was still
found even with the heaviest prunning (99.9%) . Therefore, we used 99% pruning
in the experiments on the real-world datasets. The scalability of our algorithm,
with respect to the length of the motif template and to the length of the time-series,
was evaluated on the ECG recording. Tab. 3.1 shows that the length of the motif
template does not influence the computational cost that much, but the influence of
the time-series length is more than quadratic.

https://bitbucket.org/ghentdatascience/simit-public/src
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Table 3.1: Run-time to search the initial motif set, with pruning factor 99%.

n l Time(s) n l Time(s) n l Time(s)

1800 100 9.96 3600 100 50.12 7200 100 369.92
7200 25 328.09 7200 50 350.65 7200 100 369.92

Summary. Overall, our algorithm is not sensitive to the pruning percentage.
The run time is not influenced by the increasing length of the motif template that
much, whereas it grows faster than quadratically with the increase of the length of
the time series.

3.6.3 Results on the discovered motifs (RQ3)
3.6.3.1 Synthetic data

In this experiment, we specified the length of the motif instance same as the length
of the subsequence synthesized by sampling (i.e. l = 275). As expected, our
algorithm identified two motifs embedded in this synthetic time series, the result
of which is shown in Fig. 3.1. The whole time series is plotted in Fig. 3.1(a),
and subsequences incorporated into the first motif set are exactly those sampled
from the same Gaussian distribution (in red). Fig. 3.1 (b) illustrates the first motif
template by plotting the mean of all the instances incorporated into this motif as
well as the error bars indicating the variance of each point. Our algorithm also
correctly identifies the second motif (marked in green in Fig. 3.1(a)). We model
the user’s knowledge about the first motif by triggering the new search on a new
original background distribution, the one that takes into account of all the instances
for the first motif. The second motif is displayed in Fig. 3.1(c).
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Figure 3.1: The algorithm correctly retrieves the two patterns in the synthetic data.

3.6.3.2 ECG time-series

We analyzed the ECG data by identifying motifs with length 100, corresponding
to a duration of 0.28s. In this fairly short recording (see Fig. 3.2a), our algo-
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rithm identified three motifs. The first two motifs correspond to normal heartbeats
(highlighted with red and green, templates shown in Fig. 3.2b and Fig. 3.2c). We
see their shapes mostly coincide, with a horizontal shift. Normal heart beats are
deemed to be similar to each other, but within each one there may exist a particular
subsection that bear more similarity than other subsections. Since the motif length
is set to be less than a period of a normal heart beat, our algorithm is prone to re-
gard those subsections that bear the similarity to different extent to be in different
motif sets. Another motif identified by the algorithm lies in the area of ventricular
tachycardia (pink sections). The instances do not cover all the ventricular tachycar-
dia heart beats, but the small error bars in Fig. 3.2d indicate that these instances are
uncannily similar to each other, and the reason why other ventricular tachycardia
subsequences lose the membership for this motif set is their smaller similarity.
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Figure 3.2: Three motif templates identified in the 20-second ECG recording.

3.6.3.3 Belgium Power Load Data

We analyzed this data searching for motifs of length 24 (one day). The first four
motifs discovered by our algorithm are displayed in Fig. 3.3. The first motif covers
many weekdays, except for Fridays, during cold seasons (highlighted with red in
Fig. 3.3(a)). All these 24 hour periods start at 15:00 pm. Note not all the Monday
to Thursday during these months are identified as the motif instance, for exam-
ple, those blue sections both at the very beginning and the end of this whole series.
The reason could be that they correspond to holidays rather than normal workdays.
As for other workdays in winter excluding Friday that do not belong to this motif,
these are very interesting for energy analyst to analyze the reason. After modelling
user’s knowledge about this motif, our algorithm then identified the second motif,
corresponding to Monday to Thursday as well, but during hot seasons (highlighted
with green in Fig. 3.3(a)). Most days in July are not instances of this motif. This
might be due to them being in summer holiday time (a noticeable blue and pink
section which divides the green section in Fig. 3.3 (a)). Actually, part of these days
(i.e. Monday to Thursday in the last two weeks of July) constitute the third motif
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(pink sections in Fig. 3.3(a)). The first 3 motifs are all related to normal workdays
excluding Friday, but in different temperature conditions. It seems that power con-
sumption in hot seasons is less regular than that during cold seasons, as the normal
workday pattern relating to cold periods are identified first (i.e. the first motif).
This phenomenon could be very interesting for energy analyst to investigate. By
incorporating these 3 motifs into the user’s belief model, our algorithm identified
the fourth motif, corresponding to some Sunday time from middle of April to the
beginning of October (black sections in Fig. 3.3(a)). All the instances belonging
to the same motif corresponds to daytime starting at exactly the same hour, and
they are strongly similar to each other, as reflected by the small error bars in the
illustration of each motif template (Fig. 3.3(b)-(d)).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Time

0.6

0.8

1

1.2

1.4

1.6 104

(a) Belgium Power Load in 2007

0 5 10 15 20 25
0.8

1

1.2

1.4 104(b) Motif 1

0 5 10 15 20 25
0.8

1

1.2 104 (c) Motif 2

0 5 10 15 20 25
0.6

0.8

1

1.2
(d) Motif 3

0 5 10 15 20 25
0.6

0.8

1

1.2
(e) Motif 4

Figure 3.3: Four motif templates identified in the Belgium power load data.

Summary. As shown by these case studies on different datasets, our method can
incorporate the user’s newly acquired motifs into the background distribution for
subsequent iterations, and identify motifs which contrast with this knowledge.

3.7 Conclusions

Subsequence patterns can provide valuable insights into both local and global
characteristics of data. Because different users have different beliefs and prior
knowledge about data, motifs ranked using statistically objective measures may
not be of great interest to every user. We propose a new methodology for motif
discovery and a concrete implementation for a specific type of motifs where the
interestingness score can incorporate prior beliefs, and hence they are subjectively
interesting. Although mining the most subjectively interesting motif appears
intractable, we develop a relaxation of this interestingness score with bounds
that can be optimized relatively efficiently using constraint programming. An
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empirical evaluation demonstrates the potential of the proposed approach.

For future work, it would be useful to detect motifs that exhibit distortions (also
known as ill-known motifs), e.g., those being stretched/squeezed, shifted in time,
scaled in amplitude, or overlayed with noises. This can be approached by develop-
ing a motif template that incorporates a form of time warping. Secondly, the length
of the subsequences considered is currently a parameter, and could be optimized
as well. To make this possible, further speedup techniques should be developed.
In contrast to motifs, outliers are subsequences that are unusual and non-reccuring
in a time series. Identifying subjective interesting outliers can also be interesting.
Moreover, the proposed motif templates are based on multivariate gaussian distri-
butions. An extension to multivariate non-gaussian distribution [25] with the use
of non-symmetrical entropy [26] seems promising. Finally, an extension towards
multivariate time series is useful.
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Appendices

3.A Solving problem 1

The solution of Prob. 3 follows directly from applying the method of Lagrange
Multipliers. Let us use Lagrange multipliers λ1, λ2, λ3 for constraints (Eqs. (3.2)
to Eqs. (3.4)) respectively, λ for the vector containing all Lagrange multipliers.
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The Lagrangian is formulated as:

L (λ, p(x)) =−
∫
p(x) log p(x)dx

+ λ1

(∫
p(x)

1

n

n∑
i=1

xidx− m̂1

)

+ λ2

(∫
p(x)

1

n

n∑
i=1

(xi − m̂)2dx− v̂1

)

+ λ3

(∫
p(x)

1

n− 1

n−1∑
i=1

(xi − xi+1)2dx− d̂1

)
. (3.15)

Differentiating Eqs. (3.15) w.r.t. p(x) and renormalizing by dropping the dx factor
yields:

∂

∂p(x)dx
L (λ, p(x)) =− log p(x)− 1

+ λ1

(
1

n

n∑
i=1

xi

)
+ λ2

(
1

n

n∑
i=1

(xi − m̂)2

)

+ λ3

(
1

n− 1

n−1∑
i=1

(xi − xi+1)2

)
. (3.16)

Equating Eqs. (3.16) to 0 and solving for p(x) gives:

p(x) =
1

Z
exp

{
λ1

(
1

n

n∑
i=1

xi

)
+ λ2

(
1

n

n∑
i=1

(xi − m̂)2

)

+ λ3

(
1

n− 1

n−1∑
i=1

(xi − xi+1)2

)}
. (3.17)

where Z is the normalization variable, as the implicit normalization constraint∫
p(x)dx = 1 can be imposed constructively by setting Z to be:

Z =

∫
exp

{
λ1

(
1

n

n∑
i=1

xi

)
+ λ2

(
1

n

n∑
i=1

(xi − m̂)2

)

+λ3

(
1

n− 1

n−1∑
i=1

(xi − xi+1)2

)}
dx.
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By expanding quadratic terms in Eqs. (3.17) and reorganizing, we obtain:

p(x) ∝ exp

{
(λ2 + λ3)x21 +

n−1∑
i=2

(λ2 + 2λ3)x2i + (λ2 + λ3)x2n

+

n∑
i=1

(λ1 − 2λ2m̂)xi −
n−1∑
i=1

2λ3xixi+1 + λ2nm̂
2

}
.

After some algebra:

p(x) ∝ exp

{
1

2
(x−m)TV−1(x−m)

}
. (3.18)

where m = m̂1,

V−11,1 = V−1n,n = λ2 + λ3,V
−1
i,i = λ2 + 2λ3 for i = 2, . . . , n− 1

V−1i,j = −λ3 for |i− j| = 1,V−1i,j = 0 for |i− j| ≥ 2,

λ1 = 0.

Clearly seen from Eqs. (3.18), p(x) is essentially a multivariate Gaussian distribu-
tion with the mean vector m and the covariance matrix V. Note the inverse of the
covariance matrix V−1, known as the precision matrix, in our case is a tridiagonal
matrix whose nonzero elements can be determined by λ2 and λ3.

As maximizing the entropy and maximizing the likelihood are the dual of each
other in the class of exponential family [18], the optimal values of the Lagrange
multipliers λ2, λ3 can be found by maximizing the likelihood over the observations
L(x̂|λ). This problem can be formulated as:

Problem 6.
λ∗ = argmax

λ
L(x̂|λ).

Prob. 6 is convex and can be solved by using standard techniques for convex
optimisation (e.g., the interior point method [27]).

3.B Pseudo code for generating the synthetic data
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Algorithm 3.1: Synthetic time series generation
input : Trace instance 1, Trace instance 2
output: A synthesized time series x̂

1 n← 15000 // The length of the synthesized time
series ;

2 l← 275// The length of each subsequence in a
motif whose prototype is taken from Trance
instance 1 or 2;

3 S← An n× n diagonal matrix with each diagonal entry as 0.001 ;
4 Qprototype1 ← The set containing the beginning indices for 12

subsequences for prototype 1 ;
5 Qprototype2 ← The set containing the beginning indices for 12

subsequences for prototype 2 ;
6 Qothers ← The set containing indices which are not covered by

subsequences for prototype 1 or 2 ;
// Generating subsequences for prototype 1 by

sampling
7 for i ∈ Qprototype1 do
8 x̂i,l ∼ N (Trace instance 1,S);

// Generating subsequences for prototype 2 by
sampling

9 for i ∈ Qprototype2 do
10 x̂i,l ∼ N (Trace instance 2,S);

// Making the remaining standard Gaussian
noises

11 for i ∈ Qothers do
12 x̂i,1 ∼ N (0, 1)



48 CHAPTER 3

References

[1] A. Mueen. Time series motif discovery: dimensions and applications.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
4(2):152–159, 2014.

[2] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B. Westover. Exact Dis-
covery of Time Series Motifs. In Proceedings of the 2009 SIAM international
conference on data mining, 2009.

[3] C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva,
A. Mueen, and E. Keogh. Matrix Profile I: All Pairs Similarity Joins for
Time Series: A Unifying View That Includes Motifs, Discords and Shapelets.
In IEEE International Conference on Data Mining, pages 1317–1322, 2016.

[4] A. Mueen and N. Chavoshi. Enumeration of time series motifs of all lengths.
Knowledge and Information Systems, 45(1):105–132, 2015.

[5] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding Motifs in Time Series. In
Proceedings of the 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 53–68, 2002.

[6] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic Discovery of Time Series
Motifs. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 493–498, 2003.

[7] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. B.
Westover, Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions
of time series subsequences under dynamic time warping. In Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 262–270, 2012.

[8] C. E. Yoon, O. O’Reilly, K. J. Bergen, and G. C. Beroza. Earthquake detec-
tion through computationally efficient similarity search. Science Advances,
1(11), 2015.

[9] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandh, A. P. Boedihardjo, C. Chen,
and S. Frankenstein. GrammarViz 3.0: Interactive Discovery of Variable-
Length Time Series Patterns. The ACM Transactions on Knowledge Discov-
ery from Data, 12(1):10:1–10:28, 2018.

[10] M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh. Matrix Profile X: VALMOD
- Scalable Discovery of Variable-Length Motifs in Data Series. In SIGMOD,
pages 1053–1066, 2018.



SUBJECTIVELY INTERESTING MOTIFS IN TIME SERIES 49

[11] C. M. Yeh, N. Kavantzas, and E. Keogh. Matrix Profile VI: Meaningful Mul-
tidimensional Motif Discovery. In IEEE International Conference on Data
Mining, pages 565–574, 2017.

[12] A. Mueen and E. Keogh. Online Discovery and Maintenance of Time Series
Motifs. In Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1089–1098, 2010.

[13] J. Lin and Y. Li. Finding approximate frequent patterns in streaming med-
ical data. In IEEE the 23rd International Symposium on Computer-Based
Medical Systems, pages 13–18, 2010.

[14] E. Keogh, L. Wei, X. Xi, S. Lee, and M. Vlachos. LB Keogh Supports Ex-
act Indexing of Shapes under Rotation Invariance with Arbitrary Represen-
tations and Distance Measures. In Proceedings of the 32nd International
Conference on Very Large Data Bases, pages 882–893, 2006.

[15] S. Torkamani and V. Lohweg. Survey on time series motif discovery.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(2):e1199, 2017.

[16] T. De Bie. An information-theoretic framework for data mining. In Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 564–572, 2011.

[17] T. De Bie. Subjective interestingness in exploratory data mining. In Pro-
ceedings of the 12th International Symposium on Advances in Intelligent
Data Analysis, pages 19–31, 2013.

[18] T. De Bie. Maximum entropy models and subjective interestingness: an ap-
plication to tiles in binary databases. Data Mining and Knowledge Discov-
ery, 23(3):407–446, 2011.

[19] J. L. W. V. Jensen. Sur les fonctions convexes et les inégalités entre les
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4
Explainable Local and Global

Subgraph Patterns with Surprising
Densities

4.1 Introduction

Real-life graphs (also known as networks) often contain attributes for the vertices.
In social networks for example, where vertices correspond to individuals, vertex
attributes can include the individuals’ interests, education, residency, and more.
The connectivity of the network is usually highly related to those attributes [1–
4]. The attributes of individuals affect the likelihood of them meeting in the first
place, and, if they meet, of becoming friends. Hence, it appears likely it should be
possible to understand the connectivity of a graph in terms of those attributes, at
least to a certain extent.

One approach to identify the relations between the connectivity and the at-
tributes is to train a link prediction classifier, with as input the attribute values of
a vertex pair, predicting the edge as present or absent (e.g., [5–8]). Such global
models often fail to provide insight though. To address this, the local pattern min-
ing community introduced the concept of subgroup discovery, where the aim is
to identify subgroups of data points for which a target attribute has homogeneous
and/or outstanding values [9, 10]. Such subgroup rules are local patterns, in that
they provide information only about a certain part of the data.

Research on local pattern mining in attributed graphs has so far focused on
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identifying dense vertex-induced subgraphs, dubbed communities, that are coher-
ent also in terms of attributes. There are two complementary approaches, as stated
in [11]. The first explores the space of communities that meet certain criteria in
terms of density, in search for those that are also homogeneous with respect to
some of the attributes (e.g., [12, 13]) The second explores the space of rules over
the attributes, in search for those that define subgroups (of vertices) that form a
dense community (e.g., [11, 14, 15]). This is effectively a subgroup discovery
approach to dense subgraph mining.

Limitations of the state-of-the-art. Both these approaches hinge on the exis-
tence of attribute homophily in the network: the tendency of links to exist between
vertices with similar attributes [2]. Yet, while the assumption of homophily is of-
ten reasonable, it limits the scope of application of prior work. A first limitation of
the state-of-the-art is thus its inability to find e.g. sparse subgraphs.

A second limitation is the fact that the interestingness of such patterns has in-
variably been quantified using objective measures—i.e., measures that do not de-
pend on the user’s prior knowledge. Yet, the most ‘interesting’ patterns found are
often obvious and implied by such prior knowledge (e.g., communities involving
high-degree vertices, or in a student friendship network, communities involving
individuals practicing the same sport). Not only may uninteresting patterns appear
interesting if prior knowledge is ignored, also interesting patterns may appear un-
interesting and are hence not found. E.g., a pattern in a student friendship network
that indicates tennis lovers are rarely connected may be due to the lack of suitable
facilities or a tennis club.

A third limitation of prior work is that the patterns describe only the connec-
tivity within a single group and not between two potentially distinct groups. As
an obvious example, this excludes patterns that describe friendships between a
particular subgroup of female and a subgroup of male individuals in a social net-
work, but as we will show in the experiments real-life networks contain many less
obvious examples.

Contributions. We depart from the existing literature in formalizing a subjec-
tive interestingness measure, rather than an objective one, and this for sparse as
well as for dense subgraph patterns. In this way, we overcome the first and second
limitations of prior work discussed above. More specifically, we build on the ideas
from the exploratory data mining framework FORSIED [16, 17]. This framework
stipulates in abstract terms how to formalize the subjective interestingness of pat-
terns. Basically, a background distribution is constructed to model prior beliefs the
user holds about the data. Given that, one can identify patterns which strongly con-
trast to this background knowledge and are highly surprising to the user. Moreover,
this interestingness measure is naturally applicable for patterns describing a pair
of subgroups, to which we will refer as bi-subgroup patterns. Hence, our method
overcomes the third limitation of prior work. Finally, apart from a local pattern
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mining strategy which is used to identify interesting patterns one by one, we also
propose a strategy to mine patterns globally, that is, to summarize the whole graph
in a meaningful way such that all the interesting patterns can immediately be seen.
The resulting summarization can be considered as a type of global pattern. Our
specific contributions are:

– Novel definitions of single-subgroup patterns and bi-subgroup patterns, as
well as patterns that are global summaries for attributed graphs. [Sec. 4.3]

– A quantification of their Subjective Interestingness (SI), based on what prior
beliefs a user holds, or what information a user gains when observing a
pattern. [Sec. 4.4]

– An algorithm to mine bi-subgroup patterns based on beam search. [Sec. 4.5]

– An algorithm to mine global (or summarization) patterns from which a se-
ries of interesting single-subgroup and bi-subgroup patterns can be revealed.
[Sec. 4.5]

– An empirical evaluation of our method on real-world data, to investigate its
ability to encode the user’s prior beliefs and identify subjective interesting
patterns. [Sec. 4.6]

4.2 Related work

To grapple with graph pattern mining, state-of-the-art techniques either design
those three key building blocks (i.e., pattern syntaxes, interestingness measures,
and mining algorithms) dedicated to graph types, or resort to strategies that can
represent a graph into a flat vector form (a.k.a., network embedding) such that
pattern mining methods for traditional flat data can be applied. In this section,
we provide a literature review of dedicated graph pattern mining (Sec. 4.2.1 for
plain graphs, Sec. 4.2.2 for attributed graphs), and network embedding (Sec. 4.2.3).
Lastly, we briefly review some graph modelling work (Sec. 4.2.4), which provides
the foundation of model fitting, model selection, for various applications including
the pattern mining.

4.2.1 Pattern mining in plain graphs

In this brief review of pattern mining work related to plain graphs (denoted asG =

(V,E) where V is a set of vertices, E ⊆
(
V
2

)
is a set of unweighted and undirected

edges), we focus on two most well-known and extensively studied problems: dense
subgraph mining and frequent subgraph mining.



54 CHAPTER 4

Dense subgraphs. Dense subgraphs often indicate importance and discovering
them can be very useful for numerous applications. Nowadays, graph mining
research abounds with dense subgraph mining methods. Different methods are
aimed with different applications, and find different definitions of dense subgraph
useful.

In general, there exist two classes of density definitions: absolute density and
relative density [18] 1. Methods applying absolute density aim to identify a dense
substructure that satisfies some particular rules, e.g., cliques (i.e., fully-connected
subgraphs) [19, 20], density-based quasi-cliques (i.e., subgraphs with connectivity
density larger than a threshold τ ) [21, 22], degree-based quasi-clique (i.e., sub-
graphs where each vertex connects to at least τ percent of other vertices) [23–25],
k-core (i.e., subgraphs where each vertex connects to at least k other vertices) [26],
k-plex (i.e., subgraphs where each vertex is missing not more than k connections
to others) [27, 28], k-club (i.e., subgraphs where the shortest path between any two
vertices is not more than k) [29, 30] so forth. In contrast, methods applying rela-
tive density identify a set of top subgraphs with respect to a certain interestingness
measure. Here, whether a subgraph is presented as output to the user depends on
other subgraphs, and is thus relative. Common interestingness measures for dense
subgraphs include density [31], average degree [32, 33], modularity [34], edge
surplus [35] among others. We provide a detailed description of these measures in
Sec. 4.6.3.1 and Appendix 4.A.

Frequent subgraphs. Frequent subgraph mining (FSM) deals with identifying
frequently occurring subgraphs that occur no less than a specified threshold in a
given set of graphs or a single large graph. As far as we know, existing methods
for this task all use occurrence of frequency as the interestingness measure. There-
fore, the following review of state-of-the-arts is made along two perspectives that
correspond to two other building blocks of a pattern mining framework: pattern
syntaxes and mining algorithms.

Designing pattern syntaxes for a FSM task is all about the graph or subgraph
representation. Most methods use an adjacency matrix (e.g., AGM [36], Subdue
[37]) or an adjacency list to represent graphs. Nevertheless, neither of them can
take into account graph isomorphism, which means a set of graphs isomorphic to
each other may not share the same adjacency matrix or adjacency list. In other
words, they cannot uniquely identify a graph. Recently, canonical labelling is
proposed to provide an isomorphism-invariant representation for a graph. Two
approaches of canonical labelling are commonly employed in FSM. The first one
is canonical adjacency matrix (CAM). The CAM code is a string concatenation of

1These two classes of density definitions correspond to constraint-based pattern mining and
preference-based pattern mining respectively (which are two categories of pattern mining previously
introduced in Sec 2.1 of Chapter 2)
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the upper or lower triangular entries of the adjacency matrix. To ensure the unique
representation, the adjacency matrix must be the one that gives the minimum or
maximum canonical code with respect to the lexicographic order. FSM methods
using CAM include FSG [38], FFSM [39], HSIGRM and VSIGRAM [40]. The
other canonical labelling approach is minimum depth-first search (DFS) code. The
idea is to first construct a set of sequential DFS codes each of which is obtained
by traversing the given graph in a DFS-fashion, and then assign the minimum DFS
code with respect to the lexicographic order to be the canonical representation
of the graph. Methods such as gSpan [41], CloseGraph [42], p-gSpan [43] and
GERM [44] use this approach.

Now we adopt a perspective of mining algorithms. In general, existing FSM
algorithms can be divided into two categories: Apriori-based and pattern growth-
based2. FSM Apriori-based algorithms (e.g., AGM [36], FSG [38], Path# [45])
first generate candidates based on breadth-first search (BFS) i.e., each candidate
subgraph of a larger size is generated by merging two subgraphs with smaller
size, and thus proceeding to the next larger size requires the complete enumera-
tion of all candidates of the current size. Then they compute the frequencies of
subgraphs by applying subgraph isomorphism testing, which is a well-known NP-
complete problem [46] and is thus very costly. Pattern growth-based approaches
(e.g., SPIN [47], MOFA [48], gSpan [41], FFSM [39], and Gaston [49]) follow a
depth-first search (DFS) fashion to generate candidates, i.e., extending a frequent
subgraph by adding one extra edge at every time until they are still frequent. This
extension often needs to meet some particular criterias (e.g., adding edge only
at the rightmost path) to avoid the generation of redundant candidates. We refer
to [50] for a comprehensive and structured survey on FSM.

4.2.2 Pattern mining in attributed graphs

Real-life graphs often have attributes on the vertices. Pattern mining considering
both the structural aspect and the attribute information promises more meaningful
and accurate results, and thus has received increasing research attention. In this
section, we give a more extensive literature review of mining attributed graphs,
as methods proposed in this chapter are dedicated to this particular structure. This
review is along two dimensions, concerning local patterns (Sec. 4.2.2.1) and global
patterns (Sec. 4.2.2.2) respectively.

4.2.2.1 Local pattern mining

Dense subgraphs. Research on local pattern mining in attributed graphs focuses
on identifying dense vertex-induced subgraphs (also known as communities or co-

2These two categories are also covered in previous context where we describe existing mining
algorithms from a broader view (Sec. 2.2.3 of Chapter 2).



56 CHAPTER 4

hesive patterns) that also show high similarity according to their attribute values.
Existing methods generally exhibit two types: one emphasizes the graph structure,
considering attributes as complementary information for restricting the possible
subgraph sets; whereas the other emphasizes the attribute, aiming to mine de-
scriptive patterns for obtaining subgraph candidates evaluated by graph structural
property.

In the family of the first type, one of the first approaches is proposed by Moser
et al. [12]. They define a cohesive pattern as a subgraph H that satisfies three con-
straints: (1) connectivity constraint—i.e., H is connected, (2) density constraint—
i.e., the edge density of H exceeds a user-defined density threshold, and (3) sub-
space cohesion constraint—i.e., its corresponding vertices exhibit homogeneity in
the attribute space w.r.t. the user-defined subspace cohesion threshold (to enforce
homogenous feature values) and dimensionality threshold (to enforce sufficiently
large subspace). They also propose an algorithm, called CoPam, to efficiently find
all cohesive patterns that are maximal (i.e., neither its corresponding vertex set nor
attribute subspace is part of that for any other cohesive pattern).

Mougel et al. [13] consider graphs with Boolean attributes associated to each
vertex, and propose to find Collection of Homogeneous k-clique Percolated com-
ponents (CoHoP), i.e., a union of at least γ cliques of size k connected by overlaps
of k − 1 vertices with all its vertices having in common more than α true-valued
attributes (where γ, k and α are all user-defined parameters). For this task, they
also give a sound and complete algorithm based on the subgraph enumeration.

Now we look at existing work of the second type. As an example, Silva et
al. [51] focus on finding attribute sets that explain the formation of dense sub-
graphs through correlation, a task they call structural correlation pattern mining.
More specifically, given an attributed graph and four user-defined parameters (i.e.,
σmin, δmin, ηmin, min size), this task consists of identifying the set of structural
correlation patterns (S,Q), such that S is an attribute set whose induced vertex set
is with the size larger than σmin and whose dependence to the density of the associ-
ated vertices (called structural correlation measure) is larger than δmin, and Q is a
quasi-clique from the graph induced by S where a quasi-clique parameterized by
ηmin and min size is a vertex set with more than min size vertices such that each
vertex is connected at least to a fraction ηmin of the others. They also formalize a
measure based on statistical significance to access the interestingness of structural
correlation patterns, and propose an efficient algorithm to mine them.

Diverse top-k descriptive community mining, introduced by Pool et al. [14]
aims to identify a diverse set of k (possibly overlapping) cohesive communities
that have a concise description in the vertices’ attribute space. Towards this aim,
they propose a heuristic algorithm based on alternating between two phases: (1)
finding top-quality communities, (2) inducing concise descriptions for them. For
evaluating the quality of communities, they propose a cohesiveness measure based
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on counting erroneous links (i.e., connections that are either missing or obsolete
w.r.t. the ‘ideal’ community given the induced subgraph). To a limited extent,
their method can be driven by the user’s domain-specific background knowledge
which is a preliminary description or a set of vertices expected to be part of a
community. Then the search is triggered by those seed candidates. Our proposed
SI, in contrast, is more versatile in a sense that allows incorporating more general
background knowledge.

Galbrun et al. [15]’s work focuses on a similar task to Pool et al.’s, but theirs
relies on a different density measure which is essentially the average degree, and a
different mining algorithm which is based on a generic greedy scheme with three
variants.

Atzmueller et al. [11] introduce description-oriented community detection
which is with a similar target to the aforementioned Galbrun et al.’s and Pool et
al.’s. They apply a subgroup discovery approach to mine patterns in the descrip-
tion space so it comes naturally that the identified communities have a succinct
description—this is the main distinguishing feature of their method to the other
two.

All previous works quantify the interestingness in an objective manner, in the
sense that they cannot consider a user’s prior beliefs and thus operate regardless
of context. Also, all previous works focus on a set of communities or dense sub-
graphs, overlooking other meaningful structures such as a sparse or dense subgraph
between two different subgroups of vertices.

Proximity patterns. Frequent subgraphs and frequent itemsets often fail to cap-
ture fuzzy patterns due to their inelastic pattern definition, and in particular, mining
frequent subgraphs in large graph space is often excessively inefficient due to the
complexity of isomorphism testing. To overcome these issues, Khan et al. [52]
depart from the traditional concept of frequent subgraphs and frequent itemsets,
and introduce the novel proximity pattern, i.e., a subset of labels that frequently
appear in multiple tightly connected subgraphs in a labelled graph. It’s essen-
tially a frequent itemset, but considering an itemset as a union of labels for a set
of tightly-connected vertices instead of merely individual labels (in this case, it is
a traditional itemset mining problem). They also propose a complete pipeline to
mine proximity patterns in massive graphs in a scalable manner.

Exceptional patterns. Unlike dense subgraphs and proximity patterns which
represent regularities within a large graph, exceptional subgraphs are subgraphs
with distinguishing features from others, and thus represent peculiarity. As an ex-
ample, Bendimerad et al. [53] introduce the novel task of mining connected sub-
graphs whose vertices share some distinguishing characteristics (i.e., unusually
large or small numerical values on a subset of their attributes) from the rest of the
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graph, and propose a complete algorithm together with a sampling approach for
this task. In their later work [54], they propose to mine subgraphs that are with dis-
tinguishing characteristics, but are also cohesive such that all vertices in the same
subgraph are at a bounded distance to a set of certain vertices (named core) with
potentially few exceptions—they call such subgraphs Cohesive Subgraphs with
Exceptional Attributes (CSEA patterns). One innovative feature of this work is us-
ing a subjective interestingness measure. Both our local pattern mining work and
theirs formalize the subjective interestingness of patterns based on De Bie’s frame-
work [16, 17]. The difference is the problem setting: theirs focus on exceptional
attribute values, whereas ours focus on exceptional densities.

4.2.2.2 Global pattern mining

Discovering global patterns that can uncover useful insights in attributed graphs
are typically tailored to a graph summarization or a clustering task. Although
these two tasks can both output graph summaries, their goals (even when solely
considering the structural aspect) are fundamentally different. Graph summariza-
tion seeks to group together vertices that connect with the rest of the graph in a
similar way, while clustering simply group vertices that are densely connected to
each other and are well separated from other groups [55].
Graph summarization. Most existing method handle graph summarization by
incorporating database-style functionalities. For example, Tian et al. [56] propose
two database-style operations, SNAP (Summarization by grouping Nodes on At-
tributes and Pairwise relationships) and k-SNAP, for controlled and intuitive graph
summarization. Like OLAP (Online Analytical Processing) [57, 58], a popular
tool in the traditional database systems that allows users to interactively view and
analyze the database from different perspectives and with multiple granularities,
their proposed operations provide an analogous functionality for the graph data:
SNAP can produce customized summaries based on user-selected attributes and
relationships that are of interest, and k-SNAP can allow the user to control the
resolutions of the resulting summaries.

Then Zhang et al. [59] further build on k-SNAP by addressing two key limita-
tions. First, they allow automatic categorization of numeric attributes (which is a
common scenario). Second, they propose a measure to access the interestingness
of summaries so that the user does not have to manually inspect a large number
of summaries to find the interesting ones. However, their interestingness measure
is not subjective, simply considering the tradeoff among diversity, coverage and
conciseness.

Chen et al. [60] develop a graph OLAP framework which allows to analyze
the graph dataset in an OLAP manner (i.e., presenting a multi-dimensional and
multi-level view over graphs). This framework naturally provides a graph sum-
mary based on the selected attributes and the given input information. Another
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graph summarization work from them [61] is SUMMARIZE-MINE, a framework
that summarizes the original graphs into small summaries which are then mined
for frequent subgraphs mining. Also, SUMMARIZE-MINE can tackle the poten-
tial pattern loss issue effectively and efficiently: false positives (i.e., subgraphs
frequent in the summarized graph but not frequent in the original graph) can be ver-
ified on the resulting summarization, and false negatives (i.e., subgraphs frequent
in the original graph but not frequent in the summarized graph) can be recovered
as SUMMARIZE-MINE generates randomised summaries for multiple iterations
(in this way, a lossy compression can be effectively turned into a virtually lossless
one).

Another common category of graph summarization methods rely on concepts
and techniques in information theory. For example, many of them [62–64] leverage
Minimum Description Length (MDL), i.e., a model selection principle of choosing
the minimum description of the data as the best model [65]. For graph summa-
rization, applying MDL is formulated as to minimize the description length of the
model, plus the description length of the graph given the model M (i.e. the com-
pression loss). A key advantage of applying MDL is its automatic optimization of
the number of vertex groups or attributes groups, which are usually required to be
user-specified in aforementioned database-style graph summarization methods.

In addition to pattern discovery, graph summarization on attributed graphs can
serve for several applications including compression [63, 66], query answering
[67, 68], influence analysis [69, 70] and so on. For a more in depth review of
existing publications regarding these goals, we refer interested readers to a survey
paper by Liu et al. [55].

Graph clustering. Prior methods of clustering attributed graphs seek to parti-
tion the given graph into clusters with cohesive intra-cluster structures and ho-
mogeneous attribute values. Some enforce homogeneity in all attributes [71–73].
However, they are not guaranteed to reveal meaningful patterns in datasets with-
out efforts of attribute selection, since irrelevant attributes can strongly obfuscate
clusters.

More recently, Gunnemann et al. [74, 75] loosen this constraint by subspace
clustering, i.e., a method that finds clusters in different subspaces [76]. In at-
tributed graph data, this allows ones to consider subsets of attributes to determine
similarity between vertices of the same cluster. Perozzi et al. [77] detect focused
clusters and outliers based on user preferences, allowing the user to control the
relevance of attributes and as a consequence, the graph mining results. Wang et
al. [78] propose a novel nonnegative matrix factorization (NMF) model in which
the sparsity penalty is introduced to select the most relevant attributes for each
cluster. Many other methods resort to deep learning techniques, as one of their
biggest advantages is the ability to execute feature engineering by themselves. For
graph clustering task, they are often based on learning an embedding and consist
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of two steps: first, deep learning is used to learn a compact representation in a
form of the node embedding considering both the structural relationship and ver-
tex attributes information, and then a classic clustering methods like k-means or
the spectral clustering algorithm is applied upon such embedding (see Sec. 4.2.3
for a brief review of existing network embedding methods). Nevertheless, be-
cause the learnt embedding is not dedicated to the subsequent clustering task, this
mismatch may produce unsatisfying clustering performance. In contrast to this
two-step embedding learning method, Wang et al. [79] propose a unified attributed
graph clustering framework that can learn the graph embedding and perform clus-
tering simultaneously. Though the application of deep learning eliminates the need
to do feature engineering, one downside is its missing explainability, i.e., it is hard
to trace back which features have contributed to the output.

Unlike all previous graph summarization or clustering methods where the re-
sulting vertex groups are forced to satisfy some pre-specified topologies or edges
structures (e.g., being more densely connected within the group), patterns revealed
in our summarization approach are not limited to that, as their interestingness is
quantified by a subjective measure depending on the user’s prior expectation.

4.2.3 Network embedding

What makes graph data powerful and distinguishable is its ability to model the
relationship between data objects—or in other words, a graph can represent each
object in terms of other objects (imaging each row of the corresponding adjacency
matrix). Not surprisingly, this also makes pattern mining on this special kind of
data more challenging. Typically, existing graph mining methods either construct
pattern syntaxes, interestingness measures and mining algorithms that are dedi-
cated to graph data type (as described above), or intentionally fill the gap between
graph data and classic pattern mining methods for flat tabular data. In the latter
case, network embedding, a technique that represents a network’s nodes to vectors
in an embedding space while preserving their properties, is exactly the gap filler.

Recently, network embedding has gained massive research attention, and plen-
tiful various methods have been proposed. In general, these methods can be di-
vided into four broad categories: (1) factorization based; (2) random walk based;
(3) deep learning based; (4) probability theory based.

Given a graph, factorization based methods (e.g., Locally Linear Embed-
dings (LLE) [80], Laplacian Eigenmaps (LE) [81], Graph Factorization (GF) [82],
GraRep [83], HOPE [84]) first represent vertex similarity in a matrix form (such
as the adjacency matrix or its polynomials, the incidence matrix, Laplacian matrix,
the node transition probability matrix and Katz similarity matrix, among others),
and then apply matrix factorization to generate a low-dimensional embedding.

Random walk based methods (e.g., DeepWalk [85], Node2vec [86], Struc2vec
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[87], HARP [88]) rely on some random walk strategies to estimate the probabil-
ity that a node pair co-occur on a random walk. Then the embedding is obtained
by optimizing the likelihood of these random walk statistics. Compared to fac-
torization based methods, random walk based ones are more expressive and more
efficient: they encode the vertex similarity in a stochastic manner which allows to
incorporate both local and higher-order proximity information, and they only need
to consider co-occurring vertex pairs instead of all pairs.

Deep learning is well-known for its ability to efficiently learn non-linear func-
tion. With no doubt, network embedding methods, which aim to learn a compli-
cated and highly non-linear mapping function between network space and low-
dimensional network space, can benefit from utilizing deep learning. Exam-
ples of this category include Structural Deep Network Embedding (SDNE) [89],
PRUNE [90], VERSE [91].

Finally, there are some probabilistic embedding methods (e.g., LINE [92],
CNE [93]). In particular, CNE can obtain an embedding that is optimal with re-
spect to the user’s prior knowledge about the network.

For comprehensive studies and evaluations of different network embedding
methods, we refer interested readers to [94, 95].

4.2.4 Graph modelling

Graph modelling typically considers a given network (i.e., the one we observe)
as merely a realization among a large number of possibilities. All possible real-
izations including the observed one that are consistent with some given aggregate
statistics, form the so-called statistical ensemble of networks.

A well-founded probabilistic framework to such graph modelling is provided
by exponential random graph models (ERGMs) [96, 97]. In ERGMs, each graph
has a probability that depends on a number of chosen statistics of the network.
Such models allow one to sample random graphs that match certain graph prop-
erties as closely as possible, without the need to know the underlying network
generation process [98]. Nevertheless, a downside of ERGMs is their intractable
fitting on large, finite networks. Recently, Casiraghi et al. introduce a broad class
of analytically tractable statistical ensembles of finite, directed and weighted net-
works, referred to as generalized hypergeometric ensembles [99].

Unlike ERGMs that aim to be an accurate and objective probabilistic model for
the data, the aim of our method is to provide the user with subjectively interesting
insights into the data. To do that, intelligible pattern syntaxes need to be designed
to represent the data‘s local or global information. Secondly, the found patterns
must be contrasted with a model of the user’s belief state about the data (called the
background distribution) to quantify their interestingness to the user (this makes
our approach a subjective one). A further distinction from ERGMs is that our
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method is naturally an iterative method, allowing the user to gain new insights
from one or a few patterns at a time.

4.3 Pattern syntaxes for graphs

In this section we introduce both single subgroup and bi-subgroup patterns along
with summaries for graphs. Here, we first introduce some notation.

An attributed graph is denoted as a triplet G = (V,E,A) where V is a set of
n = |V | vertices, E ⊆

(
V
2

)
is a set of m = |E| undirected edges,3 and A is a set

of attributes a ∈ A defined as functions a : V → Doma, where Doma is the set
of values the attribute can take over V . For each attribute a ∈ A with categorical
Doma and for each y ∈ Doma, we introduce a Boolean function sa,y : V →
{true, false}, with sa,y(v) , true for v ∈ V iff a(v) = y. Analogously, for each
a ∈ A with Doma ⊆ R and for each l, u ∈ Doma such that l < u, we define
sa,[l,u] : V → {true, false}, with sa,[l,u](v) , true iff a(v) ∈ [l, u]. We call these
Boolean functions selectors, and denote the set of all selectors as S. A description
or rule W is a conjunction of a subset of selectors: W = s1 ∧ s2 . . . ∧ s|W |.
The extension ε(W ) of a rule W is defined as the subset of vertices that satisfy it:
ε(W ) , {v ∈ V |W (v) = true}. We also informally refer to the extension as the
subgroup. Now a description-induced subgraph can be formally defined as:

Definition 3. (Description-induced-subgraph) Given an attributed graph G =

(V,E,A), and a description W , we say that a subgraph G[W ] = (VW , EW , A)

where VW ⊆ V,EW ⊆ E, is induced by W if the following two properties hold,

(i) VW = ε(W ), i.e., the set of vertices from V that is the extension of the
description W ;

(ii) EW =
(
VW

2

)
∩ E, i.e., the set of edges from E that have both endpoints in

VW .

Example 3. Fig. 4.1 displays an example attributed graph G = (V,E,A) with
n = 9 vertices, m = 12 edges (Graph in Fig. 4.1(a), vertex attributes in
Fig. 4.1(b)). Each vertex is annotated with one real-valued attribute (i.e., a) and
three nominal (or for simplicity, binary) attributes (i.e., b,c,d). Consider a descrip-
tion W = sa,[0,3]∧sb,1. The extension of this description is the set of vertices with
attribute a value from 0 to 3 and attribute b as 1, i.e., ε(W ) = {0, 1, 2, 3}. The
subgraph induced by W is formed from ε(W ) and all the edges connecting pairs
of vertices in that set (highlighted with red in Fig. 4.1(a)).

3We consider undirected graphs without self-edges for the sake of presentation and consistency
with most literature. However, we note that all our results can be easily extended to directed graphs
and graphs with self-edges.
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(a) Graph.

Vertex a b c d
0 0.6 1 0 1
1 1.5 1 0 0
2 2.2 1 0 1
3 1.4 1 1 1
4 2.5 0 0 0
5 4.7 0 0 0
6 4.3 0 0 0
7 3.6 1 1 1
8 3.8 1 1 0

(b) Vertex attributes.

Figure 4.1: Example attributed graph with 9 vertices (0-8) and 4 associated attributes (a-d).
The subgraph induced by the description (W = sa,[0,3] ∧ sb,1) is highlighted in red.

4.3.1 Local pattern
4.3.1.1 Single-subgroup pattern

A first pattern syntax we consider, and which has already been studied in prior
work, informs the user about the density of a description-induced subgraph G[W ].
We assume the user is satisfied by knowing whether the density is unusually small,
or unusually large, and given this does not expect to know the precise density. It
thus suffices for the pattern syntax to indicate whether the density is either smaller
than, or larger than, a specified value. We thus formally define the single-subgroup
pattern syntax as a triplet (W, I, kW ), where W is a description and I ∈ {0, 1}
indicates whether the number of edges EW in subgraph G[W ] induced by W is
greater (or less) than kW . Thus, I = 0 indicates the induced subgraph is dense,
whereas I = 1 characterizes a sparse subgraph. The maximum number of edges
in G[W ] is denoted by nW , equal to 1

2 |ε(W )|(|ε(W )| − 1) for undirected graphs
without self-edges. One example of a single-subgroup pattern in Fig. 4.1 can be
(sa,[0,3] ∧ sb,1, 0, 6), corresponding to the dense subgraph highlighted in red.

Remark 3. (Difference to dense subgraph pattern in [100]) Though the syntax
for our single-subgroup pattern seems similar to that of the dense subgraph pattern
(i.e., (W,kW )) proposed by [100], they are essentially different definitions serving
for different data mining tasks. In [100], the aim is to identify subjectively inter-
esting subgraphs based on merely link information. For this aim, W in the dense
subgraph pattern syntax represents the set of vertices in the subgraph, which has
no association with node attributes. Moreover, an indicator I is included in our
pattern syntax. This allows to regard not only surprisingly dense subgraphs but
also surprisingly sparse ones as interesting. In contrast, [100] focuses on those
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surprisingly dense subgraphs. Because of these differences in W and I , kW is
different accordingly.

4.3.1.2 Bi-subgroup pattern

We also define a pattern syntax informing the user about the edge density between
two potentially different subgroups. More formally, we define a bi-subgroup pat-
tern as a quadruplet (W1,W2, I, kW ), where W1 and W2 are two descriptions,
and I ∈ {0, 1} indicates whether the number of connections between ε(W1)

and ε(W2) is upper bounded (1) or lower bounded (0) by the threshold kW .
The maximum number of connections between the extensions ε(W1) and ε(W2)

is denoted by nW , |ε(W1)||ε(W2)| − 1
2 |ε(W1 ∧ W2)|(|ε(W1 ∧ W2)| + 1)

for undirected graphs without self-edges. For example, the bi-subgroup pattern
(sa,[0,3] ∧ sb,1, sb,0, 1, 0) in Fig. 4.1, expresses sparse (or more precisely, zero)
connection between the red vertex group (i.e., {0, 1, 2, 3}) and the blue one (i.e.,
{4, 5, 6}) . Note that single-subgroup patterns are a special case of bi-subgroup
patterns when W1 ≡W2.

Remark 4. (Setting of kW ) Although kW for a pattern (W1,W2, I, kW ) can be
any value with which the number of connections between ε(W1) and ε(W2) (or
within ε(W1) when W1 ≡ W2) are bounded, our work focuses on identifying pat-
terns whose kW is the actual number of connections between these two subgroups
(or within this single subgroup when W1 ≡ W2), as such patterns are maximally
informative.

4.3.2 Global pattern: summarization for graphs

Here we define a global pattern syntax, which describes the edge density between
any pair of subgroups selected from a set of subgroups that form a partition of the
vertices. We first define the notion of a summarization rule, before introducing the
global pattern syntax itself.

Definition 4. (Summarization rule for an attributed graph) Given an attributed
graph G = (V,E,A), the summarization rule S of G is a set of descriptions such
that their extensions are vertex-clusters that form a partition of the whole vertex
set. That is, S = {Wi|i = 1, 2, . . . , c} where c ∈ N is the number of disjoint
vertex-clusters, where ∪ci=1ε(Wi) = V , ∀Wi ∈ S it holds that ε(Wi) 6= ∅, and
∀Wi,Wj ∈ S, i 6= j it holds that ε(Wi) ∩ ε(Wj) = ∅.

Definition 5. (Summary for an attributed graph based on a summarization
rule) A summary S for an attributed graph G = (V,E,A) based on a summariza-
tion rule S = {Wi|i = 1, 2, . . . , c} is a complete weighted graph S = (V S, ES, w)

with weight function w : ES → R, whereby V S = {ε(W )|W ∈ S} is the set of
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vertices (referred to as supervertices of the original graph G, i.e. each vertex from
S is a set of vertices from G), ES =

(
V S

2

)
∪ V S is the set of edges (to which we

refer as superedges; the superedges in
(
V S

2

)
represent the undirected edges be-

tween distinct supervertices, and the superedges in V S represent the self-loops).
The weight w({ε(Wi), ε(Wj)}) for each superedge {ε(Wi), ε(Wj)} ∈ ES will be
denoted shorthand by di,j , and is defined as the number of edges between vertices
from ε(Wi) and those from ε(Wj).

We define a global pattern syntax informing the user about the summariza-
tion for an attributed graph G = (V,E,A) with c disjoint vertex-clusters. More
formally, we define a summarization pattern as a tuple (S,S) where S is the sum-
marization rule, and S is the corresponding summary. Note that when revealing
a summarization pattern (S,S) to a user, she or he gets access to its related local
subgroup patterns: c single-subgroup patterns and c(c−1)/2 bi-subgroup patterns.
An example of the global pattern for Fig. 4.1 can be ({sa,[0,3] ∧ sb,1,¬sa,[0,3] ∧
sb,1, sb,0},S∗) where S∗ represents the corresponding summary (see Fig. 4.2a).

(a) Summary S∗. (b) Descriptions in the summarization rule.

Figure 4.2: Example summarization pattern for Fig. 4.1 with the summarization rule
{sa,[0,3] ∧ sb,1,¬sa,[0,3] ∧ sb,1, sb,0} and the summary S∗. This summary S∗ is composed
of three supervertices each of which corresponds to a set of vertices satisfying sa,[0,3]∧sb,1
(red circle with dotted line), ¬sa,[0,3] ∧ sb,1 (blue circle with solid line), sb,0 (yellow circle
with dashed line) respectively, and superedges each of which connects one supervetex to the
other with a weight representing the number of edges between them.

4.4 Formalizing the subjective interestingness

4.4.1 General approach

We follow the approach as outlined by [101] to quantify the subjective interest-
ingness of a pattern, which enables us to account for prior beliefs a user may
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hold about the data. In this framework, the user’s belief state is modeled by a
background distribution P over the data space. This background distribution rep-
resents any prior beliefs the user may have by assigning a probability (density) to
each possible value for the data according to how plausible the user thinks this
value is. As such, the background distribution also makes it possible to evaluate
the probability for any given pattern to be present in the data, and thus to assess
the surprise of the user when informed about its presence. It was argued that a
good choice for the background distribution is the maximum entropy distribution
subject to some particular constraints that represent the user’s prior beliefs about
the data. As the user is informed about a pattern, the knowledge about the data will
increase, and the background distribution will change. For details see Sec. 4.4.2.

Given a background distribution, the Subjective Interestingness (SI) of a pat-
tern can be quantified as the ratio of the Information Content (IC) and the Descrip-
tion Length (DL) of the pattern. The IC is defined as the amount of information
gained when informed about the pattern’s presence, which can be computed as the
negative log probability of the pattern w.r.t. the background distribution P . The
DL is quantified as the length of the code needed to communicate the pattern to the
user. These are discussed in more detail in Sec. 4.4.3, but first we further explain
the background distribution (Sec. 4.4.2).

Remark 5. (Positioning with respect to directly related literature) Here we
clarify how previous work is leveraged, and what concepts are newly introduced
in our work. We define single/bi-subgroup patterns and global patterns in an at-
tributed graph. To quantify the SI measure for such patterns, we follow the frame-
work outlined by [101]. As mentioned above, in this framework, the SI is com-
puted as the ratio of the IC and the DL w.r.t. the background distribution which
models the user’s belief state. This framework also provides the general idea for
deriving the initial background distribution and updating it to reflect newly ac-
quired knowledge. [102] later introduced a new type of graph-related prior that
the background distribution can incorporate, and this prior is considered in our
work. In [100], this framework was used to identify subjectively interesting dense
subgraphs, merely based on link information. In our work, we leverage some
computational results from [100] (i.e., in updating the background distribution,
approximating the IC), and made further adaptions such that the framework pro-
posed by [101] can serve for our newly proposed patterns based on attribute infor-
mation (i.e., single-subgroup patterns, bi-subgroup patterns and global patterns).

4.4.2 The background distribution
4.4.2.1 The initial background distribution

To derive the initial background distribution, we need to assume what prior beliefs
the user may have. Here we discuss three types of prior beliefs which are common
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in practice: (1) on individual vertex degrees; (2) on the overall graph density; (3)
on densities between bins (particular subsets of vertices).

(1–2) Prior beliefs on individual vertex degrees and on the overall graph density.
Given the user’s prior beliefs about the degree of each vertex, [101] showed
that the maximum entropy distribution is a product of independent Bernoulli
distributions, one for each of the random variable bu,v , which equals to 1 if
(u, v) ∈ E and 0 otherwise. Denoting the probability that bu,v = 1 by pu,v ,
this distribution is of the form:

P (E) =
∏
u,v

pu,v
bu,v · (1− pu,v)1−bu,v ,

where pu,v =
exp(λru + λcv)

1 + exp(λru + λcv)
.

This can be conveniently expressed as:

P (E) =
∏
u,v

exp((λru + λcv) · bu,v)
1 + exp(λru + λcv)

.

The parameters λru and λcv can be computed efficiently. For a prior belief on
the overall density, every edge probability pu,v simply equals the assumed
density.

(3) Additional prior beliefs on densities between bins. We can partition ver-
tices in an attributed graph into bins according to their value for a particular
attribute. For example, vertices representing people in a university social
network can be partitioned by class year. Then expressing prior beliefs re-
garding the edge density between two bins is possible. This would allow
the user to express, for example, an expectation about the probability that
people in class year y1 are connected to those in class year y2. If the user
believes that people in different class years are less likely to connect with
each other, a discovered pattern would be more informative if it contrasts
more with this kind of belief, i.e. if it reveals a high density between two
sets of people from different class years. As shown in [102], the resulting
background distribution is also a product of Bernoulli distributions, one for
each of the random variables bu,v ∈ {0, 1}:

P (E) =
∏
u,v

exp((λru + λcv + γku,v
) · bu,v)

1 + exp(λru + λcv + γku,v
)
, (4.1)

where ku,v is the index for the block corresponding to the intersecting part of
two bins which vertex u and vertex v belongs to correspondingly. λru, λcv and
γku,v

are parameters and can be computed efficiently. Note our model is not
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limited to incorporate this type of belief related to a single attribute. Vertices
can be partitioned differently by another attribute. Our model can consider
multiple attributes so that users could express prior beliefs regarding the
edge densities between bins resulting from multiple partitions4.

4.4.2.2 Updating the background distribution

Upon being represented with a pattern, the background distribution should be up-
dated to reflect the user’s newly acquired knowledge. The beliefs attached to any
value for the data that does not contain the pattern should become zero. In the
present context, once we present a subgroup pattern (W1,W2, I, kW ) to the user,
the updated background distribution P ′ should be such that φW (E) ≥ kW (if
I = 0) or φW (E) ≤ kW (if I = 1) holds with probability one, where φW (E)

denotes a function counting the number of edges between ε(W1) and ε(W2). [16]
presented an argumentation for choosing P ′ as the I-projection of the previous
background distribution onto the set of distributions consistent with the presented
pattern. Then [100] showed that the resulting P ′ is again a product of Bernoulli
distributions:

P ′(E) =
∏
u,v

p′u,v
bu,v · (1− p′u,v)1−bu,v

where p′u,v =

{
pu,v if ¬

(
u ∈ ε(W1), v ∈ ε(W2)

)
,

pu,v·exp(λW )
1−pu,v+pu,v·exp(λW ) otherwise.

How to compute λW is also given in [100].

Remark 6. (Updating P if a summarization pattern is presented) In the case
that a summarization pattern (S,S) is presented to the user, we simply update
the background distribution as if all the subgroup patterns related to (S,S) were
presented, and we denote such updated background distribution by P(S,S).

4.4.3 The subjective interestingness measure

We now discuss how the SI measure can be formalized by relying on the back-
ground distribution, first for local and then for global patterns.

4.4.3.1 The SI measure for a local pattern

The information content (IC). Given a pattern (W1,W2, I, kW ), and a back-
ground distribution defined by P , the probability of the presence of the pattern is
the probability of getting more than kW (for I = 0) or nW − kW (for I = 1)

4simply by replacing γku,v in Eq. 4.1 with
∑i=h

i=1 γki
u,v

where h is the number of attributes con-
sidered (also the number of partitions).
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successes in nW trials with possibly different success probability pu,v (for I = 0)
or 1−pu,v (for I = 1). More specifically, we consider a success for the case I = 0

to be the presence of an edge between some pair of vertices (u, v) for u ∈ ε(W1),
v ∈ ε(W2), and pu,v is the corresponding success probability. In contrast, the
absence of an edge between some vertices (u, v) is deemed to be a success for
the case I = 1, with the probability as 1 − pu,v . The work of [100] proposed to
tightly upper bound the probability of a similar dense subgraph pattern by apply-
ing the general Chernoff/Hoeffding bound [103, 104]. Here, we can use the same
approach, which gives:

Pr[(W1,W2, I = 0, kW )] ≤ exp
(
− nWKL

(
kW
nW
‖ pW

))
,

Pr[(W1,W2, I = 1, kW )] ≤ exp
(
− nWKL

(
1− kW

nW
‖ 1− pW

))
,

where
pW =

1

nW

∑
u∈ε(W1),v∈ε(W2)

pu,v. (4.2)

KL

(
kW
nW
‖ pW

)
is the Kullback-Leibler divergence between two Bernoulli dis-

tributions with success probabilities kW
nW

and pW respectively. Note that:

KL
( kW
nW
‖ pW

)
= KL

(
1− kW

nW
‖ 1− pW

)
,

=
kW
nW

log
(kW /nW

pW

)
+
(
1− kW

nW

)
log
(1− kW /nW

1− pW
)
.

We can thus write, regardless of I:

Pr[(W1,W2, I, kW )] ≤ exp
(
− nWKL

(
kW
nW
‖ pW

))
.

The information content is the negative log probability of the pattern being present
under the background distribution. Thus, using the above:

IC[(W1,W2, I, kW )] = − log(Pr[(W1,W2, I, kW )]),

≥ nWKL

(
kW
nW
‖ pW

)
. (4.3)

The description length (DL). A pattern with larger IC is more informative. Yet,
sometimes it is harder for the user to assimilate as its description is more complex.
A good SI measure should trade off IC with DL. The DL should capture the length
of the description needed to communicate a pattern. Intuitively, the cost for the
user to assimilate a description W depends on the number of selectors in W , i.e.,
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|W |. Let us assume communicating each selector in a descriptionW has a constant
cost of α, and the cost for I and kW is fixed as β. The total description length of a
pattern (W1,W2, I, kW ) can then be written as

DL[(W1,W2, I, kW )] = α(|W1|+ |W2|) + β. (4.4)

The subjective interestingness (SI). In summary, we obtain:

SI[(S,S)] =
IC[(W1,W2, I, kW )]

DL[(W1,W2, I, kW )]
,

=

nWKL

(
kW
nW
‖ pW

)
α(|W1|+ |W2|) + β

. (4.5)

Remark 7. (Justification about choices of α and β) In all our experiments for
use cases, we apply α = 0.6, β = 1. We here state the reason for this choice.

In practice, the absolute value of the SI from Eqs. 4.5 is largely irrelevant, as
it is only used for ranking the patterns, or even just for finding a single pattern
(i.e., the most interesting one to the user). Thus, we can set β = 1 without losing
generality, such that the only remaining parameters is α.

Tuning α biases the results toward more or fewer selectors to describe the sub-
group pattern. Notice an optimal extent of such kind of bias cannot be determined
by doing model selection in the statistical sense, but rather should be chosen based
on aspects of human cognition (e.g., larger α should be used when the user prefers
patterns in a more succinct form). In this work, we set α = 0.6 throughout all
use cases which gives qualitative results. However, α can be flexibly tuned for
adapting to the user’ preferences.

4.4.3.2 The SI measure for a global pattern

The information content (IC). The probability of a global summarization pat-
tern turns out to be harder to formulate analytically, and thus also the negative log
probability of the pattern – which is the subjective amount of information gained
by observing the pattern. However, it is relatively straightforward to quantify the
(subjective) amount of information in the connectivity in the graph prior to observ-
ing the pattern, and after observing the pattern. The difference between these two
is thus the information gained. More formally, we thus mathematically define the
IC of a summarization pattern (S,S) as the difference between the log probability
for the connectivity in the graph (i.e., the edge set E) under P(S,S) and that under
P :

IC[(S,S)] = logP(S,S)(E)− logP (E). (4.6)

This quantity is straightforward to compute where P(S,S) is computed as the up-
dated background distribution as if all the subgroup patterns related to (S,S) were
presented (previously mentioned in Remark 6 in Sec. 4.4.2.2).
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The description length (DL). We search for optimal S by a strategy that is based
on splitting a binary search tree (for details see Sec. 4.5.2.1). Thus, the cost for the
user to assimilate S is linear to the number of descriptions in S, i.e. c. As for S,
assimilating it costs quadratically to c, because S is essentially a complete graph
with c vertices and c(c + 1)/2 edges. The total description length of a pattern
(S,S) can be written as

DL[(S,S)] = ζ · c(c+ 1)/2 + η · c+ θ. (4.7)

where θ is a constant term for mitigating the quadratically increasing drop in SI
value given by an increasing c, and this helps to avoid early stopping.
The subjective interestingness (SI). In summary, we obtain:

SI[(S,S)] =
IC[(S,S)]

DL[(S,S)]
,

=
logP(S,S)(E)− logP (E)

ζ · c(c+ 1)/2 + η · c+ θ.
. (4.8)

Remark 8. (Justification about choices of ζ, η and θ) In all our experiments, we
use ζ = 0.02, η = 0.02, θ = 1. As stated in Remark 7 in Sec. 4.4.3.1, parame-
ters of the DL indicate how much the user prefers patterns that can be described
succinctly, and thus should be determined based on aspects of human cognition
instead of statistical model selection. We here follow the similar sense to choose
the DL parameters for global patterns (i.e.,ζ, η and θ in Eq. 4.8). Notice we set a
high value for θ (i.e., 1) in comparison with ζ (i.e., 0.02) and η (i.e., 0.02). This
is a safe choice to avoid early stopping (i.e., the iterating stops before the user
observes a suitable global pattern).

4.5 Algorithms
This section describes the algorithms for mining interesting patterns locally and
globally, in Sec. 4.5.1 and Sec. 4.5.2 respectively, followed by an outline to the
implementation in Sec. 4.5.3.

4.5.1 Local pattern mining

Since the proposed SI interestingness measure is more complex than most ob-
jective measures, we consider applying some heuristic search strategies to help
maintain the tractability. For searching single-subgroup patterns, we used beam
search (see Sec. 4.5.1.1). To search for the bi-subgroup patterns, however, a tradi-
tional beam over both W1 and W2 simultaneously turned out to be more difficult
to apply effectively. We thus propose a nested beam search strategy to handle this
case. More details about this strategy are covered by Sec. 4.5.1.2.
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4.5.1.1 Beam search

In the case of mining single-subgroup patterns, we applied a classical heuristic
search strategy over the space of descriptions—the beam search. The general idea
is to only store a certain number (called the beam width) of best partial description
candidates of a certain length (number of selectors) according to the SI measure,
and to expand those next with a new selector. This is then iterated. This approach is
standard practice in subgroup discovery, being the search algorithm implemented
in popular packages such as Cortana [105], One Click Miner [106], and pysub-
group [107].

4.5.1.2 Nested beam search

Table 4.1: Notations for Algorithm 4.1

Notation Description

OuterBeam The outer beam storing best description
pairs (W1,W2) during the search.

InnerBeam The inner beam only storing best
descriptions W2.

x1 The outer beam width (i.e., the minimum
number of different descriptions W1

contained in the outer beam.
x2 The inner beam width.
D The search depth (i.e., maximum number

of selectors combined in a description).

The basic idea of this approach is to nest one beam search into the other one
where the outer search branches based on a ‘beam’ of promising selector candi-
dates for the description W1 , and the inner search expands those for W2. The
detailed procedure for this nested beam search is shown in Algorithm 4.1, and
related notation displayed in Table 4.1.

The total number of interesting patterns identified by Algorithm 4.1 is x1 ·
x2. Note that we deliberately constrain the beam to contain at least x1 different
W1 descriptions so that a sufficient diversity among all the discovered patterns is
guaranteed (see lines 22-23 in Algorithm 4.1).

4.5.2 Global pattern mining

To identify the most interesting global (or summarization) pattern, a greedy search
strategy (see Sec. 4.5.2.1) equipped with some speedup strategies (see Sec. 4.5.2.2)
are adopted.
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Algorithm 4.1: Subjectively Interesting BiSubgroup Pattern Mining
input : Graph G = {V,E,A}, x1, x2, D
output: Top x1 · x2 bi-subgroup patterns contained in OuterBeam

1 S ← the set of all selectors to build descriptions from;
2 OuterBeam← {∅} ;
3 d1 ← 0;
4 d2 ← 0;
5 while d1 < D do // The outer search
6 C1 ← all the W1 candidates in OuterBeam;
7 for C1 ∈ C1 do // Expand on W1 candidates
8 for s1 ∈ S do
9 Z1 ← C1 ∧ s1;

10 InnerBeam← {∅};
11 while d2 < D do // The inner search
12 C2 ← all the W2 candidates in InnerBeam;
13 for C2 ∈ C2 do // Expand W2 candidates
14 for s2 ∈ S do
15 Z2 ← C2 ∧ s2;
16 kW ← the number of edges between vertices

ε(Z1) and ε(Z2);
// compute SI of the pattern

(Z1, Z2, I, kW ) using Eq. 4.5
17 si′ ← SI[(Z1, Z2, I, kW )];

// Add (si′, Z2) to the InnerBeam
if InnerBeam contains less
than x2 elements or replace
the tuple with the smallest
SI in InnerBeam if si′ is
larger than that value

18 InnerBeam← UpdateBeam(InnerBeam,
(si′, Z2), x2);

19 d2 ← d2 + 1

20 for (si,Z) ∈ InnerBeam do
// Add (si, Z1, Z) to the OuterBeam if

the number of various W1

descriptions in OuterBeam is less
than x1 or replace the tuple with
the smallest SI if si is larger
than that value

21 OuterBeam← UpdateBeam(OuterBeam, (si, Z1, Z),
x1);

22 d1 ← d1 + 1
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4.5.2.1 The basic search strategy

The algorithm begins by checking each possible summarization rule only contain-
ing a single-selector description and its negation. Applying such a rule at the be-
ginning means cutting the whole vertex set into two non-overlapping clusters, each
of which satisfies a description in this rule correspondingly. The rule whose corre-
sponding summarizaiton pattern has the maximal SI value is selected as a seed set
for S. Then the algorithm iterates in the following way to greedily grow that set:
for each existing description in the set, the algorithm again checks the application
of an additional single-selector description and its negation. This further separates
a particular vertex cluster into two sub-clusters, one of which additionally satisfies
this description and the other does not. The optimal combination of the existing
description to further specify and the additional single-selector description are se-
lected. The search stops when reaching some search budget (e.g. the maximum
number of iterations). The detailed procedure for this search is displayed in Algo-
rithm 4.2.

4.5.2.2 Speedup strategies

Parallel Processing. Our search strategy is trivially parallelizable. To gain some
speedup, the search process for each attribute and its related selectors (lines 10-24
in Algorithm 4.2) is executed simultaneously in multiple processors.
Reusing some computations. We further speedup the search by circumventing
some redundant computations when computing the SI for each candidate of sum-
marization pattern. As mentioned above in Sec. 4.4.2.2, P(S,S) is computed as an
updated background distribution as if all the subgroup patterns related to (S,S)

were presented, which requires to determine λW for each related subgroup pat-
tern. Nevertheless, when branching in different ways during the search (i.e., using
different pairs of a selector and its negation to extend a given description), exten-
sions do not interfere with subgroup patterns whose descriptions are not extended.
Hence, their λW do not need to be recomputed, providing a speed up.

Here we illustrate that, by taking the attributed network in Fig. 4.1 as the ex-
ample (see Fig. 4.3 which visualizes the corresponding adjacency matrix with ar-
ranged vertex indices in left and in bottom; Entries are not indicated for simplicity).
Assume the network is currently divided into two vertex subgroups each respec-
tively satisfying b = 1 and b = 0, and the search is in the step of finding the
optimal selector to specify the description b = 1 (indices of corresponding ver-
tices are highlighed in red in Fig. 4.3 (a)). Though the adjacency matrix is cut in
two different ways, refining the description b = 1 into two more specific ones by
adding a ≤ 3 and a > 3 (in Fig. 4.3 (b)), or adding c = 0 and c = 1 (in Fig. 4.3
(c)), both do not interfere with the subgroup satisfying b = 0 (the blue striped
area).
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Algorithm 4.2: Interesting Summarization Pattern Mining
input : Graph G = {V,E,A}, Search Iteration budget D
output: (S,S)

1 S← {∅};
2 VertexClusters← {V }// A set of vertex-clusters each

of which is formed by the extension of a
description in S. Initially, it is a set only
containing one member, the whole vertex set ;

3 i← 0 // The number tracking the iteration round ;

4 while i < D do
5 si← −∞;
6 S′ ← S;
7 S′′ ← S;
8 VertexClusters′ ← VertexClusters;

9 for W ∈ S do // Iterate over each description
rule currently in S

10 for a ∈ A do // Iterate over each attribute
11 Sa ← the set of all selectors associated with the attribute a;

12 for s ∈ Sa do // Iterate over each selector
of the attribute a
// Update S′ by replacing W with two

more specific descriptions such
that one additionally satisfies s,
and the other does not

13 S′ ← S′ \ {W} ∪ {W ∧ s,W ∧ ¬s};
// Update VertexClusters′

correspondingly
14 VertexClusters′ ←

VertexClusters′ \ {ε(W )} ∪ {ε(W ∧ s), ε(W ∧ ¬s)};
15 S ′ ← A summary of G = {V,E,A} based on the

summarization rule S;
16 si′ ← SI[(S′,S ′)];
17 if si′ >si then
18 si←si′;
19 S← S′;
20 VertexClusters←VertexClusters′;
21 S ← S ′

22 S′ ← S′′// Revert to S′′ ;

23 i+ +;
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b=1

b=0

b=1 b=0

(a) The adjacency matrix be-
fore branching.

b=1

b=0

b=1 b=0

a≤3

a>3

a≤3 a>3

(b) Branching from b = 1 in a
way.

b=1

b=0

b=1 b=0

c=0

c=1

c=0 c=1

(c) Branching from b = 1 in an-
other way.

Figure 4.3: Illustration of the existence of a common subgroup pattern when branching in
two different ways.

4.5.3 Implementation

For mining patterns locally, Pysubgroup [107], a Python package for subgroup
discovery implementation written by Florian Lemmerich, was used as a base to be
built upon. We integrated our nested beam search algorithm and SI measure (along
with other state-of-the-art interestingness measures for comparison) into this orig-
inal interface. A Python implementation of all the algorithms and the experiments
is available at https://bitbucket.org/ghentdatascience/globalessd public. All exper-
iments were conducted on a PC with Ubuntu OS, Intel(R) Core(TM) i7-7700K
4.20GHz CPUs, and 32 GB of RAM.

4.6 Experiments

We evaluate our methods on six real-world networks. In the following, we first
describe the datasets (Sec. 4.6.1). Then we present the conducted experiments and
discuss the results with a purpose to address the following questions:

RQ1 Are our local pattern mining algorithms sensitive to the beam width?
(Sec. 4.6.2)

RQ2 Does our SI measure outperform state-of-the-art objective interestingness
measures? (Sec. 4.6.3)

RQ3 Is the SI truly subjective, in the sense of being able to consider a user’s
prior beliefs? (Sec. 4.6.4)

RQ4 How can optimizing SI help avoid redundancy between iteratively mined
patterns? (Sec. 4.6.5)

https://bitbucket.org/ghentdatascience/globalessd_public
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RQ5 Is our global pattern mining approach able to summarize the whole graph
in a meaningful way such that all the interesting patterns can be revealed?
(Sec. 4.6.6)

RQ6 How do the algorithms scale? (Sec. 4.6.7)

4.6.1 Data

Basic data information is summarized in Table 4.2.
Caltech36 and Reed98. Two Facebook social networks from the Facebook100
[108] data set, gathered in September 2005: one for Caltech Facebook users, and
one for Reed University. Vertex attributes describe the person’s status (faculty or
student), gender, major, minor, dorm/house, graduation year, and high school.
Lastfm. A social network of friendships between Lastfm.com users, generated
from the publicly available dataset [109] in the HetRec 2011 workshop. In this
dataset, tag assignments of a list of most-listened musical artists provided by each
user are given in [user, tag, artist] tuples, where those tags are unstructured text
labels that users used to express songs of artists. We then took tags that a user ever
assigned to any artist and assigned those to the user as binary attributes express-
ing a user’s music interests. This dataset has been used in many publications to
evaluate local pattern mining methods [11, 14, 15].
DBLPtopics. A citation network generated from the DBLP citation data V115

[110, 111] by choosing a random subset of publications from 20 conferences6

selected to cover 4 research areas: Machine Learning, Database, Information Re-
trieval, and Data Mining. Vertices represent publications, and directed edges rep-
resent citation relationships. Each publication is annotated with 50 attributes (de-
noted by a1, a2, . . . , a50) whose value indicates the relevance of this paper to a
certain topic. These attributes are obtained by computing the first 50 latent se-
mantic indexing (LSI) components for the original paper-topic matrix (of size
10837 × 9074) where each entry value indicates the relevance of a paper (rep-
resented by row) to a field of study (represented by column) and this value is
provided by the original DBLP data. In our work, the selector space on which the
search is carried does not include every attribute value pair. A discretization is
applied here: values for each attribute are sorted and discretized into 4 partitions
of equal size by 3 quartiles. This gives 3 × 2 = 6 selectors for each attribute
(6× 50 = 300 selectors in total) three of which respectively assign true to vertices
with value smaller than the first, second, third quartile of the total values for this

5This citation dataset are extracted from DBLP website: https://dblp.uni-trier.de/, containing
4107340 publications (from unknown year till May 2019) and 36624464 citation relationships. It can
be accessed by: https://aminer.org/citation

6AAAI, CIKM, ECIR, ECML-PKDD, ICDE, ICDM, ICDT, ICLR, ICML, IJCAI, KDD, NIPS,
PAKDD, PODS, SDM, SIGIR, SIGMOD, VLDB, WSDM, WWW
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Table 4.2: Dataset statistics summary.

Dataset Type |V | |E| Attribute type #Attributes |S|
Caltech36 undirected 762 16651 nominal 7 602

Reed98 undirected 962 18812 nominal 7 748
Lastfm undirected 1892 12717 binary 11946 21695

DBLPtopics directed 10837 6883 numerical 50 300
DBLPaffs directed 6472 3066 binary 116 232
MPvotes undirected 650 49631 binary 39 78

attribute, and the other three are the corresponding negations. We denote the i-th
quartile of values for the attribute a by Qai .
DBLPaffs. A DBLP citation network based on a random subset of publications
same as the one for the above task. Only papers for which the authors’ country (or
state, in the USA) of affiliation is available are included as vertices. The resulting
116 countries/states are included as binary vertex attributes, set to 1 iff one of the
paper’s authors is affiliated to an institute in that country/state.
MPvotes. The Twitter social network generated from friendships between Mem-
bers of Parliament (MPs) in UK [112]. Their voting records on Brexit from 12th
June 2018 to 3rd April 2019 are included as 39 binary vertex attributes, set to
be 1, or −1 iff this MP vote for/abstain or, against/abstain respectively. Note we
include abstain on both positive and negative sides rather than make abstain (or
not abstain) alone being a value, because a selector that describes a subgroup of
MPs abstaining (or not abstaining) in a particular vote is not very meaningful in
practice.

4.6.2 Parameter sensitivity (RQ1)

For mining local patterns, we used the standard beam search for single-subgroup
patterns, and the nested beam search for bi-subgroup patterns. In all experiments,
we set the search depth D = 2 (because patterns that are described by more than 2

selectors often appear less interesting in practice, and they would add unnecessary
difficulty for interpretation). Then the performance of those beam search methods
ultimately depends on the beam width.

4.6.2.1 Experimental setup

Choice of datasets. We used Lastfm to investigate the effect of the beam width
on the performance of single-subgroup pattern mining, as it involves the largest
search space (given by the largest number of selectors i.e., 21695). With regard to
that on bi-subgroup pattern mining, because the search is more time-consuming,
we used Lastfm while only considering 100 most frequently used tags as attributes
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(i.e., giving 200 selectors as the search space). We also used Reed98 as it involves
the largest search space among datasets that were used in our experiments on bi-
subgroup pattern mining.

Other settings. Though we applied the SI measure with α = 0.6, β = 1

in all use cases of local pattern mining (as previously mentioned in Remark 7 in
Sec. 4.4.3.1), to more meaningfully investigate the parameter sensitivity in this
experiment, we set α to be smaller, i.e., α = 0.1.7

4.6.2.2 Results

Effect of the beam width on single-subgroup pattern mining. First, we ana-
lyze the sensitivity of the standard beam search w.r.t. the beam width for single-
subgroup pattern mining. How the search performance changes with the beam
width (denoted by x) is illustrated below (see Fig. 4.4 (a) for the SI value of the
identified best pattern and Fig. 4.4 (b) for the run time).

Clearly, increasing x from 1 to 40 results in the same best pattern (with the SI
value as 258.7, the description as ‘IDM = 1’) along with a gentle increase in the
run time. Though it shows a greedy search (i.e., x = 1) can already perform well,
this is not guaranteed.

As indicated in a further investigation, increasing the beam width is rendered
useless by the existence of a dominant pattern with a single selector (i.e., ‘IDM
= 1’) such that there are no other patterns that have higher SI value than it and its
children. Once our method incorporates this dominant pattern into the background
distribution for one subsequent iteration to reflect the user’s newly acquired knowl-
edge, the advantage of a larger beam width appears as the best pattern is identified
when x increases to be 3 (see Fig. 4.5 (a)). The run time grows linearly as x
increases (see Fig. 4.5 (b)).

Effect of the beam width on bi-subgroup pattern mining. To study the
effects of the beam width, we implemented all cases with x1 and x2 being 1, 2, 3, 4,

or 7.
In Lastfm, clearly from Fig. 4.6(a), small beam widths (e.g., when x1 = 1 with

x2 = 3) are sufficient for our algorithm to identify the best bi-subgroup pattern
(i.e., the one with SI as 194.8). This is even more the case for Reed98 network,
as our method of bi-subgroup pattern mining always identify the same best bi-
subgroup pattern (i.e., the one with SI as 728) when gradually increasing x1 and
x2.

7In this sensitivity investigation, applying a relatively larger α (e.g., α = 0.6) can more possibly
lead to positive results (i.e., showing our algorithms are insensitive to the beam width, as the same best
pattern is always identified while varying the beam width) but by a fluke: setting α larger in the SI
measure penalizes more complex patterns more heavily, and this makes the best pattern found before
further branching in a beam search more easily dominate, giving less credible positive results. We thus
safely chose α to be 0.1 in this experiment.
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Figure 4.4: Varying the beam width x in the search for single-subgroup patterns in Lastfm.
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Figure 4.5: Varying the beam width x in the search for single-subgroup patterns in Lastfm
after incorporating the dominant pattern described by ‘IDM = 1’.

For bi-subgroup pattern mining in either Lastfm or Reed98, the run time expe-
riences an approximately linear growth as x1 or x2 increases with the other beam
width is fixed (see Fig. 4.6(b) and Fig. 4.6(c) for Lastfm, Fig. 4.7(b) and Fig. 4.7(c)
for Reed98).
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Figure 4.6: Varying the outer/inner beam width x1/x2 in the search for bi-subgroup patterns
in Lastfm.
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Figure 4.7: Varying the outer/inner beam width x1/x2 in the search for bi-subgroup patterns
in Reed98.

Summary. This empirical analysis suggests that overall our algorithms are not
sensitive to the beam width. A small beam width is usually sufficient, particularly
if there is a dominant pattern. When that is not the case, slightly increasing the
beam width was sufficient in our experiments.

We recommend an initial setting with x = 5 for single-subgroup pattern dis-
covery and x1 = 2, x2 = 3 for bi-subgroup pattern discovery, which is usually
more than sufficient. If it is not sufficient, the user can increment x, either x1 or
x2 by 1 iteratively until satisfying results are yielded.

4.6.3 Comparative evaluation (RQ2)
4.6.3.1 Experimental setup

A comparison between the SI and other objective interestingness measures can
only be made on their performances on single-subgroup pattern discovery (or more
precisely, dense subgraph mining), because those existing objective measures are
limited to quantify the interestingness of a dense subgraph community.

Choice of datasets and prior beliefs. To constrain the search that uses our
SI measure to only identify dense subgraphs, we applied individual vertex degrees
as the prior beliefs, and chose sparse networks (i.e, Lastfm and DBLPaffs) for
this comparative task. When using the individual vertex degree as priors, single-
subgroup patterns’ density will not be explainable merely from the individual de-
grees of the constituent vertices. For real-world networks, given its sparsity (which
is common), incorporating this prior leads to a background distribution with a low
average connection probability. In this case, our algorithm identify mostly dense
clusters (i.e. I = 0), as these are more informative in the sense of strongly con-
trasting with the expectation which is towards sparsity. Lastfm, DBLPtopics and
DBLPaffs are all evidently sparse networks. Among them, Lastfm and DBLPaffs
were chosen as their attributes and the discovered patterns are more readily under-
stood.
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Baselines. For this comparative evaluation, we consider the following base-
lines:

• Edge density. The number of edges divided by the maximal number of
edges.

• Average degree. The degree sum for all vertices divided by the number of
vertices.

• Pool’s community score [14]. The reduction in the number of erroneous
links between treating each vertex as a single community and treating all
vertices as a whole.

• Edge surplus [35]. The number of edges exceeding the expected number of
edges assuming each edge is present at the same probability α.

• Segregation index [113]. The difference between the number of expected
inter-edges to the number of observed inter-edges, normalized by the expec-
tation.

• Modularity of a single community [114, 115]. The modularity measure of
a single community based on transforming the definition of modularity to a
local measure.

• Inverse average-ODF (out-degree fraction) [116]. 1 minus the average frac-
tion of vertices’ out-degrees to degrees.

• Inverse conductance. The number of edges inside the cluster divided by the
number of edges leaving the cluster.

More detailed descriptions along with mathematical definitions for these baselines
can be found in Table 4.11 in the Appendix 4.A.

Other settings. For single-subgroup pattern discovery on both Lastfm and
DBLPaffs networks, we use beam search with beam width 5 and search depth 2.

4.6.3.2 Results

Four most interesting patterns w.r.t. the SI and these baseline measures on Lastfm
are presented in Table 4.3 and Table 4.4 respectively. For each pattern, we display
values for elements that constitute the pattern syntax including W , I , kW , and
also other statistics including its rank, |ε(W )|, and #inter-edges. #inter-edges is
the number of connections between ε(W ) and V \ ε(W ), telling how isolated a
particular group of members is. Particularly for patterns discovered using the SI,
we also display pW · nW , the expected number of connections within ε(W ) w.r.t.
the background distribution. Comparing pW · nW to kW gives a direct sense of
how much the user’s expectation differs from the truth (Recall pW from Eqs. 4.2).
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Table 4.3: Top 4 single-subgroup patterns w.r.t. the SI in Lastfm network. For each pattern
(each row), we display values for elements that constitute the pattern syntax including W ,
I , kW , and also other statistics including its rank, |ε(W )|, pw ·nW and #inter-edges (each
column). kW is the number of observed edges within ε(W ) (i.e., the set of vertices satisfying
the description W ), and pW · nW is the expected number of edges within ε(W ) w.r.t. the
background distribution. I is the indicator equal to 0 if the observed pattern is dense for
the user (i.e., kW > pW · nW ) or 1 otherwise (i.e., kW < pW · nW ). #inter-edges is the
number of connections between ε(W ) and V \ ε(W ).

Rank W I kW |ε(W )| pW · nW #inter-edges

1 idm = 1 0 96 78 8.93 496
2 heavy metal = 1 0 220 165 60.04 1322
3 synthpop = 1 0 208 131 57.32 1307
4 new wave = 1 0 292 191 104.01 1731

Here, we summarize the main findings.
Using baselines. Each of those objective measures exhibits a particular bias

that arguably makes the obtained patterns less useful in practice. The edge density
is easily maximized to a value of 1 simply by considering very small subgraphs.
That’s why the patterns identified by using this measure are all those composed
of only 2 vertices with 1 connecting edge. In contrast, using the average degree
tends to find very large communities, because in a large community there are many
other vertices for each vertex to be possibly connected to. Although Pool argued
that their measure may be larger for larger communities than for smaller ones, in
their own experiments on the Lastfm network as well as in our own results, it yields
relatively small communities [14]. As they explained, the reason was Lastfm’s at-
tribute data is extremely sparse with a density of merely 0.15%. Note that patterns
with the top 10 edge surplus values are the same as those for the Pool’s measure.
Although these two measures are defined in different ways, Pool’s measure can
be further simplified to a form essentially the same as the edge surplus. Pursuing
a larger segregation index essentially targets communities which have much less
cross-community links than expected. This measure emphasizes more strongly the
number of cross-community links, and yields extremely small or large communi-
ties with few inter-edges on Lastfm. Using the modularity of a single community
tends to find rather large communities representing audiences of mainstream mu-
sic. The results for the inverse average-ODF and the inverse conductance are not
displayed in the supplement, because the largest values for these two measures
can be easily achieved by a community with no edges leaving this community, for
which a trivial example is the whole network.

Using the SI. We argue that the patterns extracted using our SI measure are
most insightful, striking the right balance between coverage (sufficiently large)
and specificity (not conveying too generic or trivial information). The top one
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characterises a group of 78 IDM (i.e., intelligent dance music) fans. Audiences
in this group are connected more frequently than expected (96 vs. 8.93), and they
altogether only have 496 connections to those people not into IDM, which is much
sparser than connections within the IDM group (as the connectivity density across
the group and that within the group are respectively 496/(78 × 1814) ≈ 0.0035

and 96/(78× (78− 1)/2) ≈ 0.0320).

Remark 9. (Results on DBLPaffs) For DBLPaffs, the same conclusion as above
can also be reached. See top 4 single-subgroup patterns on DBLPaffs w.r.t. our SI
and other measures in Table 4.12 and Table 4.13 respectively in the Appendix 4.A.

Summary. Unlike state-of-the-art objective interestingness measures, each of
which exhibits a particular bias, the proposed SI measure achieves a natural bal-
ance between coverage and specificity, arguably leading to more insightful pat-
terns.

4.6.4 The effects of different prior beliefs: a subjective evalua-
tion (RQ3)

4.6.4.1 Experimental setup

To demonstrate the SI’s subjectiveness, we consider different prior beliefs, in
search for patterns w.r.t. the SI. We deliberately perform this evaluation on bi-
subgroup pattern discovery for a more generic and interesting setting.

Choice of datasets. In the following, we analyze results on Caltech36 and
Reed98. These two networks are chosen, because their straightforward domain
knowledge provides us the ease for prior belief settings. People, even those that
are not social scientists, normally hold prior beliefs about this sort of friendship
network (e.g., they commonly believe that students of different class years are less
likely to know each other than students from the same class year).

Other settings. For bi-subgroup pattern discovery, we applied the nested beam
search with x1 = 2, x2 = 3, and D = 2. Moreover, we constrain the target de-
scriptions W1 and W2 to include at least one common attribute but with various
values, so that the corresponding pair of subgroups ε(W1) and ε(W2) do not over-
lap with each other. Under this setting, the obtained patterns are more explainable,
and the results are easier to evaluate.

4.6.4.2 Results

The 4 most subjectively interesting patterns under each prior belief are presented
in Table 4.6 (for Caltech36) and Table 4.7 (for Reed98), with their associated no-
tations are summarized in Table 4.5.

Incorporating Prior 1. We first incorporated prior belief on the individual
vertex degree (i.e. Prior 1). In general, the identified patterns belong to knowledge
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Table 4.5: Notations in Table 4.6, 4.7 and 4.8

Notation Description

W1/W2 The description of the first/second subgroup
|ε(W1)|/|ε(W2)| The subgroup of vertices satisfying the description W1/W2

kW The number of observed edges between ε(W1) and ε(W2)

pW · nW The expected number of edges between ε(W1) and ε(W2)

w.r.t. the background distribution
I The indicator equal to 0 if the observed pattern is dense for the

user (i.e., kW > pW · nW ) or 1 otherwise (i.e., kW < pW · nW )

commonly held by people, and are not useful. The top 4 patterns on Caltech36 all
reveal people graduating in different years rarely know each other (rows for Prior 1
in Table 4.6), in particular between ones in class of 2006 and ones in class of 2008
(indicated by the most interesting pattern). Although W2 of the second pattern
(i.e., status = alumni) does not contain the attribute graduation year, it implicitly
represents people who had graduated in former year. For Reed98, the discovered
patterns under Prior 1 also express the negative influence of different graduation
years on connections (rows for Prior 1 in Table 4.7).

Incorporating Prior 1 and Prior 2. We then incorporated prior beliefs on
the densities between bins for different graduation years (i.e., Prior 2). All the
extracted top 4 patterns on Caltech 36 indicate rare connections between people
living in different dormitories, and this is also not surprising (rows for Prior 1 +
Prior 2 in Table 4.6).

For Reed98, incorporating Prior 1 and Prior 2 provides interesting patterns
(rows for Prior 1 + Prior 2 in Table 4.7). The top one indicates people living in
dormitory 88 are friends with many in dormitory 89. In contrast, what people
commonly believe is that people living in different dormitories are less likely to
know each other. For a user who has such preconceived notion, this pattern is
interesting. Both the fourth and the seventh patterns reveal a certain person knew
more people in class of 2009 than expected.

Incorporating Prior 1, Prior 2 and Prior 3. For Caltech 36, by additionally
incorporating prior beliefs on the dependency of the connectivity probability on
the difference in dormitories (i.e., Prior 3), patterns characterizing some interesting
dense connections are discovered (rows for Prior 1 + Prior 2 + Prior 3 in Table 4.7).
For instance, the top pattern indicates three people in class of 2004 connect with
many in class of 2008. In fact, these three people’s graduation had been postponed,
as their status is ‘student’ rather than ‘alumni’ in year 2005. Furthermore, the
starting year for those 2008 cohort is exactly when these three people should have
graduated. Therefore, these two groups had opportunities to become friends. The
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fourth pattern indicates an alumnus who had studied in a high school knew almost
all the students living in a certain dormitory. The reason behind this pattern might
be worth investigating, which could be for instance, this alumni worked in this
dormitory.

Summary. As the results show, incorporating different prior beliefs leads to
discovering different patterns that strongly contrast with these beliefs. The pro-
posed SI measure thus succeeds in quantifying the interestingness in a subjective
manner.

4.6.5 Evaluation on iterative pattern mining (RQ4)
4.6.5.1 Experimental setup

Our method is naturally suited for iterative pattern mining, in a way to incorporate
the newly obtained pattern into the background distribution for subsequent itera-
tions. We show this on searching for bi-subgroup patterns because they are more
generic.

Choice of datasets. Dataset DBLPaffs and Lastfm are used, as the meanings
of their attributes are clear and straightforward, giving an ease to explain the dis-
covered patterns.

Other settings. Other settings for this task are the same as for addressing RQ2.
The nested beam search with x1 = 2, x2 = 3, and D = 2 was applied. The target
descriptions W1 and W2 are constrained to include at least one common attribute
but with various values, making the corresponding pair of subgroups ε(W1) and
ε(W2) not overlap with each other.

4.6.5.2 Results

Results for Lastfm are displayed and discussed in the Appendix 4.B. Here we only
analyze the results on DBLPaffs. Table 4.8 displays top 3 patterns found in each of
the four iterations on DBLPaffs.

Iteration 1. Initially, we incorporated prior on the overall graph density. The
resulting top pattern indicates papers from institutes in USA seldom cite those
from other countries.

Iteration 2. After incorporating the top pattern in iteration 1, a set of dense
patterns were identified. All the top 3 patterns reveal a highly-cited subgroup of
papers whose authors are affiliated to institutes in California and New Jersey. This
agrees with fact that many of the world’s largest high-tech corporations and rep-
utable universities are located in these regions. Examples include Silicon valley,
Stanford university in CA, NEC Laboratories, AT&T Laboratories in NJ, among
others.

Iteration 3. The top 3 patterns in iteration 3 reveal that papers from authors
with Chinese affiliations are rarely cited by papers with authors from other coun-
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Table 4.8: Top 3 discovered bi-subgroup patterns of each iteration in DBLPaffs network.
For each pattern (each row), we display values for elements that constitute the pattern
syntax including W1, W2, I , kW , and also other statistics including its rank, |ε(W1)|,
|ε(W1)|, and pw · nW (each column). See Table 4.5 for descriptions of these statistics.

Rank W1 W2 I kW |ε(W1)| |ε(W2)| pW · nW

Iteration 1
1 USA = 1 USA = 0 1 335 3132 3340 765.83

2 USA= 1 ∧ China = 0 USA = 0 1 288 2969 3340 725.97

3 USA= 1 ∧ Australia = 0 USA = 0 1 320 3092 3340 756.05

Iteration 2
1 NJ (New Jersey) = 0 NJ = 1 ∧ CA (California) = 1 0 93 6262 15 6.91

2 CA = 0 NJ= 1 ∧ CA = 1 0 86 5584 15 6.13

3 NJ= 1 ∧ Israel = 0 NJ= 1 ∧ CA = 1 0 93 6153 15 6.76

Iteration 3
1 China = 0 China = 1 1 144 5599 873 271.02

2 China = 0 China = 1 ∧ IL (Illinois) = 0 1 128 5599 861 266.10

3 China = 0 ∧ USA = 0 China = 1 1 64 2630 873 168.09

Iteration 4
1 CA = 1 CA = 0 ∧WA = 1 0 55 888 184 11.73

2 WA = 0 WA = 1 0 182 6254 218 97.78

3 CA = 1 ∧ TX (Texas) = 0 CA = 0 ∧WA = 1 0 55 876 184 11.57

tries. However, they are frequently cited by papers with Chinese authors, as in-
dicated by our identified top single-subgroup pattern in DBLPaffs (see Table 4.12
in the Appendix 4.A). This indicates researchers with Chinese affiliations are sur-
prisingly isolated, the reason of which might be interesting to investigate.

Iteration 4. The top patterns in iteration 4 reveal that papers from institutions
in Washington state are highly cited by others, in particular by papers from Cali-
fornia. Closer inspection revealed that the majority of these papers are written by
authors from Microsoft Corporation and the University of Washington.

Summary. By incorporating the newly obtained patterns into the background
distribution for subsequent iterations, our method can identify patterns which
strongly contrast with this knowledge. This results in a set of patterns that are
not redundant and highly surprising to the user. Note that the lack of redundancy
arises naturally, without the need for explicitly constraining the overlap between
the patterns in consecutive iterations. In fact, some amount of overlap may still
occur, as long as the non-redundant part of the information is sufficiently large.

4.6.6 Empirical results on the discovered global patterns (RQ5)

To demonstrate the use of our method for mining interesting global patterns, we il-
lustrate and analyze the experimental results on DBLPaffs (in Sec. 4.6.6.1), DBLP-
topics (in Sec. 4.6.6.2) and MP (in the Appendix 4.C). Each of these datasets serves
an interesting case study for us to evaluate our method on.
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4.6.6.1 Case study on DBLPaffs

Task. Paper citations relate to authors’ affiliations to some extent. For example,
institutions in some particular countries or regions are reputable, and often produce
highly-cited research. Also, collaborations and mutual citations may frequently
occur in institutions from some certain countries or regions. Thus, of particular
interest could be patterns that describe a subgroup of papers from affiliations A
frequently (or rarely) cite papers in another subgroup from affiliations B. We show
such patterns can be revealed by a summarization yielded by our approach.

USA = 1�WA = 1

218

USA = 1�WA = 0� China = 1

152

USA = 1�WA = 0
� China = 0�
CA = 1�NJ = 1 15

USA = 1�WA = 0�
China = 0� CA = 1
�NJ = 0 812

2630

710

1935USA = 1�WA = 0�
China = 0� CA = 0 USA = 0� China = 1

USA = 0� China = 0

Figure 4.8: The resulting summary of DBLPaffs. Each supervertex (representing a paper
subgroup) is labelled by its number of members (in the centre of the blue circle) and its
description (near the blue circle). Each directed edge connects one supervertex to the other,
and its linewidth indicates the connectivty density from a subgroup (e.g. ε(W1)) to the
other one (e.g., ε(W2)). A thicker edge means the citations from ε(W1) to ε(W2) are more
frequent).

The resulting summarization. By running our algorithm for 6 iterations, this
citation network is summarized into 7 subgroups each consisting of papers satis-
fying a particular description about their authors’ affiliations. These 7 subgroups
are respectively defined by

1. USA = 1 and WA (Washington) = 1;

2. USA = 1 and WA = 0 and China = 1;
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3. USA = 1 and WA = 0 and China = 0 and CA (California) = 1 and NJ
(New Jersey) = 1;

4. USA = 1 and WA = 0 and China = 0 and CA = 1 and NJ = 0;

5. USA = 1 and WA = 0 and China = 0 and CA = 0;

6. USA = 0 and China = 1;

7. USA = 0 and China = 0.

The summary is displayed in Fig. 4.8. In the following, we discuss properties of
local subgroup patterns revealed in our summarization to access its validity.

NJ=1

NJ=0

CA=1

CA=0

China=0

China=1

WA=0

WA=1

China=0

China=1

US=1

US=0

Figure 4.9: The heatmap representation of the density matrix for DBLPaffs, aligned with a
dendrogram illustration of the splitting hierarchy on the left. A deeper color of each square
indicates a higher connectivity density from a subgroup (represented by row) to another one
(represented by column).

Remark 10. (Redundancy in the descriptions) One may notice that some sub-
group descriptions can be more concise. For example, the first subgroup pattern
“USA = 1 and WA = 1” should induce the same extension as only“WA= 1”. There
is no mechanism in our approach for the global pattern mining that would prefer
the alternative shorter description of the same subgroup. Yet, such redundancy
can be easily identified and adjusted in post-processing. Moreover, this issue does
not affect our single/bi-subgroup pattern mining approach where each iteration of
the search essentially identifies an optimal pattern rather than a split (in global
pattern mining approach), and shorter description of the same subgroup would
have a larger SI value given by its smaller DL value.

Discussion. A series of interesting local subgroup patterns emerge from the
resulting summarization. The density matrix where its entry at the i-th row and
the j-th column is the citation density from papers in the i-th subgroup to the j-th
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is visualized by a heatmap, of which the left side is lined up with a dendrogram
illustrating the splitting hierachy (see Fig. 4.9).

Obviously, the most cohesive subgroup are papers from institutions in Wash-
ington state in USA, as they cite those within this subgroup most frequently (indi-
cated by the darkest green square in the top left). Closer inspection revealed that
the majority of these papers are written by authors from Microsoft Corporation
and the University of Washington.

The most highly-cited subgroup is the third one (indicated by the dark color
of all the squares along the third column except the one in the third row). This
subgroup only contains 15 papers, and their authors are affiliated to institutes in
California and New Jersey, neither in Washington nor China. Note this also agrees
with bi-subgroup patterns found in previous experiment for addressing RQ3 (Iter-
ation 2 in Sec. 4.6.5). As already been pointed out, many of the world’s largest
high-tech corporations and reputable universities are located in this region. Exam-
ples include Silicon valley, Stanford university in CA, NEC Laboratories, AT&T
Laboratories in NJ, among others.

Another interesting subgroup is the second one of which authors are with af-
filiations in China and USA (except Washington). Researchers related to this sub-
group are surprisingly isolated, as their papers are seldom cited by those from other
subgroups but very frequently (or to be more precise, the second most frequently)
within this subgroup (indicated by the shallow color of all the squares along the
second column except the one in the second row). In fact, Chinese affiliated with
research organisations in China and Chinese affiliated with organisations in USA,
have coauthored most papers in this subgroup. The reason of their isolation might
be interesting for users to investigate. Again, this coincides with what we found
in experiment for addressing RQ3 (Iteration 3 in Sec. 4.6.5). The difference is the
identified subgroup here is more specified (i.e., also being with affiliation in USA
except Washington).

A follow-up experiment. The rest subgroup defined by USA = 0 and China
= 0 (i.e., the 7th one) contains a considerable number of members (indicated by
the largest circle in Fig. 4.8). Continuing to run our algorithm for subsequent itera-
tions tends to split this subgroup up such that some cohesive groups affiliated with
organisations in other countries are revealed. For example, subgroups related to af-
filiations in Singapore, Canada, the Netherlands emerge respectively in the first 3

subsequent iterations (see the corresponding splitting hierarchy highlighted by red
dashed lines in Fig. 4.10). They all cite papers within the same subgroup or those
from the third subgroup (i.e., the overall most highly-cited one) very frequently
(see rows 7, 8, 9 of the heatmap in Fig 4.10).
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NJ=1

NJ=0

CA=1

CA=0

China=0

WA=1

China=0

China=1

US=1

US=0

China=1

WA=0

Singapore=1

Singapore=0

Canada=1

Canada=0

the Netherlands=1

the Netherlands=0

Figure 4.10: The heatmap representation of the density matrix among subgroups obtained
by running our algorithm for another 3 subsequent iterations on DBLPaffs, with a den-
drogram illustration of the splitting hierarchy on the left. A deeper color of each square
indicates a higher connectivity density from a subgroup (represented by row) to another
one (represented by column). The splitting hierarchy for the 3 new iterations are in red
dashed lines.

4.6.6.2 Case study on DBLPtopics

Task. A user working for an academic organization may want to obtain a high-
level view of citation vitality among different research fields. Given DBLPtopics
dataset, we here show the global pattern identified by our summarization approach
can provide such high-level view, revealing interesting local subgroup patterns
of the form ‘papers of study field A frequently (or rarely) cite those of field B’.
We also show the obtained global pattern can provide the user further insights by
linking with information about paper distribution among different conferences.

The resulting summarization. The summarization of DBLPtopics is gener-
ated by running our algorithm for 4 iterations, and the resulting summarization
rule means to divide all papers into the following 5 subgroups:

1. a1 < Qa12 ∧ a8 ≥ Q
a8
1 (Theoretical machine learning);

2. a1 < Qa12 ∧ a8 < Qa81 (Practical machine learning);

3. a1 ≥ Qa12 ∧ a5 < Qa53 ∧ a3 < Qa33 (Data mining);

4. a1 ≥ Qa12 ∧ a5 < Qa53 ∧ a3 ≥ Q
a3
3 (Information retrieval);

5. a1 ≥ Qa12 ∧ a5 ≥ Q
a5
3 (Database).

For each subgroup, we list its original description and a corresponding short
interpretation (in brackets) based on summarizing attributes’ meaning. As men-
tioned previously (in Sec. 4.6.1), an attribute is essentially one of the first 50 LSI
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Table 4.9: The meaning of attributes related to the resulting summarization.

Attribute Meaning (Top 5 most strongly associated fields of study
by absolute weight)

a1

Data mining (0.55)
Machine Learning (−0.49)
Database (0.32)
Computer Science (0.28)
Information retrieval (0.25)

a3

Data mining (0.41)
Computer science (−0.40)
Mathematics (0.39)
Information retrieval (0.30)
Pattern recognition (0.24)

a5

Database (0.61)
Information retrieval (−0.49)
Query optimization (0.21)
World Wide Web (−0.18)
Mathematics (0.15)

a8

Mathematical optimization (0.45)
Information retrieval (0.44)
Database (0.37)
Data mining (−0.25)
Computer science (0.22)

components for the original paper-topic matrix. Its meaning can thus be described
by its 5 subcomponents with highest absolute weights (shown in Table. 4.9). A
higher weight means this attribute’s meaning is closer (positive sign) or more con-
trasting (negative sign) to this research field. We will use these short interpre-
tations rather than original descriptions in the following part, because these are
more straightforward. Generally, this summarization not only successfully cap-
tures those 4 research areas that publications in DBLPtopics are intended to cover
(i.e., Machine Learning, Database, Information Retrieval, and Data Mining), but
also identifies a deeper-level structure (i.e., the partition of machine leaning papers
into two subgroups according to different aspects they emphasize: more practical
or more theoretical).

The summary of DBLPtopics based on the resulting summarization rule is dis-
played in Fig. 4.11. To highlight the citation vitality between each pair of sub-
groups, the corresponding citation density matrix is visualized by a heatmap, lined
up with a dendrogram on the left illustrating the splitting hierarchy (see Fig. 4.12).

Discussion. As shown in Fig. 4.12, the citation density within the same sub-
group is often high, indicating papers of similar research field often cite each other.

Exceptions are the second (practical machine learning) subgroup and the third
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4255

1. Theoretical machine learning

1163
2. Practical machine learning

2683

3. Data mining

979
4. Information retrieval

1757

5. Database

Figure 4.11: The resulting summary of DBLPtopics. Each supervertex (representing a
paper subgroup) is labelled by its number of members (in the centre of the blue circle) and
its description (near the blue circle). Each directed edge connects one supervertex to the
other, and its linewidth indicates the connectivty density from a subgroup (e.g. ε(W1)) to
the other one (e.g., ε(W2)). A thicker edge means the citations from ε(W1) to ε(W2) are
more frequent).

one (data mining) which respectively cite the fifth (database) and the fourth (infor-
mation retrieval) most frequently. This accords with the fact that solving data min-
ing or practical machine learning research questions often necessitates database
techniques or information retrieval to solve some subtasks.

Clearly, the fourth and the fifth subgroup are most cohesive (indicated by those
two evidently dark green squares in the fourth and the fifth place of the diagonal).
Also, these two groups cite each other and the data mining subgroup very fre-
quently.

One downstream task: knowing more about conferences. The summariza-
tion generated by our approach can be useful in some downstream analysis tasks.
Here we show an example of utilizing it to know more about conferences, simply
by linking with the distribution of publications in those 20 selected conferences
within each subgroup (displayed in Fig. 4.13).
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Figure 4.12: The heatmap representation of the density matrix for DBLPtopics, aligned
with a dendrogram illustration of the splitting hierarchy on the left (Recall Qa

i denotes the
i-th quartile of values for the attribute a). A deeper color of each square indicates a higher
connectivity density from a subgroup (represented by row) to another one (represented by
column).

First, by merely looking at the distribution for each subgroup, the users can
learn the relationship between research fields and conferences, e.g., answering
questions like which research field is dominated by which conference. As can
be seen, a noticeable large proportion of publications in regard to the information
retrieval (the fourth subgroup) are in SIGIR and CIKM. and the database publica-
tions (the fifth subgroup) are mostly in ICDE, VLDB, SIGMOD. The data mining
subgroup (the third one) is special in a sense that their publications are distributed
quite evenly. WWW only holds a slim majority, and publications from KDD,
AAAI, ICDM, CIKM are a little bit more than those from another venue (except
WWW). Moreover, it is interesting to notice KDD and ICDM appear to be more
interdisciplinary, accepting papers surprisingly evenly from these research areas
compared to other conferences (as there is no noticeably longer dark brown or
light green rectangular in either one of these 5 horizontal bins in Fig. 4.13).

Also, the user can combine Fig. 4.12 and Fig. 4.13 to deduce the citation vital-
ity among different conferences. For example, publications in SIGIR and CIKM
often cite those also in these two conferences (as the fourth subgroup is very co-
hesive), and they also often cite publications in WWW, AAAI, KDD,CIKM (those
dominating the third subgroup).
Summary. As shown by these case studies on different datasets, global patterns
identified by our method can not only directly provide insights by revealing a series
of interesting single-subgroup and bi-subgroup patterns, but also be utilized to



98 CHAPTER 4

1757
5. Database

979
4. Information retrieval

2683
3. Data mining

1163
2. Practical machine learning

4255
1. Theoretical machine learning

AAAI
CIKM
ECIR
ECML-PKDD
ICDE
ICDM
ICDT
ICLR
ICML
IJCAI
KDD
NIPS
PAKDD
PODS
SDM
SIGIR
SIGMOD
VLDB
WSDM
WWW

Figure 4.13: The distribution publications in 20 selected conferences within each subgroup.
For each bin representing a subgroup, the subgroup description is placed on the top, and the
number of papers in this subgroup is placed on the right end. The length of a rectangular
in a certain color and hatch inside a bin is proportional to the percentage of publications
in a certain conference in a subgroup. Conferences are in alphabetical order.

facilitate some downstream analysis tasks.

4.6.7 Scalability evaluation (RQ6)

4.6.7.1 Experimental setup

Choice of datasets. We used Lastfm to investigate the scalability to the number
of selectors, because it can give a largest number of selectors (i.e., 21695) as the
search space.

Other settings. Same as for other experiments, in the scalability evaluation,
we applied the beam search with x = 5 (for single-subgroup pattern discovery),
the nested beam search with x1 = 2, x2 = 3, and D = 2 (for bi-subgroup pattern
discovery), 8 processors running in parallel (for global pattern mining).

4.6.7.2 Results

Effect of |S|. Fig. 4.14 displays run time on Lastfm w.r.t. the number of selectors
in the search space (i.e., |S|). It is clear that, in either single-subgroup or global
pattern mining, the run time experiences a linear growth as we gradually double
the |S| (from 10 to 20480), whereas the run time for bi-subgroup pattern mining
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increases more than linearly, and exceeds 1 day when |S| is larger than 2560.
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Figure 4.14: Run time (s) parametrized by |S| on Lastfm.

Run time. The run time of our experiments for addressing RQ2 to RQ5, as
well as the |S| and |V | statistics are listed in Table 4.10. The influence of the |S|
and |V | on the run time is evident.

Table 4.10: Run time.

Dataset |S| |V | Run time (s)

Single-subgroup pattern mining
(RQ2)

Lastfm 21695 1892 278.49
DBLPaffs 232 6472 32.40

Bi-subgroup pattern mining
(RQ3 and RQ4)

Caltech36 602 762 1312.57
Reed98 748 962 1965.41
Lastfm 200 1892 679.85

DBLPaffs 232 6472 3114.78

Global pattern mining
(RQ5)

DBLPaffs 232 6472 830.69
DBLPtopics 150 10837 1570.90

MPvotes 78 650 12.73

Summary. The run time grows linearly in the number of attributes in both
single-subgroup and global pattern mining, whereas it grows faster than linearly in
bi-subgroup pattern mining.

4.7 Conclusions

Prior work of pattern mining in attributed graphs typically only search for dense
subgraphs (‘communities’) with homogenous attributes. We generalized this type
of pattern to densities within this subgraph (no matter whether dense or sparse,
which we refer as single-subgroup pattern), between a pair of different subgroups
(which we refer as bi-subgroup pattern), as well as between all pairs from a set of
subgroups that partition the whole vertex set (which we refer as global pattern).

We developed a novel information-theoretic approach for quantifying interest-
ingness of such patterns in a subjective manner, with respect to a flexible type of
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prior knowledge the user may have about the graph, including insights gained from
previous patterns.

The empirical results show that our method can efficiently find interesting pat-
terns of these new different types. In the standard problem of dense subgraph
mining, our method can yield results that are superior to the state-of-the-art. We
also demonstrated empirically that our method succeeds in taking in account prior
knowledge in a meaningful way.

The proposed SI interestingness measure has considerable advantages, but a
price to pay for this is in terms of computational time. To help maintain the
tractability, we succumb to some accurate heuristic search strategies. It would be
useful for the future work to discover a search strategy with performance guarantee
and to further speed up the search (e.g., by branch and bounds).
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Appendices

4.A For Section 4.6.3: A comparative evaluation on
DBLPaffs network (RQ2)

Some objective interestingness measures we used for comparison, as well as their
explanations are listed in Table 4.11.

We consider undirected graphs for the sake of presentation and consistency
with most literature. However, we note that the generalization to directed graphs
is straightforward.

4.B For Section 4.6.5: Evaluation on the iterative
pattern mining on Lastfm Dataset (RQ4)

Table 4.14 displays the top 3 patterns found in each of the five iterations on the
Lastfm. The description search space is built based on only 100 most frequently
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Table 4.11: Existing measures for a comparison. For a given attributed graph G =
{V,E,Λ}, and a community induced by a description W such that ε(W ) ∈ V , d(u)
denotes the degree of vertex u ∈ V ; dW (u) denotes the inter-degree of vertex u ∈ ε(W ),
specfically, dW (u) := |{(u, v) ∈ E : v ∈ V \ ε(W )}|; and #inter-edges denotes the
number of connections between ε(W ) and V \ ε(W ).

Measure Description Mathematical definition

Edge density
the ratio of the number of edges to the
number of possible edges in the cluster

2∗kW
|ε(W )|∗(|ε(W )|−1)

Average degree
the ratio of the degree sum for all vertices
to the number of vertices in the cluster

2∗kW
|ε(W )|

Pool’s measure [14]

the reduction in the number of erroneous
links between treating each vertex as a
single community and treating all the vertices
as a whole

∑
u∈ε(W ) d(u)−

(
|ε(W )|∗(|ε(W )|−1)

2 − kW
)

−#inter-edges = − |ε(W )|∗(|ε(W )|−1)
2 + 3 ∗ kW

Edge Surplus [35]
the number of edges exceeding the expected
number of edges within the cluster assuming
each edge is present with the same probability α

kW − α ∗ |ε(W )| ∗ (|ε(W )| − 1)

Segregation index [113]
the difference between the number of expected
inter-edges to the number of the observed
inter-edges, normalized by the expectation

1− #inter-edges∗|V |∗(|V |−1)
2∗|E|∗|ε(W )|∗(|V |−|ε(W )|)

Modularity of a single
community [114, 115]

the measure quantifying the modularity
contribution of a single community based on
transforming the definition of modularity
to a local measure

1
2∗|E|

∑
u,v∈ε(W )

(
au,v − d(u)∗d(v)

2∗|E|

)

Inverse Average-ODF
(out-degree fraction) [116]

the inverse of the Average-ODF which is
based on averaging the fraction of inter-degree
and the degree for each vertex in the cluster

1− 1
|ε(W )|

∑
u∈ε(W )

dW (u)
d(u)

Inverse Conductance
the ratio of the number of edges
inside the cluster to the number of edges
leaving the cluster

kW
#inter-edges

Table 4.12: Top 4 single-subgroup patterns w.r.t. our SI in DBLPaffs network. For each pat-
tern (each row), we display values for elements that constitute the pattern syntax including
W , I , kW and also other statistics including its rank, |ε(W )|, pw · nW and #inter-edges
(each column). kW is the number of observed edges within ε(W ) (i.e., the set of vertices
satisfying the description W ), and pW · nW is the expected number of edges within ε(W )
w.r.t. the background distribution. I is the indicator equal to 0 if the observed pattern is
dense for the user (i.e., kW > pW ·nW ) or 1 otherwise (i.e., kW < pW ·nW ). #inter-edges
is the number of connections between ε(W ) and V \ ε(W ).

Rank W I kW |ε(W )| pW · nW #inter-edges

1 China = 1 0 179 873 63.20 566
2 China = 1 ∧ IN (Indiana) = 0 0 179 869 62.58 561
3 China = 1 ∧ Italy = 0 0 179 870 62.67 561
4 China = 1 ∧ Denmark = 0 0 179 870 62.69 562
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used tags, that means, |S| = 100× 2.

Iteration 1. Initially, we incorporate prior belief on individual vertex degree.
The extracted most interesting pattern reflects a conflict between aggressive heavy
metal fans and mainstream pop lovers who do not listen to heavy metal at all.

Iteration 2. After incorporating the top pattern identified in iteration 1, what
comes top is the one expressing again a conflict between mainstream and non-
mainstream music preference, but another kind (i.e., pop with no indie, and exper-
imental with no pop). Also, we can notice only the second pattern for the iteration
1 is remained in the iteration 2 top list but with a lower rank as third. The inter-
estingness of any sparse pattern associated with the newly incorporated one under
the updated background distribution is expected to decrease, as the user’s would
not feel surprised about such pattern.

Iteration 3. In iteration 3, our method tends to identify some interesting dense
patterns, mainly related to synth pop and new wave genres. The top one states
synth pop fans frequently connect with many people listening to new wave but not
synth pop. This pattern appears fallacious at the first glance. Nevertheless, synth
pop is a subgenre of new wave music. Also, the latter group may listen to synth
pop but they use a different tag ‘synthpop’ instead of ‘synth pop’, as there are even
102 audience only tag synth pop as ’synthpop’ (see the third patten). Hence, this
pattern makes sense as it describes dense connections between two groups which
resemble each other.

Iteration 4. The top 3 patterns in iteration 4 all express negative associations
between new wave and some sort of catchy mainstream music (eg. pop, rnb, or
hip-hop, among several others).

Iteration 5. Once we incorporate the most interesting one, patterns charac-
terizing some positively associated genres stand out. For example, the top one in
iteration 5 indicates instrumental audience are friends with many ambient audience
who doesn’t listen to instrumental music. These two genres are not opposite con-
cepts and share many in common (e.g., recordings for both do not include lyrics).
Actually, ambient music can be regarded as a slow form of instrumental music.

Summary. By incorporating the newly obtained patterns into the background
distribution for subsequent iterations, our method can identify patterns which
strongly contrast to this knowledge. This results in a set of patterns that are not
redundant and are highly surprising to the user. Note this does not means we re-
strict patterns in different iterations not to be associated with each other. In fact,
overlapping could happen when this is informative.
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4.C For Section 4.6.6: One more case study on
MPvotes for the evaluation of global pattern
mining

Task. Brexit is a hot topic of debate in UK. MPs’ voting behaviours on Brexit
might affect the likelihood of their connections. Using this information to sum-
marize MPs friendship network is thus potential to provide insights on the Brexit
saga. We here investigate whether our approach can achieve this.

The resulting summarization. The summarization of MPvotes generated
from running our algorithm for 4 iterations splits all MPs into 5 subgroups, and
they are respectively defined by

1. I1 = −1 or 0 ∧ I10 V3 = −1 or 0 ∧ I10 V4 = −1 or 0;

2. I1 = −1 or 0 ∧ I10 V3 = −1 or 0 ∧ I10 V4 = 1;

3. I1 = −1 or 0 ∧ I10 V3 = 1;

4. I1 = 1 ∧ I7 V4 = 1 or 0;

5. I1 = 1 ∧ I7 V4 = −1.

where ‘Ii Vj’ represents the j-th vote in the i-th issue. For an issue around which
there exists only one vote, say the 1st issue, it is simply represented as I1. Detailed
interpretation of all voting issues related to our summarization are displayed in
Table 4.15. The summary of MPvotes is illustrated in Fig. 4.15. For a dedicated
view of the connectivity density between each subgroup pair, the corresponding
density matrix is visualized by a heatmap, aligned with an dendrogram illustration
of the splitting hierachy on the left (see Fig. 4.16).

Table 4.15: The description of voting issues related to the resulting summarization in the
order of spliting.

Vote Notation Description

I1
Government in rejecting an amendment that would have

given MPs the power to stop the UK from leaving the
EU without a deal.

I10 V3 Labour’s plan for a close economic relationship with the
EU.

I10 V4 UK membership of the European Free Trade Association
(Efta) and European Economic Area (EEA).

I7 V4 Government in contempt of parliament
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65

I1 = -1 or 0
I10 V3 = -1 or 0
I10 V4 = -1 or 0

23

I1 = -1 or 0
I10 V3 = -1 or 0

I10 V4 = 1

236

I1 = -1 or 0
I10 V3 = 1

309

I1 = 1
I7 V4 = 1 or 0

17

I1 = 1
I7 V4 = -1

Figure 4.15: The resulting summary of MPvotes. Each supervertex (representing a sub-
group of MPs) is labelled by its number of members (in the centre of the blue circle) and its
description (near the blue circle). Each undirected edge connects between one superver-
tex and the other, with its linewidth indicating the connectivity density between these two
corresponding subgroups (The thicker the edge, the higher the connectivity density).

Discussion. Clearly in Fig. 4.16, our summarization identifies several crucial
votings that partition MPs into cohesive subgroups. That is, MPs taking the same
sides in these votings connect more frequently to each other (i.e., those within
the same subgroup) than MPs voting differently (i.e., those in other subgroups).
The only exception is the 2nd subgroup who connect most frequently to the 3rd
subgroup. More interpretations of these patterns are provided in the following.

Combining with political parties. The user can utilize our summarization
of MPvotes to obtain insights about Brexit saga. Here, we provide one example.
More specifically, we show, by combining with the distribution of MPs’ party
affiliations within each subgroup (illustrated in Fig. 4.17), our summarization can:

(a) reveal crucial voting issues over which MPs from different parties take dif-
ferent sides;
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I10 V4 = -1/0

I10 V4 = 1

I10 V3 = -1/0

I10 V3 = 1

I7 V4 = 1/0

I7 V4 = -1

I1 = -1/0

I1 = 1

Figure 4.16: The heatmap representation of the density matrix among subgroups obtained
by running our algorithm for 4 iterations on MPvotes, aligned with a dendrogram illustra-
tion of the splitting hierarchy on the left. A darker color of each square indicates a higher
connectivity density between a subgroup (represented by row) and another one (represented
by column).

(b) provide a high-level view of connectivity densities among different political
parties.

Now we trace the partition process based on our summarization in order to
show (a). The first split is a vote on I1 of which ‘ayes’ side with the govern-
ment to keep no-deal Brexit on the table as a possibility (see the dendrogram in
Fig. 4.17). A clear opinion conflict between different parties can be observed.
More specifically, all the MPs from Scottish National Party (SNP), Liberal Demo-
crat (LD), Sinn Fein (SF), Plaid Cymru (PC), Green (Grn) and the majority of MPs
in Labour (Lab) voted against I1 or abstained (the aggregation of the first, second
and third subgroup). All except two MPs from Conservative (Con) and all from
Democratic Unionist Party (DUP) were in favour (the aggregation of the fourth
and fifth subgroup ). Then those ‘Noes’ and abstainers of I1 are divided according
to their stances on Lab’s plan for a close economic relationship with the EU (i.e.,
I10 V3). ‘Ayes’ of I10 V3 (i.e., the third subgroup) are dominated by most MPs
from Lab. The others are further split over their votes on UK membership of Efta
and Eea (i.e., I10 V4), in which MPs from some non-mainstream parties voted for
or abstained (i.e., the firstst subgroup) and 15 MPs from Lab voted against. In
the fourth split of vote on I7 V4, MPs affiliated with Con and those with DUP are
clearly separated from each other, leading to the fourth and fifth subgroup respec-
tively.
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I10 V4 = -1/0

I10 V4 = 1

I10 V3 = -1/0

I10 V3 = 1

I7 V4 = 1/0

I7 V4 = -1

I1 = -1/0

I1 = 1

Figure 4.17: The distribution of party affiliations of MPs in each subgroup, aligned with a
dendrogram illustrating the splitting hierarchy on the left. For each bin corresponding to
a subgroup, the subgroup description is placed on the top, and the number of MPs in this
subgroup is placed on the right end. The rectangular length of a particular color inside a
bin is proportional to the number of MPs affiliated with a particular party in this subgroup.

Then we show (b) by combining our summarization (Fig. 4.16) and the party
affiliation distribution (Fig. 4.17). Here we show some interesting findings. As
mentioned previously, one bi-subgroup pattern reveals frequent connections be-
tween the second subgroup and the third one. The second subgroup can be in-
terpreted as a group of unrepresentative Lab MPs, whereases the third subgroup
corresponds to a representative group, as closer inspection shows MPs in either of
these two subgroups are mostly affiliated with Lab, though the population of the
second subgroup is much smaller. Also, MPs affiliated with some non-mainstream
parties (e.g., SNP, LD,SF,PC) connect much more to those affiliated with Lab than
those with Con, especially those with Lab belonging to the second subgroup. Al-
though the fourth subgroup is almost made up with purely MPs that are from Con,
its relatively small self-connectivity in comparison with that to the first and the
third subgroup indicates not many MPs from Con build friendship with each other.
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5
Conclusions

In this chapter, we conclude this thesis in a high-level view. Specific conclusions
and future directions for each main contribution are provided at the end of Chapter
3 and Chapter 4.

5.1 General conclusions

This thesis tackles the problem of mining subjectively interesting patterns in two
rich data types: time series and graphs. More specifically, we proposed novel
pattern syntaxes, interestingness measures, and associated algorithms for mining
motifs in time series, and for mining local and global rules implying subgraphs
with surprising densities in graphs.

In general, what differentiates this thesis from prior work of mining rich data is
its adopting of a subjective interestingness perspective—always keeping in mind
that the mined patterns ultimately serve the interests of the user (e.g., for improv-
ing his or her understanding of the data or for benefiting the subsequent decision
making). This perspective not only drove us to design the interestingness measure
a subjective one in mining both time series and graphs, but also led us to concern
a series of user-centric what-if questions when approaching the graph mining—
what if the user cannot understand the resulting patterns? (explainability), what if
the user wishes to know some information that cannot fit in current pattern syntax
(generality), what if there are too many similar ones in the output pattern set to
get the user bored? (non-redundancy). Attempts to address all these concerns fi-
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nally made this research work a versatile one, enabling to tackle several well-posed
tasks simultaneously including link rule discovery, dense (or sparse) subgraph de-
tection, along with graph summarization. Thanks to the flexibility of De Bie’s
FORSIED (Formalizing Subjective Interestingness in Exploratory Data Mining)
framework [1, 2], we generated solutions for all of these issues by building upon
that.

Perspectives. Before embarking on limitations of the work reported in this the-
sis, let us reflect on what we think this thesis means. We can view this research
work as instantiations of FORSIED framework on two interesting problems (i.e.,
discovering motifs in time series, as well as mining local and global subgraph pat-
terns in attributed networks). Granted, our contribution is just a small part of the
pattern mining research that are already (or will be) led by building upon FOR-
SIED. By presenting our version of what FORSIED can achieve, we personally
believe, this thesis also more or less reveals how the pattern mining research can
hugely benefit from a theoretical framework of data mining like FORSIED (even
though data mining is more an applied area). As has been pointed out in earlier
time (in year 2000) by Mannilia in answering the question why look for a theoreti-
cal framework of data mining, a theory in computer science can transform an area
from hodgepodge of unconnected methods to an interesting and understandable
whole, and at the same time enable an area of industry [3]. Here, he gave a clear
example (i.e., a relational model driving the development of the area of relational
database) to support this statement. In this sense, we hope, this thesis would inspire
the further development of FORSIED, or other (existing or incoming) theoretical
data mining frameworks.

Moreover, for industrial applications that rely on mining informative patterns
from data and want to include users in the loop, this work can benefit them as
being a preliminary step towards ends-to-ends tools.

5.2 Future directions
Among the realm of rich data mining techniques, our thesis is situated at those
based on developing building blocks (i.e., pattern syntaxes, interestingness mea-
sures, mining algorithms) that are dedicated to rich data. Though several previ-
ous limitations have been addressed, many still remain and some new ones have
emerged, especially in aspects of interestingness measures and mining algorithms.
In what follows, we will discuss these limitations that suggest further avenues of
this research.

Interestingness measures. We first look at the aspect of interestingness mea-
sures.
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• More practical prior knowledge. In our subjective interestingness frame-
work, the user’s prior knowledge is expressed as constraints for the maxi-
mum entropy optimisation problem which leads to the background distribu-
tion, the model for the user’s prior beliefs. Nevertheless, all priors we have
considered are data-dependent, and they are quite different from what the
user usually holds in reality. Now we elaborate on this.

The priors our model incorporates are in the format of property-value pair
which expresses the user expects that a certain property (e.g., the mean, the
variance or the first order difference of data points in the whole time series,
the individual vertex degrees, the overall graph density, or densities between
a pair of subgroups for the graph) should be in a certain value. However,
in practice, the knowledge that the user holds is often a rough sense, which
differs inherently from a very specific property-value pair. For example, the
user may think students in a same university who love playing tennis often
know each other, and this is, however, not equivalent to assert that the user
knows the connectivity density among this subgroup of students—which is
what our model can incorporate. Hence, such data-dependent property-value
pairs usually overfit the user’s prior knowledge in practice.

Though this overfitting would normally not be a hinderance for generating
qualitative results, we have to admit there are some cases where it can make
the subjective interestingness backfire. For example, consider a university
social network where students with same hobbies do not often know each
other, which contradicts with the prior knowledge of the user who believes
they should do. Because our model interprets such prior knowledge as con-
nectivity densities within subgroups of students with the same hobbies—
note which is actually sparse from the data, the resulting patterns will be
ones indicating other kinds of information, or ones still related to a hobby but
an ‘outlier’ such that students sharing this hobby are often friends. Clearly
in this case, truly interesting patterns are identified as uninteresting and are
submerged. Therefore, in the future, it would be useful to make our Subjec-
tive Interestingness (SI) measure able to circumvent this backfiring case, or
tailor priors into more practical formats.

• Subjective Description Length (DL). The DL, one essential component of
our Subjective Interestingness (SI) that quantifies the descriptional complex-
ity of the pattern or the cost for a user to assimilate it, is not subjective in its
current form (the source of the subjectiveness of our SI is merely the other
component: the Information content (IC)). Consider parameters in the DL
that represent how much the user prefers patterns in a more succinct form.
We have argued in chapter 4 that these parameters should be determined
from aspects of human cognition instead of statistical model selection. Nev-
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ertheless, they were specified only based on an experimental testing. Clearly,
different users own different cognitive capability or may prefer succinct pat-
terns to different degrees, and a merely experimental testing cannot represent
human cognition well. The variation among users should thus be taken into
account through a theoretically rigorous study like the way IC is formalized.

• More rigorous evaluation. In our graph mining work, we provided experi-
mental evaluation which demonstrates our SI measure is subjective and op-
timizing it can avoid redundancy between iteratively mined patterns. Never-
theless, the evaluation of the interestingness of the resulting patterns—this is
to investigate another aspect: whether optimizing our SI can lead to patterns
interesting to the user—is performed through a series of case studies (for
both time series and graph mining work) with an imagined user and some
imagined prior beliefs in mind. Though we consciously chose datasets with
straightforward domain knowledge (e.g., social networks, citation networks)
so that the quality of the resulting patterns can be easily justified, a more rig-
orous and convincing evaluation should be done through real user studies,
as subjective interestingness depends on the user.

Mining algorithms. All our proposed algorithms are heuristics based on strate-
gies such as greedy search and beam search. Though they produced qualitative
results while helped to maintain the tractability, it would be useful for the future
work to discover a heuristic strategy with theoretical guarantee for the quality of
results, or develop algorithms that are anytime (i.e., it can be stopped at any point
of time to supply patterns whose quality gradually improves over time). In regard
with pursuing the anytime feature, the use of Monte Carlo Tree Search (MCTS)
for pattern mining proposed by Bosc et al. [4] appears promising to be alternatives
to our mining algorithms.

Pattern syntaxes. Now we give future directions with regard to the pattern syn-
tax. Pattern mining is more for the case where the user has a clear sense about
what format of information is valuable for him or her—this is captured by pattern
syntax. We believe a general pattern syntax is more useful, in a sense it agrees
with the user’s expected format, but also poses least assumptions or constraints
designed for the ease of model feasibility or computability. For example, a motif
of length l proposed in the time series work is defined as a set of subsequences that
are similar and of the length l. There is much room to expand this pattern syntax
such that, e.g., enabling it to involve subsequences that are with similar shape in
general but of slightly different lengths, or to be multivariate. Achieving such ver-
satility necessitates ingenuity in interestingness measures and algorithms, but also
in where everything begins—the pattern syntax.
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Beyond users and data. Lastly, we want to talk about a concern for current data
mining techniques. When we assert user is king in this thesis, a key argument is
that the ultimate goal of data mining is to provide insights that can either improve
the user’s understanding about the data or boost his or her performance on a down-
stream task. Nevertheless, if contemplating the goal of data mining harder, we
may find that the user is still the king, but data mining essentially is not about pro-
viding the user with valuable information in the data, but rather, in the reality. A
problem is data, this digital format giant thing, cannot represent (even a piece of)
our inherently complex reality without any loss of information. No matter how big
the data is, it is almost never complete. Worse of all, data can easily be distorted,
and is always biased. Those biases come from the source of data, the collection
method, the person who performs the collection, the availability of objects being
gathered as part of data, and so forth. Unfortunately, there appears no magic to
make the data unbiased in the present and in the foreseeable future. Though much
progress has been made by today’s data mining research community in grappling
with the biases, most of them are effective on reducing the type of biases that we
can immediately see (e.g., discrimination on gender, race, or other sensitive traits).
For some kind of unknown biases that are secretly happening, we still seem at a
loss about what to do. Therefore, when we are too eager to sharpen our tools to
mine gorgeous patterns from data, perhaps, we should turn around to also mine
what is not in the data.

For making data mining closer to reality mining, in our beliefs, data mining
needs to become more multidisciplinary. Today’s data mining is multidisciplinary
in a sense it involves different fields such as machine learning, statistics, database
technology, expert systems and data visualization. In the future, data mining may
need to span further to incorporate perspectives from a broad cross-section of
humanity—people who take different roles in the society and hold different points
of views such as social scientist, ethicist, criminologists, politicians, different end-
users, and so on. Let us take a humble attitude and understand the world together!
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