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Abstract 

Previous behavioral studies using stimulus-response compatibility tasks have shown that 

people are faster to carry out instructed approach/avoidance responses to positive/negative stimuli. 

This result has been taken as evidence that positive/negative stimulus valence directly activates a 

tendency to approach/avoid, which in turn, facilitates execution of instructed approach/avoidance 

behavior. In these studies, however, it cannot be excluded that the results reflect a purely semantic 

link between stimulus valence and instructed responses. According to this alternative interpretation, 

positive/negative stimuli do not elicit an approach/avoidance tendency, but instead they interact 

with the positive/negative valence of the instructed responses, and in this way, produce the observed 

compatibility effect. To circumvent this possible disadvantage of compatibility tasks, we used a 

novel method for the measurement of early action tendencies: TMS induced MEPs. In two 

experiments, participants were first trained to abduct the index finger to approach and the thumb to 

avoid. Then, they observed a series of positive and negative stimuli. Each stimulus was followed by 

a TMS pulse (at 400 ms post-stimulus onset) and MEPs were measured continuously on the 

muscles of both fingers. These observation trials were randomly intermixed with response trials, in 

which neutral stimuli were presented and participants were instructed to approach/avoid the stimuli. 

In Experiment 1, participants received clear visual feedback on the outcome of their response in the 

response trials. In Experiment 2, we omitted this feedback to test whether it was necessary for the 

effect to occur. The results indicated higher MEPs for the approach/avoidance finger after 

positive/negative stimuli in Experiment 1 but not in Experiment 2. Analyses on the data aggregated 

over both experiments suggest that the visual feedback was necessary for stimulus valence to elicit 

action tendencies. Taken together, the results are in line with the results of behavioral studies with 

compatibility tasks, suggesting that stimulus valence directly elicits specific action tendencies 

already at 400 ms but they indicate that clear visual feedback is necessary for this effect to occur.  

Keywords: valence, approach-avoidance, action tendencies, motor preparation, automatic 
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Support from a TMS/MEP study for a direct link between positive/negative stimuli and 

approach/avoidance tendencies 

 In order to deal with environmental challenges, humans perform adaptive responses 

allowing to obtain rewards and escape from threats. This observation has led scholars, from ancient 

Greek philosophy (e.g., Democritus, 460-370 BC; Aristippus; 430-360 BC, cited by Covington & 

Elliot, 2001) throughout the history of psychology (Arnold, 1960; Darwin, 1872; Chen & Bargh, 

1999; Pavlov, 1927) to postulate that positive stimuli elicit an approach tendency, aimed at getting 

closer to them, whereas negative stimuli elicit an avoidance tendency, aimed at taking distance from 

them. Several researchers, moreover, postulate that the link between valenced stimuli and action 

tendencies is an automatic link (e.g., Chen & Bargh, 1999; Lang, Bradley, & Cuthbert, 1990; 

Neumann, Förster, & Strack, 2003; Rutherford & Lindell, 2011). This is based on the idea that 

stimuli activate a direct association between the representation of positive/negative stimulus valence 

and a representation or tendency to approach/avoid (Neumann et al., 2003). Once an action 

tendency is activated it may or may not translate into overt behavior (depending on other, 

competing action tendencies).  

 To test whether there is indeed a link between positive/negative stimuli and the tendencies to 

approach/avoid, researchers have used stimulus-response compatibility tasks in which participants 

were instructed to approach positive stimuli and avoid negative ones in half of the trials (compatible 

block), and to approach negative stimuli and avoid positive ones in the other half of the trials 

(incompatible block). Results typically show that participants are faster in the compatible than in 

the incompatible block. This effect is referred to as the valence-approach/avoidance compatibility 

effect (VAAC-effect; Krieglmeyer, De Houwer, & Deutsch, 2013) or the affective stimulus-

response compatibility effect (e.g., Kozlik, Neumann, & Lozo, 2015). It has been observed across 

studies in which action tendencies of approach/avoidance were measured using different response 

modalities, such as pulling/pushing a joystick closer towards/away from themselves or the stimuli 

(e.g., Chen & Bargh 1999; Da Gloria, Pahlavan, Duda, & Bonnet, 1994; Duckworth, Bargh, Garcia, 
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& Chaiken, 2002; Lavender & Hommel, 2007), pressing a key to move a manikin toward/away 

from the stimuli (De Houwer, Crombez, Baeyens, & Hermans, 2001; Krieglmeyer, Deutsch, De 

Houwer, & De Raedt, 2010), nodding/shaking the head (e.g., Förster & Strack, 1996), contracting 

the zygomaticus/corrugator muscles of the face (e.g., Dimberg, Thunberg, & Grunedal, 2002; 

Neumann, Hess, Schulz, & Alpers, 2005; Neumann, Lozo, & Kunde, 2014; Otte, Habel, Schulte-

Rüther, Konrad, & Koch, 2011), and full-body movements such as stepping forward/backward 

(e.g., Stins et al., 2011).  

 To add further support to the idea that the link between valence and action tendencies is 

direct and automatic, researchers have also reported evidence for the VAAC effect when the 

valence of the stimuli was task-irrelevant, and participants had to make their approach/avoidance 

responses dependent on a non-valenced stimulus-feature (e.g., Chen & Bargh, 1999; De Houwer et. 

al., 2001; Krieglmeyer et al., 2013; Neumann et al., 2005; Otte et al., 2011; Stins et al., 2011).  

Early VAAC effects obtained with the joystick task were explained with a specific muscle 

activation account (Cacioppo, Priester, & Berntson, 2013; Chen & Bargh, 1999; Rotteveel & Phaf, 

2004; Solarz, 1960) according to which positive stimuli facilitate an arm flexion movement (as 

involved in pulling a lever) and negative stimuli an arm tension movement (as involved in pushing a 

lever). Recent studies, however, were more in line with a distance regulation account (De Houwer, 

Crombez, Baeyens, & Hermans, 2001; Krieglmeyer, De Houwer, & Deutsch, 2011; Markman & 

Brendl, 2005; Seibt, Neumann, Nussinson, & Strack, 2008; Schneirla, 1959) according to which 

positive/negative stimuli lead to approach/avoidance tendencies understood as tendencies to 

decrease/increase distance irrespective of the specific muscle movements involved. In/compatibility 

between these action tendencies and the action tendencies induced by the instructions leads to 

relative inhibition/facilitation to execute the instructed action tendencies.  

Another competing account, called the evaluative coding account (Lavender & Hommel, 

2007; Eder & Rothermund, 2008), states that positive/negative stimuli do not spontaneously lead to 

approach/avoid tendencies and hence VAAC effects do not result from the in/compatibility between 
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stimulus-induced and instruction-induced action tendencies in terms of approach/avoidance. 

Instead, these effects result from the in/compatibility between stimulus-induced and instruction-

induced action tendencies in terms of valence. Eder and Rothermund (2008) framed inherently 

ambiguous movements of pulling/pushing of the joystick either as positive/negative (pulling as 

approach, pushing as avoidance) or as negative/positive (pulling as avoidance, pushing as 

approach). In support of their account, they found facilitation of responses to positive/negative 

stimuli when the instructed response was framed as positive/negative, regardless of the direction 

(pulling/pushing) of the movement. They found similar effects when pushing/pulling of the joystick 

was framed as up (positive)/down (negative). 

Stimulus-response compatibility tasks are behavioral tasks in which participants are 

instructed to respond to stimuli. This method carries the risk that the compatibility effects obtained 

do not stem from the in/compatibility between stimulus-induced and instruction-induced action 

tendencies, but instead from the in/compatibility between stimulus features and features of 

instruction-induced action tendencies. In particular, the compatibility effect can stem from an 

overlap in the valence of stimuli and the valence of the instruction-induced action tendencies, for 

instance, via a semantic matching mechanism (e.g., van Dantzig, Zeelenberg, & Pecher, 2009; 

Zhang, Proctor, & Wegener, 2012). The implication is that the compatibility effect could occur even 

if a stimulus-induced action tendency was never activated. In other words, compatibility effects are 

not airtight diagnostic instruments for detecting stimulus-induced action tendencies. In order to 

escape from this impasse and to more directly examine whether valenced stimuli spontaneously 

elicit approach/avoidance tendencies, research methods are needed in which the role of instructions 

is minimized.   

To meet this requirement, we developed a new method based on single-pulse Transcranial 

Magnetic Stimulation (TMS) of the primary motor cortex (M1) and the measurement of Motor 

Evoked Potentials (MEPs; Hoshiyama et al., 1996; Hasbroucq, Kaneko, Akamatsu, & Possamaï 

1999; Michelet, Duncan & Cisek, 2010). TMS is a non-invasive technique that uses a rapidly 
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changing magnetic field applied to the skull to produce an electrical current in underlying neural 

tissue. When TMS is applied to M1, it can stimulate the cortico-spinal tract, inducing a MEP in the 

contralateral hand (a peak in EMG activity 20 to 50 ms after the pulse). The amplitude of this MEP 

is considered as an index of the level of excitability of the cortico-spinal tract (Rossini et al., 2015). 

If a stimulus (e.g., an image) activates an action tendency, this should lead to higher TMS-induced 

MEPs registered from the muscle that would carry that same action. This method allows the 

detection of action tendencies in the absence of overt behavior, and can thus be used when 

participants merely observe stimuli. The method is also especially suitable to probe for automatic 

processes (in the sense of fast, and relatively unintentional).  

Prior research with single-pulse motor TMS already showed that valenced stimuli can 

modulate cortico-spinal excitability. Studies vary, however, with regard to (a) the nature of the 

stimuli presented (e.g., pictures of valence scenes: Coelho, Lipp, Marinovic, Wallis, Riek, 2010; 

pictures of body postures: Borgomaneri, Gazzola, & Avenanti, 2013; Borgomaneri, Vitale, Gazzola, 

& Avenanti, 2015; positive or negative words: Gough, Campione, & Buccino, 2013; self-

experienced pain stimuli: Farina, Tinazzi, Le Pera, & Valeriani, 2003; third-person observation of 

pain in others: Avenanti, Minio-Paluello, Bufalari, & Aglioti, 2006, 2009; noxious stimuli: Farina et 

al. 2001; Tamburin et al. 2001; Urban et al. 2004; loud acoustic stimuli: Furubayashi et al. 2000; 

monetary rewards and punishments: Suzuki et al., 2014; Thabit et al., 2011; Vicario, Rafal, & 

Avenanti, 2015), (b) the task that participants have to perform on the stimuli (valence 

categorization: Borgomaneri, Vitale, et al., 2015; reading: Gough et al., 2013; pure observation: 

Baumgartner et al., 2007), (c) the time at which the TMS pulse is delivered after stimulus onset 

(Borgomaneri et al., 2013: 150 ms and 300 ms; Oliveri et al., 2003: 300 ms; van Loon et al., 2010: 

400-500 ms; Hajcak et al., 2007: 3-5 s), and (d) the effectors from which the MEPs are registered 

(index finger: Coelho et al., 2010; forearm: Gough et al., 2013; thumb: Hajcak et al., 2007). 

Because of this variation, results have been mixed. For instance, it is unclear whether cortico-spinal 

modulation (decrease or increase) at various pulse timings is caused by negative stimuli (compared 
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to positive and neutral stimuli; Schutter et al., 2008) or by both positive and negative stimuli 

(Hajcak et al., 2007; van Loon et al., 2010), and whether prior response preparation related to the 

experimental task is required (Coelho et al., 2010). Some researchers have interpreted a general 

decrease and increase in MEPs in terms of specific action tendencies. For instance, Borgomaneri, 

Vitale, et al. (2015) and Avenanti et al. (2009) have interpreted a decrease in MEPs in terms of the 

tendency to orient or freeze and an increase in MEPs in terms of the tendency to avoid (see also 

Coelho et al., 2010; Oathes, Bruce, & Nitschke, 2008). The problem, however, is that a mere 

decrease in MEPs would also fit with any other passive tendency (e.g., a submissive tendency) and 

a mere increase in MEPs with any other active tendency (e.g., an antagonistic tendency; see Moors 

et al., 2019). Other researchers have interpreted the increase in MEPs in specific muscles in terms 

of specific action tendencies. For instance, Gough et al. (2013) interpreted an increase in MEPs in 

the index finger to approach because it contributes to grasping, and MEPs in the forearm to 

avoidance because it contributes to the release of one’s grasp. The problem, however, is that 

grasping can also figure in avoidance (e.g., grasping an object of safety) and releasing one’s grasp 

can also figure in approach (e.g., releasing an object of safety to approach).  

The current studies went beyond previous TMS studies in that we tried to measure not just 

general action readiness, but the specific action tendencies of approach and avoidance (see also 

Moors et al., 2019, for a study in which this method was applied to the specific action tendencies of 

fight and flight). While previous studies have inferred the activation of specific action tendencies 

either from a general increase or decrease in MEPs or from MEPs in specific muscles, we opted to 

install the meaning of specific muscle movements by establishing connections between these 

movements and approach/avoidance responses during a training phase. In particular, participants 

were trained to use the index finger to approach and the thumb to avoid. During the experimental 

phase, positive and negative stimuli were presented, followed by a TMS pulse and continuous 

registration of MEPs. Comparison of the MEP amplitudes in the muscles used to make the muscle 
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movements allowed us to infer which action tendency (approach or avoidance) was activated most 

strongly in response to the valenced stimuli.  

We conducted two single pulse TMS experiments. In the first experiment, we examined 

whether passive observation of positive/negative stimuli led to higher MEPs in the fingers used to 

let a manikin approach/avoid these stimuli. The second experiment was set up as a replication of the 

first experiment, in which we further examined the role of action feedback in the elicitation of 

approach/avoidance tendencies.  

Experiment 1 

 The experiment was presented as a multiple-trial computer game, comprised of a training 

phase and an experimental phase. In the training phase, participants learned to use their index finger 

to approach pressing one key and their thumb to avoid pressing another key. In each trial, a manikin 

representing the participant appeared in the lower half of the screen and a neutral dot in the middle 

of the screen and participants received auditory instructions to approach or avoid the dot. In the 

experimental phase the manikin was presented in the lower half of the screen together with a 

negative, positive, or neutral picture in the middle of the screen. This phase consisted of observation 

trials and occasional response trials. During observation trials, positive and negative stimuli were 

presented and participants were merely asked to observe them without moving their index finger 

and thumb. Each stimulus was followed by a single TMS pulse at 400 ms post-stimulus onset,  and 

electromyogram (EMG) activity was recorded continuously from effectors of the index finger and 

the thumb. In the response trials, participants received an auditory instruction to approach or avoid a 

neutral picture at 500 ms post-stimulus onset. These trials were simply added to reactivate the 

meanings of the keypress responses that were installed during the first training phase. 

Method  

 Ratings of the stimulus material, the data file of the study, and the syntax used for the 

analysis are available from the Open Science Framework database (URL: https://osf.io/2p8dv/).  
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Design and participants. The experiment had a 2 x 2 design with stimulus valence 

(positive, negative) and response (approach, avoid) as within-subject factors. Thirty-four 

participants took part in the experiment. Five participants were excluded because they did not 

follow the instructions correctly or due to problems in saving EMG data. Four additional 

participants were excluded because they had more than 2 SDs less valid MEPs than the other 

participants. This resulted in a final sample of 25 participants (mean age 21.33 years ± 7.15; all but 

4 right handed; 14 females). This sample size was determined based on the results reported by 

Gough et al. (2013) to detect an effect with a power of 80% and a significance level of .05 using the 

method of Anderson, Kelley, and Maxwell (2017), which adjusts for publication bias and 

uncertainty. Participants had no history of neurological problems or psychiatric disorders, had 

normal or corrected-to-normal vision, and were prescreened for risks associated with TMS (Rossi et 

al., 2009). The study was granted ethical approval by the Ethical Medical review board of Ghent 

University Hospital. Participants gave written informed consent and received a compensation of 15 

euros.  

TMS administration and MEP recordings. TMS pulses were delivered with a biphasic 

magnetic stimulator (Rapid2, The Magstim Company Ltd.). A 70 mm eight coil was held 

tangentially to the skull at the level of the left motor cortex with the handle pointing backward and 

laterally at a 45° angle to the sagittal plane. The coil was positioned in correspondence with the 

optimal scalp position defined as the coil location eliciting the largest and more reliable MEPs in 

both the right first dorsal interosseous (FDI) and the right opponent pollicis (OP). The stimulation 

intensity was determined based on the resting motor threshold (rMT) of both muscles, which is 

defined as the intensity that evokes a MEP larger than 50 µV in 50 % of the cases in FDI and OP 

simultaneously (Rossini et al., 2015). Participants were equipped with a swimming cap on which 

the optimal location for the stimulation was marked so that the experimenter could easily track the 

correct position of the coil. During the experiment, a mechanical arm held the TMS coil in the 

correct position, but the experimenter also continuously monitored the coil position during the 
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sessions. In participants who were moving too much, the experimenter directly held the coil on the 

hot spot during the entire experiment. Stimulation intensity during the recording session was set to 

110% of the rMT. Average intensity was 67.78 % (range 51%-80%). Electromyographical (EMG) 

activity was recorded with the ActiveTwo system (www.biosemi.com ). Sintered 11x17 mm active 

Ag-AgCl electrodes were placed over two muscles: FDI and OP of the right hand. FDI contributes 

to abduct the index finger from the ring finger, and OP enables to abduct the thumb away from the 

index finger. The active electrodes were placed over the belly of the right FDI and OP muscles and 

the reference electrodes over the ipsilateral proximal interphalangeal joints (belly-tendon montage). 

The ground electrode was placed on the back of the hand, near the wrist joint. The EMG signal was 

amplified (internal gain scaling), digitized at 2Hz, filtered at 3Hz, and stored on a PC for offline 

analysis.  

Stimuli and procedure. Stimuli in the experimental phase were positive, negative, and 

neutral pictures, all depicting humans and sized 328 x 246 px, selected from the International 

Affective Picture System (IAPS, Lang, Bradley & Cuthbert 1997), as well as from a new online 

database created by Dillen (2015). We chose to only present pictures with humans to avoid a 

possible confound of animacy observed in previous research (Borgomaneri, Gazzola, & Avenanti, 

2012).   

Presentation of the stimuli and registration of the responses were controlled using Affect 4.0 

software (Spruyt, Clarysse, Vansteenwegen, Baeyens, & Hermans, 2010). Participants were seated 

at a distance of 60 cm from a 17 inch computer monitor in a dimly lit room. An azerty keyboard 

was vertically located and two keys (an upper key “J” and a lower key “G”) were marked with a 

blue spot, while two other keys (key “U” left of “J”,  and key “F” below “G”) were marked 

respectively with the labels “AP” (for approach) and “AV” (for avoidance). Participants were asked 

to place the tip of the right index finger on the upper key “J” and the tip of the right thumb on the 

lower key “G”. 
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 The experiment was composed of a training phase and an experimental phase. The training 

phase consisted of 30 trials. On each trial, a white dot was presented in the middle of a black 

background together with an avatar (stick figure) representing the participant located below the dot 

(see De Houwer, Crombez, Baeyens, & Hermans, 2001). Participants wore headphones through 

which they received the auditory instructions to “approach” or ”avoid” 250 ms after stimulus onset. 

When they received the auditory approach/avoidance cue, they had to move their index 

finger/thumb as fast as possible from the blue spot towards the approach/avoidance key and press it. 

When participants pressed the approach key, the avatar moved toward the dot; when they pressed 

the avoid key, the avatar moved away from the dot. If participants pressed a key later than 2000 ms 

after stimulus onset, the error feedback “too late” was displayed on the screen. If participants 

pressed the wrong key, an error sound was delivered.  

 The experimental phase consisted of 100 randomized trials (see Figure 1). Instead of the 

white dot, a picture was now presented in the middle of the screen with the manikin again located 

below the picture. The majority of the trials (90) were observation trials. In half of them, the picture 

had a positive valence; in the other half it had a negative valence. The ITI was on average 1000 ms 

(with a range of 500 ms until 1500 ms) with an initial delay of 1500 ms. Each stimulus remained on 

screen for 3250 ms. A single TMS pulse was delivered to M1 at 400 ms post-stimulus onset and 

EMG activity was recorded continuously from effectors of the index finger and the thumb of the 

right hand. A small number of trials (10) were response trials, during which participants received 

instructions to approach or avoid the stimuli via auditory cues presented 500 ms post-stimulus 

onset. The pictures presented during the response trials were neutral because we wanted to avoid 

installing associations between positive/negative stimuli and the instructed responses. Participants 

also received a single TMS pulse in the response trials but these were not analyzed. Response trials 

were aborted 3000 ms after response execution or at 3250 ms after stimulus onset if no response 

was executed until then. The entire experiment including the TMS/MEP preparation lasted one 

hour.  
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Results and Discussion 

The raw EMG data were processed for the observation trials only using MATLAB® software. 

Epochs of 1000 ms around the TMS pulse (500 ms before and 500 ms after) were extracted from 

the stream of data. The peak-to-peak amplitude of EMG activity for each trial was calculated for the 

20-50 ms window following the TMS pulse (i.e., the common time window during which MEPs are 

manifested). Furthermore, trials were rejected if the background EMG activity (measured for each 

trial during a time window of 500 ms preceding the TMS pulse) was above 200 µV. In addition, 

results from participants with few valid trials (less than 2 SDs below the average number of valid 

trials) were excluded from the analysis. In the final sample, trials were furthermore discarded with 

MEPs above or below ± 2 SDs from the average MEP of each muscle in each participant. This 

resulted in on average 9% discarded trials in the FDI and in 6% discarded trials in the OP. 

In each participant, the remaining MEPs were normalized (z score) separately for the two 

muscles (FDI and OP).The z scores were entered in a repeated measures ANOVA with as within-

participants factors stimulus valence (positive, negative) and response (approach, avoid). This 

analysis yielded a significant valence x response interaction, F(1, 24) = 13.30, p = .001, ƞp
2 = .36 

(see Figure 2). Pairwise comparisons on the term of the interaction revealed a higher motor 

responsiveness in the muscle (FDI) of the approach finger (index) (M = 0.05, SD = 0.09) than in the 

muscle (OP) of the avoidance finger (thumb) (M = -0.03, SD = 0.10) when presented with positive 

stimuli, F(1, 24) = 12.97, p = .001, ƞp
2 = .35, and a higher motor responsiveness in the OP (M = 

0.02, SD = 0.10) than in the FDI (M = -0.06, SD = 0.09) when presented with negative stimuli, F(1, 

24) = 10.26, p = .004, ƞp
2 = .30. No other effects were significant, all Fs < 1.38.  

The results of Experiment 1 indicate that positive/negative stimuli lead to a spontaneous 

tendency to approach/avoid. Positive images led to higher motor activation for FDI, the index finger 

muscle recruited to approach, whereas negative images led to higher motor activation for OP, the 

thumb muscle recruited to avoid. These results support the idea that positive/negative stimuli 

spontaneously elicit the tendency to approach/avoid.   
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Experiment 2 

The aim of the second experiment was twofold. First, we set out to replicate the results 

obtained in the first experiment. Second, we wanted to clarify the impact of the visual outcomes of 

the approach/avoidance responses that participants received in the response trials on the links 

between positive-approach and negative-avoidance. Van Dantzig, Pecher, and Zwaan (2008) 

proposed a motivational account in which approach/avoidance tendencies are conceived of as 

“flexible, action plans that are represented in terms of their effects” (p. 17). In the same vein, 

Krieglmeyer and Deutsch (2010) considered the effects of distance regulation as a pre-requisite for 

the compatibility effect to occur. Also in the evaluative coding account (Eder & Rothermund, 

2008), anticipated action consequences are supposed to be involved in the generation of motor 

responses. An open question that is worth investigating empirically is whether valenced stimuli can 

elicit the tendencies to approach/avoid (in the observation trials) in the absence of visual feedback 

of the outcome of the approach/avoidance responses (received in the response trials).  

 The method was the same as in the first experiment, except for two crucial factors. First, 

images were presented on a horizontally-placed flatscreen monitor and participants were asked to 

keep the index finger and thumb of their right hand directly on the screen in resting positions. To 

approach and avoid in the response trials, they had to move these fingers from the resting positions 

to two nearby positions. Second, the approach/avoidance behaviors were not followed by a manikin 

walking toward/away from the stimuli during the experimental phase, so that a clear visual 

feedback of the outcomes of these behaviors was absent. By no longer providing this visual 

feedback, we could examine whether the mental representation of this outcome mediated the 

influence of stimulus valence on the approach/avoidance tendencies. 

Method 

Design and participants. The experiment had a 2 x 2 design with stimulus valence 

(positive, negative) and response (approach, avoid) as within-subject factors. Forty-one participants 

took part in the experiment. Five participants were excluded because they did not follow the 
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instructions correctly or due to problems in saving EMG data and three participants were excluded 

because they had less valid trials than 2 SDs below the average valid trials for all participants. This 

resulted in a final sample of 33 participants (mean age 24.15 years ± 2.89; all but 4 right handed; 19 

females). Participants had no history of neurological problems or psychiatric disorders, had normal 

or corrected-to-normal vision, and where prescreened for risks associated with TMS (Rossi et al., 

2009). The study was granted ethical approval by the Ethical Medical review board of Ghent 

University Hospital. Participants gave written informed consent and received a compensation of 15 

euros.  

TMS administration, MEP recordings, stimuli, and procedure. The procedure for TMS 

administration and MEP recordings was the same as for the first experiment. The average intensity 

of stimulation was 68.29 % (range 50%-84%). The stimuli were also identical to those used in the 

first experiment. This time, stimuli were presented on a flatscreen placed horizontally on a table. 

Responses were recorded via a custom-made response box that registered button presses from two 

FSR-sensors and transmitted them via a USB channel. The FSR-sensors were directly fixated on the 

monitor via double sided adhesive rings. Two resting spots equally distant from the FSR-sensors 

were marked with adhesive tape, one on the upper part of the screen and one on the lower part of 

the screen. Participants were asked to place the tip of the right index finger on the upper spot and 

the tip of the thumb on the lower spot. Only when they were instructed to approach/avoid (during 

the training phase and the response trials of the experimental phase), they had to move their index 

finger/thumb from their resting spot to press the FSR-sensor buttons. The training phase and 

experimental phase were the same as in Experiment 1, except that participants kept their hand 

directly on the screen. In the response trials of the experimental phase, there was the additional 

difference that approach/avoidance responses were no longer followed by feedback in the form of a 

manikin approaching/avoiding the stimulus. This feedback was still present during the training 

phase. 

Results and discussion 
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The same data processing steps and filters were applied as in Experiment 1. This resulted in 

the removal of 6% of trials in both FDI and OP, equally distributed across conditions. In each 

participant, the remaining MEPs were normalized (z score) separately for the two muscles (FDI and 

OP). The z scores were entered in a repeated measures ANOVA with as within-participants factors 

stimulus valence (positive, negative) and response (approach, avoid). The analyses revealed no 

significant interaction between valence and response, F(1, 32) = 2.40, p = .131, ηp
2 = .07. However, 

pairwise comparisons indicated that MEPs were significantly higher in the FDI (M = 0.02, SD = 

0.08) than in the OP (M = -0.01, SD = .12) when positive stimuli were presented, F(1, 32) = 4.26, p 

= .047, ηp
2 = .12, but did not differ significantly between FDI (M = -0.01, SD = 0.07) and OP (M = 

0.01 , SD = .11) when negative stimuli were presented, F(1, 32) = 0.80, p = .378, ηp
2 = .02 (see 

Figure 2). No other effects were significant, all Fs < 0.42. This suggests that the direct link between 

stimulus valence and action tendencies that we observed in Experiment 1 is not maintained in the 

absence of a clear visual outcome of the responses (i.e., the walking manikin). 

Results from aggregated data over both experiments and discussion 

The evidence for the link between stimulus valence and approach/avoidance tendencies was 

only found in Experiment 1 but not in Experiment 2. To analyze whether this effect was modulated 

by the methodological differences between both experiments, we combined their data. A mixed-

model ANOVA on the aggregated data revealed a significant three-way interaction between 

experiment, valence, and response, F(1, 56) = 4.30, p = .043, ηp
2 = .07, as well as a significant two-

way interaction between valence and response, F(1, 56) = 15.614, p < .001, ηp
2 = .22. No other 

effects were significant, all Fs < .86. This suggests that the visual feedback was indeed necessary 

for stimulus valence to elicit an action tendency.  

General discussion 

        In two experiments, we examined whether positive/negative stimuli spontaneously elicit the 

tendencies to approach/avoid by using a neurophysiological technique–TMS induced MEPs—to 

measure action tendencies, and thereby circumventing some of the problems related to previous 



A DIRECT MOTOR LINK BETWEEN STIMULUS VALENCE AND ACTION TENDENCIES                    16 

 

behavioral studies that used stimulus-response compatibility tasks. Compatibility tasks do not allow 

determining whether the compatibility effect is caused by feature overlap between (a) the stimulus-

induced action tendencies and the instruction-induced action tendencies or (b) the stimuli 

themselves and the instruction-induced action tendencies. If the latter case obtains, it is possible that 

the stimuli never elicited any action tendencies, which makes compatibility tasks unsuitable for 

examining whether the mere presentation of stimuli with a positive/negative valence is sufficient to 

induce action tendencies to approach/avoid. This is why we turned to single pulse motor TMS 

induced MEPs as a method for investigation.  

 Previous studies using this technique inferred specific action tendencies from general 

corticospinal modulation (e.g., Borgomaneri et al., 2012; Borgomaneri, Vitale et al., 2015) or from 

corticospinal modulation in specific muscles (Gough et al., 2013). Because these inferences may not 

always be warranted, we chose to install the meanings of specific muscle movements during a 

training phase in which participants learned how to perform an approach and avoidance response 

(approach with index finger and avoid with thumb). After that, participants observed stimuli with a 

positive or negative valence while they received a single TMS pulse to M1 at 400 ms post-stimulus 

onset. Comparison of the peak-to-peak amplitudes of the MEPs on the muscles of both fingers (FDI 

on the index finger and OP on the thumb) allowed us to infer the action tendency that was 

spontaneously elicited by the stimuli. In the first experiment, we showed that the passive 

observation of positive/negative stimuli led to higher MEPs in the fingers used to let a manikin 

approach/avoid the stimuli. The second experiment was set up as a replication of the first 

experiment and to further examine the role of the representations of the response outcomes in the 

elicitation of approach/avoidance tendencies. In this experiment, participants held their fingers 

directly on a horizontally placed flatscreen and the response outcome (manikin walking 

towards/away from the stimuli) was no longer shown. The results of Experiment 1 were not 

replicated in Experiment 2, which was confirmed by analyzing the aggregated data. Taken together, 

the results of both experiments support the idea that stimulus valence can elicit the tendencies to 
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approach or avoid (Krieglmeyer et al., 2011)—or any positive or negative action tendencies more 

generally (Eder & Rothermund, 2008)—, but that representations of clear visual action outcomes 

are necessary for this effect to occur.  

 A few potential limitations deserve attention. A first potential limitation has to do with the 

timing of the TMS pulse. Some previous studies using motor TMS reported evidence that valenced 

stimuli can modulate cortico-spinal excitability already at very early stages. For instance, using a 

pulse timing of 150 ms post-stimulus onset, Borgomaneri, Gazzola, and Avenanti (2015) observed 

an increase in MEPs in the left hemisphere when negative body postures were present, and a 

decrease in the right hemisphere when both negative and positive body postures were presented. 

They interpreted the increase in MEPs as an avoidance response and the decrease in MEPs as an 

orienting response, but these interpretations may not be warranted. Using a pulse timing of 300 ms 

post-stimulus onset, these researchers also observed an increase in MEPs in dynamic compared to 

static body postures, which they interpreted as an effect of resonance or motor simulation. We 

chose a timing of 400 ms post-stimulus onset as the optimal temporal window to register the motor 

activity after conducting several pilot tests. It is possible that this increased latency between the 

stimulus onset and the pulse was necessary to allow specific action tendencies to develop and not 

merely a general motor activation or a simulation of an implied motion in the pictures. Other 

relevant differences between Borgomaneri, Vitale, et al. (2015) and our studies are the type of 

stimuli that they used and the task that participants had to perform. Borgomaneri, Vitale, et al. 

(2015) presented body postures whereas we presented pictures of valenced scenes with humans 

(e.g., in interactions). It could be that the detection of valence from body postures requires less time 

that of the valenced scenes that we used. Future research could examine whether the effects we 

obtained can also be observed at early stages.  

A second potential limitation is that we stimulated the hand region of the left motor cortex 

for both the approach response (measured from the FDI muscle of the right-hand index) and the 

avoidance response (measured from the OP muscle of the right-hand thumb). Previous research has 
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shown that approach and avoidance behavior are preferentially executed by the right and left hand 

respectively because of the lateralization of approach and avoidance tendencies in the brain 

(Maxwell & Davidson, 2007; Rutherford & Lindell, 2011; Moors et al., 2019). By assigning both 

responses to the same hand, we avoided potential confounds of this lateralization, but we cannot 

exclude that a different pattern of results would have been obtained if we would have stimulated the 

right hemisphere instead or another motor area.  

A third potential limitation is that our studies do not allow disambiguating between the 

scenario in which positive/negative stimuli lead to the more specific tendencies to approach/avoid, 

as suggested in the distance regulation account (Krieglmeyer, De Houwer, & Deutsch, 2013) or the 

scenario in which positive/negative stimuli lead to the more general tendencies to engage in any 

positive/negative behavior, as suggested in the evaluative coding account (Eder & Rothermund, 

2008). This is because we did not train participants to engage in other positive or negative behaviors 

(e.g., fight, praise). Future research could examine this issue further.  

In conclusion, the present neurophysiological evidence suggests that our motor system is 

activated at 400 ms post-stimulus onset without instructions to move towards/away from pictures 

depicting positive/negative human scenes. Future studies could further examine whether these 

findings generalize to other, less intense stimulus material (e.g., facial expressions), other positive 

and negative action tendencies (e.g., fight, praise), and earlier pulse timings (e.g., 200-300 ms).  
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FIGURES 

 

Figure 1. Sequence of events in one observation and one response trial. In an observation trial, a 

valenced stimulus was followed by a TMS pulse at 400 ms post-stimulus onset and disappeared at 

3250 ms post-stimulus onset. In a response trial, a neutral stimulus was followed by a TMS pulse at 

400 ms post-stimulus onset and an auditory instruction to approach or avoid the stimulus at 500 ms 

post-stimulus onset. The trial was aborted 3000 ms after response execution or at 3250 ms post- 

stimulus onset if no response was given.  
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Figure 2. Average standardized MEP amplitudes in Experiment 1 and 2 for  positive and negative 

stimuli.  
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