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Abstract—Making decisions on capacity requirements in hos-
pital environments has long-term consequences. Sound estimates
of expected mid and long-term demand for hospital beds are
required to avoid oversupply or deficits. Though in many cases,
forecasts of admissions and Length of Stay evolutions for specific
pathologies are available, current models rarely model hospital
environments on the pathology level, rendering them useless.
Additionally, existing models are most often unit type or facility-
dependent. This work describes a model to estimate care demand
and capacity needs per ward of a generic hospital, in which
pathology-specific parameters can be used, and that supports
patient stays structurally segmented across multiple wards. The
methodology enables an increase in model complexity while
explicitly guarding the accuracy of parameter estimates.

I. INTRODUCTION

Hospitals provide highly customized services to their pa-
tients. As a consequence, there is limited uniformity in the
trajectories of patients through specialisms, wards, and nursing
units. Modellers are thus confronted with a highly complex
processing system with many plausible paths. Given the di-
versity of treatment and the low prevalence of unique config-
urations of care trajectories that follows from that diversity, it
becomes difficult to accurately estimate model parameters as
soon as a significant level of detail on treatment is included.
Hospitals generally do not have the scale such that they and
their patients can be modelled in detail without undermining
statistical accuracy.

Depending on the angle of the study, modellers choose to
aggregate across, or make abstraction of, particular details in
order to preserve model estimate accuracy. Often, as in Devap-
riya et al. [1], Komashie et al. [2] and others [3], [4], details
on the patient’s pathology are not considered. Though the
relevant authors do not explicitly identify parameter estimation
accuracy as the reason to make abstraction of the patient
pathology, it is inevitable that further dissection of patient
groups would lead to these issues. For instance, consider
5000 ICU admissions per year. If further subdivided into
groups by pathology, parameter estimates of the probability per
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patient group to transfer to different downstream destinations
would deteriorate to a point where they would be considered
unacceptably inaccurate.

In the methodology described by Latruwe et al. [5], the
choice as to which details to omit in order to ensure parameter
estimation accuracy went to operational aspects of the hospital.
Rather than yielding pathology particulars, the researchers
chose to reduce the granularity of the description of the trajec-
tory. This methodological preference is motivated primarily by
a need to apply forecasted instances of the parameters. Since
the forecasts are dependent on pathology information, the
model needs to function at the level of the pathology. A major
limitation of the authors’ method is that it restricts the model’s
ability to estimate capacity for wards that reflect the wards that
are physically present in the hospital. Concretely, it is assumed
that patient stays are entirely allocated to a particular ward,
which does not always accord with real-world conditions, and
abstracts a lot of the complexity of treatment patterns. Data
from a large Belgian hospital spanning 2016-2019 shows that
89.7% of inpatient stays are entirely attributable to one specific
bed type, meaning that the patient does not spend at least a
full day in beds of two different types. Wards are organized
per bed type, in this system. Nonetheless, those patients that
do require care in multiple bed types represent 30.2% of all
inpatient days. Given this disproportionate impact on required
capacity, enabling more granular insights into patient paths
without losing pathology data could improve models of this
type.

November 30th, 2020

II. PROBLEM DESCRIPTION

As introduced, this research builds on and extends the
methodology described in Latruwe et al. [5]. The primary ob-
jectives are to estimate long-term capacity needs for individual
hospitals, in a unit and facility-independent way, taking into
account expected evolutions in pathology prevalence, treat-
ment characteristics, and local population attributes. This work



develops the possibility to simulate segmented patient stays,
whose parts can be allocated to different wards, allowing more
specific definitions of inpatient wards that more accurately
reflect their real-world counterpart. Additionally, it integrates
extrapolation methods compatible with this methodology, used
for forecasting future need.

Individual Belgian hospitals generally treat between 5 000
and 40 000 inpatients annually. When categorizing inpatients
for a rather large hospital according to the 3M Service Line
(v34), which is a broad classification of pathologies, about half
of the service lines contain less than one thousand patients
annually. Suppose there are five relevant ward types for a
Service Line in which 1000 patients are observed and the
modeller intends to model patient paths through multiple
wards. Equitable distribution would lead to about 200 pa-
tients per ward. Subsequent modelling of transfers requires
estimation of transfer probabilities and average Lengths of
Stay per stay subcomponent. Transfer probability estimates
for subgroups would inevitably exhibit confidence intervals
between 10 and 15% in size, assuming significance at 95%.
Evidently, this uncertainty accumulates with the uncertainty of
the initial patient estimates, LoS estimates, and other factors.
In this hypothetical example, a large hospital, broad pathology
definitions, and equitable distribution per subgroup are used. In
addition, only one transfer per patient stay is assumed, while
stays representing 15% of days have at least three subcom-
ponents. In practice, many hospitals are smaller, desire more
specific patient group definitions, and do not have uniform
distributions of patients across ward types. Consequently, the
confidence intervals related to much of the model output would
be even larger, and not fit for use. This phenomenom is a
manifestation of the more general risk in simulation models to
include too much detail. In this case, it inhibits more granular
modelling of hospital treatments, required to define ward-stays
as prefered.

Decoupling transfer probabilities from specific pathologies
and measuring them on ward level would resolve this issue
in most cases, but it would obfuscate pathology-dependent
transfer rates, and with it, the impact that unequal growth in
different pathologies has on ward capacity needs.

In this work, parameter estimation issues in this context
are addressed while preserving pathology information. Addi-
tionally, a methodology is described to extrapolate admission
rates and the average LoS with data constraints. The described
methodology is flexible, and can be used for small and large
hospitals. It can also accomodate different preferences in the
trade-off between pathology granularity and accuracy.

III. METHODOLOGY

This section contains three parts. First, pathology clustering
is discussed. The pathology clustering method aggregates sim-
ilar pathologies, or pathologies in which patients have similar
attributes, into pathology categories such that groups with
sufficient observations arise. Subsequently, model parameter
estimation is discussed. Lastly, the assumptions used in the
extrapolation methodology are elaborated on.

A. Pathology clustering

The pathology clustering method creates categories of
pathologies that are homogeneous along particular lines. The
characteristics of patients covered by a pathology category
are meant to be as analogous as possible, especially along
those dimensions that affect capacity needs or the ability
to extrapolate category characteristics consistently, such as
the Length of Stay, admissions growth, and evolution of the
Length of Stay.

Inpatient stays, whose attributes contribute to the clustering
process, are defined as stays in a particular bed type or
ward, which are synonyms in the context of this paper. As a
consequence, an individual patient’s physical stay can consist
of multiple stays in this sense, if he or she spent at least one
day in multiple bed types. Unless stated otherwise, when stays
or attributes of stays are referred to in subsequent sections, this
definition is applied.

Clustering is performed on the pathology level. Pathologies
have defining attributes, which mutually exclusively distin-
guish them from each other. In the context of this paper, the
APR-DRG-code, Severity of Illness, and bed type are used.
The attributes used to quantify similarity are 3M Service Line,
APR-DRG, Severity of Illness, and average Length of Stay.

A hierarchical clustering algorithm using Ward’s method
to measure cluster distance is chosen. Hierarchical clustering
allows for more or less arbitrary choice in group sizes, which
serves the purposes of this research, where lower limits are
placed on group sizes though fine granularity and high homo-
geneity within individual clusters is desired. In this case, each
cluster of pathologies is required to cover at least 170 patients.
Additional aggregation beyond 170 patients is cut off unless
the difference between the incremental distance between the
clusters under consideration as compared to the last round of
aggregation, is larger than the equivalent incremental distance
observed in the last round as compared to the second-to-last
round. Hence, it is ensured that tiny incremental increases
in heterogeneity are allowed even when a category already
contains 170 admissions.

Transformations on pathology attribute values are performed
in the distance function, which calculates the distance between
any two pathologies. The attributes Service Line and APR-
DRG give rise to binary distances between the two evaluated
pathologies. An equal or unequal APR-DRG in two different
clusters yields a distance of O or 1 respectively in the relevant
dimension. Identical Service Lines yield a distance of 0, while
different Service Lines yield a distance of a large number M.
The large number M is meant to dominate the clustering, in
the sense that pathologies from different Service Lines should
never be grouped together unless the lower limit of admission
numbers is not reached. Further, the number is added to the
result of the Euclidean distance calculated based on the other
dimensions, such that its influence can be clearly identified
in the dendrogram resulting from the clustering. Next, the
Severity of Illness is linearly transformed to take a value
between 0 and 1 Lastly, a multiple of the logarithm of the



average LoS is used to include relative differences rather than
absolute ones and increase the importance of the variable in
the clustering.

B. Ward simulation: parameter estimation

As explained in section III-A, stays are defined as the time
spent in a particular bed type or ward. The admission rate,
LoS distribution, and seasonality factors are attributes related
to stays under this definition. Consequently, the admission
rate for a pathology category is the amount of observed stays
in a ward, matching the APR-DRG and SOI combinations
from the set of combinations grouped in the clustering phase,
regardless of whether patients visit a ward multiple times. The
Length of Stay distribution is analogously derived from the
duration spent in the specific ward. Lastly, the methodology to
introduce seasonality into the model is adopted from Latruwe
et al. [5].

Simulations are performed per ward, which are uniquely
related to a set of pathology categories. Daily admissions
are sampled from a Poisson distribution with the admission
rate, corrected for the seasonality pattern, as the mean [5].
Subsequently, the LoS is applied to each stay, sampled from
the empirical frequency distribution for the pathology category.
After stochastic daily occupancy instances are generated, the
occupancy frequency distribution is derived and used as a basis
for capacity estimates associated with particular service levels
in terms of deficient capacity-days per year, semester, or other.

C. Parameter extrapolation

Since one of the primary use cases for this model is forecast-
ing required capacity in future years, the default parameters
of the model are meant to be replaceable with forecasts for
future years. By default, the model implements forecasting
methods based on demographic and historical data [5]. Given
the narrow definition of stays in this model, it is non-trivial to
acquire the appropriate data to perform these extrapolations.

Essentially, the extrapolations require a sample or popula-
tion of observations that are representative in those dimensions
relevant for the extrapolation. Concretely, extrapolations are
made for the admission rate and the average LoS, based on
demographic conditions and on historical trends. They are
examined in the same order.

No Belgian national data sources are available that relate
pathology-bed type combinations to age groups. Therefore, it
is not practically feasible to directly determine the age distri-
bution present in the admission pools as they are defined in this
paper. Alternatively, groups that are, in the relevant respects,
representative of the admission pools could be determined and
used to sample the age distribution. For instance, if the bed
type attribute is discarded, the age distribution of the larger
group of patients identified by the APR-DRG and Severity of
Illness could be used as a basis for the extrapolation. This
would presume that the age distribution of patients related to
the different bed types is identical, or that the influence of age
on admissions or the average Length of Stay is negligible.
Both are decidedly flawed assumptions in the context of this

paper. Several bed types under consideration have an explicit
link to age. For instance, Geriatric beds are only accessible to
patients older than 75, while E or Paediatric beds are reserved
for minors under 16. The alternative assumption, that age does
not affect the admission rate or average LoS holds only for a
small minority of cases. One of many counterexamples is the
maternity ward, in which a specific age cohort is represented,
while others are entirely absent.

A surrogate for national data on the age distribution for
pathology-bed type combinations is a sample from a large set
of Belgian hospitals. The authors derived the age distribution
in sets of pathology-bed type combinations from a dataset of
more than ten different hospitals. The sample of hospitals is
skewed towards the Flemish region, but deemed representative.
There is no clear rationale that supports the hypothesis that
geographic location significantly modifies the impact of age on
the admission rate or Length of Stay, and that the geographic
spread in the dataset would be insufficient to neutralize it if
it did. Accordingly, the age distribution and average LoS per
age group derived from this large dataset is concluded to be
representative and applied in the extrapolations.

The extrapolations based on historical trends pose similar
challenges. National historical data on the admission rates
or average LoS for pathology-bed type combinations are
not available. Historical data on admission rates and LoS
related to pathologies, however, are. Accordingly, the implicit
assumptions in using this proxy are evaluated. The implicit
assumption of deriving a historical trend on the basis of the
larger pathology group is that the considered parameter of the
individual bed types rises or falls proportionately with that
of the related pathology groups. That is, the historical trend
in admissions and average LoS, corrected for demographic
differences, is the same across all bed types per pathology.
Experts confirm this assumption to be reasonable.

Modelling accuracy per index

Rate of significant test statistics
HEEE AVG CHI-Square p-value
80% -

60% -

40%

20% -

index_M
index_E

index_|
index_D
index_G

[S]
x
(3}

k)

£

index_N*

index

Fig. 1: Metrics of modelling accuracy per bed type



IV. APPLICATION

The methodology described in this paper is applied to a set
of Belgian hospitals. First, a comparison is made between the
frequency distribution of the daily inpatient bed occupancies
that is observed in the data and the one resulting from the
simulation in order to evaluate the validity of the methodology.
Second, an aggregation is made of the different hospitals in
order to review the evolution of the need for different bed
types, which generally correspond with wards, in Belgium.

A. Modelling accuracy

CHI-square tests are used to compare the simulated inpatient
frequency distribution with the observed distribution. In 62.3%

Frequency distribution - index_C

Cumulative frequency distribution - index_C

percent of the 77 cases, the simulated distribution does not
significantly differ from the observed distribution. It is noted
that the rate of finding significant differences is not uniform
across the different bed types, nor hospitals. Figure 1 shows
that index C, M and N* yield frequency distributions that are
much more often aligned than index E, I, D, and G.

There are several reasons why the simulated frequency
distributions are not expected to be representative of the
observed distributions. First, the bed types do not form entirely
independent wards. Often, subdivisions are made according
to specialty. Those subdivisions are not necessarily perfectly
communicating vessels, as is assumed by the model. If they
are not, it would expected that at higher occupancy levels are
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generally skewed down. Suppose, for instance, that a bed of
type D is still available, though related to a specific specialty.
Administrators might accomodate the patient elsewhere, in
a bed of a different type, if the patient requires treatment
from a different specialty. Thus, higher occupancies would be
inhibited. Additionally, as described and modelled by Mallor et
al. [6], active management of patient stays to level out capacity
demand can skew patient occupancies towards the average. For
instance, administrators choose to discharge patients earlier
than they would on average if occupancy levels are high.

Figure 2 shows some examples of plots comparing the
observed and simulated cumulative frequency distributions.
For some classes, such as A and D, observed frequency
distributions closely align with those empirically observed.
Others, such as B, show a distribution where the occupancies
are skewed towards the average. This might be caused by
an overestimation of the seasonality effects, or more likely,
have more systematic causes, such as active bed occupancy
management. Another alternative, is that for some bed types,
the planning of treatments is done in an even more coordinated
way, reducing the variability of admissions as compared to the
asumptions described in Latruwe et al. [5].

Another variant is C, which is rare compared to variant B,
and has a wider spread than expected by the model. This might
be caused by an underestimation of the seasonality effects, or
due to operational conditions. It is not clear which operational
conditions could lead to these results. One possibility is that
some relevant seasonality effect types exist that are not covered
by the month-of-year and day-of-week varieties included in the
model. For instance, official holidays, and common holiday
periods that do not match entire months might affect planned
admissions in a way that causes the observed effect.

Additional issues with the seasonality patterns might exist.
First, it is possible that seasonality patterns do not manifest
themselves at the same time every year. For instance, the peak
of a flu epidemic might be shifted by several weeks in one year
versus another. In the current model, such discrepancies would
be leveled out, flattening the expected seasonal peaks. Second,

index_M, monthly average observations: 50

—— Monthly seasonal pattern 2016

1.3 —— Monthly seasonal pattern 2017

—— Monthly seasonal pattern 2016-2017
—— Confidence bounds (95%)

=
N}

=
N

=
o

Expected admissions (relative)

o
©

0.8 4 {_]

0 50 100 150 200 250 300 350
Day

TABLE I: Expected evolution of care demand in inpatient days
by bed type, based on sample of hospitals.

index_N*

100%
+4.7%
+4.3%

index_C

100%
-5.6%
-11.9%

index_D

100%
+0.0%
+1.6%

index_G

100%
-1.1%
+3.1%

index_M

100%
-9.1%
-22.0%

index_I

100%
+1.4%
+5.0%

index_E
100%

-6.7%
-19.7%

2017
2022
2032

the model does not insist on proof that a seasonality pattern is
present in the data, rather, it assumes that there is and measures
it using as much data as is available. There would be too few
observations to statistically validate monthly seasonal swings
except in the more extreme cases, or in the most common
pathology categories. Figure 3 shows the relative confidence
bounds around the mean of monthly admissions for 2016-
2017, assuming admissions would follow a Poisson pattern.
The expected admission rate according to the derived monthly
seasonal pattern, with the day-of-week effects neutralized for
clarity, are also shown. Since only two years of observations
are available, the confidence intervals are large, and it is
inevitable that false seasonality patterns are introduced in some
cases. Including more years of observations will naturally
mitigate this issue.

Thus, aside from the effects of management decisions and
seasonality effects that are not included, increasing the number
years included in the seasonality derivations is expected to
improve the number of wards that pass the CHI-square com-
parative test.

B. Model forecasts

Table I shows the expected evolution of care demand in
inpatient days based on the sample of hospitals available.
These results can be compared to the evolution that took place
in the past, and to forecasts by other authors. The direction
of the past evolution of the number of beds per bed type,
which does not necessarily correlate perfectly with the total
amount of inpatient days per bed type, is consistent with the
model’s forecasts. One exception is D-beds, demand for which
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is expected to remain more or less stable as opposed to the
decreasing trend measured in the last decade [7].

Though comparisons with Van de Voorde et al. [8] are
difficult because the forecasts concern different time periods
and samples, these results do not contradict their general
findings.

V. CONCLUSION

This work describes a methodology to model subparts of
inpatient stays per pathology for capacity need forecasts of
individual hospitals and wards, while ensuring that historical
extrapolation of relevant parameters and applying demographic
corrections remains possible. The model is unit and facility
independent. It alleviates the need to use less intricate ap-
proximation methods to tranform estimates of inpatient days
per pathology, based on entire stays, to capacity estimates for
wards or bed types that are only relevant for a part of the pa-
tient’s stay. Additionally, it enables the derivation of inpatient
occupancy frequency distributions, which can support capacity
decisions using service levels as target performance indicators.
Lastly, but perhaps most importantly, it provides an alternative
to common hospital Discrete Event Simulation models that
use transfer probabilities to model patient trajectories, and as
a consequence, are forced to make abstraction of pathology
details.

The similarity of simulated and observed cumulative occu-
pancy frequency distributions, however, as measured by the
CHI-square test, could further be improved. In the considered
sample, the rate of non-significantly differing distributions is
62.3%. More data or further review of the seasonality mech-
anism could further improve the similarity metrics through
the improvement of the modelling of exogenous effects, as
opposed to the effects of endogenous influences, such as
management interventions driven by occupancies.
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