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1  | INTRODUC TION

Biotic interactions between animals, plants, fungi, bacteria, viruses, 
etc., are incredibly complex. The biological characteristics of the 
partners determine the possibility of an interaction. For example, 
in food webs, the prey is usually smaller than the predator (Gravel 
et al., 2013), plants use fruit brightness as reward cues for bird species 
to regulate their nutrient intake (Albrecht et al., 2018), and parasit-
ism typically depends on a complex interplay of physiology and evo-
lutionary history between parasites and hosts (Hadfield et al., 2014). 
In addition to the species' traits and other properties, the observed 
interaction network is also dependent on the abundances of the 
species and environmental factors (Bartomeus et  al.,  2016; Poisot 
et al., 2015). The former determines the probability that two species 
can encounter each other, a requirement for an interaction to occur. 
Because none of these mechanisms act with perfect reliability, a part 
of the structure in ecological networks is also stochastic, justifying a 
probabilistic framework to model interactions.

Given an ecological community defined by a species pool and 
their abundances, is it possible to predict how they will interact? 
This question is of both considerable theoretical and practical im-
portance. In a simple neutral model, one can assume that the in-
teraction frequency is roughly proportional to the product of the 
relative abundances. Though simplistic, such a model does explain 
some of the structure of empirical ecological networks (Canard 
et al., 2012; Stock et al., 2020). In practice, networks show spe-
cialization where species have preferred interaction partners 
(Poisot et al., 2012), driving the interaction frequencies away from 
a purely neutral model. Many researchers have observed that the 
interaction network will rewire when species disappear, novel 
species appear, or the species abundances change in response to 
internal or external perturbations of the ecosystem (Pires, 2017; 
Ponisio et al., 2017; Timóteo et al., 2016). Working models to pre-
dict the effects would be invaluable for managing ecosystems in 
a changing environment. They would allow for better inferences 
about the consequences of biological extinctions and the effects 
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Abstract
1.	 Observed biotic interactions between species, such as in pollination, predation, 

and competition, are determined by combinations of population densities, match-
ing in functional traits and phenology among the organisms, and stochastic events 
(neutral effects).

2.	 We propose optimal transportation theory as a unified view for modeling species 
interaction networks with different intensities of interactions. We pose the cou-
pling of two distributions as a constrained optimization problem, maximizing both 
the system's average utility and its global entropy, that is, randomness. Our model 
follows naturally from applying the MaxEnt principle to this problem setting.

3.	 This approach allows for simulating changes in species relative densities as well as 
to disentangle the impact of trait matching and neutral forces.

4.	 We provide a framework for estimating the pairwise species utilities from data. 
Experimentally, we show how to use this framework to perform trait matching and 
predict the coupling in pollination and host–parasite networks.
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of biomass changes in response to anthropic pressure or environ-
mental modifications.

There exist a plethora of mathematical tools to model species 
interactions. Ordinary differential equations, such as the classi-
cal Lotka–Volterra model and its extensions, allow for modeling 
the dynamics of interacting species; they assume that the realized 
interaction intensity changes over time in response to changes in 
species abundances (Rockwood,  2015). More recently, statisti-
cal and machine-learning methods have shown great success in 
inferring species interaction networks from species traits and 
abundances (Bartomeus, 2013; Bartomeus et al., 2016; Desjardins-
Proulx et al., 2017; DiMucci et al., 2018; Gravel et al., 2013; Pichler 
et al., 2019). These models learn from field observations and gen-
erally make fewer assumptions than mechanistic models, although 
they may not be as straightforward to reason about, because they 
can behave like black boxes, making correct but inscrutable pre-
dictions. However, any mathematical model used for community 
ecology, mechanistic or data-driven, can only be a rough approxima-
tion of the system, given the complexity of modeling an organism, 
let alone an interacting collection of them.

Maximum entropy (MaxEnt) (Harremoës & Topsøe, 2001; 
Jaynes,  1957) has been an enormously successful framework to 
derive problem-specific distributions, in science in general and 
ecology in particular. In MaxEnt, one searches for the probabil-
ity distribution that maximizes the information entropy, given one 
or multiple constraints. These constraints typically entail domain 
knowledge of the distribution, such as the input domain, and data-
driven observations, such as observed moments. MaxEnt can be 
motivated by looking for the least informative distribution that 
matches these constraints (McElreath,  2019). Most exponential 
distributions emerge from the MaxEnt principle. For example, the 
ubiquitous normal distribution is the continuous distribution with 
the largest entropy, given a fixed mean and variance. In physics, 
one can derive the celebrated Boltzmann distribution and ideal gas 
law from the MaxEnt principle. Ecology has embraced the MaxEnt 
principle as a way to propose new theories, called the maximum 
entropy theory of ecology (METE) (Brummer & Newman,  2019; 
Harte, 2011; Harte & Newman, 2014; Marquet et al., 2014). The 
METE has shown great success in modeling biodiversity patterns. 
Our work applies the MaxEnt principle to species interaction 
networks. We maximize the entropy of the interaction coupling, 
constrained on the abundances of the species. In this scheme, the 
solution is a neutral model where interaction strength is propor-
tional to the participating species' relative abundances. To account 
for species preferences for specific interactions, we introduce a 
linear functional representing the utility of these interactions. By 
requiring a minimal value for this utility score, we drive the cou-
pling toward interactions with more value for the species.

The model we present in this work exactly matches the 
entropic-regularized optimal transportation theory proposed by 
(Cuturi, 2013). Here, one computes a transportation map or coupling 
between two distributions by minimizing a linear transportation cost 
while subjecting this coupling to have a minimal entropy. We suggest 

that optimal transportation theory can serve as a model for under-
standing and modeling species interactions. Here, all species in an 
ecosystem are assumed to establish their interactions as to maxi-
mize their utility under stochastic fluctuations. This paradigm is anal-
ogous to thermodynamic processes: It is similar to how minimization 
of the Gibbs free energy determines chemical equilibria in isolated 
systems. On the one hand, the species want to participate in the 
most beneficial interactions analogously to the enthalpy in the Gibbs 
free energy. On the other hand, species also behave randomly to 
some extent, facilitated by chance encounters and limited informa-
tion, corresponding to the entropic term in the objective. A trade-off 
parameter balances both conflicting forces, similar to the tempera-
ture parameter used in statistical physics. At higher `temperatures', 
random associations dominate, while lower temperatures imply that 
the species try to find the most optimal interactions in terms of util-
ity. Finally, just as chemical systems have conservation constraints 
(no atoms are created nor destroyed), we also consider all species 
abundances fixed at the time scales considered. Though we will not 
draw the thermodynamic analogy further, it is noteworthy that many 
organisatorial aspects of ecosystems can be understood in terms of 
thermodynamic properties (Nielsen et al., 2020).

Our approach translates the well-studied problem of entropy-
regularized optimal transportation into a community ecology con-
text. We show that different types of constraints correspond to 
different ecological assumptions, that is, they represent different 
types of ecological interactions. To the best of our knowledge, 
this particular problem has not yet been studied in ecology. Yet, 
it relates to several profound ecological theories such as MaxEnt, 
neutral model, and optimal foraging theory, as we will elaborate in 
the discussion section. A significant technical advantage is that the 
entropy-regularized optimal transportation problem can be solved 
both exactly and efficiently. Departing from the algorithm to solve 
this problem, we derive a way of estimating the pairwise utility ma-
trix for species interactions. This utility matrix is, in principle, inde-
pendent of the local abundances and yields insight into the species' 
preferred partners, given equal abundances. Importantly, it also al-
lows us to model how the system will react to shifts in abundance.

The remainder of this work is structured as follows. In 
Section  2, we introduce optimal transportation theory from the 
viewpoint of ecology using a top-down approach, while Section 3 
illustrates how the optimal transportation solution emerges bot-
tom-up under general conditions. Section 4 deals with estimating 
the parameters of the corresponding model. These sections are 
summarized in the graphical abstract shown in Figure 1. In the ex-
perimental section (Section 5), we demonstrate the methodology 
based on simulations as well as real-world data. We illustrate how 
one can predict the observed interactions from the marginal spe-
cies abundances based on trait matching. When no information 
on species preferences is available, one can fit the utility matrix 
using observed interaction networks. Using a honeybee spillover 
dataset from the southwest of Spain and host–parasite networks 
spatially distributed over Eurasia, we show that the fitted util-
ity matrix can generalize over time and space, outcompeting the 
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neutral model. Finally, in Section 6, we provide the historical con-
text of optimal transportation theory and discuss how it comple-
ments existing ecological theories.

2  | OPTIMAL TR ANSPORTATION THEORY 
FOR ECOLOGY

We assume that there are two levels of ecological partners to model, 
for example, plants and pollinators, plants and herbivores, or host 
and parasites. This formalism can be extended to unipartite eco-
logical systems, for example, food webs, with no loss of generality. 
Let us denote the two levels with the top-level A (e.g., animals) and 
the bottom-level B (e.g., plants). There are n and m species or func-
tional groups within each of the respective levels. Furthermore, as-
sume there is some (hypothetical) resource or currency exchanged 
by those partners. This currency might be concrete, such as nectar 
or pollen in pollination or calories in predation, or more conceptual, 
such as information. Let the relative uptake for every species in A be 

a normalized histogram a, that is, a ∈ ℝ
n satisfying ai ≥ 0 and 

∑
iai = 1

. Likewise, the individual species of level B provide this resource 
distributed according to the histogram b ∈ ℝ

m satisfying bj ≥ 0 and 
∑

jbj = 1.
There exists a coupling between the two types of species, Q, an 

m × n matrix describing the fraction of currency (e.g., biomass, en-
ergy, individuals) each top species takes from each bottom species. 
Permissible couplings should be in agreement with the histograms 
of currency uptake and production. These couplings should be an 
element of the transportation polytope of a and b (Bolker, 1972):

In other words, permissible couplings are doubly stochastic 
matrices for which the row sums and columns sums are a and b, 
respectively.

We can estimate the coupling based on field or experimental ob-
servations. Suppose there is an n × m matrix Y = [Yij] containing the 

(1)� (a,b ) =

{
Q ∈ ℝ

n×m
+

|
m∑

j=1

Qij = ai,

n∑

i=1

Qij = bj

}
.

F I G U R E  1   Illustration of our optimal transportation framework for species interaction networks. In optimal transportation, we want 
to model the observed coupling P. From this coupling, we can obtain the species abundances a and b or these can be collected from an 
independent field trial. The matrix M contains the utility values for the species. Departing from this utility matrix, with the abundances as 
boundary conditions, solving an optimal transportation problem yields a modeled coupling Q. The utility matrix M is either assumed to be 
known or can be estimated from observed couplings, as discussed in Section 4
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number of observed visits or interactions for each pair of top and 
bottom species, with the connectance defined as

The elements Qij of the coupling matrix are assumed to be pro-
portional to the number of visits:

The visits can be weighed by relative resource production or up-
take if such information is available. Henceforward, we will let P de-
note the observed coupling based on normalized interaction counts 
and Q the modeled coupling. In this work, we will always assume that 
the resource is exchanged proportionally with the visitation rate.

Similarly, one can estimate the marginal relative uptake and pro-
vision as

Some interactions between specific species of the two levels can 
be more efficient or stronger compared to others. Let M be an n × m 
utility matrix representing the utility of the different interactions.1 
For example, element Mij is the utility between species i of level A 
and species j of level B. The average utility of a system is given by

Here, we will make a crucial first assumption: Ecosystems tend to 
maximize the average utility in the short term by generating an optimal 

coupling, that is, species choose their interactions to increase global util-
ity. Importantly, this global maximization arises as an emergent prop-
erty based on species preferring to participate in interactions that 
have a high utility for them. Section 3 elaborates on how this arises 
under realistic conditions.

In addition to maximizing the global utility, species interactions 
are also, to some extent, driven by random or neutral processes. The 
entropy of a coupling Q quantifies this process:

This leads to the second key assumption: Ecosystems tend to in-
crease the entropy of the couplings by random processes and incomplete 
information.

There is a trade-off between maximizing the average utility of a 
system and the entropy of the couplings. Within the constraints of 
the histograms of the two levels, the coupling that maximizes the 
average utility will, in most cases, be different from the coupling with 
the highest entropy. A parameter λ ≥ 0 determines the trade-off. This 
parameter has a similar interpretation as the reciprocal of the tem-
perature in thermodynamic systems: A lower value of λ corresponds 
to a lower temperature and hence more entropy. As such, the opti-
mal coupling of an ecosystem for two given distributions is obtained 
by solving the following optimization problem:

We shall use Q ∗

a,b
 to denote the optimum of (7), where the sub-

scripts indicate the explicit dependency on the species abundances. 
For any λ > 0, problem (7) is a strictly convex optimization problem 
with a unique solution (Boyd & Vandenberghe, 2004). Interestingly, 
Equation (7) can be trivially rewritten as a MaxEnt problem:

(2)L =

n∑

i=1

m∑

j=1

Yij.

(3)Qij ≈ Pij =
Yij

L
.

(4)ai ≈

∑
m
j= 1

Yij

L
and bj ≈

∑
n
i= 1

Yij

L
.

(5)UM (Q) = ⟨M,Q ⟩ =

n�

i=1

m�

j=1

MijQij.

(6)H (Q) = −

n∑

i=1

m∑

j=1

QijlogQij.

(7)max
Q∈𝒯(a,b)

⟨M,Q ⟩ +
1

�
⋅ H (Q) .

Symbol Interpretation

Y Observed interaction matrix

a Vector with relative species abundances of the top-level species

b Vector with relative species abundances of the bottom-level species

P observed coupling matrix (obtained by normalizing Y)

Q Modeled coupling matrix (obtained by solving an optimal transportation problem)

� (a,b) Transportation polytope, set of permissible couplings with marginals a and b

M Utility matrix determines to preference or gain of each top-level species for each 
bottom-level species, either known (e.g., trait matching) or estimated from the 
observed coupling)

UM (Q) Average utility: weighted average of the utility values weighted by the respective 
coupling

H (Q) Entropy: degree of evenness in the coupling

λ Hyperparameter that determines the trade-off between utility en entropy in an 
optimal transportation problem

Uλ The utility that is attained for a given value of λ, or, equivalently, the minimal utility 
the system has to possess

TA B L E  1   Overview of symbols used in 
this work
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where Uλ is some minimal utility that the system has to realize. This 
parameter has a one-to-one correspondence to λ in Equation (7), hence 
the subscript. The solution Q ∗

a,b
 takes the form of

with �1,…, �n and �1,…, �m parameters that ensure that Q ∗

a,b
∈ � (a,b). 

All terms relevant to optimal transportation are summarized in Table 1. 
The Sinkhorn algorithm (Cuturi, 2013; Sinkhorn & Knopp, 1967) can 
easily find these parameters. It is a simple algorithm that iteratively 
rescales the rows and columns until they match the given marginals. 
Immediately, we can draw several interesting conclusions from optimi-
zation problem [7]:

1.	 Adding a constant value to the elements of M, that is, M �
= M + c, 

does not impact the optimal coupling. Likewise, scaling M, that 
is, M ��

= aM with a  >  0, also does not influence the optimal 
coupling, provided that one rescales the entropic trade-off pa-
rameter λ similarly. Scaling of M is equivalent to changing the 
units of the elements. This understanding is vital for estimating 
M, as we can always fix λ  =  1 without loss of generality. In 
practice, we can always set λ  =  1 and vary M accordingly.

2.	 Many researchers have suggested the existence of forbidden links 
between species, for example, because of a mismatch between 
the species traits. A forbidden link between species i and species 
j can easily be incorporated by setting Mij = −∞. In practice, large 
negative utility values give numerically indistinguishable effects.

3.	 In the particular case where λ→0 or all elements in M having the 
same value, neutral forces completely dominate the process. The 
optimal coupling in that case is given by Q ∗

a,b
= ab

T.

4.	 When � → ∞, the utility term dominates. This optimization prob-
lem is known as the Kantorovich formulation of optimal transpor-
tation theory (Kantorovich, 1942) and can be solved using linear 
programming.

We illustrate the principle of optimal transportation on a small 
toy network in Figure 2. Here, a utility matrix characterizes the sys-
tem. Its values range between 0 and 2 for allowed connections and 
values of −10 for forbidden links. A first application shows the cou-
pling when species occur in equal abundance. The second example 
shows the effect when some species are more abundant than others. 
Optimal transportation predicts rewiring the network connections 
when the species abundances shift.

We can relax [7] by freeing a, b, or both. For example,

is a transportation problem where the species distribution of level A 
is fixed whereas the species distribution b can vary freely to maximize 
utility and entropy. Such problems can be relevant on longer ecological 
time scales, where not only the interactions are formed optimally, but 
where one or both species abundances can adapt to increase system 

(8)max
Q∈𝒯(a,b)

1

�
⋅ H (Q) s.t. ⟨M,Q ⟩ ≥ U�,

(9)(Q∗

a,b
)ij = �i� jexp

(
�Mij

)
,

(10)max
Q

⟨M,Q ⟩ +
1

�
⋅ H (Q)

(11)s. t. Qij ≥ 0

(12)
n∑

i=1

Qij = ai,

F I G U R E  2   Illustration of the optimal 
transportation principle on a toy 
ecological network. (top left) Five-by-
four species interaction network. Links 
indicate allowed interactions, with the 
line thickness representing the utility. (top 
right) Optimal coupling when both species 
abundances are uniform. The thickness 
and darkness of the lines are proportional 
to the coupling's strength. The sizes of 
the nodes are proportional to the species 
abundances. (bottom left) Optimal 
coupling when both species abundances 
are not uniform. (bottom right) Optimal 
coupling when species abundances can 
also vary, cfr. Equation (13)
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performance. The different forms of optimal transportation are listed 
in Table 2.

Of particular interest is the case where both species abundances 
can vary. In that case, the optimal coupling is given by the softmax 
of M:

The optimal coupling where both marginals are free is illustrated 
in the final panel of Figure 2. The softmax is an important function in 
machine learning, mainly in multiclass classification. Here, it serves 
as a smooth and differentiable function that maps a real vector to 
the probability simplex. The softmax has also been extensively stud-
ied in decision theory as a way to deal with the exploration versus 
exploitation dilemma. The so-called softmax decision rule (Thrun 
et  al.,  1992) for agents suggests randomly choosing an option ac-
cording to probability matching; that is, the probabilities are se-
lected to reflect the estimated utility of the decisions. See (Cohen 
et al., 2007; Lee, 2006) for a more in-depth discussion and (Gao & 
Pavel,  2017) for a theoretical analysis of the softmax function in 
game theory and reinforcement learning.

3  | BOT TOM-UP EMERGENCE OF 
OPTIMAL TR ANSPORTATION

The optimal transportation solution arises under mild conditions 
from a simple interaction model. We simulate an interaction network 
with an integer number of interactions. We fix the total number of 
interactions, in addition to the number of interactions per species. 
Again, we assume a utility matrix M, expressing the preference of 
each top species for each bottom species (or vice versa).

Our simulation departs from an arbitrary matrix Y that satisfies 
the constraints of interactions per species. Next, we mix the inter-
actions according to a straightforward rule. First, we select with re-
placement two indices of the bottom species, say i1, i2, according to 
the relative frequency of their interactions. Next, we choose cor-
responding indices, say j1 and j2, of the top species. These indices 

are chosen with a probability proportional to the number of inter-
actions with bottom species i1 and i2, respectively. Given the two 
selected pairs of indices, we consider shifting an interaction from 
Yi1 j1 and Yi2 j2 to Yi1 j2 and Yi1 j2. By design, this scheme does not result 
in a negative number of interactions and maintains the balance 
per species. This scheme is similar to how the Curveball algorithm 
(Strona et  al.,  2014) for finding interaction matrices with fixed 
marginals operates. To decide this swap, we look at the change in 
utility ΔM = Mi1 j2

+Mi2 j1
−Mi1 j1

−Mi1 j1
, a consideration that only de-

pends on the species involved. If ΔM > 0, the swap is favorable, and 
we accept it. If ΔM ≤ 0, we accept the swap with a probability of 
exp (�ΔM) ∈

[
0, 1

]
. So, a swap with a small decrease in utility for the 

species still has a large chance of being accepted. In contrast, highly 
unfavorable interactions have a meager chance of being accepted. 
The parameter λ influences this behavior: low values of λ make the 
probability of accepting a swap less dependent on ΔM.

Starting from an initial matrix Y, we perform many of the de-
scribed potential swaps. This process converges to a distribution of 
interaction matrices depending on M, the number of interactions per 
species, and λ. Significantly, this equilibrium distribution does not 
depend on the exact mechanism for swapping interactions, as long 
as the process is ergodic, meaning that one can reach every valid ma-
trix Y from every other valid interaction matrix. The expected value 
of this distribution of interaction matrices is precisely given by the 
solution Q* obtained by optimal transportation. In Figure 3, we per-
form one simulation on a five-by-five interaction matrix with fixed 
species abundances. For a range of values of λ, the expected utility 
of the simulation process matches the optimal transportation solu-
tion. In short, this setup illustrates that the optimal transportation 
solution can spontaneously arise when species tend to choose their 
interactions according to stochastic rules based on some differences 
in a utility score.

4  | FIT TING THE UTILIT Y MATRIX

Either one possesses the utility matrix M as prior knowledge, for 
example, based on trait matching or pairwise experiments, or it has 
to be estimated based on data. Suppose that field observations 

(13)Q ∗

ij
=

exp(�Mij )∑
k,lexp(�Mk,l )

.

TA B L E  2   Four different forms of optimal transport, depending on the constraints. The parameters αi, β j, and δ are normalization 
constants, chosen such that Q satisfies its respective constraints

Constraints Solution form interpretation

A, B fixed Q ∈ � (a,b) (Q∗

a,b
)ij = �i� jexp

(
�Mij

)
System equilibrium over a short time period, interactions are optimal, 

but species abundances have no time to change.

A fixed, B free Qij ≥ 0,
∑

jQij = ai (Q∗

a
)ij = �iexp

(
�Mij

)
Equilibrium at middling times, only bottom species abundances have 

adapted, for example, a plant community that matches the pollinator 
composition.

A free, B fixed Qij ≥ 0,
∑

iQij = bj (Q∗

b
)ij = � jexp

(
�Mij

)
Equilibrium at middling times, only top species abundances have 

adapted, for example, parasite composition matches a rodent 
population.

A, B free Qij ≥ 0,
∑

i,jQij = 1 Q ∗

ij
= � exp

(
�Mij

)
Equilibrium at long time scales, both the top and bottom levels have 

adapted to maximize utility.
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have yielded a co-occurrence matrix Y, for example, the number of 
visits of different species of bees for each species of plants. The 
discrepancy between the observed coupling P = Y/L and the mod-
eled coupling Q*(M) can be measured using the Kullback–Leibler (KL) 
divergence:

Note that the entropy of the observed coupling H(P) is fixed; 
hence, one only needs to minimize the cross-entropy 

∑
i,jPij log (Qij )

. We do not recommend minimizing the Kullback–Leibler divergence 
between the observed and modeled coupling directly, as this will 
almost certainly result in overfitting. Since the number of observa-
tions and the number of parameters are the same, a perfect match 

between P and Q can always be attained. A potential solution to this 
problem could consist of adding pseudo-counts to Y. However, since 
the optimal transportation problem is also invariant to adding a con-
stant to M, minimizing DKL (P|Q* (M)) remains an ill-posed problem.

Following standard machine-learning practice, we propose solv-
ing a structured risk minimization problem of the form

 with r(·) a regularization function and γ > 0 a tuning parameter deter-
mining the trade-off between model fit and model complexity. Simple 
L2 regularization (i.e., rL2 (M) = ‖M‖ 2

2) shrinks all values to zero and 
will center the values of M around zero. It has the additional advan-
tage to induce a low-rank structure (Candes & Recht, 2008), as it is 
equivalent to adding a spectral norm on MMT. A popular alternative to 
L2 regularization is L1 regularization (i.e., rL2 (M) = ‖M‖1), which pro-
motes sparsity in M while still allowing relatively high and low (nega-
tive) values in M. In our experiments, we opted for L2 regularization.

(14)DKL (P |Q ∗ (M ) ) =

n∑

i=1

m∑

j=1

Pij log

(
Q ∗

ij
(M)

Pij

)

(15)=

n∑

i=1

m∑

j=1

Pij log (Q
∗

ij
(M) ) + H (P )

(16)min
M

DKL

(
P|Q ∗

(M)
)
+ � ⋅ r (M) ,

F I G U R E  3   The emergence of the optimal transportation solution based on local processes. (top left) Given an interaction matrix Y 
with a fixed number of interactions per species, we propose a stochastic swapping mechanism where interaction pairs (i1, j1) and (i2, j2) can 
exchange an interaction with (i1, j1) and (i2, j2) depending on the change in utility. (bottom left) Given utility matrix M for the simulation. (right) 
Result of a simulation with 200 interactions after 100,000 swapping operations, depending on λ. The orange line shows the average utility 
using the simulations, with the band indicating the standard deviation over 50 repetitions. The dotted line is the average utility obtained 
using optimal transportation. Below are three solutions of optimal transportation (blue) and three samples of the simulation (green) for 
different values of λ
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Given that (16) is smooth and differentiable, it is reasonably 
straightforward to find an optimal M̂. The fitting can be done using 
any off-the-shelf optimization algorithm, such as the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher, 1987). Using 
automatic differentiation (Baydin et al., 2018), we can compute the 
gradients with respect to M, considerably speeding up the search. 
Note that when both marginals are fixed, the gradient has to be com-
puted using the Sinkhorn algorithm. This does not pose any practical 
issues, though we recommend setting the convergence tolerance or 
the maximum number of iterations to limit the number of Sinkhorn 
iterations for performance reasons.

An important generalization of (16) is when one has several ob-
served couplings P(1),P(2),…,P(o) for which one wants to fit a single, 
global utility matrix. This situation arises in practice when consid-
ering several locations where the presence or species abundances 
are different, but one assumes that the underlying principle remains 
the same. In that case, one has to solve the following structured risk 
minimization problem:

with a(l) and b(l) the marginals of the observed coupling P(l). An efficient 
parallel version of the Sinkhorn algorithm exists (Slomp et al., 2011), 
which can jointly solve multiple optimal transportation problems. 
Likewise, the Kullback–Leibler divergence can also be computed effi-
ciently. These formulations make it efficient to evaluate the objective 
function in (17), together with the associated gradients. We refer to 
Appendix S1 for these algorithms.

5  | E XPERIMENTS

In Section 5.1, we first study a simple simulation setup to illustrate 
how optimal transportation models species interactions, invasion, 

and disappearance of a species. Section 5.2 shows how M can be 
estimated from an observed interaction network and how changes 
in the coupling can be simulated. Section 5.3 illustrates how the cou-
pling can be obtained by simple trait matching. Finally, Sections 5.4 
and 5.5 show that when the utility matrix M is unknown, it can be 
estimated from known couplings.

5.1 | Simulated example

We illustrate the optimal transportation problem on a simulated spe-
cies interaction network with five bottom species and four top spe-
cies. A simple trait-matching model determines the utility of each 
pairwise interaction. Every bottom species has a single trait deter-
mined by a scalar value, and every top species has an associated 
function that determines the utility for each bottom species. This 
function is the probability density function of a normal distribution. 
The locality parameter determines the optimal utility for this species 
and the scale parameter the species' specificity. This model implies 
that generalists are less efficient than specialists as the former can 
attain a lower utility. This aspect is a design choice for this simu-
lation, not an inherent property of optimal transportation models. 
Figure 4 depicts this trait-matching model and derived utility matrix. 
Both the top and bottom species have an associated normalized spe-
cies distribution.

Figure  5 shows the results of several optimal transportation 
simulations. The individual utility values for each top species for the 
different experiments are presented in Table  3. The utility-driven 
experiment illustrates optimal transportation with a high value of 
λ, whereas the neutrally driven experiment shows the effect of a 
relatively low value of λ. The neutral setting dramatically reduces 
the average utility for the different species. In the next experiment, 
called `optimal', the marginals are no longer fixed, resulting in the 
dominance of bottom species c and top species C, which have a size-
able pairwise utility. Here, both levels are in perfect balance, and 

(17)min
M

o∑

l=1

DKL (P
( l ) |Q ∗

a ( l ) ,b ( l ) (M ) ) + � ⋅ r (M ) .

F I G U R E  4   (left) Trait-matching model 
for the top and bottom species. (right top) 
The obtained utility matrix. (right middle) 
Species distribution for the bottom 
species. (right bottom) Species distribution 
for the top species

a b c d e

-1.5

-1.0

-0.5

0.0

0.5

1.0
Perturbations bottom sp.

relative effect utility
relative effect entropy

A B C D

-1.0

-0.5

0.0

0.5

1.0

Perturbations top sp.



     |  3849STOCK et al.

most top species have a high average utility. This setting strongly 
favors species that can form high-utility interactions.

The bottom row of Figure 5 depicts the simulated effect when 
the ecosystem changes. First, we can see how the system reorga-
nizes, and species B, species b's most important ecological partner, 
has to redistribute itself, resulting in a much-reduced utility. A gen-
eralist species E will mainly assign itself to bottom species b, which 
has no particular strong interaction affinity with the other top spe-
cies. This has only a minor influence on the top species utility scores. 
Likewise, the specialist invader F cannot assimilate itself efficiently 
in the system, as top species C has a more efficient interaction with 
species c. As such, invader F is also driven toward plant d, resulting 
in a poor utility.

5.2 | Fitting M to a seed dispersal network

We illustrate fitting the utility matrix M by solving Equation (16) and 
show how this information can be interpreted. We depart from a 

plant–seed disperser network (Carlo et al., 2003) included in the Web 
of Life database2 (M_SD_004). The network contains 478 observed 
interactions between 34 plant species and 20 bird species, shown in 
Figure 6. We fit the utility matrix M by solving Equation (16) condi-
tioned on the marginal species abundances and setting � = 10− 4. The 
obtained utility matrix is depicted in Figure 6. Due to regularization, 
the default utility value is 0, indicating that interactions would occur 
proportional to the species abundances. The observed interactions 
that deviate from this baseline indicate either that the interactions 
occur more (positive utility values) or less frequently (negative utility 
values) than expected. Note that there are many species for which 
there are very few observations (bird species 6 to 20 and plant spe-
cies 15 to 34), leading to a block in M where most values are close 
to zero. This behavior arises because the fitting assumes that in-
teractions are neutral in the absence of interactions that indicate 
otherwise.

Next, we perform two simulation experiments based on the fitted 
M. The first simulation in the bottom left of Figure 6 shows how the 
network will likely rewire given uniform plant species abundances. 

F I G U R E  5   The optimal couplings Q*, obtained under several conditions
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TA B L E  3   Individual utilities (
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) for the top species in the simulation 
experiments
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The second simulation in the bottom right of the figure shows the 
optimal matching of the bird species abundances for the given plant 
species abundances. Both predict how the ecosystem could adapt 
toward a change in species abundances, either fixing abundances or 
allowing them to adapt.

5.3 | Trait matching

Using a quantitative pollination network of (Olito & Fox, 2015), we 
show that optimal transportation can improve the neutral model 
based on trait matching. This network relates to 45 plant species 
and 125 pollinator species, containing 900 interaction observations 
divided over 319 unique species pairs. The plant species were as-
signed to one of four classes, based on their flower depth: disk, small, 
medium, or large. Similarly, the pollinator species were assigned to 

morphology classes based on proboscis length: minute, short, me-
dium, or long. We created a utility matrix M by setting Mij = 1 if the 
i-th plant species and the j-th pollinator species belong to a matching 
morphological class and else to 0. Using a grid search, we found a 
clear globally optimal value for λ where DKL (P |Q ) is minimal. At this 
optimal λ = 0.25, DKL(P|Q) = 1.244, whereas for the neutral model 
DKL(P|Q)  =  1.248. The minor difference indicates that a neutral 
model is already a very good fit for this data. The results are shown 
in Figure 7.

5.4 | Honeybee spillover

Here, we study the effect of honeybee spillover over flower-rich 
woodlands in the southwest of Spain. To this end, we use a dataset 
of Magrach et al. (Magrach et  al.,  2017), who collected bee–plant 

F I G U R E  6   (top left) An observed interaction matrix Y. (top right) The utility matrix M fitted to this interaction matrix. (bottom left) 
Simulated coupling Q, assuming the original bird species distribution but a uniform plant species distribution. (bottom right) Simulated Q with 
the bird distribution optimally matched to the original plant distribution
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visitation rates at 17 locations in Spain during and after orange blos-
som, leading to honeybee spillover. We fitted a single utility matrix 
(γ  =  0.01) based on the observed visitation rates after the orange 
blossom, that is, when the ecosystem was expected to be rela-
tively stable. Then, we used optimal transportation to predict the 
coupling, given the marginal species abundances during the orange 
blossom, that is, when the ecosystem exhibits honeybee spillover. 
The performances, measured using the Kullback–Leibler divergence 
between the observed and predicted coupling for the different data-
sets, are presented in Figure 8. The performance is strongly reduced 
when not all species abundances are given. The optimal transporta-
tion model with both plant and bee species fixed did outperform a 
purely neutral model (one-sided Wilcoxon Signed Rank test, n = 17, 
p ≈ 3.952 × 10− 3).

5.5 | Host–parasite interactions

We used the datasets of Hadfield et al. (Hadfield et al., 2014), which 
contains 51 host–parasite datasets spread over continental Eurasia. 
We randomly selected 26 datasets to fit a global utility matrix M, set-
ting γ = 0.01. This matrix was validated on the remaining 25 datasets 
by comparing predicted couplings with observed couplings using the 
Kullback–Leibler divergence, as shown in Figure 9. Again, we note 
similar trends as for the honeybee spillover. The optimal transporta-
tion model with both marginals fixed results in the best performance, 
closely followed by a purely neutral approach. The former, however, 
was again a significant improvement in average Kullback–Leibler di-
vergence compared to the latter (one-sided Wilcoxon Signed Rank 
test, n = 25, p ≈ 7.450 × 10− 7).

F I G U R E  7   Trait-matching experiment 
based on the pollination network of 
Olito2015. (top left) Observed coupling P. 
(top right) Modeled coupling Q based on 
the observed marginal species densities 
and optimal value for λ. (bottom left) The 
binary utility matrix M, based on whether 
or not the ecological partners belong to a 
compatible morphological class. (bottom 
right) Effect of λ on DKL (P|Q)
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6  | DISCUSSION

Optimal transportation theory was initially described in the 18th 
century by Monge (Monge, 1781) for discrete couplings. The contin-
uous relaxation was proposed by Kantorovich (Kantorovich, 1942) in 
the 1940s to solve logistics problems in wartime. The recent interest 
in optimal transportation boomed due to Cuturi's landmark paper 
in 2013. Here, he showed the broader machine learning and com-
puter vision community that entropy-regularized optimal transpor-
tation problems could efficiently be solved using the GPU-friendly 
Sinkhorn algorithm. This work has led to numerous advancements 
in learning-based systems, such as improved methods for training 
generative adversarial networks and domain adaptation (Courty 
et al., 2017). A specific version of [9] but with uniform marginals has 
been proposed earlier under the name softassign (Gold et al., 1998; 
Slomp et al., 2011). It was suggested as a solution to perform point 
cloud matching and pose estimation in computer vision. Similar for-
mulations have been in use since the fifties under the name of gravity 
models Isard1954Gravity. These models have been used successfully 
to model international trade (Isard,  1954), migration (Anderson & 
Van Wincoop, 2003), and transport planning (Wilson, 1969). A com-
mon theme here is that actual plans often do not agree with the op-
timal transportation problem without the entropy term but are more 
diffuse. We note that this stochastic diffuseness is also expected 
and observed in ecological processes.

Ecology is at heart a science rooted in theories (Marquet 
et  al.,  2014). The proposed optimal transportation framework has 
many interesting intersections with established ecological theories. 
The optimal transportation objective of Equation (7) can trivially be 
reformulated as a MaxEnt problem Equation (8) where one has to 
find the entropy-maximizing coupling under a fixed average utility. 
The MaxEnt principle has been enormously successful in ecology for 
making tangible predictions based on minimal assumptions and data 
(Harte, 2011; Harte & Newman, 2014), for example, to predict the 
degree distribution of food webs solely based on the number of links 

(Williams, 2010). This success is attributed to the fact that MaxEnt 
distributions are the least informative or general distributions that 
match the data. In this sense, the computed optimal transportation 
coupling is the most general coupling between species, given a linear 
functional that values the interactions.

A neutral model emerges as a special case from our framework 
when λ→0. Neutral theory is a surprisingly efficient ecological 
theory (Rosindell et  al.,  2012), though its underlying assumptions, 
the equivalence of the species, have been questioned (Purves 
& Turnbull,  2010). In (Canard et  al.,  2012), the authors show that 
a neutral model for prey–predator interactions can give rise to re-
alistic network organization, including nestedness and the emer-
gence of forbidden links. Recent work, however, highlighted the 
role of the active searching behavior and decision-making of the 
agents in establishing ecological interactions (Budaev et  al.,  2019; 
Hein & Martin, 2019), demanding more realistic interaction models 
(O’Dwyer, 2020). We have confirmed experimentally that a neutral 
model, only taking the marginal species abundances into account, 
already provides competitive predictions. However, taking the utility 
of the interactions into account always provided a better fit.

Recent work, however, posed that in addition to neutral pro-
cesses driven by local species abundances determining the encoun-
ter probability, traits also determine whether the interaction can 
take place (Holt & Bonsall, 2017; Poisot et al., 2015). Importantly, 
this framework provides a way to separate the purely biological 
determinants for species interaction (e.g., trait matching), repre-
sented in M, from the effects depending on the respective species 
densities, a and b. This is of great practical importance in modeling 
changes in ecosystems, as it allows us to directly assess the effect 
of changes in species abundances on the interaction network. The 
hyperparameter λ in the optimal transportation framework pro-
vides a smooth interpolation between a neutral model and a trait-
matching theory.

Our estimation of M via (16) provides a direct interpretation. 
Many values are close to zero, here neutral effects dominate. Larger 

F I G U R E  9   Fit of the different optimal 
transportation models fitted on 26 of the 
host–parasite datasets, validated on the 
25 remaining datasets. The boxplots show 
the KL divergence between the observed 
and modeled couplings for the validation 
datasets
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positive values indicate that the two species will interact more than 
expected by chance; large negative values indicate the converse. It 
is complementary to other works, such as (Blüthgen et  al.,  2006), 
where information-theoretic indices quantify speciation, that is, de-
viation from a neutral model.

In this work, we fitted M directly, though our framework also al-
lows for estimating bilinear models of the form

where W is a matrix of coefficients and XA and XB are design matri-
ces describing the top, resp. bottom, species, for example, based 
on trait-based features. This is an extension of the generalized bi-
linear model (Ruben Gabriel, 1998), also popular in ecology (Dray 
et al., 2014; Hadfield et al., 2014). Hence, our work could extend 
the generalized bilinear model by using a link function compati-
ble with Equation (9). Such models can be used to study the ef-
fect of traits or phylogeny on observed couplings. They have the 
potential to extend these predictions toward new species and 
environments.

7  | CONCLUSION

Optimal transportation theory is a simple, elegant mathematical 
framework for constructing a bivariate distribution from two given 
marginal distributions, consistent with MaxEnt principles. The pre-
sent work has shown that in addition to computer vision, machine 
learning, economics, and traffic modeling, optimal transportation 
theory can also be used for studying species interaction networks. 
We have translated this framework into the language of community 
ecology and provided an algorithm to estimate the utility matrix. 
Experimentally, we have shown that optimal transportation theory 
can model networks better than a neutral approach, even for new 
time stamps and new locations. We believe notions of this theory will 
be valuable for both the theoretical as well as the applied ecologist.
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