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Co-regulated timing in music ensembles: a Bayesian listener perspective 
 

Co-regulated timing in a music ensemble rests on the human capacity to coordinate actions in 
time. Here we explore the hypothesis that humans predict timing constancy in coordinated actions, 
in view of timing their own actions in line with the others. An algorithm (BListener) is presented 
that predicts timing constancy, using Bayesian inference about incoming timing data from the 
music ensemble. Smoothness and regularization parameters are explained and illustrated. The 
algorithm is then applied to a timing analysis of real data, first, to a choir consisting of four singers, 
then, to a dataset containing performances of duet singers. Global features of timing constancy, 
such as fluctuation and stability, correlate with human subjective estimates of the music 
ensembles' quality and associated experienced agency. The results suggest that computational 
modelling of co-regulated timing can lead to powerful insights and applications. In future work, 
BListener could serve as component in an artificial musician that plays along with human 
musicians in a music ensemble. 
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Introduction and background 

Co-regulated timing in a music ensemble rests on the human capacity to coordinate actions in time. Studies 
suggest that this capacity rests on different modalities of information exchange (Bishop et al., 2019; Bishop 
and Goebl, 2020) and corporeal expression (Keller and Appel, 2010, Chang et al. 2019) among musicians. 
Co-regulated timing is furthermore characterized by emergent behaviour, such as resilience in response to 
perturbation (Glowinski et al., 2016, 2017; Hilt et al., 2019). The studies suggest that co-regulated timing 
requires a balancing of processes, so that the system can maintain stability (or homeostasis) despite 
fluctuations (Davies, 2016; Changeux, 1999, p. 57). Stability is assumed to be a key element of a music 
ensemble's co-regulated timing, and it likely depends on musical skills, rehearsal time, musical complexity, 
and other confounds related to expression (Cochrane et al., 2013; Fabian et al., 2014, Keller, 2014). 
Ultimately, the timing will also affect emotional experiences (Levitin et al. 2018, Schiavio et al., 2017) and 
associated embodied expressions (Witek et al., 2014; Burger et al., 2017). As the capacity for co-regulated 
timing rests on each musician's capacity to synchronize, entrain, and socially co-regulate the sound-producing 
actions in view of joint timing assumptions (D'Ausilio et al. 2015; Volpe et al., 2016; Bishop, 2018), human 
sensitivity for isochrony may play an important role (Ravignani and Madison, 2017). However, while 
isochrony is a basis for the emergence of timing patterns at higher temporal levels, known as meter and 
rhythms (Repp and Su, 2013, Kotz et al. 2018, Scheurich et al., 2020), isochrony may be embedded in rather 
complex temporal patterns and endowed with non-isochronous pulse structures. Yet, even in those 
circumstances, timing can afford precise and stable rhythmic performance and entrainment (Frühauf et al., 
2013; Polak et al., 2016), suggesting that timing is based on latent processes capable of handling timing 
fluctuations.  

 In this paper, we assume that each musician in the ensemble holds a hypothesis about the ensemble's 
timing constancy, including tempo, meter, and expressive rhythmical structuring. Consequently, when an 
onset from another musician is arriving earlier than expected, a musician may respond by adapting in view 
of the predicted timing constancy. Timing constancy can thus be assumed to be a key element of a shared 
intentionality among musicians. 

 We thereby assume that musicians predict timing constancy, using perceived traces of timing 
features of the music ensemble. These predictions can be handled by Bayesian inferencing. As known, the 
Bayesian viewpoint involves a likelihood (how likely it is that a new temporal event stems from the assumed 
timing constancy) and a prior (the expected timing constancy in absence of observations), from which a 
posterior (expected timing constancy given the new temporal event) is inferred. In view of a next onset, the 
prior is updated by replacing the old prior with the posterior. Bayesian inference (Aitchison and Lengyel, 
2017) can be conceived of in terms of neural circuits (Friston et al. 2017), hierarchical circuits (Kanai et al., 
2015), homeostatic regulation (Pezzulo et al., 2015), or predictive coding (Koelsch et al., 2019). Vuust and 
Witek (2014) show how rhythm perception can be conceptualized as an interaction between what is heard 
(“rhythm”) and the brain’s anticipatory structuring of music (“meter”), using the predictive coding 
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framework and its implied Bayesian inference. 

 As far as we know, understanding the dynamics of social co-regulated timing from the viewpoint of 
an active listener is novel. Thereby, we model the listener as a dynamic linear system equipped with latent 
processes that capture constancy in timing, in view of the actions needed for social co-regulated timing. 
Pioneering work in cognitive dynamics (e.g. Haken, 1991; Kelso,1995; Port and Van Gelder, 1995) has been 
inspiring for using dynamic systems in musical applications, such as gesture analysis (Demos et al., 2014), 
simulations of musical expectations (Agres et al., 2018), emotion research (Grimaud and Eerola, 2020), and 
adaptive digital music synthesis and control (Van Nort and Depalle, 2017), but not for co-regulated timing 
and listening as far as we know. 
 The goal of the present paper is to propose and benchmark an algorithm which we call the Bayesian 
listener algorithm, or BListener for short. BListener can be considered a perception component of an action-
perception system for co-regulated timing, which perception modelled from the perspective of acting. The 
structure of the paper is as follows. In Section 2, we present the BListener algorithm and in Section 3 we 
discuss the basic diagnostics. In Section 4, we benchmark the algorithm with different datasets, and finally 
in Section 5 we discuss the limitations and future perspectives. See the Section on Supplementary Material 
for instructions on how to access the BListener R-package and its associated R scripts with tests and 
simulations. 
 
The Bayesian listener algorithm 
In this section, we define the basic timing concepts, and global analysis measures. Then we describe how the 
Bayesian listening algorithm works at sample level. 

Basic concepts of co-regulated timing 
BListener is based on onsets. Starting from a recording of a music ensemble, we can manually annotate 
onsets, and/or use onset-detection algorithms, to transform the signal into a one-dimensional array of onset 
times (in milliseconds). This array is then used as input to BListener, which in turn predicts timing constancy 
by tracking the implied classes of inter-onset intervals. Note that the inter-onset intervals represent durations 
of successive onsets produced by the music ensemble, regardless of the number of musicians and the 
musician who produces the onsets. Successive onsets thus define inter-onset-intervals (IOIs) from which 
other timing objects are derived (Clarke, 1999; London, 2012).  
 In this paragraph we define the timing objects that we use later on in the algorithm. We use the prefix 
IOI to stress the fact that all timing objects have a duration that can be traced back to an inter-onset-interval. 
The IOI-observations, or IOI-observed objects, result from onset-detection and/or onset-annotation of the 
music ensemble's recorded musical signal. Given two successive onsets extracted from the signal, the IOI-
observed object (with its defined duration) is observed after the second onset. The IOI-classes of constancy 
stand for IOIs that are inferred from the IOI-observations using the Bayesian approach, and they are used to 
predict future IOI-observations. In what follows, we will omit the explicit reference to constancy keeping in 
mind that IOI-classes are in fact latent timing parameters that define timing constancy. As latent parameter 
values of a (stochastic) process, IOI-classes will be defined by (Gaussian) distributions, with mean and 
variance. The mean will define the duration of the IOI-class and the variance will define the uncertainty about 
its duration. Multiple IOI-classes, depending on categories of IOIs that appear in the rhythms, can be tracked 
in parallel. As musical time proceeds, the IOI-classes estimate constancy by means of a multivariate time 
series. The Bayesian inference about the IOI-classes is regularized by a meter, which operates as a hyper-
parameter that constrains the variance in the ratio among IOI-classes. That meter is called the out-of-time 
IOI-meter, as it defines an assumed ratio among IOI-classes, disregarding how time evolves. For example, 
an IOI-meter with ratio {3, 2, 1} represents IOIs having an assumed ideal duration, for example, of 1500, 
1000, 500 milliseconds, or, of 600, 400, 200 milliseconds. The IOI-meter is a prior that can be extracted from 
a musical score, or it can be derived from an inspection of the data. For example, in an off-line analysis, one 
could use a k-means clustering of the first 15 seconds of IOIs to obtain an estimate of the out-of-time IOI-
meter. However, the out-of-time IOI-meter is distinct from the time-related IOI-meter, which defines ratios 
among the multivariate IOI-class time series, thus representing the IOI-class ratio at each sample of the 
multivariate time series. As shown below, the time-related IOI-meter can be regularized (constrained) by the 
out-of-time IOI-meter, and this regularization can in turn affect the Bayesian inference about the IOI-classes. 
Finally, the IOI-tempo at a particular moment in time is defined as a linear combination of the IOI-classes at 
any moment in time, using the out-of-time IOI-meter ratios to calculate a mean of the IOI-class time series. 
Examples are given below. 
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 Blistener obeys dynamic laws and, for reasons of computational efficiency, the BListener states will 
be updated at a sampling rate of 100 samples per second, unless specified otherwise by the user (e.g., up to 
1000 samples per second). However, inside this dynamic processing, we handle IOI objects in log2dur scale. 
The latter is a log2 transformation of the millisecond scale, and "dur" stands for duration. For example, the 
relation between 880 and 800 milliseconds is expressed in log2dur as a difference between log2(880) and 
log2(800), which is 0.1375 log2dur, and this is the same as the difference between log2(440) and log2(400), 
log2(440/400) or log2(1.1). Many people, however, are used to working with durations in milliseconds rather 
than in log2dur. Accordingly, when we specify the IOI-meter, we will also specify whether the ratio is defined 
in milliseconds or in log2dur. What counts here is that inside BListener, IOI objects are all handled in the 
log2dur scale, while the dynamic updating of Blistener proceeds in milliseconds. In the R-package 
BListener, the above concepts are defined in the function BLmain. 

Global features of co-regulated timing 
Given a timing analysis, done by BListener, we extract global features of timing constancy, using measures 
of fluctuation, stability, narration, and outliers. All these measures somehow involve the IOI-class time series 
produced by BListener. For example, fluctuation is based on the prediction error, which is defined as the 
difference, in log2dur, between the duration of an IOI-observed object and the duration of the IOI-class object 
at the time when it was assigned to this IOI-class. The mean of the absolute values of all those differences 
over the time series for an IOI-class is the measure Fluctuation1, and it is calculated for each IOI-class 
separately. Alternatively, we take the standard deviation of those differences as another measure of 
fluctuation, called Fluctuation2. The measure Stability is obtained by calculating the IOI-class' standard 
deviation over the time series. 
 IOI-observations get assigned to an IOI-class according to a metric (e.g., smallest difference in 
duration). Hence, it is possible to label each IOI-observation assignment with a code that represents the IOI-
class. Given three IOI-classes, for example, one could thus get a sequence of respective assignments, such 
as: 1, 2, 1, 3, 2, 2, 3, etc... A measure of entropy or structure can then be inferred from it, called Narration. 
Without going in much detail here, we will apply a recurrence analysis (e.g., Nakayama et al., 2020; Tolston 
et al., 2020) and calculate the recurrence ratio (RR), which amounts to a percentage representing structure in 
terms of the number of points that appear closely together in the phase space versus all points in the phase 
space, including those that don't appear closely together. Finally, Outlier represents the sum of outlier 
durations, which we define as all IOI-observed durations greater than a specified threshold. Sometimes, 
outliers can be very small values due to onset mistakes. However, they can also be large, due to a performance 
breakdown of a few seconds. When detected, outliers are neglected and the system navigates on its own, 
based on the system's dynamics. In the R-package BListener, these global measures are defined in the 
function BLpost. 

The Bayesian listener algorithm 
The Bayesian listener algorithm is described in terms of a state-space model (Petris et al. 2009; Shumway 
and Stoffer, 2017), a concept that can be related to a multivariate version of the Kalman filter (cf. Meinhold 
and Singpurwalla, 1983).  

The univariate approach 
Figure 1 shows the algorithm's logic at sample level, for the univariate case (i.e., one single IOI-class). The 
horizontal axis represents discrete time, with black circles as samples at 𝑡 − 2, 𝑡 − 1 and 𝑡. The label c is 
used for the IOI-class, and o is used for the IOI-observation. Instances of one IOI-class are denoted: 
𝑐'()	, 𝑐'(+	, 𝑐'	.	The IOI-observed object occurs at 𝑡 , and is notated as 𝑜'. The four small arrows labelled 1 to 
4 show the different steps of a Bayesian inference. While in the multivariate version of the algorithm, 
Bayesian updating may apply to another IOI-class that runs in parallel, the IOI-observed objects are always 
processed in sequence and so, at sample level, Bayesian update is applied to only one IOI-class at a time. In 
parallel with this Bayesian updating, the other IOI-classes will be updated according to a system equation, as 
explained below. 
 The transition of the IOI-class from one sample to another sample is described by the state equation 
(Equation1), while the connection of an IOI-class to the IOI-observation is described by the observation 
equation (Equation 2). Both equations represent stochastic processes. The labels 𝑤' and 𝑣' represent 
independent noise whose normal distribution is characterized by zero mean and a fixed variance 𝑊' and 𝑉'. 
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𝑐'	 = 	 𝑐'(+	 +	𝑣' 	~𝑁(0, 𝑉')  (Equation 1) 

𝑜'	 = 	𝐹'𝑐'	 + 	𝑤' 	~𝑁(0,𝑊')  (Equation 2) 

 We adopt a simple rule for the state equation (Equation 1), which is that the IOI-class at time 𝑡 is 
the same as the IOI-class at time 𝑡 − 1, except that system noise is added. Equation 1 therefore characterizes 
the stochastic process as random walk. Obviously, as the IOI-class is a latent process, its value cannot be 
directly observed, and thus the goal is to estimate it using IOI-observations that become available. 
 Provided that the IOI-observation is not an outlier, it is assigned to an IOI-class on the basis of a 
metric, here: the smallest difference between the duration of the IOI-observed object and the duration of any 
of the IOI-class objects. After the assignment, the IOI-observed object is handled as an assigned IOI, and 
Equation 2 applies in order to update the IOI-class using Bayes rule. The noise introduced by Equation 2 
accounts for the uncertainty in the observation, such as measurement mistakes in onset detection. While this 
IOI-observed object is processed (i.e. involving Bayesian inference), the process of the other non-assigned 
IOI-classes gets updated according to Equation 1. 
 The state equation (Equation 1) and the observation equation (Equation 2) drive stochastic processes 
that obey Gaussian probability laws.  Hence, using the graph of Figure 1, it is possible to specify the steps 
from one sample to another in terms conditionals: 

𝑐'|𝑐'(+	~	𝑁(𝑐'(+, 𝑉')	
𝑜'|𝑐'	~	𝑁(𝐹'𝑐',𝑊')	

 The step from 𝑐'(+to 𝑐'	obeys a Gaussian probability distribution with 𝑐'(+ as mean and 𝑉' as 
variance. The step from 𝑐'to 𝑜'	obeys a Gaussian probability distribution with 𝐹'𝑐' as mean and 𝑊' as 
variance.  Both mean and variance follow directly from Equation 1 and Equation 2. The arrows in Figure 1 
indicate an updating of the IOI-class, given an IOI-observed object that becomes available. This updating 
can be understood as a Bayesian inference in three steps.  
 Step 1 (Prior). Assume that we are standing in position 𝑐'(+	where we have not yet encountered the 
IOI-observed object. Given the previously IOI-observed objects up to now (from 1 to 𝑡 − 1), we have a 
known mean and a known variance of the IOI-class at our disposal, which we denote by:  
𝑐'(+|	𝑜+:'(+	~	𝑁(𝑐	<'(+, 𝑐̌'(+). Note that at the start of the latent process, we just have to make a guess about 
this mean and variance, denoted 𝑐	<'(+ and 𝑐̌'(+. This can be done manually, or by other methods, for example, 
by k-means clustering on the beginning part of a data-set. Next, we use the state equation (Equation 1) to 
make a hypothesis (= the prior) about our next IOI-class 𝑐' (see arrow 1): 𝑐'|	𝑜+:'(+ 	=
	𝑐'(+|	𝑜+:'(+~	𝑁(𝑐	<'(+, 𝑐̌'(+ 	+ 	𝑉'). Given the conservative approach, our hypothesis about the mean for the 
IOI-class 𝑐' does not change from our current position and therefore, it has the same mean as the IOI-class 
𝑐'(+, namely: 𝑐	<'(+. The system variance, however, will be the proper variance of the IOI-class that we had, 
plus the new variance due to system noise, thus 𝑐̌'(+ 	+	𝑉' =	𝑅' . 
 Step 2 (Likelihood). While we still await the IOI-observed object (being ourselves at position 𝑐'(+), 
we can already make a forecast about this object. That forecast will be conditioned by our previous forecast 
about 𝑐', and the observation equation that allows us to go from 𝑐'	to a forecast of 𝑜'. Using Equation 2, we 
thus get (arrow 2):	𝑜'|𝑐', 𝑜+:'(+ ~	𝑁(𝐹'𝑐	<'(+,𝑅' 	+ 	𝑊'). The obtained mean denoted 𝐹'𝑐	<'(+	is our forecast 
about the IOI-observed 𝑜'. The total variance 𝑄' will include the system variance, 𝑅' , plus the variance due 
to observation, 𝑊', thus 𝑅' 	+	𝑊' = 	𝑄'. 
 Next, our IOI-observed object becomes available (arrow 3) and now we can calculate the prediction 
error 𝑒' as the difference between the forecast 𝐹'𝑐	<'(+,	and the IOI-observation 𝑜'. The prediction error is 
therefore 𝑒' 	= 	 𝑜' - 𝐹'𝑐	<'(+. 
 Step 3 (Posterior). We now have our observation and so we can look back (in the graph) to adapt 
the IOI-class on which we based our forecast and prediction error measurement. This step involves the core 
of the Bayesian inference (arrow 4), which we formulate here in terms of probabilities: 𝑃(	𝑐'|𝑜+:') ∝
𝑃(	𝑜'|𝑐'	,𝑜+:'(+)𝑃(𝑐'	,𝑜+:'(+). In terms of the graphism, it results in a step where we go from the IOI-observed 
object back to the IOI-class: 𝑐'|	𝑜+:'	~	𝑁(𝑐	<', 𝑐̌'), where 𝑐	<' 	= 	 𝑐	<'(+ 	+ 	𝐾'𝑒' and 𝑐̌' 	= 	𝑅' 	− 	𝐾'𝑅' . The 
mean of 𝑐',	denoted 𝑐	<'  is equal to the previous mean 𝑐	<'(+ plus the observation error 𝑒', weighted. The 
weighting factor 𝐾' is sometimes called the Kalman gain. It is a ratio of the system variance 𝑅'  with respect 
to the total variance 𝑄'	(= system variance + observation variance). If the observation variance is small, then 
the effect of the error on the IOI-class is large. If the observation variance is large, the effect is small, and 
that will imply that a large difference between the expected IOI-observed object and the real IOI-observed 
object will have a small impact on the IOI-class. The variance of 𝑐', denoted 𝑐̌'  is based on the previous 
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variance, weighted by the Kalman gain. The above formulas for 𝑐	<'  and 𝑐̌'  are standard for the evaluation of 
conditional Gaussian distributions (e.g., Bishop, 2006). 
 Once these three steps (four arrows in Figure 1) are taken, our updating of the IOI-class is finalized. 
We use this result about 𝑐	<' and 𝑐̌' 	as the assumption for our next sample, to further continue the updating. 
As such, the Bayesian inference is made dynamic. 

The multivariate approach, with regularization 
The aforementioned state-space model applies to a multivariate model, with several IOI-class processes 
running at the same time. Thereby, the IOI-classes can be forced to obey the IOI-meter by adding a 
regularizing term to the state equation (Equation 1). That term will drive the time-related IOI-meter (or the 
ratio among IOI-class time series) towards the out-of-time IOI-meter. The regularization is defined as a 
fraction of 𝑥' = 	(𝑚	 −	𝑚')	−	

+
F
∑FHI+ (𝑚	 −	𝑚'),	where 𝑚 stands for the out-of-time IOI-meter, 

𝑚'	stands for the time-related IOI-meter at time 𝑡, and 𝐶 stands for the total number of IOI-classes in 𝑚. The 
time-related IOI-meter is obtained by taking the duration of the IOI-class objects at time 𝑡 and subtracting 
the lowest value from these values (in log2dur). In fact, a fraction of 𝑥', defined by a parameter 𝑔, is added 
to the IOI-class so that it gradually drives the IOI-classes to the ideal out-of-time IOI-meter. 
 For example, assume that the three IOI-class durations at t are 8.5, 7, and 5.7 log2dur, respectively, 
and 𝑚 is {3, 1, 0} (ratios in log2dur). Then 𝑚' is {8.5, 7, 5.7} 5.7 = {2.8, 1.3, 0}, and 𝑚−𝑚' is {3, 1, 0}- 
{2.8, 1.3, 0} = {.2,-.3,0}, whose mean is -.03. So,	𝑥' becomes {.17, -.33, -.03}. If, in our state equation, we 
would add this term to the IOI-class durations at 𝑡 we would drive our IOI-class to: {8.5, 7, 5.7} + {.17, -.33, 
-.03} = {8.67, 6.67, 5.67}. The corresponding time-related IOI-meter has {3, 1, 0}, which we wanted. 
However, in our state equation, we will drive the IOI-class process incrementally to this goal, hence, we 
multiply with a control parameter 𝑔 that depends on the sampling rate of the process. Given the fact that new 
IOI-observations constantly come in occasionally, the regularization will be constantly at work, slightly 
driving the IOI-class processes to the out-of-time IOI-meter. 

Diagnostic 
In this section, artificial data are created and used for testing the algorithm's behaviour. First, we test 
smoothness (in a univariate setting), then the regularization of the IOI-classes (in a multivariate setting). See 
the Section on Supplementary Material for more details on the parameters used for simulation and testing. 
Using the R scripts, all figures can be replicated and parameters can be changed.  

Smoothness effects 
Smoothness is a feature of the predicted timing constancy. However, smoothness is co-defined by the system 
variance 𝑉' and the observation variance 𝑊', and their ratio r = 𝑉' / 𝑊'	is overall indicative. To test 
smoothing, we generated a sinusoidal signal consisting of 75 data points. Then we generated 75 random 
numbers using a normal distribution with zero mean and standard deviation of 15% of the y-value of the 
sinusoid. These numbers were then added to the sinusoidal signal and the resulting values served as duration 
values of IOI-observed objects. We transformed these values to milliseconds so that they could be used as 
input to the Bayesian listener algorithm (dots in Figure 2, left panels). The goal is to retrieve a sinusoid-like 
IOI-class time series from the IOI-observed objects, using different values for 𝑉' and 𝑊'. 
 The result is shown in Figure 2, with effects for different ratios r in plots and tables. The first row 
of plots reveals a smooth curve (see the left panel) but the residuals lack a uniform distribution over time (see 
the middle panel) due to the fact that the curve has a delay, despite its normal distribution out-of-time (see 
the right panel). The second row of plots reveals a relatively smooth curve with improved uniform 
distribution. The third row of plots reveals severe overfitting as the IOI-class jumps to each IOI-observed 
object with overshooting. The table shows the measured values for Fluctuation1, Fluctuation2, and Stability. 
Recall that the Fluctuation1 measure is based on the prediction error, thus before the Bayesian updating step. 
After updating, the IOI-class will move to the IOI-observation but that brings it in a position that is away 
from the true mean and so the distance with another random IOI-observation is likely to be slightly larger 
than when the IOI-class would be positioned at the true mean. In addition, the algorithm is stochastic which 
means that noise is added to each observation. The simulation suggests that the second row, with r = 0.01 
and W = 0.001 and V = 0.00001, gives the best results for Fluctuation1 and Fluctuation2. Stability is just the 
standard deviation of the smoothed curve. 



Co-regulated timing in music ensembles 

Regularization effects 
In this section, we demonstrate the regularization effect with an artificial stimulus. As before we first define 
the IOI-classes and then we build IOI-observed objects that fluctuate around those IOI-classes. We work 
with three IOIs. IOI1 is going from 400 to 500 milliseconds, IOI2 goes from 300 to 200 milliseconds, and 
IOI3 remains constant at 100 milliseconds. Each has 100 data points, which we then translate to the log2dur 
scale. Then, random numbers are generated at each data point, using a normal distribution with zero mean 
and standard deviation of .15 log2dur. When these random numbers are added to the IOI-classes, one obtains 
the IOI-observed objects, shown as dots in Figure 3. The next step, then, is the creation of a one-dimensional 
array of IOI-observed objects, by repeatedly taking values from the three IOI-classes. Finally, all values are 
translated to the millisecond scale. Accordingly, the first 6 first IOI-observed values are: 354, 321, 96, 472, 
312, 100 milliseconds, and so on. The dataset thus simulates the situation that an ensemble plays in a meter 
which, while maintaining tempo, gradually shifts to another meter. 
 The task is to reconstruct the IOI-classes from the IOI-observed objects. The parameter 𝑔 (see 
BLmain in the R-package BListener) thereby defines the strength of the regularization of the IOI-classes. 
Initial values are given as starting values for the IOI-classes, using an out-of-time meter indication of {4, 
3,1} in milliseconds. The expected smallest IOI is 100 milliseconds. The left plot (Figure 3) shows that the 
IOI-classes capture the drift in the upper two IOIs. The right plot shows that the IOI-classes maintain the 
meter, despite the drift in the data. Due to regularization, the IOI-classes are forced to have a similar time-
related IOI-meter and therefore, Fluctuation1 and 2 should increase for IOI1 and IOI2, as the prediction error 
becomes larger. The horizontal line around 7.6 log2dur is the IOI-tempo, which is derived from a linear 
combination of the IOI-classes, using the time-related IOI-meter as parameters. Often the goal is to plot 
tempo in the vicinity of about 2 Hz, which equals an IOI of 500 milliseconds, or about 9 log2dur. Given the 
relationship among the IOI-classes, the estimated tempo is very similar in both the non-regularized and the 
regularized analysis. In order to have a clear picture we plotted the IOI-tempo one log2dur unit lower. 

Applications 
In this section, we apply BListener to data from real music ensembles. The first example is a recording of a 
student choir consisting of four singers. The second example is a re-analysis of a dataset consisting of 14 
duet singers each performing 8 times the same song. 

The MIT2019 dataset: trial 19 
Figure 4 shows data from a student choir of four singers (recorded in 2019 at Gent University). Here, we 
analyse a single performance, called "trial 19". The top plots of Figure 4 are based on a merging of individual 
recordings of each singer. These onset times were then concatenated, sorted and differentiated so that one 
single IOI sequence was obtained, which was then given as input to the BListener. The bottom plots of Figure 
4 are based on an omni-microphone recording of the same performance. The parameters of the BLmain 
function are outt = 1.5, tg = 360, meter = {8,4,2,1}, V = .00001, W = .001. 
 Due to asynchronization among singers, the merged recording shows many short IOIs. In the top 
left plot the analysis goes wrong because the lowest IOI-class drifts away and starts capturing those very 
short durations.  In the top right plot, regularization is applied so that this drift doesn't happen and a rather 
decent pattern is obtained. In the bottom left plot, we see a random walk phenomenon in the upper two IOI-
classes due to the fact that only few data are available. In the bottom right plot, regularization is applied and 
this reduces the variance among IOI-class time series. The corresponding tables show global measures for 
each IOI-class. 

The JustHockIt dataset 
BListener is applied to the JustHockIt dataset of duet singers (see Dell' Anna et al., 2020). Our goal was to 
compare BListener results with previous reported findings. We used 14 human music ensembles plus 1 
artificial MIDI reference from the JustHockIt dataset, each performing eight times the same song in two 
conditions, with movement (four trials) and without movement (four trials). The music ensembles consisted 
of two singers (duets), who alternatingly sang a note except for some short note repetitions. The parameters 
of the BLmain function are: meter = {3,2,1}, outt = 1.5, V = 1e-05, W = 1e-03, and either 𝑔 = 0 or 𝑔 = 0.1. 
 Figure 5 shows an analysis of duet 16 and duet 4 without and with regularization. When the music 
ensemble has its timing in agreement with the score, then the IOI-tempo (represented by dotted lines) will 
fully overlap with the 𝐼𝑂𝐼-class (as in the plots of duet 16). However, for expressive reasons, or for reasons 
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that have to do with musical capabilities, it may happen that a music ensemble's co-regulated timing slightly 
deviates from the prescribed meter in the score, for example when short notes are performed shorter and long 
notes are performed longer. Understanding how this timing elasticity relates to musical expressivity is a topic 
of ongoing research (e.g., Coorevits et al., 2019). Here we see that duet 4 generates an IOI-meter of about 
{3, 1.5, 1} (in milliseconds ratio) right from the beginning of the performance, while the meter is in fact 
{3,2,1} (in milliseconds ratio). When regularization is applied, the IOI-classes are forced to stay within the 
constraints of the out-of-time IOI-meter. 
  Figure 6 provides an overview of the measures of the JustHockIt dataset. The duet numbers are 
labels, 15 in total. Duet 1 is a midi-based performance used here as control. Overall, the graph suggests that 
the measures are correlated. Narration is reflecting the fact that low fluctuation implies more structure in the 
assignment of IOI-observed objects to IOI-classes. Dell'Anna et al. (2020) also provides an assessment of 
performance quality and self-experienced agency, done by the performers themselves. Table 1 gives an 
overview of the correlations of BListener measures (using Kendall's tau) and subjective estimates. The results 
are similar to the results of Dell'Anna et al. (2020). 
 The question whether regularization should be applied or not deserves caution, especially in relation 
to subjective self-assessments such as performance quality and agency. Regularization checks for the correct 
meter, and it discounts deviations from the assumed correct meter. However, it is possible that performers 
have a good impression of their own performance quality, as reflected in the annotation task and in the 
responses to agency questionnaires, despite the fact that the prescribed meter was not followed. 

Discussion 
From the viewpoint of the music ensemble as a whole, the dynamics of co-regulated timing can be understood 
in terms of collaborative actions that bring about emergent patterns related to meter, rhythms, and tempo. 
From the viewpoint of a participating musician, the dynamics can be understood in terms of actions informed 
by predictions about the ensemble's overall timing. BListener is an attempt to model predictions about a 
music ensemble's timing constancy, using Bayesian inferencing. The outcome of BListener is a multivariate 
time series representing perceived timing constancy, given the music ensemble's co-regulated timing events 
(as inter-onset-intervals) as input. From these time series it is possible to extract global features about the 
latent processes.   
 BListener has the option to regularize predictions about timing constancy by binding the variance of 
prediction tracks. Thus, rather than assuming that the prediction tracks evolve independently from each other, 
we make them dependent using a hyper-parameter, which is the out-of-time IOI-meter. When regularization 
is turned on, BListener "believes" (weakly or strongly, depending on the control) that observed IOIs should 
be processed using the meter as prior. This regularization can be useful in contexts where obedience to the 
meter is regarded as a feature of the global timing intention. For example, the co-regulated timing of duet 10 
in the JustHockIt database shows constancy but no adherence to the meter. A basic idea is that regularization 
also prevents drift of IOI-classes. 
 Constancy in timing correlates with the subjective assessment of timing quality and even with the 
subjective assessment of self-experienced agency (Dell'Anna et al., 2020). While statistical models can be 
built for predicting subjective experiences such as performance quality and agency, we restricted ourselves 
here to a simple correlation analysis which suggests that when timing becomes more predictive, the feeling 
of control becomes more pronounced. However, this finding needs further investigation since there are many 
confounding variables that play a role, such as level of musicianship and rehearsal time. Overall, it can be 
assumed that a music ensemble's capacity to establish timing constancy equals a kind of power that might 
influence listeners affectively, such as in feelings of control or embodied synchronization. Or, seen from 
another angle: the ability to affect listeners depends on a musical power, which is conditioned by the music 
ensemble's capacity for generating accurate co-regulated timing. BListener thereby offers measures for 
timing constancy in non-stationary timing conditions such as expressive timing with rubato. However, further 
work is also needed here. 
 BListener focuses on perception rather than on action. However, by turning the BListener into a real-
time algorithm equipped with musical synthesis tools it is possible to set up computer simulations of co-
regulated timing actions. A preliminary proof of concept was developed by Laghetto (2019) in a setting of 
three percussionists who jointly played a musical piece on percussion instruments. The algorithm's task was 
to track the timing constancy and provide feedback so that the musicians could adapt their timing in view of 
improving their co-regulation. The real-time application was based on the onset detector of the Python 
madmon package (Böck et al., 2012) and it used shifting averages of IOIs along the IOI-classes, as described 
in Dell'Anna et al. (2020). Coloured lightning was used as feedback to the measured fluctuation (which is 
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used as marker of timing constancy, and for interaction quality), using variance levels as thresholds for 
different colours. The proof of concept showed that co-regulated timing can be traced and used as an indicator 
of interaction quality, which can be used in the feedback that drives the social interaction towards homeostatic 
regulation. 
 BListener is embedded in the framework of dynamic linear models and state space representations 
thereof. However, the current implementation also has some weak points. For example, BListener adopts a 
discrete approach to timing, as it takes onsets as input. But in some music, timing is more based on amplitude 
modulations without strong energetic bursts where onset extraction can be hard, such as in legato violin 
playing. Another limitation concerns the dependency on priors. Although priors are considered a major 
strength of the Bayesian approach, their specification can be hard and delicate. For example, when the IOI-
classes are set to be highly adaptive to observations, their trajectory can go terribly wrong, as illustrated in 
Figure 4. Especially in view of real-world applications, more work is needed to prepare for unexpected 
situations. In such contexts, it is likely that the regularization with the out-of-time IOI-meter needs more 
flexibility. Another possible point of improvement is the rather simple assignment rule of IOI-observations 
to IOI-classes, which is currently based on a difference between durations. This rule is blind for musical 
structure, since IOI-classes have no clue about narrative expectations. All these examples are illustrative of 
the fact that BListener is but a first step to a more encompassing solution. 
 Despite these and other limitations, BListener may be useful in applications involving music-based 
bio-feedback. Previous results in this domain (for example in Moens et al., 2014; Van den Berghe et al., 
2020; Lorenzoni et al., 2019; Moumddjan et al., 2019; Buhmann et al., 2018) suggest that beneficial outcomes 
of human-machine synchronization are conditioned by constancy in co-regulated timing. If timing is of low 
quality, then beneficial effects will probably be poor or even neglectable, suggesting a dependency of effect 
on timing constancy. However, the timing of an interaction can be reinforced with bio-feedback. At this 
point, BListener can provide measures of co-regulation in social groups, which are useful in interactive 
multimedia systems that train synchronized social interaction skills in view of affective outcomes. In an 
application with fitness-machines (Fritz et al., 2015), it was shown that participants can co-regulate an 
ongoing audio stream using physical effort and concentration. The co-regulated activity can establish a 
particular interaction state that affects experiences of agency in participants. Similarly, research on 
individual-oriented music-based biofeedback systems shows that reinforcement learning can be used to steer 
users towards particular behaviors (e.g., Van den Berghe et al., 2020; Lorenzoni et al., 2019). BListener could 
be a component of a biofeedback system that uses reinforcement learning to steer users towards particular 
co-regulation behaviour in view of attaining particular levels of timing constancy, and, likely, its associated 
performance quality. 
 Finally, it is important to realize that co-regulated timing in a music ensemble is more than Bayesian-
inferencing. Human co-regulated timing in a music ensemble is obviously intended, even before the music 
ensemble starts playing. Moreover, co-regulated timing is likely to involve states of affect and emotion such 
as feelings of agency and arousal, suggesting that Bayesian inferencing forms part of a more encompassing 
story. Earlier references to the concept of homeostasis pointed to a more encompassing dynamic of reward-
based regulation and emotional states (Leman, 2016, pp. 188; Damasio, 2017). The metaphors reveal that 
humans are intrigued by extraordinary precarious states, especially when these states are difficult to self-
realize. 

Conclusion and future work 
BListener is an algorithm that simulates how a listener-musician in a music ensemble captures the timing 
constancy of that ensemble, such that actions could be taken to co-regulate that timing. BListener only 
implements the perception part, not the action part. Currently, BListener can be applied to the off-line 
analysis of timing in music ensembles. BListener thereby operates in a discrete environment (using onsets). 
In future work, we envision a real-time implementation of the algorithm, as a perception component of an 
artificial musician who plays along with human musicians, capable of estimating timing constancy in human-
machine interactions. 

Supplementary Material 
Scripts for generating and plotting all figures can be found at:  
https://github.com/IPEM/BListener_supplementary_material.  
The R-package BListener can be found at  
https://github.com/IPEM/BListener 
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Table 1. Correlation analysis of the JustHockIt dataset using Fluctuation1, Stability, Outlier, Narration (or 
RR)) and subjective measures Quality and Agency as provided by Dell'Anna et al. (2020). The values on the 
left are based on analysis without regulation, on the right with regularization. 

     Agency 
    Quality .42/.42 
   RR .49/.51 .20/.23 
  Outlier -.47/-.56 -.51/-.54 -.21/-.18 
 Stability .34/.46 -.62/-.62 -.39/-.45 -.16/-.15 
Fluctuation1 .66/.60 .41/.41 -.64/-.57 -.45/-.33 -.17/-.03 

 
 
Figure 1. State-space model for Bayesian inference (see text for explanation). 

 
Figure 2. Smoothness effects. Different values for r=V/W are shown in three rows of plots. The columns 
show the data and the retrieved IOI-class (log2dur over time in samples, 100 samples/second); the residuals 
(log2dur over time in samples); and the distribution (samples versus theoretical normal distribution, with -1 
and 1 as standard deviation). The rows of plots correspond with the rows in the table with r=1e-4, r=0.01, 
and r = 100. 
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Figure 3. Regularization effects. Left plot: no regularization (𝑔 = 0). Right plot: with regularization (𝑔 = 0.1). 
The vertical axis is log2dur over time samples (100 samples/second).  Dot-shapes (squares, triangles, circles) 
are IOI-observed objects that got assigned to the IOI-classes. The dotted line at about 7.6 log2dur indicates 
the tempo. F1 = Fluctuation1, F2 = Fluctuation2, and S = Stability. 

 
 
Figure 4. BListener applied to choir singing. The left plots have no regularization (𝑔 = 0), the right plots do 
have regularization (𝑔 = 0.1). The top plots have onset detection based on a merge of onsets extracted from 
the audio signals provided by four microphones. The bottom plots have onset detection based on a single 
audio signal provided by an omni-microphone recording. The tables show fluctuation and stability measures 
of IOI-classes. The labels "IOI1", "IOI2" etc. refer to the IOI-classes shown in the panels, starting from top 
to bottom. F1= Fluctuation1, F2 = Fluctuation2, S= Stability. 

 
 
Figure 5. BListener applied to duets 16 and 4 of the JustHockIt dataset of Dell'Anna et al. (2020). Left plots 
show duet 16 and right plots show duet 4. Same for tables. The top row is without regularization. The bottom 
row is with regularization. The horizontal axis in each plot shows the time in samples (100 samples/seconds), 
the vertical axis shows duration in log2dur scale. Each plot shows three horizontal lines representing the IOI-
classes. The dotted horizontal line (not always very visible due to overlap) represents the IOI-tempo. Big 
dots are outliers but they appear only in the plots of duet 4. F1= Fluctuation1, F2 = Fluctuation2, S= Stability. 
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Figure 6. Analysis of the JustHockIt dataset of Dell'Anna et al. (2020). Comparison of global measures for 
the non-regularized (𝑔 = 0) (left column of plots) and regularized (𝑔 = 0.1) (right column of plots). The 
horizontal axis in each panel shows the duets ordered according to Fluctuation1 per duet, as in the top plots. 
Here, we use only the Fluctuation1 value of the second IOI-class. The bars show the mean and standard 
deviations for each measure. Conditions (movement, non-movement) are mixed as tests showed no 
distinction between moving and non-moving.  

 


