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In healthy individuals, increasing cognitive load induces an asymmetric deployment
of visuospatial attention, which favors the right visual space. To date, the neural
mechanisms of this left/right attentional asymmetry are poorly understood. The aim of
the present study was thus to investigate whether a left/right asymmetry under high
cognitive load is due to a shift in the interhemispheric balance between the left and right
posterior parietal cortices (PPCs), favoring the left PPC. To this end, healthy participants
completed a visuospatial attention detection task under low and high cognitive load,
whilst undergoing biparietal transcranial direct current stimulation (tDCS). Three different
tDCS conditions were applied in a within-subjects design: sham, anodal left/cathodal
right, and cathodal left/anodal right stimulation. The results revealed a left/right
attentional asymmetry under high cognitive load in the sham condition. This asymmetry
disappeared during cathodal left/anodal right tDCS, yet was not influenced by anodal
left/cathodal right tDCS. There were no left/right asymmetries under low cognitive load in
any of the conditions. Overall, these findings demonstrate that attentional asymmetries
under high cognitive load can be modulated in a polarity-specific fashion by means of
tDCS. They thus support the assumption that load-related asymmetries in visuospatial
attention are influenced by interhemispheric balance mechanisms between the left and
right PPCs.

Keywords: visuospatial attention, non-spatial attention, cognitive load, transcranial direct current stimulation,
bilateral tDCS
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INTRODUCTION

The spatial allocation of visual attention can be affected by
non-spatial attentional aspects, such as cognitive load. With
increasing cognitive load, for instance in dual task paradigms
(e.g., concurrently completing a non-spatial and a spatial
attentional task), healthy individuals show a rightward shift
in visuospatial attentional deployment (Pérez et al., 2009;
Naert et al., 2018). This rightward shift may be influenced by
the effect of cognitive load on the interhemispheric balance
between the dorsal networks directing visual attention in space
(Kinsbourne, 1993; Corbetta and Shulman, 2011). In particular,
a higher cognitive load would favor activations within the left-
hemispheric dorsal network relatively more than in the right-
hemispheric dorsal network, thus triggering a rightward shift
in attentional allocation (O’Connell et al., 2011). We aimed
to test this hypothesis by applying bihemispheric transcranial
direct current stimulation (tDCS) to simultaneously modulate
the excitability of the left and the right posterior parietal cortices
(PPCs), crucial nodes of the dorsal attention networks of the
two hemispheres (Corbetta and Shulman, 2002), with reversed
polarities. Such a bihemispheric electrode montage was shown
to be particularly suitable to modulate the interhemispheric
excitability balance between two brain regions (Sehm et al., 2012,
2013; Benwell et al., 2015; Li et al., 2015). We hypothesized
that further shifting the interhemispheric balance in favor of
the left PPC (excitatory anode over the left PPC, and inhibitory
cathode over the right PPC; henceforth referred to as AL/CR)
would exacerbate the rightward attentional shift under high
cognitive load. In contrast, the reversed montage (inhibitory
cathode over the left PPC, and excitatory anode over the right
PPC; henceforth referred to as CL/AR) would contribute to
restore interhemispheric balance, thereby reducing the rightward
attentional shift under high cognitive load.

MATERIALS AND METHODS

Twenty-five healthy subjects (20 right-handed; eight men;
mean age = 23.16 years, SD = 3.04), with no history of
psychiatric or neurological disorders, volunteered in the study
after giving written informed consent. The study was approved
by the Ethics committee of the University of Bern, and was
conducted according to the principles of the latest version of the
Declaration of Helsinki.

All participants took part in three sessions, each with a
different biparietal tDCS protocol, in counterbalanced order
across participants: (1) AL/CR; (2) CL/AR; (3) sham stimulation.
A DC stimulator (neuroConn, Ilmenau, Germany) was used to
apply tDCS. The two electrodes (5 × 7 cm; placed in sponges
and wet with saline solution) were placed bihemispherically
over the PPCs, i.e., P3 and P4 according to the 10–20
international electroencephalography (EEG) system. At the
beginning of each session, participants completed a sleep
quality questionnaire (Görtelmeyer, 2011; to assess how many
hours they slept prior to the sessions), and a visual analog
scale (VAS; to indicate their subjective level of alertness). The

participants then completed a dual task (adapted from Naert
et al., 2018; Figure 1A), encompassing a non-spatial verbal
working memory task, which allowed to manipulate cognitive
load, and a visuospatial attention detection task. In the non-
spatial verbal working memory task, participants were asked
to memorize 2 (low cognitive load) or 6 (high cognitive
load) consonants. Whilst engaged in retaining the consonants,
they performed the visuospatial attention detection task, i.e.,
react as quickly as possible upon appearance of a lateralized
stimulus (i.e., a black dot, 0.86◦ visual angle, presented at 15◦

eccentricity), whilst maintaining central fixation. Each sub-block
of the dual task contained one working memory trial and
15 subsequent detection trials (five left-sided, five right-sided,
five catch trials without target; in randomized order). Overall,
participants completed two blocks with low and two blocks with
high cognitive load (in alternating sequence between low and
high cognitive load; the order thereof, i.e., low cognitive load
first or high cognitive load first, being counterbalanced over
participants), each block containing five sub-blocks. Participants
were asked to exclusively use their dominant hand for the
detection task. tDCS (1.5 mA during 20 min; switched off after
30 s for sham stimulation) was applied throughout the dual
task. Finally, after finishing the dual task, participants again
completed the VAS.

Statistical analyses were conducted using SPSS (Version 23,
IBM Statistics). In a first step, to ensure that participants’
alertness level did not differ between the sessions, a repeated-
measures analysis of variance (ANOVA) with the within-subjects
factor “stimulation condition” (levels: sham, CL/AR, AL/CR)
was computed on the number of hours participants had slept
prior to each session. Furthermore, to investigate participants’
subjective level of alertness between the sessions and pre/post
the dual task, a repeated-measures ANOVA with the within-
subjects factors “stimulation condition” (levels: sham, CL/AR,
AL/CR) and “time point” (levels: pre, post dual task) was
computed on the scores obtained from the VAS. In a second step,
the reaction times (RT) in the visuospatial attention detection
task were analyzed. For each participant, we calculated the
mean reaction time according to stimulation condition, cognitive
load condition, and stimulus presentation side. A repeated-
measures ANOVA with the within-subjects factors “stimulation
condition” (levels: sham, CL/AR, AL/CR), “cognitive load”
(levels: low, high), and “stimulus side” (levels: left, right) was
then computed. Subsequently, in order to further investigate the
changes occurring between the two cognitive load conditions,
we: (a) calculated a RT laterality index, according to the formula
proposed by Newman et al. (2012): laterality index = (mean
RT left-sided targets – mean RT right-sided targets)/(mean
RT left-sided and right-sided targets); (b) we subsequently
subtracted, within each stimulation condition, the laterality index
for high minus the one for low cognitive load. A repeated-
measures ANOVA with the within-subjects factor “stimulation
condition” (levels: sham, CL/AR, AL/CR) was then calculated on
the resulting data.

Since reaction time data are typically non-normally
distributed, transformations are often applied to reduce
deviations from normality (Marmolejo-Ramos et al., 2015;
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FIGURE 1 | Design and results of the dual task paradigm with transcranial direct current stimulation (tDCS). (A) Exemplary depiction of a sub-block of the dual task.
(B) Mean reaction times (RTs), according to stimulation condition, cognitive load, and stimulus side. Post hoc tests revealed no significant left-right asymmetries in
any of the stimulation conditions during low cognitive load. However, during high cognitive load, significantly slower responses were observed for left- with respect to
right-sided targets in the sham condition; this asymmetry disappeared in the cathodal left/anodal right (CL/AR) condition, and it remained unchanged in the anodal
left/cathodal right (AL/CR) condition. Asterisks depict significant post hoc tests (∗∗p < 0.01). (C) Mean differences in the RT laterality index between high and low
cognitive load, for each stimulation condition. Values >0 indicate a rightward attentional shift, whereas values <0 a leftward attentional shift. Post hoc tests revealed
significant differences between the sham and the CL/AR tDCS conditions, as well as between the AL/CR and the CL/AR tDCS conditions, yet not between the sham
and the AL/CR tDCS conditions. Asterisks depict significant post hoc tests (∗p < 0.05).

Vetter, 2017). Thereby, the square root transformation has been
shown to be effective in several reaction time studies (e.g., Smoski
et al., 2009; Sturz and Diemer, 2010). To ensure that our findings
were not due to departures from normality in the reaction time
data distribution, we thus applied a square root transformation
and repeated the statistical analyses on the transformed data.
All analyses yielded the same patterns of results as for the
untransformed data. Thus, to avoid redundancies (as well as
issues with the direct interpretation of transformed data; Whelan,
2008), in the results section we exclusively report the findings of
the analyses on the untransformed data.

Concerning accuracy in the visuospatial attention detection
test, we assessed correct responses according to stimulation
condition, cognitive load condition, and trial type (i.e.,
left-sided targets, right-sided targets, or catch trials), by
calculating the percentage of correct responses out of the
50 trials presented in each of the combinations of the three
aforementioned factors. A repeated-measures ANOVA with the
within-subjects factors “stimulation condition” (levels: sham,
CL/AR, AL/CR), “cognitive load” (levels: low, high), and “trial
type” (levels: left-sided targets, right-sided targets, catch trials)
was then computed.

For all analyses, if the sphericity assumption was not met,
the degrees of freedom (and thus the P-values) were corrected
according to the Huynh-Feldt procedure. All post hoc tests were
conducted by means of Duncan’s Multiple Range tests.

RESULTS

There were no significant differences in participants’ sleep
duration prior to each stimulation condition [F(2,48) = 0.63,
p = 0.537], nor in participants’ subjective level of alertness
between and within (pre vs. post dual task) stimulation
conditions [stimulation session: F(2,48) = 0.832, p = 0.442; time
point: F(1,24) = 0.036, p = 0.851; stimulation session × time
point: F(1.616,38.791) = 0.769, p = 0.445].

Regarding the dual task, the repeated-measures ANOVA
on mean RTs yielded significant main effects of the factors
“stimulation condition” [F(2,48) = 3.931, p = 0.026] and
“cognitive load” [F(1,24) = 5.285, p = 0.031]. Concerning the
former, post hoc tests revealed overall increased RTs in the AL/CR
compared to the CL/AR and sham stimulation condition. There
was no significant difference between sham stimulation and
CL/AR. Regarding the main effect of “cognitive load,” RTs were
significantly higher in the high compared to the low cognitive
load condition. Critically, the ANOVA yielded a significant
interaction “stimulation condition × cognitive load × stimulus
side” [F(2,48) = 3.271, p = 0.047].

As revealed by post hoc tests, there were no significant
left/right asymmetries in any of the stimulation conditions
under low cognitive load. Yet, under high cognitive load,
RTs were significantly higher for left- compared to right-sided
targets in the sham condition. This asymmetry disappeared
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in the CL/AR condition, but it remained unchanged in the
AL/CR condition. Significant post hoc results are depicted in
Figure 1B. No other effects were significant [stimulus side:
F(1,24) = 1.268, p = 0.271; stimulation condition × cognitive
load: F(2,48) = 0.156, p = 0.856; stimulation condition × stimulus
side: F(2,48) = 0.817, p = 0.448; cognitive load × stimulus side:
F(1,24) = 2.253, p = 0.146].

Concerning the changes in the laterality index, the repeated-
measures ANOVA revealed a significant main effect of the factor
“stimulation condition” [F(2,48) = 3.427, p = 0.041; Figure 1C].
Post hoc tests revealed significant differences between the sham
and the CL/AR tDCS conditions, as well as between the AL/CR
and the CL/AR tDCS conditions, yet not between the sham and
the AL/CR tDCS conditions. Hence, compared to the CL/AR
tDCS condition, participants showed a significant rightward
attentional shift in the AL/CR and the sham condition under
high cognitive load.

Concerning accuracy in the visuospatial attention detection
task, participants showed a very high rate of correct responses
(overall accuracy of 98.698%). The repeated-measures ANOVA
revealed a significant main effect of the factor “trial type”
[F(2,48) = 4.81, p = 0.012]. Although post hoc tests failed to
reach significance (all p’s > 0.05), participants seemed to be
slightly more accurate in catch trials (i.e., correctly refraining
from responding; mean = 99.16%, SD = 1.123) than in trials
with left- or right-sided targets (mean = 98.373%, SD = 1.681;
and, mean = 98.56%, SD = 1.536, respectively). No other effects
were significant (stimulation condition: F(1.313,31.512) = 1.621,
p = 0.216; cognitive load: F(1,24) = 1.852, p = 0.186;
stimulation condition × cognitive load: F(2,48) = 1.494,
p = 0.235; stimulation condition × trial type: F(4,96) = 0.781,
p = 0.540; cognitive load × trial type: F(2,48) = 0.428,
p = 0.654; stimulation condition × cognitive load × trial type:
F(2.602,62.449) = 1.266, p = 0.293).

DISCUSSION

In the present study, we aimed to investigate the neural
substrates of the rightward attentional shift observed under high
cognitive load in healthy subjects, by directly modulating the
interhemispheric interactions between the PPCs with biparietal
tDCS. The results demonstrated: (a) a left/right asymmetry
(shorter RTs for right- compared to left-sided targets) under
high but not low cognitive load in the sham condition, and
(b) polarity-specific effects of real stimulation, i.e., CL/AR tDCS
canceled this asymmetry under high cognitive load, whereas
AL/CR tDCS had no significant effect.

The rightward attentional shift under high cognitive load,
as observed in the sham condition, is in line with previous
findings in healthy individuals (Pérez et al., 2009; Naert et al.,
2018). This phenomenon has been hypothesized to rely on
a shift in the interhemispheric balance between the dorsal
attentional networks, favoring the left hemisphere (O’Connell
et al., 2011). Accordingly, correlational findings showed increased
alpha-power (i.e., a decreased excitability) over the right relative
to the left PPC under high cognitive load (Pérez et al., 2009). Our

results provide strong support for this hypothesis, by means of
a causal interference approach. The disappearance of the load-
related left/right attentional asymmetry during CL/AR tDCS can
be interpreted as a rebalancing of the interhemispheric activation
imbalance between the two PPCs. This effect is not only specific
(i.e., not observable during sham stimulation), but also polarity-
specific (i.e., not observable during AL/CR tDCS).

These results also fit well with findings in neglect patients,
who show a rightward shift in spatial attentional allocation.
This rightward shift is due to an interhemispheric imbalance,
with a relatively hypoactive right and a relatively hyperactive left
dorsal attention network (Corbetta and Shulman, 2011), and is
exacerbated under high cognitive load (Sarri et al., 2009; Bonato,
2012). Yet, inhibitory transcranial magnetic stimulation (TMS)
over the left PPC has been shown to significantly reduce the
detrimental effects of high cognitive load (Cazzoli et al., 2015).

Interestingly, AL/CR tDCS did not exacerbate the rightward
attentional shift under high cognitive load. Previous studies
found that pre-existing attentional biases can be reversed, yet
not exacerbated, by means of tDCS stimulation (biparietal and
unilateral, Loftus and Nicholls, 2012; Benwell et al., 2015). Thus,
the cortical activation level at stimulation onset may have affected
our results (Loftus and Nicholls, 2012); for instance, it has been
shown that increased cognitive load (i.e., applying non-invasive
brain stimulation during an ongoing task vs. no task) can increase
the impact of the stimulation itself (Cappelletti et al., 2013).
Hence, it may be easier to counteract an existing interhemispheric
asymmetry than to exacerbate it. Though a bilateral electrode
montage is particularly suitable to shift the interhemispheric
balance, it does not show the isolated effects of anodal or
cathodal stimulation (e.g., whether one hemisphere in particular
drives the observed effects; Sehm et al., 2012; Benwell et al.,
2015). Recent evidence indicates that shifts in spatial attentional
biases might be driven by right-hemispheric alpha band power
in the ventral attentional network (Benwell et al., 2017). This
network controls non-spatial attentional aspects (e.g., alertness),
is strongly lateralized toward the right hemisphere, and is
assumed to closely interact with the dorsal attentional network
(e.g., Corbetta and Shulman, 2002, 2011). Due to the relatively
low spatial resolution of tDCS (Nitsche et al., 2008), we cannot
exclude the possibility of a co-stimulation of adjacent nodes of
the ventral attentional network (see also, e.g., Chechlacz et al.,
2018). In fact, a hypothetical co-stimulation of areas of the ventral
attentional network could potentially also explain the observed
overall increase in RTs in the AL/CR condition (i.e., being
observable only when inhibitory, cathodal stimulation takes place
over the right hemisphere, due to the strong right-hemispheric
lateralization of the ventral network, and affecting both the left
and the right space, due to the non-spatial character of the
latter). However, it has also been shown that the dorsal attentional
network affects activity in the ventral attentional network
independent of stimulation (e.g., Corbetta et al., 2008; DiQuattro
and Geng, 2011; Vossel et al., 2014). Hence, a change in the
excitability of the right PPC could potentially also have affected
activity in the right ventral attentional network and ultimately
resulted in increased overall RTs. Nevertheless, we did not find
any differences in the subjective level of alertness (a non-spatial
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attentional aspect, governed by the ventral attentional network)
between pre- and post-stimulation nor between the stimulation
conditions, as revealed by the VAS. Another, non-mutually
exclusive interpretation of the findings concerning the observed
overall increase in RTs in the AL/CR condition is represented by
different roles played by the two hemispheres: Whereas the left
hemisphere would preferentially subtend attentional processing
within the right, contralateral space, the right hemisphere would
subtend attentional processing within both the left, contralateral
space and the right, ipsilateral space (Heilman and Van Den Abell,
1980; Silver and Kastner, 2009; Sheremata and Silver, 2015).
According to this account, the inhibitory, cathodal stimulation
over the right hemisphere in the AL/CR condition would trigger
detrimental effects on RTs in both the left and the right side of
space, due to the aforementioned bilateral representation within
the right hemisphere, thus potentially explaining the observed
overall increase in RTs in this condition.

In conclusion, our findings provide, for the first time,
evidence that cognitive load-related asymmetries in visuospatial
attentional deployment are influenced by interhemispheric
balance mechanisms between the left and right PPCs, which
can be modulated in a polarity-specific fashion by means
of tDCS.
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