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Abstract
Human activities can lead to a shift in wildlife species’ spatial distribution. 
Understanding the specific effects of human activities on ranging behavior can 
improve conservation management of wildlife populations in human-dominated 
landscapes. This study evaluated the effects of forest use by humans on the spa-
tial distribution of mammal species with different behavioral adaptations, using 
sympatric western lowland gorilla and central chimpanzee as focal species. We col-
lected data on great ape nest locations, ecological and physical variables (habitat 
distribution, permanent rivers, and topographic data), and anthropogenic variables 
(distance to trails, villages, and a permanent research site). Here, we show that an-
thropogenic variables are important predictors of the distribution of wild animals. In 
the resource model, the distribution of gorilla nests was predicted by nesting habi-
tat distribution, while chimpanzee nests were predicted first by elevation followed 
by nesting habitat distribution. In the anthropogenic model, the major predictors of 
gorilla nesting changed to human features, while the major predictors of chimpan-
zee nesting remained elevation and the availability of their preferred nesting habi-
tats. Animal behavioral traits (body size, terrestrial/arboreal, level of specialization/
generalization, and competitive inferiority/superiority) may influence the response 
of mammals to human activities. Our results suggest that chimpanzees may survive 
in human-encroached areas whenever the availability of their nesting habitat and 
preferred fruits can support their population, while a certain level of human activi-
ties may threaten gorillas. Consequently, the survival of gorillas in human-dominated 
landscapes is more at risk than that of chimpanzees. Replicating our research in other 
sites should permit a systematic evaluation of the influence of human activity on 
the distribution of mammal populations. As wild animals are increasingly exposed 
to human disturbance, understanding the resulting consequences of shifting species 
distributions due to human disturbance on animal population abundance and their 
long-term survival will be of growing conservation importance.
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1  | INTRODUC TION

Human intrusion and activities in natural landscapes are common 
across all ecosystems and are seriously threatening wildlife (Frid 
& Dill, 2002). For long-term survival, it is necessary for species to 
persist in human-dominated landscapes. Several trade-offs often in-
fluence the dynamics of wildlife populations which determine their 
survival in the natural system. Those trade-offs relate to food acqui-
sition, nesting, territoriality, and mating and are affected by factors 
such as competition, predation, habitat quality, and human distur-
bance (Cresswell, 2008; Frid & Dill, 2002; Tédonzong et al., 2019). 
Understanding the ecological impact of those factors on wildlife 
populations is important to their conservation in human-dominated 
landscapes.

Predation is an important ecological factor shaping wildlife 
species distribution. The effects of predation on wildlife species 
can be lethal (direct killing of animals, Cherry, Conner, & Warren, 
2015) or nonlethal (behavioral modification or induced physio-
logical stress, Lima, 1998; Messina, Edwards, Eens, & Costantini, 
2018). The latter effect has been characterized as a consequence 
of perceived predation risk (Chutipong, Steinmetz, Savini, & Gale, 
2015; Cresswell, 2008; Frid & Dill, 2002). Previous studies have 
reported that animal species may respond to predation risk in 
several ways: (a) Species can alter their movements by changing 
direction or moving more slowly in the presence of the predation 
risk (Courbin, Fortin, Dussault, & Courtois, 2014); (b) animals may 
become more vigilant due to fear, and this can contribute to re-
ducing the foraging effort as well as the time spent on feeding 
(Cherry et al., 2015; Clinchy et al., 2016; Haswell, Jones, Kusak, 
& Hayward, 2018); and (c) animals may also respond to preda-
tion risk by avoiding areas used by the predator (Dröge, Creel, 
Becker, & M'Soka, 2017; Plante, Dussault, Richard, & Côté, 2018; 
Wereszczuk & Zalewski, 2015). Changes in the spatial distribu-
tion of a species are a common response to predation risk, and 
this essentially means that some parts of the landscape become 
unsuitable for the animal (Gill, Norris, & Sutherland, 2001; Oriol-
Cotterill, Valeix, Frank, Riginos, & Macdonald, 2015).

Each prey species in a predator–prey system adopts a level of 
vigilance in response to its perception of the risk of predation in 
presence; the higher the level of apprehension of the predation risk, 
the higher the space which will be unsuitable for the animal species 
(Brown, Laundre, & Gurung, 1999; Frid & Dill, 2002). This means that 
the perceived risk of predation may vary according to the individ-
ual species considered in the predator–prey system (Linder & Oates, 
2011). The perceived risk of predation can cause the reduction in 
suitable habitat available to the species if the area avoided contains 
valuable feeding opportunities or are important nesting habitat 
types (Brown et al., 1999; Norum et al., 2015).

Studies on the negative effects of predation risk on wildlife 
population dynamics are mostly limited to carnivore–prey systems, 
even though the presence of humans may have the same effects on 
species as those resulting from the presence of natural predators 
(Zuberbühler, 2007). The avoidance of an area by an animal spe-
cies due to the presence of another ecologically different species 
is evidence that the first species considers the second as a predator 
(M'Soka, Creel, Becker, & Murdoch, 2017). This divergence in animal 
behavior is often called “disturbance” when it is caused by humans 
(Frid & Dill, 2002). Humans are now either permanently present 
(Bortolamiol et al., 2016; Leblond et al., 2011; Scholte & Iyah, 2016) 
or temporarily present (Gehr et al., 2017; Paton, Ciuti, Quinn, & 
Boyce, 2017) in almost all ecosystems, and human settlements are 
often found close to wildlife populations. Hunting-related distur-
bance, but also activities such as gathering, and logging, or even the 
presence of villages and roads, is perceived as a threat by wildlife 
species, inducing some changes in their spatial distribution (Frid 
& Dill, 2002; Koerner, Poulsen, Blanchard, Okouyi, & Clark, 2017; 
Lindshield, Danielson, Rothman, & Pruetz, 2017; Paton et al., 2017; 
Tagg et al., 2018; Tucker et al., 2018; Vanthomme, Kolowski, Korte, 
& Alonso, 2013).

It is more and more crucial to evaluate the effects of anthropo-
genic factors on species' distributions in order to tease out why species 
respond differently to human disturbance, because of its application 
in conservation management (Alberti et al., 2003; Albuquerque et al., 
2018). Studies show that changes in the distribution of mammal pop-
ulations due to ecological and human disturbance can vary from one 
species to another (Wijesinghe & Brooke, 2005). A question arises as 
to why species respond differently; specifically, how the behavioral ad-
aptations of species determine their responses to human disturbance 
(Vazquez & Simberloff, 2002). The differential response of animal spe-
cies to a disturbance is likely to at least partly be a consequence of their 
behavioral differences (Cosset, Gilroy, & Edwards, 2019). The niche 
breadth of a species may govern how it responds to a disturbance: 
Under such conditions, the species with the narrowest niche breadth 
(the more specialized species) may be more negatively affected by 
disturbance than the species with the larger niche breadth (the more 
generalist species); the latter may even benefit from that disturbance, 
known as the “specialization-disturbance hypothesis” (Vazquez & 
Simberloff, 2002). The more specialized species may have a particular 
diet, or they use habitat types with particular physiognomy, in contrast 
to the generalized species with a broader diet and habitat require-
ments (Futuyma & Moreno, 1988). Behavioral modifications, such as 
polymorphism and individual flexibility, are mechanisms through which 
species may cope with the inadequacy of food or unfavorable abiotic 
factors by exploring new opportunities (Futuyma & Moreno, 1988). 
More generalist species according to habitat types are more resilient to 
human disturbance than specialist species (Galan-Acedo et al., 2019), 
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which may be a consequence of the higher dispersal ability of gen-
eralist species (Kneitel, 2018). Body size may influence the response 
to predation; in this case, larger-bodied animal species may respond 
negatively to the presence of predators compared to smaller-bodied 
ones (Benitez-Lopez, 2018; Davidson, Hamilton, Boyer, Brown, & 
Ceballos, 2009; Lhoest et al., 2019; Navarro-Castilla, Barja, & Diaz, 
2018; Preisser & Orrock, 2012). Also, the perceived risk of predation 
may be relatively higher in terrestrial than arboreal animal species 
(Wereszczuk & Zalewski, 2015).

In this study, we focused on a community of great ape species 
(Gorilla gorilla gorilla and Pan troglodytes troglodytes) in a nonpro-
tected area of the northern periphery of the Dja Faunal Reserve in 
Cameroon, where a research station was established in 2001 ap-
proximately 10 km from the nearest village. A network of transects 
was designed, that was used intermittently for research purposes, 
following the guidelines of best practice (Kühl, Maisels, Ancrenaz, 
& Williamson, 2008). Western lowland gorillas and central chim-
panzees are threatened primate species, and the former considered 
“critically endangered” and the latter “endangered,” according to the 
International Union for Conservation of Nature (Humle, Maisels, 
Oates, Plumptre, & Williamson, 2016; Maisels, Bergl, & Williamson, 
2018). Gorillas and chimpanzees prefer different sets of habitat 
types: In the study area, gorillas prefer nesting in young secondary 
forests, light gaps, and swamps, while chimpanzees prefer nesting in 
mature forests and riparian forests (Tédonzong et al., 2018; Willie, 
Petre, Tagg, & Lens, 2013). Habitat selection by chimpanzees may 
be guided by the abundance of their preferred fruiting woody plants 
(Tédonzong et al., 2019), while gorilla-preferred nesting habitats tend 
to be those with highest densities of herbaceous plants, necessary 
for nest building (Willie et al., 2013; Willie, Tagg, Petre, Pereboom, 
& Lens, 2014). Gorillas are larger than chimpanzees (an adult gorilla 
weights between 136 and 227 kg, while an adult chimpanzee weighs 
68  kg on average); however, chimpanzees are more arboreal than 
gorillas (Benson & Nagel, 2004; Tagg, Willie, Petre, & Haggis, 2013).

We aimed to determine the effects of human disturbance on the 
geographical niches of western lowland gorillas and central chim-
panzees in the study site and to evaluate the implications for popu-
lation dynamics. We hypothesized that: (a) Anthropogenic variables 
are more important than ecological variables in great ape distribu-
tion and (b) forest use and human settlements would reduce habitat 
suitability for gorillas more than for chimpanzees. We measured the 
shift in the distribution in the resource models after the inclusion 
of anthropogenic variables (forest use and human settlements) used 
as a proxy for perceived predation risk (McLoughlin, Morris, Fortin, 
Vander Wal, & Contasti, 2010).

2  | METHODS

2.1 | Study area

We conducted the study in a tropical rainforest of Cameroon, in a non-
protected area at the northern periphery of the Dja Faunal Reserve. 

The study area lies between the longitude 3°01′00″E–18°12′00″E 
and latitude 3°20′00″N–3°30′00″N, covering about 200  km2 
(Figure 1a). The altitude above sea level ranges from 633 to 751 m 
(mean = 680.58; SD = 17.53 m) (Tédonzong et al., 2018). The drain-
age features comprise the Dja River and its tributaries, Moun, Djo'o, 
Nkoun, and Mpou'o. The study area receives mean annual rainfall 
of 1,637.9 mm (SD = 105.1 mm) and experiences average minimum 
daily temperatures of 19.5°C (SD = 1.3°C) and maximum daily tem-
peratures of 26°C (SD = 2.4°C) (Willie et al., 2014). The climate fea-
tures determine four seasons in the area with two rainy and two 
dry seasons: the long dry season (November–February), the short 
dry season (July–August), the long rainy season (February–July), and 
the short rainy season (August–November) (Willie et al., 2014). Old 
secondary forest (47.28%) and young secondary forest (32.90%) 
dominate the vegetation; other habitat types found in the area 
are swamps (13.14%), riparian forest (4.36%), near primary forest 
(1.30%), and light gaps (1.39%) (Tédonzong et al., 2018).

A research station was established in the study area in 2001, 
and research activities have intermittently taken place since then, 
including on a set of transects surrounding the centrally positioned 
research camp (Figure 1b) and following guidelines of best practice 
(Kühl et al., 2008). Three villages are located at approximately 10 km 
from the research camp, accessible by the main trail. A network of 
secondary trails is used by local people for hunting and collection 
of nontimber forest products, and hunting activities are suscepti-
ble to occur both on trails and on the transects used for research 
(Figure 1b).

We divided the study area into 175 grid cells (Bobo et al., 2017), 
of 1 × 1 km2 each. Inside of each grid cell, we established a 1.2 km 
transect, totaling 210 km of transect walked (Figure 1a). We chose 
a 45° bearing so that all transects would traverse the drainage fea-
tures; transects extended diagonally 600 m on both sides of the cen-
ter of the grid cell (Figure 1a) (Tédonzong et al., 2018).

2.2 | Data collection

2.2.1 | Occurrence data

Each month for 11 months (from October 2015 to August 2016), a 
team composed of a research assistant and local guides randomly 
selected transects for data collection. On each transect (Figure 1a), 
the team searched for great ape nests and recorded their locations. 
Fresh nests were easily distinguishable between gorillas and chim-
panzees, based on characteristics such as the presence of urine, 
hairs, feces, and prints (Morgan, Sanz, Onononga, & Strindberg, 
2006). For older nests with no distinguishable signs, we attrib-
uted nests to either gorillas or chimpanzees based on their height. 
Although chimpanzee ground night nesting has been observed in the 
study site, it occurs at a low rate (Tagg et al., 2013). We, therefore, 
attributed groups of nests containing at least one nest in a tree at 
more than 2 m high to chimpanzees, and nest groups containing all 
nests built on the ground or in trees at <2 m height was attributed 
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to gorillas. We marked all nests within a distance of 20 m (gorillas) 
or 30 m (chimpanzees) as belonging to the same nest group (Dupain, 
Guislain, Nguenang, Vleeschouwer, & Elsacker, 2004; Tagg et al., 
2013).

2.2.2 | Environmental data

We used three categories in the modeling process: ecological vari-
ables (habitat distribution), geophysical variables (elevation, slope, 
curvature, aspect, surface relief ratio, distance to permanent rivers 
and streams, and curvature), and anthropogenic variables (distance 
to villages, distance to the main trail, distance to secondary trails, 
distance to the Dja reserve, and distance to the research camp, 
representing the center of the research site) (Figure 2). Along each 
transect, we recorded the habitat type at each 50-m interval, re-
sulting in 121 habitat points per transect. For habitat distribution, 
we distinguished two variables for gorillas and chimpanzees, based 
on their preferred nesting habitats. Then, we used young second-
ary forest, swamps, and light gaps to derive the habitat variable 
for gorillas, and we used the old secondary forest to generate the 
variable for chimpanzees, according to previous results in the same 
site (Tédonzong et al., 2018; Willie et al., 2013). We used the kernel 
density estimation (KDE) to generate the habitat variables. The KDE 

is a nonparametric method used for animal home range estimation 
(Worton, 1989); it can also be used to evaluate the distribution of 
habitat availability (Seaman & Powell, 1996; Tédonzong et al., 2018). 
The KDE uses location points as input data to generate a utilization 
distribution (Kie et al., 2010). Instead of the utilization distribution 
which relates to home range studies, we used the availability distri-
bution in this study for habitat variables. We created random points 
in each cell corresponding to their weight. We conducted the KDE in 
the package rhr version 1.2.909 using the least square cross-valida-
tion bandwidth (Signer & Balkenhol, 2015) in the R software version 
3.3.3 (R Core Team, 2019).

To create the distance-based variables, we created a shapefile for 
each feature type and then used the function “Euclidean distance” in 
ArcGIS version 10.3.1 to create the raster files of the distances from 
the corresponding features. For the topographic variables (elevation, 
aspect, curvature, slope, and surface relief ratio), we used the digital 
elevation model (DEM) from the NASA Shuttle Radar Topography 
Mission (SRTM) version 3.0, at 30 m resolution (https://earth​explo​
rer.usgs.gov) as the base file and processed it in ArcGIS. We pro-
jected the DEM to obtain the elevation raster file using the function 
“project.” We then used the elevation raster file to create the curva-
ture, slope, and aspect raster files in ArcGIS. We created the surface 
relief ratio using the package spatialEco in the R software. We used 
the function “extract by mask” in ArcGIS to select the cells of raster 

F I G U R E  1   Study area: (a) Sampling design, with all human features (villages, trails, and research camp). The transects were drawn by 
joining the starting and the ending points; (b) the network of transects and the base transect used for research purposes
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files corresponding to the study area. We resampled the resulting 
raster files of all environmental variables at a resolution of 50 m to 
correspond to the 50 m applied when collecting habitat points. To 
do this, we set the cell size in the “raster analysis setting” to 50 when 
applying the mask. We summarized the process of creation of all en-
vironmental variables in Figure 2.

We calculated the Pearson correlation between variables to eval-
uate whether there was collinearity between some variables, setting 
the correlation coefficient threshold at 0.7. When the existence of 
collinearity was confirmed, we calculated the variable inflation fac-
tor (VIF) of each variable and discarded one by one using a stepwise 
analysis, the variable with the highest VIF until the maximum cor-
relation between variables was <0.7; this was done in the package 
usdm in R (Naimi, Hamm, Groen, Skidmore, & Toxopeus, 2014).

2.3 | Modeling technique

We used the maximum entropy modeling (Maxent) approach to study 
the suitability of great ape habitat in relation to ecological, geophysi-
cal, and anthropogenic variables through the Maxent software ver-
sion 3.4.1 (Phillips, Anderson, & Schapire, 2006). Maxent is the most 
promising tool and among the most commonly used software for 
modeling species distribution (Goldsmit et al., 2018; Mohammadi, 
Ebrahimi, Shahriari Moghadam, & Bosso, 2019; Spiers, Oatham, 
Rostant, & Farrell, 2018). Its advantages reside in the fact that it is 
a machine-learning process, and it requires presence-only data to 

model species distribution (Merow, Smith, & Silander, 2013). It is also 
considered to be the most powerful modeling method when using a 
small number of observations to produce good results (Hernandez, 
Graham, Master, & Albert, 2006). Regularization in Maxent contrib-
utes to preventing overfitting better than the lasso method does in 
regression-based methods (Phillips & Dudík, 2008).

When using presence-only data, Maxent creates false absence 
points (background data) and is then called presence background 
method (Lahoz-Monfort, Guillera-Arroita, & Wintle, 2014). To do 
this, Maxent considers that species have the same likelihood of being 
found across the landscape (Merow et al., 2013). To overcome these 
problems, we collected our occurrence data through a random sam-
pling design, as proposed by Yackulic et al. (2013). We allowed the 
background data to be selected randomly across the entire study 
area because no area was assumed inaccessible by any species due 
to the presence of any geographical barrier (Phillips & Dudík, 2008). 
We used the jackknife test to select the variables with the highest 
important individual effect.

We used the area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) most frequently used in Maxent to eval-
uate the performance of each model (Yackulic et al., 2013). The 
AUC is a threshold measure that represents the probability that 
a random occurrence point is ranked higher than a random back-
ground point (Merow et al., 2013). It was criticized for its incapacity 
to measure model accuracy in Maxent (Lobo, Jimenez-Valverde, & 
Real, 2008). This is because the AUC is traditionally used for the dis-
tinction between the presence and absence points, while in Maxent, 

F I G U R E  2   Method and process of creation of predictor variables, including the software used to derive the variable as well as the units 
of each variable. m = meter; KDE = kernel density estimation
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background points are used instead of true absence points (Merow 
et al., 2013). Therefore, a high AUC value does not necessarily mean 
that the model is more accurate (Shabani, Kumar, & Ahmadi, 2018). 
However, the AUC represents the best alternative for model evalu-
ation in Maxent when background points are selected randomly and 
uniformly from the study area (Phillips & Dudík, 2008); hence, it can 
be used to compare models on the same species in the same study 
area (Lobo et al., 2008). The AUC values are constrained to vary be-
tween 0.5 (the discrimination is similar to a random set of prediction) 
and 1 (random discrimination) and can be classified as such: excel-
lent (0.90–1.00), very good (0.8–0.9), good (0.7–0.8), fair (0.6–0.7), 
and poor (0.5–0.6) (Duan, Kong, Huang, Fan, & Wang, 2014). We 
ran the model for gorillas and for chimpanzees. The first model used 
ecological and geophysical variables to characterize the distribution 
of the species according to their ecological requirements, while the 
second model used ecological, geophysical, and anthropogenic vari-
ables to characterize the distribution of the species when humans 
are present.

We compared distribution in the resource and anthropogenic 
models based on the geographical space (predicted habitat suitabil-
ity). To do this, we performed the overlap between the different 
Maxent logistic outputs using Schoener's index of overlap (Warren, 
Glor, & Turelli, 2008), based on Equation 1,

where PAi and PBi represent the normalized suitability scores of the 
Maxent-generated ecological niche models A and B in grid cell i; 
these parameters were calculated so that the sum of the suitabil-
ity scores in the geographical space is 1. N is the number of grid 
cells. D considers that the suitability scores PAi

 or PBi provided in each 
Maxent logistic output are a proportion of the species abundance. 
We also conducted the multidimensional scaling analysis (MDS) to 
visualize the similarity between the different Maxent logistic out-
puts. D and the MDS were calculated in ENMTools 1.4.4 (Warren, 
Glor, & Turelli, 2010).

3  | RESULTS

After evaluating collinearity, we discarded two variables from 
the analysis (distance to main trail and distance to the Dja re-
serve) (Figure S1). Habitat quality was the most important determi-
nant of the distribution of gorilla nests, followed by surface relief 
ration in the absence of human disturbance. In contrast, elevation 
was the most important predictor of the distribution of chimpanzee 
nests, followed by the abundance of their preferred nesting habi-
tats and then by distance to rivers and slope (Figure 3a). When we 
included distance to the research camp and human settlements in 
the models, elevation remained the most important predictor of 
chimpanzee nesting, followed by their preferred nesting habitats 
and then the distance to secondary trails. However, distance to the 

research camp and distance to villages became the most important 
predictors of gorilla nesting, followed by chimpanzee-preferred 
nesting habitats and lastly by gorilla-preferred nesting habitats 
(Figure  3b). In the resource models, the two most important vari-
ables for gorillas (chimpanzee- and gorilla-preferred nesting habitats 
and surface relief ratio) and chimpanzees (elevation and chimpan-
zee-preferred nesting habitats) decreased the gain the most when 
omitted and provided more information than was available in the 
rest of the variables (Figure 3a). This was also true in the anthropo-
genic models where the variables with the most information were 
those most important to gorillas (distance to the research camp and 
chimpanzee-preferred nesting habitats); however, this was not the 
case for chimpanzees (distance to secondary trails and distance to 
the research camp) (Figure 3b).

The variable response curves (Figure 4) show that the probability 
to find chimpanzee nests was high at intermediate values of eleva-
tion; it increased with the density of their preferred nesting habitat. 
The response of chimpanzee nesting to rivers simply shows that they 
avoided nesting near rivers. The probability to find chimpanzee nests 
increased with slope and became constant from intermediate values 
(Figure 4a). The probability to find gorilla nests increased with the 
abundance of their preferred nesting habitats, while the latter was 
high only at lower values of the abundance of chimpanzee-preferred 
nesting habitats (Figure 4b). The probability of finding gorilla nests 
was also fairly constant with surface relief ratio but decreased above 
intermediate values of surface relief ratio. The probability of find-
ing gorilla nests was almost constant and intermediate with a slope 
lower than 6 but increased at higher slope values (Figure 4). The re-
sponses to anthropogenic variables show that chimpanzees avoided 
nesting in areas located <2 km from the center of the research site 
but displayed almost no negative response to villages and secondary 
trails (Figure 4c). Gorillas responded more to human features than 
did chimpanzees; they tended to nest about 4–5 km away from the 
center of the research site and villages, but about 2 km away from 
secondary trails (Figure 4d).

It is worth noting that the inclusion of human-related variables in 
the models improved the predictions by increasing the values of AUC 
from 0.688 to 0.773 for chimpanzees and from 0.548 to 0.676 for 
gorillas (Figure 3). Habitat suitability maps show that without human 
presence, the study area was more suitable for gorillas than for chim-
panzees and that shallows and rivers were not suitable for chim-
panzee nesting; however, chimpanzees nested very close to rivers 
(Figure 5). In the resource model, the distribution of high suitability 
scores, while being heterogeneous, covered almost the entire study 
area for both gorillas and chimpanzees. However, the habitat suitabil-
ity maps in the anthropogenic model show that for both gorillas and 
chimpanzees, some areas that were suitable in the fundamental niche 
model were no longer suitable in the anthropogenic model (Figure 5). 
For both gorillas and chimpanzees, the area at the center of the re-
search site was not suitable when including anthropogenic variables 
in the models (Figure 5). Proximity to villages had more influence on 
gorillas than on chimpanzees, resulting in large areas unsuitable for 
gorilla nesting but not for chimpanzee nesting (Figure 5).
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The effects of anthropogenic variables on great ape distribution 
are highlighted in Figure 6. In the resource model, the distribution of 
chimpanzees included many pixels with suitability scores lower than 
0.1, while the distribution of gorilla suitability scores followed a bell 
shape (Figure 6). The number of pixels where the suitability score 
decreased because of the inclusion of anthropogenic variables in the 
models was greater for gorillas than for chimpanzees; this is indicated 
by a lower overlap between distributions of gorillas and chimpan-
zees in both the resource and anthropogenic models (Figure 6a). The 
mean suitability score was lower for chimpanzees than for gorillas 
in both the resource and the anthropogenic models, and the differ-
ence between the mean suitability scores of gorillas and chimpan-
zees was higher in the resource models than in the anthropogenic 
models (Figure  6b); likewise, the suitability scores of the resource 
and anthropogenic models for chimpanzees were more similar than 
were the suitability scores of the resource and anthropogenic mod-
els for gorillas (Figure 6c). The overlap between distributions in the 
resource models of both gorillas and chimpanzees was greater than 
that of their distributions in the anthropogenic models (Figure 6c), 
suggesting that the distribution of gorillas was more affected by an-
thropogenic variables than was the distribution of chimpanzees.

4  | DISCUSSION

Human presence and activities are changing the distribution of wild-
life across many landscapes, indirectly by rendering parts of their 
habitat unsuitable as well as by directly removing individuals. Hence, 
to inform conservation measures that aim for species’ persistence in 
human-dominated landscapes, human-related variables need to be 
considered when predicting habitat suitability for wild animals. In 

this study, we evaluated the effects of forest use by people and the 
proximity of human settlements on great ape distribution by compar-
ing simulated distributions in a system free from human disturbance 
(resource model) and a system with a risk of predation represented 
by human presence (anthropogenic model), and we determined how 
two sympatric species respond to that predation risk. The results 
indicate that in the resource model, habitat variables were important 
predictors of great ape nesting, while in the anthropogenic model, 
anthropogenic variables were the most important predictors of go-
rilla nesting, although habitat variables and elevation continued to be 
the most important predictors of chimpanzee nesting (Figure 3a,b). 
Human settlements and forest use reduced the suitability scores for 
gorilla habitats more than they did for chimpanzee habitats.

The major limitation of this study is the assumption of no phe-
nological variation in fruit availability occurring. Fruit phenology 
changes seasonally and annually (Yamagiwa, Basabose, Kaleme, & 
Yumoto, 2008), and this may cause a seasonal change in the pat-
terns of habitat selection and space use due to varying abundance 
of different fruiting species across habitats (Tédonzong et al., 2019). 
Also, the nest decay rate may also change with seasons (Binczik, 
Roig-Boixeda, Heymann, & Waltert, 2019). However, we did not 
collect data on a seasonal basis to evaluate the effects of seasons 
(Tédonzong et al., 2019). Instead, we used a random sampling design, 
and our data collection spanned different seasons.

4.1 | The effects of forest use and proximity to 
human settlements on great ape distribution

The most important predictors of chimpanzee habitat suitability in 
the resource model were elevation, chimpanzee-preferred nesting 

F I G U R E  3   Results of the jackknife test 
of variable importance for each Maxent 
model with their respective AUC values. 
(a) Resource model, (b) anthropogenic 
model, Dist. = distance; sec. = secondary; 
AUC = area under the curve of the 
receiver operating characteristic

Chimpanzee (AUC = 0.688) Gorilla (AUC = 0.548)

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

All variables
Aspect

Chimanzee habitat
Curvature

Dist. from rivers
Elevation

Gorilla habitat
Slope

Surface relief ratio

Va
ria

bl
e

With only variable
Without variable
With all variables

Chimpanzee (AUC = 0.773) Gorilla (AUC = 0.676)

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

All variables
Aspect

Chimanzee habitat
Curvature

Dist. camp
Dist. from rivers
Dist. sec. trails

Dist. villages
Elevation

Gorilla habitat
Slope

Surface relief ratio

Variable contribution to the model

Va
ria

bl
e

(a)

(b)



     |  3805TÉDONZONG et al.

habitat, distance to rivers, and slope; for gorillas, on the other hand, 
the most important predictors were gorilla-preferred nesting habi-
tat, surface relief ratio, chimpanzee-preferred nesting habitat, 
and slope (Figure  4). Elevation was the highest contributor to the 
chimpanzee resource model, but this factor was not important in 
the gorilla resource model (Figure 3). The shape of the relationship 
between the probability of occurrence of chimpanzee nests and al-
titude was comparable to the bell (Figure  4) indicating that an in-
crease in altitude of up to 675 m corresponded to an increase in the 
probability of chimpanzee nest occurrence, after which it started to 
decline. Fitzgerald, Coulson, Lawing, Matsuzawa, and Koops (2018) 
have found a similar shape for chimpanzees in the Greater Nimba 
Landscape, where the probability of occurrence started to decline 
at 900 m. At Gombe, the suitability of chimpanzee habitat followed 
the same shape irrespective of land cover classes with optimum val-
ues of suitability being found between 850 and 1,100 m of elevation 
(Foerster et al., 2016). In the Tofala Hill Wildlife Sanctuary, chimpan-
zee nests were found at high elevations (800–1,000  m) (Njukang, 
Angwafor, Richard, Akwanjoh, & Chuo, 2019). This indicates that el-
evation may be a good determinant for the choice of a nesting site by 
chimpanzees, where the areas with intermediate values of elevation 
are more suitable. In contrast, Etiendem, Funwi-Gabga, Tagg, Hens, 
and Indah (2013) found that elevation was an important predictor of 
the Cross River gorilla distribution at Mawambi Hills.

These contrasting patterns do not allow us to generalize the im-
portance of elevation as a predictor of nest building for either goril-
las or chimpanzees. This corroborates the finding that elevation is 
a top predictor for many species but not all species (Hof, Jansson, 
& Nilsson, 2012). Nesting in high altitudes by chimpanzees in the 
Tofala Hill Wildlife Sanctuary (Cameroon) probably allowed them 
to minimize the encounter rates with logging and agricultural activ-
ities (Njukang et al., 2019). Apart from elevation in the chimpanzee 
model, the distribution and density of preferred nesting habitats 
were the most important predictors in the resource models for both 
gorillas and chimpanzees (Figure 3). The fact that chimpanzee-pre-
ferred habitat was more important than gorilla-preferred habitat in 
the resource and anthropogenic models for gorillas (Figure 3a,b) is 
an indication that gorillas interact with chimpanzee-preferred hab-
itat; gorillas only prefer nesting where the abundance of chimpan-
zee-preferred habitat is low (Figure 4b).

Elevation and the normalized difference vegetation index (NDVI) 
were found to be the top predictor variables of chimpanzee fruiting 
species at Gombe National Park, Tanzania (Foerster et al., 2016). In 
the same park, NDVI was positively correlated with the time chim-
panzees spent feeding (Pintea, 2007). Similarly, macaques (in Japan) 
mostly consumed fruits when they lived in a forest with higher NDVI 
(Tsuji, Ito, Wada, & Watanabe, 2015). We did not test for the con-
tribution of fruiting trees in the model, but it is already known that 

F I G U R E  4   Response of great ape 
nest occurrence to the four most 
important variables in the resource and 
anthropogenic models. (a) Resource 
model for chimpanzee, (b) resource model 
for gorilla, (c) anthropogenic model for 
chimpanzee, and (d) anthropogenic model 
for gorilla. For the anthropogenic models, 
the variables represent anthropogenic 
variables ordered by their order of 
importance in the model; the numbers 
before the variable names represent the 
importance rank of the variable in the 
model, following the jackknife test. For 
each model, we ordered the variables by 
their importance values from left to right. 
Dist. = distance, pts = points, NA = not 
applicable, m = meter
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chimpanzee-preferred fruiting species are more abundant in chim-
panzee-preferred nesting habitats in the study site (Tédonzong et al., 
2019). NDVI is generally used as a surrogate of vegetation greenness 
or plant productivity (Evans, James, & Gaston, 2006; McCormack, 
Zellmer, & Knowles, 2010; Williams, Bartholomew, Amakobe, & 
Githiru, 2018). Our method based on the determination of the 
density of habitat points represents a good alternative to NDVI. 
Analyses based on our method showed that areas with high den-
sities of preferred nesting habitat points also correspond to areas 
with high densities of important fruiting plants for both gorillas and 
chimpanzees (Tédonzong et al., 2018). Additionally, the preferred 
plant species for both gorillas and chimpanzees are more abundant 
in chimpanzee-preferred nesting habitats (Tédonzong et al., 2019).

Our findings indicate that anthropogenic variables (forest use 
and proximity to human settlements) were more important than 
habitat variables for gorillas but not for chimpanzees (Figure  3). 
Anthropogenic variables also improved the predictive power of the 
models, as shown by higher values of AUC in the anthropogenic 
models than in the resource models (Figure 3). These variables con-
tributed to the decrease in the suitability of great apes' habitats 
(Figures 5 and 6). The reduction in the habitat suitability scores due 

to forest use and proximity to human settlements indicates that 
great apes may avoid areas with signs of human disturbance up to a 
certain level. Great apes may perceive a risk of predation when mov-
ing to areas disturbed by humans. The increase in AUC values in the 
anthropogenic models is an indication that human disturbance has 
modified the natural system and that the inclusion of human-related 
variables is crucial to the evaluation of species' responses to their 
environment (Lindshield et al., 2017). This observation was made 
by several authors in previous studies (Alberti et al., 2003; Frid & 
Dill, 2002), and humans have been considered niche constructors 
in animal ecology (Albuquerque et al. (2018). Several authors have 
highlighted the relevance of human-based variables in the predic-
tion of wildlife habitats (Blom, Zalinge, Heitkönig, & Prins, 2005; 
Bowman, Ray, Magoun, Johnson, & Dawson, 2010; Koerner et al., 
2017; Schuette, Wagner, Wagner, & Creel, 2013). We can liken the 
negative effects of humans on wildlife distribution to those of natu-
ral predators. Species may use the presence or absence of predators' 
odors as the main cue of the risk of predation (Salandre, Beil, Loehr, 
& Sundell, 2017). Great apes may use such cues to assess threats 
from humans in contexts where human activities, such as hunting, 
pose a direct threat (Setsaas, Hunninck, Jackson, May, & Røskaft, 

F I G U R E  5   Great ape habitat suitability 
models displaying the spatial variation 
of suitability scores for gorillas and 
chimpanzees in two different models 
(resource and anthropogenic) throughout 
the landscape. The habitat suitability 
scores vary from 0 (low suitability) to 1 
(high suitability). The background of each 
panel is a hillshade of the digital elevation 
model of the area. Each map contains the 
location of each variable considered in 
the analyses (villages, research, camp and 
trails) and the transects used for research

Habitat suitability scores

0.00 0.12 0.25 0.38 0.50 0.62 0.75 0.88 1.00

GorillaChimpanzee

0 4 8
km

R
es

ou
rc

e 
m

od
el

A
nt

hr
op

og
en

ic
 m

od
el

 Research camp Villages Village trails Secondary trails Transects Base transect



     |  3807TÉDONZONG et al.

2018; Storch, 2013). Also, the noise made by humans can contribute 
to frightening animals (Clinchy et al., 2016; Slabbekoorn, McGee, & 
Walsh, 2018).

The avoidance of human settlements or presence is often at-
tributed to hunting; under such circumstances, animal species 
may find refuge where hunting intensity is low (Blom et al., 2005; 
Vanthomme et al., 2013). Although we did not measure hunting 
pressure in our analyses, the distance to human settlements was 
considered as a proxy for hunting pressure because the increasing 
distance to villages is likely to correspond to a decrease in hunting 
signs (Beirne et al., 2019; Koerner et al., 2017; Lhoest et al., 2019). 
Previous studies in our research site have shown that hunting signs, 
and not research activities, determined space use by gorillas and 
chimpanzees for nesting along transects (Tagg et al., 2018; Tagg 
& Willie, 2013). Within the research site, gunshots are frequently 
heard (authors’ observation); both ape species would likely respond 
negatively to such disturbance. Gorillas negatively responded to 
human forest use in the research site more than did chimpanzees; 
the difference between gorillas and chimpanzees may be due to 
different behavioral adaptations between the two animal species. 
A study of Ávila et al. (2019) revealed that our focal species, gorillas 
and chimpanzees, were not the target of hunters in our study area 

but that there has been a shift in hunting methods from traps to fire-
arms between 2003 and 2016. It is, therefore, possible that hunting 
activities occurring in the research site may contribute to great ape 
distribution changes. In addition, a longitudinal study on the trend 
of wildlife populations around the villages of our study area showed 
that abundances significantly declined between 2002 and 2009 
(Tagg et al., 2019), perhaps leading hunters to enter deeper into the 
forest (including in the research site) to hunt. This may explain why 
both gorillas and chimpanzees responded more to forest use in the 
research site than to the other human settlements (Figure 4c,d).

4.2 | Influence of animal behavioral traits on their 
responses to human disturbance

Proximity to human settlements and human disturbance influenced 
chimpanzees relatively less than gorillas (Figures 4 and 6), indicat-
ing that chimpanzees may experience a trade-off between finding 
fruits and avoiding perceived predation risk. This trade-off has been 
documented in wildebeests (M'Soka et al., 2017) and red squirrels 
(Turkia, Korpimaki, Villers, & Selonen, 2018). If a species experi-
ences a trade-off between access to a resource and predation risk, 

F I G U R E  6   Overlap between the 
distributions of great apes in the 
resource and anthropogenic models. 
D = Schoener's index of overlap. (a) The 
overlap between the distributions from 
resource and anthropogenic models for 
chimpanzees and the overlap between 
the distributions from resource and 
anthropogenic models for gorillas and (b) 
the overlap between the distributions 
from the resource models of both gorillas 
and chimpanzees and overlap between 
distributions from the anthropogenic 
models of both gorillas and chimpanzees. 
The values obtained from the overlap 
analyses may be different from those 
observed in the graph because the index 
of overlap takes into account the spatial 
locations of suitability scores, while 
the graph only presents the density of 
those suitability scores. Each vertical 
line represents the average suitability 
score for the corresponding model. (c) 
Multidimensional scaling analysis (MDS) 
depicting the similarity between the 
different Maxent logistic outputs. Points 
that are closer to each other represent 
more similar distributions
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it may avoid predation or areas of high predation risk when it has 
an alternative area in which to find food (Frid & Dill, 2002). This 
might explain why chimpanzees did not systematically avoid areas 
with human settlements as did gorillas (Figure 5). Although we col-
lected data monthly, it is not possible to attest whether the use of 
areas near villages by chimpanzees was due to the absence of fruits 
in other areas. However, several studies have observed that chim-
panzees move to villages to consume agricultural fruits when wild 
fruit availability is low in order to maintain their fruit-dominated diet 
(Bryson-Morrison, Matsuzawa, & Humle, 2016; McLennan, 2013). 
Those fruits were found to be relatively nutritious and procured en-
ergetic advantages to chimpanzees (McLennan & Ganzhorn, 2017). 
This behavioral flexibility has also been observed in many other pri-
mate species, such as Colobus angolensis palliates (Dunham, 2017) and 
Cercopithecus albogularis labiatus (Nowak, Wimberger, Richards, Hill, 
& Roux, 2017; Wimberger, Nowak, & Hill, 2017). For these species, 
the risk of starvation and sensitivity to fruit availability may be more 
important than the risk of predation induced by human disturbance 
(McLennan, 2013; Nowak et al., 2017; Weterings, Moonen, Prins, 
Wieren, & Langevelde, 2018). This implies that the nonavoidance of 
human settlements by chimpanzees may be a consequence of their 
pursuit of agricultural foods. In the present study site, however, ag-
ricultural foods have not yet been identified in the great ape diet 
(Petre, 2016; Tédonzong et al., 2018). Consequently, the consump-
tion of agricultural foods may not be the reason for the nonavoid-
ance of human settlements by chimpanzees. In addition, in our site, 
the villages are located where the densities of chimpanzee-preferred 
nesting habitats and important fruits were high (Tédonzong et al., 
2018), as depicted by the moderate correlation between the two 
variables (Figure S1). Hence, it can be concluded that in contrast to 
gorillas, chimpanzees are not highly negatively influenced by human 
settlements because of the presence of their preferred nesting habi-
tats and wild fruits near villages.

In accordance with the present results, anthropogenic landmarks 
at Fongoli in Senegal did not prevent chimpanzees from visit fruit-
ing trees, which were highly abundant in close proximity to human 
features (Lindshield et al. (2017). Similarly, human activities at Bili-
Uele (in the northern Democratic Republic of the Congo) had lit-
tle effect on chimpanzees (Hicks, Roessingh, & Menken, 2012). At 
Bossou (Guinea), the high nutritional quality of agricultural fruits 
compensated for the stress induced by human presence in chim-
panzees and reduced their concentration of glucocorticoid metab-
olite (McLennan, Howell, Bardi, & Heistermann, 2019). The fact that 
preferred nesting habitats and fruit species are more abundant near 
villages may reduce stress due to human presence in chimpanzees. 
However, the availability of forest fruits is subject to phenological 
changes. It was observed that, because chimpanzees at Bossou 
(Guinea) consumed crop foods when fruit availability is low, they did 
not split into smaller groups (Hockings, Anderson, and Matsuzawa 
(2012) as observed in other sites (Itoh & Nishida, 2007). Thus far, 
gorillas are known to form relatively stable groups (Watts, 2012). 
Reducing party size may be a strategy for chimpanzees to cope with 
periods of low fruit availability not compensated by crop foods, like 

at Bossou (Hockings et al., 2012). This is because chimpanzees are 
highly territorial (Herbinger, Boesch, & Rothe, 2001), and intraspe-
cific competition is also high among them (Mitani, Watts, & Amsler, 
2010). As a result, fatal attacks were observed between chimpan-
zees when population density was high (Mitani et al., 2010; Wilson 
et al., 2014).

Body size is a key aspect in predator–prey interactions; large-sized 
animals may have a higher perception of the risk of predation than 
smaller-sized ones (Davidson et al., 2009; McGraw & Zuberbuhler, 
2008; Preisser & Orrock, 2012; Zuberbühler, 2007). Evidence of the 
effects of body size on the response of mammal species to human 
disturbance was recently reported in south-east Cameroon (Lhoest 
et al., 2019) and Gabon (Beirne et al., 2019), where there was a gradi-
ent of increasing body mass of mammals with increasing distance to 
villages. The effects of body size on the response of different species 
to predation risk is related to the fact that different species present 
different flight initiation distances, and the flight initiation distance 
increases as body size increases (Gotanda, Turgeon, & Kramer, 2009; 
Møller & Erritzøe, 2014). Hence, the lower sensitivity of chimpan-
zees to human settlements than that of gorillas may be due to their 
smaller size. In an evaluation of the effects of noise caused by oil 
prospection on mammals in the Loango National Park, mammals 
with large home ranges (e.g. elephants) were found to be the most 
affected (Rabanal, Kuehl, Mundry, Robbins, & Boesch, 2010).

Chimpanzees are known to change their party size in response to 
fruit availability; they also increase in number to prevent gorillas from 
accessing fruiting trees (Basabose & Yamagiwa, 2002; Lehmann & 
Boesch, 2004). In Ugalla (western Tanzania), chimpanzees increased 
their party sizes in the evening to reduce the risk of predation by 
large nocturnal carnivores such as leopards (Ogawa, Idani, Moore, 
Pintea, & Hernandez-Aguilar, 2007). The fission–fusion behavior of 
chimpanzees may be an advantage that allows them to cope with 
the presence of humans. Accordingly, evolutionary adaptations to 
competitive interactions may help species adapt to environmental 
change (Osmond & de Mazancourt, 2013).

Furthermore, chimpanzees are more arboreal than gorillas be-
cause they tend to build nests in trees, while gorillas tend to build 
nests on the ground; chimpanzees’ building of night nests at higher 
heights may represent an antipredator strategy (Stewart & Pruetz, 
2013). For instance, in two adjacent sites with varying levels of pre-
dation risk, the height of chimpanzee nests was lower in the site 
with a lower level of predation risk than in the site with a higher 
level of predation risk (Pruetz et al., 2008). Additionally, chimpan-
zees in the Lebialem-Mone Forest Landscape (Southwest Region, 
Cameroon) tend to build nests in trees in sites with high human pop-
ulation density and to build terrestrial nests in sites with low human 
population density (Last & Muh, 2013). Building arboreal nests in 
proximity to humans may constitute an advantage for chimpanzees 
in the form of reduced risk of predation. In Bili-Uele (the northern 
Democratic Republic of the Congo), chimpanzees in trees withstood 
the presence of humans for a longer period than when they were 
terrestrial (Hicks et al., 2012). This is consistent with a study showing 
that the risk of predation may be higher for less arboreal than for 



     |  3809TÉDONZONG et al.

more arboreal species (Wereszczuk & Zalewski, 2015). The differ-
ential responses to human settlements and forest use in gorillas and 
chimpanzees imply that the abundance of their populations may vary 
differently across space and time.

5  | CONCLUSION

This study set out to evaluate the influence of human disturbance on 
great ape distribution and the implications of behavioral adaptations 
on their response to human disturbance. One of the more significant 
findings to emerge from this study is that the spatial distribution of 
gorillas was more negatively affected by distance to human settle-
ments and forest use than was the distribution of chimpanzees. It 
was also shown that several behavioral and ecological adaptations 
(body size, intergroup interaction, terrestrial/arboreal, level of spe-
cialization/generalization, and competitive inferiority/superiority) 
may cause differing responses to human disturbance in gorillas 
and chimpanzees. The larger-bodied species (gorilla) may perceive 
human presence as a greater risk, and the species with a high toler-
ance of intergroup encounters (gorilla) may find refuge in areas not 
disturbed by human presence without increasing intraspecific com-
petition. The more generalist species (gorilla) may be more flexible 
if dispersed in areas where food availability is low, while the more 
specialized species (chimpanzee) may continue to use their preferred 
habitats despite the presence of human activities. The competitively 
dominant species (chimpanzee) exhibits a grouping pattern charac-
terized by an increase in the number of individuals to defend food 
resources against competitors (gorilla); this strategy is an adaptive 
behavior that may help them respond to human presence. These 
findings enhance our understanding of the response of great ape 
species to the pressures experienced in a human-dominated land-
scape and contribute to elucidating why different animal species re-
spond differently to human disturbance. There is a link between the 
spatial distribution of animal species and their persistence (Oliver 
et al., 2012). As wild animals are increasingly exposed to human 
disturbance, understanding the resulting consequences of shifting 
species distributions and the long-term survival of populations due 
to human disturbance will be of growing conservation importance.
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