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Abstract 

Single cell approaches are quickly changing our view on biological systems by increasing the 

spatiotemporal resolution of our analyses to the level of the single cell. The field of plant 

biology has fully embraced single cell transcriptomics and is rapidly expanding the portfolio of 

available technologies and applications. In this review we give an overview of the main 

advances in plant single cell transcriptomics over the past few years and provide the reader with 

an accessible guideline covering all steps from sample preparation to data analysis. We end by 

offering a glimpse on how single cell technologies will shape and accelerate plant-specific 

research in the near future. 

 

 

Summary points 

- Single cell approaches are established in the plant field and the portfolio of technologies is 

rapidly expanding 

- Efficient cell isolation is a bottleneck for some tissues and plant species 

- Single cell transcriptomics offers solutions to solve longstanding questions in fundamental 

and applied plant research 

- Unified experimental design and analysis methods are crucial to allow efficient data 

integration and comparison 

- Initiatives such as the Plant Cell Atlas will assist in uniting data sets and research tools for 

the entire community  
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1. Milestones in the development of plant single cell RNA-sequencing 

 

For centuries, biologists have been striving to precisely capture, characterize, and classify cells 

within multicellular organisms. The identity of a cell has long been primarily determined 

according to morphological features, spatial information within the tissue or organ, behavior 

towards other cells, or a unique cellular content such as specific organelles. However, with the 

onset of molecular biology, it became clear that the identity of individual cells can be 

characterized by unique spatiotemporal gene expression profiles. As such, the transcriptome 

can be thought of as a unique molecular fingerprint, in which gene activity is a read-out for cell 

function, developmental stage or disturbances caused by internal and environmental stimuli. 

This concept has intriguing implications as the transcriptome of a single cell would theoretically 

contain all required information to determine its origin, identity and developmental stage within 

a complex multicellular tissue, organ, or even the full organism. Harnessing this highly complex 

information at sufficient resolution has however been a major technical hurdle, even in well-

studied model species such as Arabidopsis thaliana. Over the past two decades, stepwise 

technical advances in Next Generation Sequencing (NGS) and microfluidics technology have 

been instrumental in mapping the transcriptome at cellular resolution (Figure 1).  

A first major step moving beyond profiling individual genes in a complex sample came with 

the onset of mapping a large subset of the Arabidopsis transcriptome via microarray (69) and 

later the full transcriptome via bulk RNA-sequencing (RNA-seq) technologies (37) (Figure 1). 

Although the sample itself usually was a convoluted mixture of different cell types, tissues, or 

entire organisms; RNA-seq allowed to reveal molecular mechanisms and pathways underlying 

developmental processes, adaptation, stress, and immune responses at a whole genome level. 

Pioneering work in the plant field combining cell type specific reporters and Fluorescence-

Activated Cell Sorting (FACS) allowed to deconvolute the complexity of the Arabidopsis root 

into radial cell identities and longitudinal zones (6). This resulted in high resolution 3D gene 

expression maps of an organ at whole genome resolution (6, 7, 15, 23, 35). Together with 

subsequent studies mapping cellular responses to different environmental factors such as 

nitrogen (23), salt and iron (15), these data sets became heavily used resources to trace 

spatiotemporal gene expression profiles in roots. The requirement for a priori knowledge to 

construct tissue specific reporter genes has however hampered the use of this technology 

beyond well-characterized model species. 

The step from obtaining gene expression values of pooled sorted cells to actual sequencing of 

single cells required retrieving reliable gene expression values from the very low amounts of 
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RNA present in a single cell (8). Performing an exponential amplification of mRNA from a 

single cell (34, 64) enabled the generation of the first whole genome single cell RNA-seq studies 

in plants, in which single Arabidopsis root cells carrying a fluorescent tag were sorted into wells 

using FACS, followed by full transcriptome sequencing (19). Although limited in practice to a 

few hundreds of cells, these studies illustrated the immense potential of single cell 

transcriptomics in plants.  

The transition from plate-based to nanoliter-sized droplet-based assays using microfluidics (63) 

allowed to increase the throughput from hundreds to thousands of single cells per experiment 

at affordable costs. A cell barcode system was introduced in which randomly designed short 

nucleotide sequences serve as unique labels that enable the assignment of sequencing reads 

obtained from a pool of single cells back to its original cell (30). This barcoding principle was 

also implemented to tag each individual transcript within a cell in the form of Unique 

Molecular Identifiers (UMIs) in order to correct for Polymerase Chain Reaction (PCR)-

induced replication biases (31). The adoption of droplet-based methodologies into accessible 

commercial platforms fully embedded this technology in modern plant research (14, 16, 72, 21, 

32, 38, 55, 58, 59, 66, 68). These studies illustrate how single cell transcriptomes give sufficient 

information to cluster cells according to their identity and response to stimuli. Moreover, cells 

can be ordered along a pseudo-time axis allowing the reconstruction of cell trajectories within 

multiple cell types (14, 32, 33, 38, 49, 55, 58, 59, 66) and Gene Regulatory Networks (GRNs) 

that control them (14). These networks will be further refined by the addition of single nuclei 

Assay for Transposase-Accessible Chromatin (snATAC)-Seq data (16, 21), allowing to also 

explore chromatin accessibility at the level of individual cells. 

In conclusion, plant research has fully embraced single cell transcriptomics and its application 

to a variety of plant species is ongoing. Pioneering studies in rice and maize (49, 68) indicate 

the utility of single cell transcriptomics in crop species and thus lead the way for its integration 

into applied plant research. Although the field of single cell technologies progresses at very 

high pace, in this review we hope to provide the reader with an accessible guideline 

encompassing all steps from sample preparation to data analysis. We furthermore aim to 

illustrate how single cell technologies will shape and accelerate plant-specific research in the 

near future. 
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2. An overview of the scRNA-seq workflow  

 

The generation and analysis of a single cell transcriptome data set from a plant sample requires 

a multifaceted workflow, comprising 1) the generation of single cells and 

compartmentalization; 2) library construction and sequencing; and 3) demultiplexing, analysis, 

integration, and validation of the data (Figure 2). This chapter summarizes the state-of-the-art 

for each of the steps to generate single cell transcriptomes from plant samples and highlights 

the most important pitfalls. We end this section by describing more advanced analysis methods 

to retrieve biological meaningful information from the obtained data set.  

 

2.1. The generation of single cells in plants 

 

Cell isolation methods 

Similar to any other research field, the first step in plant-based single cell experiments is the 

isolation of single cells. Given plant cells are characterized by rigid cell walls, this first step can 

be specifically challenging depending on the tissue type or plant species. Enzymatic cell wall 

digestion and manual isolation remain the two principal ways to enable dissociation of single 

cells from the tissue context in plants.  

Enzymatic digestion to release single cells from their tissue context results in a suspension of 

cells without cell walls (called protoplasts) and has been the most common way to isolate the 

individual cells for recent single cell transcriptome experiments in Arabidopsis, maize, and rice 

(6, 7, 66, 68, 72, 14, 18, 19, 32, 38, 49, 58, 59) (Figure 2). Depending on the cell wall 

composition, the enzymatic solution is composed of cellulases, hemicellulases and pectinases. 

Because of the variable composition of plant cell walls in tissues, organs, and species, not all 

cells are digested with the same efficiency. As just one example, differentiated cells develop 

thick cell walls which in some cases incorporate the very recalcitrant lignin polymer (48). As 

such, a careful optimization of the enzymatic solution and the conditions is advisable for every 

new tissue type and plant species. Validation of the obtained protoplast is required to determine 

the composition of retrieved cell types; this could be performed by quantitative real-time PCR 

analysis to determine the relative expression levels of specific reporter genes. Additionally, if 

fluorescent reporter lines are available, the relative abundance of protoplast expressing 

Fluorescent Proteins (FPs) can be determined by in vivo microscopic observations (33). 

Additional bulk RNA-seq data from undigested tissues is routinely used to filter the effect of 

tissue digestion on the endogenous gene expression (14, 59, 68). 
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Manual isolation methods provide an alternative to enzymatic dissociation of cell walls. These 

include microcapillary-based approaches to extract the content of individual cells and 

microdissection-based techniques to isolate a region or cell of interest. Microcapillary-based 

extractions have been used extensively in plant research as they allow to obtain the content of 

specific or rare cells from a broad spectrum of plant species and tissues (36, 39), and were 

recently also adopted to single cell experiments (33). This approach was used to obtain scRNA-

seq data from Physcomitrella patens gametophytes (Figure 1) (33) in combination with a 

nuclear fluorescent protein allowing a controlled disruption of cells and subsequent uptake of 

the nucleus and surrounding cytoplasm. In Laser Capture Microdissection (LCM) tissues are 

first fixed by embedding or freezing; sectioned and placed on a slide before individual cells or 

a specific region are isolated and removed using a laser. LCM has been applied in hard stems 

(13) and even in fleshy tomato fruit bodies (43), indicating its efficacy in a wide range of tissue 

types.  

Although each of these manual approaches has its specific merits, a main advantage for both is 

that they can be applied to any tissue or plant species without the need of prior knowledge or 

molecular tools as long as the cells of interest can be differentiated according to e.g. size or 

anatomic features. Moreover, because cells are fixed or directly processed, the influence on 

gene expression is low as seen in scRNA-seq data from P. patens (33). These manual 

approaches are however laborious and come with relatively low throughput. 

 

Compartmentalization of cells 

Once a cell mixture is obtained, individual cells need to be separated and compartmentalized 

into tubes (33, 49), wells (19), or droplets (14, 16, 32, 55, 58, 59, 66, 68, 72) for further 

processing. Each tube, well, or droplet contains the necessary components to perform the 

amplification of transcripts and library preparation. The technique used for cell 

compartmentalization merits sufficient attention, as the presence of multiple cells in a 

compartment (multiplets) or the inclusion of impurities such as cell debris and free mRNA will 

lead to data loss in downstream processing. FACS has been used to distribute cells in plate-

based scRNA-seq approaches (19), allowing simultaneous enrichment for specific cell 

populations of interest using fluorescent reporter lines. Independent of the 

compartmentalization into wells or droplets, a FACS-based sorting step can be useful to score 

multiple characteristics of a single cell (e.g. size and/or fluorescence), which can reduce 

impurities. In this aspect, the implementation of FACS devices equipped with image stream 

analysis will be of high interest (26) and can allow more precise cell quantification to reduce 
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the chance of multiplets formation. However, higher purity and cell enrichment comes at the 

cost of increased processing time and additional processing steps. The final choice on the cell 

isolation and compartmentalization strategy is highly dependent on the tissue, species, the usage 

of commercial platform, and the envisaged application. In any case, careful consideration is 

required before initiating a single cell experiment. 

 

2.2Single cell transcriptomics technologies used in plant research 

 

Its high-throughput and low-cost cell processing allowed droplet-based single cell methods (e.g. 

Drop-seq (42) or the Chromium 10X platform) to dominate the plant single cell transcriptome 

landscape including applications in Arabidopsis roots (14, 16, 21, 32, 55, 58, 72) and cotyledons 

(38); and rice stem and sheaths (68) (Figure 1). Given the prominent role of droplet-based 

protocols in the plant field, a typical single cell experiment using this set-up is described below 

and depicted in Figure 2. 

The general principle underlying droplet-based protocols is the encapsulation of an individual 

cell and a barcoded bead in a nanoliter-sized droplet. The bead is coated with DNA 

oligonucleotide probes that encode a cell-specific barcode, a transcript-specific barcode (as 

UMIs), and poly(T) sequence (Figure 2). The oil droplets contain all buffers and enzymes 

required for cDNA synthesis. Upon encapsulation in the droplets, cells are lysed which allows 

the poly-A-tailed mRNA to bind to the beads. Reverse transcription is used to generate Single-

cell Transcriptomes Attached to MicroParticles (STAMPs). Because transcript coverage 

mainly occurs at the 3′-end, processing is fast but information on genetic variation, gene 

expression, or relative abundance of transcript isoforms is not obtained (74). The STAMP 

containing droplets are combined to facilitate further amplification using PCR and library 

preparation as a single sample, followed by RNA-Seq. This set-up allows droplet-based 

scRNA-seq methods to process thousands of cells while providing sufficient resolution and 

sequencing depth to generate atlases of whole organs in one single experiment. 

A different 3´-based method, called Cell Expression by Linear amplification and sequencing 

(CEL-seq2) (27) has been applied to precisely define cellular transition states during maize 

anther development (49). Similar to droplet-based methods, CEL-seq2 uses primers that are 

equipped with a cell barcode and UMI, while the major difference is that the mRNA 

amplification in this plate-based approach is done via in vitro transcription instead of PCR, 

which can reduce amplification bias (27). 
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For scRNA-seq experiments where high (or full-length) transcript coverage is of the essence, 

the SMART-Seq protocol has been applied in a plate-based set-up (19) (Figure 1). Compared 

to 3´-based methods, SMART-Seq protocols have been associated with a higher number of 

sequenced transcripts and genes detected per cell (74). Additionally,  the full-length transcript 

coverage provides information on expression balances between transcript isoforms. Although 

the extended processing time associated with full-length transcript amplification makes this 

approach less suitable for high-throughput single cell analysis, it is highly suitable for 

experiments focusing on e.g. rare cell types such as regenerating root meristem cells in 

Arabidopsis (19).  

 

2.3. Data analysis 

 

The analytical workflow of single cell transcriptomes is a multistep process. Several software 

packages, including Cell Ranger (73) and Seurat (10), combine pipelines to perform quality 

control, normalization, dimensionality reduction of the raw data and visualization. In this 

section, we will describe the different steps during data analysis as currently performed in the 

plant field and highlight some of the potential options and pitfalls. 

 

Demultiplexing, quality control and normalization 

After sequencing and the initial quality control used for the detection and removal of low-

quality bases (e.g. with FastQC), the sequence files are demultiplexed to assign sequences back 

to their cells of origin using the unique cell barcodes. Next, another round of demultiplexing is 

performed using UMIs to quantify the number of mRNAs captured within a single cell. The 

usage of UMIs largely improves expression quantification across thousands of analyzed cells 

as it identifies PCR duplicates and allows to reduce background noise and PCR amplification 

bias (31). The barcode and UMI sequences are removed before alignment to the reference 

genome/transcriptome. A quality assessment can be performed to evaluate the quality of cell 

compartmentalization and library preparation. For example, a comparison between the mapping 

efficiency of endogenous RNA to spike-ins (control transcripts with known sequence and user-

defined concentration) gives an estimate about the quality of the library used for sequencing. 

RNA degradation or inefficient cell lysis can lead to a low-quality library, which would be 

detectable with low mapping ratios to endogenous RNA while sufficient mapping to spike-ins. 

An additional quality check is done by calculating the number of counts per barcode 

(summarized as count depth), the number of genes per barcode and the ratio of counts from 
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mitochondrial and chloroplast genes per barcode. A combination of low count depth, low 

number of genes, and high amount of counts for mitochondrial or chloroplast genes per barcode 

can indicate a low-quality cell, while an unexpectedly high number of counts and genes per 

barcode can indicate potential multiplets. A low count depth can indicate either a cell with low 

quality RNA or an empty droplet. In either case, barcodes should be removed before the 

normalization to reduce the risk of influencing the quantification of gene expression, cell 

clustering, and the identification of cell marker genes. A subsequent normalization step is used 

to adjust variation between cells of the same sample that are caused by differences in cell lysis 

efficiency, sequencing depth, or efficiency differences during library preparations. These 

variations occur because each count per barcode is the result of an mRNA molecule that 

underwent capturing, reverse transcription, and sequencing. Thus, even slight differences in 

efficiency within these steps can cause a high variability between cells, making normalization 

an absolute requirement. Normalization by scaling counts can be expanded with an imputation 

algorithm that tries to infer gene expression counts to correct for excess zero counts or drop-

out. Single-cell data has a higher dropout rate than bulk RNA-seq, where zeros can reflect 

technical limitations instead of the true absence of expression. Once normalization is performed 

and gene expression has been quantified, a subset of genes with either high biological variability 

(Highly Variable Genes (HVGs) (8, 12)) or highest variation in average expression level across 

all cells (highest expressed genes (17)) are used to determine cell clusters. 

 

Dimensionality reduction and clustering 

Depending on the plant species, sequence coverage and depth; scRNA-seq data sets can contain 

the expression values of 25,000 (Arabidopsis) to 50,000 (maize) genes for each of the thousands 

of cells. To cope with the computational and statistical challenges that come with comparing 

gene expression profiles among thousands - up to millions - of cells, HVGs are identified (14, 

21, 72, 32, 38, 49, 55, 58, 59, 66, 68) and uninformative genes are removed (referred to as 

feature selection). Dimensionality reduction tools are used to visualize the high dimensional 

data set in only two or three dimensions. Principle component analysis (PCA) has been used to 

reduce dimensionality and determine cell clusters in plant scRNA-seq data set (14, 21, 38, 49, 

58, 66). PCA determines variables that contribute to the overall variance of expression among 

all individual cells and compares them to estimate the variable that contributes the most to the 

overall variance. PCA has been applied in combination with other dimensionality reduction 

tools, e.g. t-Distributed Stochastic Neighbor Embedding (t-SNE) (41), to visualize cell clusters 

in plant scRNA-seq studies (14, 21, 38, 58, 66). t-SNE is specifically useful to highlight 
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differences between cell clusters, but not within cells of the same cluster. Uniform Manifold 

Approximation and Projection (UMAP) (45) on the other hand, allows comparison of both cell 

clusters and cells within these clusters based on distances between them. Given that UMAP 

also allows to visualize more than two dimensions and has a high run time performance (3), it 

is quickly becoming the preferred method in the plant field (16, 21, 32, 38, 58, 68, 72).  

Several algorithms are available to identify and characterize cell populations by unsupervised 

clustering (17). Plant scRNA-seq studies used Louvain clustering algorithm based on shared 

nearest neighbor networks (14, 16, 21, 32, 38, 55, 58, 59, 66, 72), which calculates the nearest 

neighbors of each cell and clusters those with the highest overlap. However, comparative 

studies indicate very method-specific clustering outputs (22). 

 

Cell identity assignment and validation 

The cell identity of each cluster can be defined by overlaying the expression of specific marker 

genes, requiring previous knowledge of the gene expression in the tissue or species of interest. 

For the root scRNA-seq data sets in Arabidopsis, this can be done via correlation analyses of 

marker gene expression in specific clusters and validated data sets (7, 35) and by computing an 

index of cell identity score (18) for each cell (58, 59, 66). The process of cell clustering and 

identity calling is however an iterative one, as changing cluster parameters has a great impact 

on clustering output and the ability to call sub-cell types.  

Once clustering and annotation has been performed, a first step in validating newly generated 

data sets is to investigate cell cluster-specific genes for known marker genes (besides those used 

for initial clustering) or other indications that match the expected biological function such as 

e.g. metabolic pathways. Marker gene expression should not only be specific to a cell cluster 

but should also be expressed in most cells of that cluster. Variations of marker gene expression 

among cells of the same cluster can have multiple reasons, one being variations related to the 

developmental stage that individual cells are in. Comparing marker gene expression of genes 

associated with proliferation (e.g. such as cell cycle-related genes) can be used to fine-tune the 

composition of a cell cluster (49). Alternatively, plants have the unique characteristic of 

showing distinct changes in cell ploidy levels through development and sets of marker genes 

have been associated with this (5). These ploidy changes can be used to validate the progression 

of cell lineages in time (16). It is worth noting that some developmental processes (e.g. cells 

with different identities undergoing division) might even cause dominant transcriptional 

changes that could mask the actual cell identities, causing cells from different cell lineages to 

cluster together. Additionally, marker gene expression might be affected by biotic or abiotic 
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stimuli, which need to be taken under consideration during the experimental and project design. 

While marker genes for root cell identities in Arabidopsis have been extensively studied and 

validated, fewer marker genes are available for other organs and even less so for other species. 

Automated cluster annotation methods have facilitated cell identity annotation in mammalian 

field (1), offering important alternatives to the manual annotation currently done in the plant 

field.  

Although the options mentioned above should be explored for each data set generated and offer 

a fast way to provide an initial validation of the data, it is important to stress that there is no 

substitute for in vivo validation. As the predictive power of a large-scale resource defines its 

usefulness for the community, an extensive validation of predicted cell clusters, cell identities, 

or developmental stages must be performed to ensure the data can be used for downstream 

analysis. This can be done by validating expression patterns with transgenic reporter lines (14), 

in situ hybridization, or by analyzing genetically perturbated mutants (55, 58, 66). Once 

validated, scRNA-seq data sets can be mined to extract additional transcriptional signatures that 

give relevant information on biological processes within individual cells. 

 

Data set integration 

Conceptually, scRNA-seq data sets provide power by numbers. Increasing the number of cells 

analyzed can be achieved by increasing the sample size or by integrating existing data sets. The 

integration of data from different experiments or batches requires additional corrections and 

quality controls. Technical variance associated with protocols, equipment, staff, and time of 

processing can interfere with the detection of the biological signal of interest and lead to false 

discoveries when combining samples (28). Integration methods correct for batch effects 

between cells from different samples by transforming the data to recreate cell identities in low-

dimensional space that are no longer dominated by batch effects. Available methods can be 

differentiated based on their requirement of having the exact same amount of cell types present 

across all batches (e.g. MetaSparseKmeans (29)) or according to their ability to handle cell 

identities or states that are not present across all samples (Mutual-Nearest-Neighbor (MNN) 

(25)). Wang and collaborators (68) for example used MNN to correct for batch effects between 

rice samples that were exposed to different environmental conditions enabling the comparison 

of cell type assignment independent of the environmental conditions. Shahan and collaborators 

(58) used a customized tool (Cell preprOcessing PIpeline kaLlistO busTools (COPILOT)) to 

align and combine in-house generated and publicly available scRNA-seq data sets from 

Arabidopsis roots.  
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Given that batch effects can only be accounted and corrected for in the analysis pipeline if they 

are controlled for through an appropriate experimental design, an upcoming challenge for the 

plant community will be to join forces and align protocols and experimental designs to ensure 

all generated data can be incorporated into a comprehensive atlas (see plant cell atlas (53)). 

 

2.4. Beyond cell clustering: identification of single cell transcriptome signatures 

 

The initial output of scRNA-seq data sets are Differentially Expressed Genes (DEGs) for e.g. 

specific tissue types or treatments. This already provides a high spatial resolution on the 

involvement of unknown regulators and differential responses of specific tissue types to a 

general stimulus such as abiotic stresses or treatment with phytohormones. However, scRNA-

seq data also allow analyzing cellular state transitions and developmental trajectories due to the 

high temporal resolution. The spatiotemporal resolution and power by numbers also provides 

opportunities to enhance GRN analysis. 

 

Trajectory inference methods 

The dynamic processes that occur within cells can be uncovered using Trajectory inference 

methods. It can highlight transitions between different cell states or even identify branching 

points in the developmental trajectory of a cell type lineage. Pseudo-time analysis can be used 

to align cells according to their incremental changes in transcriptome within a temporal order 

along a trajectory that corresponds to a biological process. Running different algorithms in an 

iterative way and testing different cells as starting point can provide some robustness in this 

prediction.  

The resulting trajectories can be simple (e.g. cyclic or linear), bifurcated, or even containing 

disconnected events (56). In all cases, however, biological validation is required to ensure the 

predicted trajectories match biological data. Genes specifically expressed at the branching 

points or transitions between cell states can contribute to understanding these cell lineage 

specific processes. The Arabidopsis root tip is uniquely fit to trace developmental trajectories 

as cells are orderly aligned in cell files and cell lineages are well defined. Monocle is an 

unsupervised algorithm that increases the temporal resolution of transcriptome dynamics (65) 

and has already been used intensively to define developmental trajectories in the Arabidopsis 

root meristem cell types (14, 16, 55, 59, 68, 72). Other tools including CytoTRACE (24) and 

scVelo (4) have also been used for the same application. By focusing on the trajectories of 
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cortex and endodermis cells, which both originate from the same stem cell, potential early 

regulators in ground tissue development could be identified (58). 

 

Gene Regulatory Network analysis 

Single cell data sets offer unprecedented temporal and spatial resolution to reconstruct networks 

of transcriptional regulators (as GRNs) that control cell type-specific processes and cell stage 

transitions. Although harnessing the full spatiotemporal resolution at cellular level of scRNA-

seq data is still challenging, constructing GRNs between groups of cells along the 

developmental trajectory is already feasible (14). For example, analyzing the dynamics of 

transcription factors expression during trichoblast cells differentiation in Arabidopsis revealed 

novel players and so far undescribed feedback mechanisms (14). Elaborating these comparisons 

to include transcription factors and their respective target genes can shed further light into cell-

to-cell communication to orchestrate cell proliferation and differentiation.  

 

3. Emerging opportunities for single cell technology in plant research  

 

3.1. Digging deeper and faster 

 

Plant research has embraced single cell approaches in the past years and this has allowed to 

study developmental processes and cellular responses at unprecedented resolution (14, 16, 66, 

68, 72, 21, 32, 33, 38, 49, 55, 58, 59). However, we are only observing the tip of the proverbial 

iceberg as we will not only see the amount and type of information increase exponentially over 

the next few years, but we will soon also be able to extract much more detailed information 

from existing data. 

A prime example is the identification of specific or novel subpopulations of cells. Current 

resolution of e.g. the Arabidopsis root allows precise identification of developmental 

trajectories of general cell identities (e.g. vascular tissues) and some subdivision into cell types 

(e.g. xylem and phloem) (14, 21, 32, 58, 66, 72). There should however be sufficient 

information in existing data sets to perform a more detailed classification of subpopulations 

(e.g. into proto- and metaxylem, sieve element, metaphloem, companion cells etc.) (52, 58, 66, 

72) and perhaps even trajectory bifurcation analysis to validate cell lineage tracing studies. This 

suggests that currently a main limitation is the lack of reliable marker genes. Moving from 

general profiling of all tissue types into the generation of more dedicated data sets comprising 
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one specific tissue type (66) will provide the required resolution and identification of validated 

marker genes and allow direct detection of these identities in all existing data sets. NICHE-seq 

(46) offers an alternative to overcome marker-based cell selection or analysis of overexpression 

mutants. Here, a FP is constitutively expressed in all cells and two-photon irradiation is used to 

locally excite it before tissue dissociation. Cells in which the FP is stimulated are separated 

from non-stimulated cells using FACS,  and afterwards sequenced. The concept of stimulating 

cells of interest within a tissue niche has the potential to capture cell states and to recreate spatial 

information in any tissue of interest. 

 

Besides providing temporal alignment of cell types along a developmental trajectory, trajectory 

inference methods can offer additional information on the stability and speed of cell state 

transitions (50). As the simplest example, the amount of cells along a trajectory from state 1 to 

state 2 can predict whether this transition is slow (gradual change typed by a homogenous 

distribution from state 1 and state 2; Figure 3A) or very fast (switch-like behavior characterized 

by few cells between state 1 and state 2; Figure 3B). This by itself provides important biological 

insights into the developmental process of transitions into certain cell identities. The 

interpretation of developmental trajectories in scRNA-seq data sets of lines overexpressing 

xylem specific transcription factors has revealed a bi-stable hysteric switch behavior of xylem 

vessel identity in Arabidopsis (66). 

Obtaining more reliable developmental trajectories to pinpoint rare cells undergoing this type 

of switch-like behavior, can be assisted by scaling up the number of processed cells. Single cell 

combinatorial barcoding protocols, such as Split-Pool Ligation-based Transcriptome (SPLiT)-

seq (54) or single-cell combinatorial indexing (sci)-RNA sequencing (11), allow ultra-high-

throughput processing of up to millions of cells using multiple rounds of random pooling and 

barcoding. Although coming at the expense of data depth per cell, analysis of such high cell 

numbers allows to enrich and identify very rare or transient subpopulations. This could become 

very relevant as groups of cells within a cell type might respond differently to an endogenous 

or environmental stimulus. Expression mosaicism of transgenes in plant calli, in which 

transgene expression is only observed in a fraction of cells of the same identity, is an ideal 

example for heterogeneity within cell types (57). Identifying and studying such exceptional 

responder cells in plants (Figure 3C) could hypothetically reveal e.g. gene regulatory elements 

that cause their resistance towards biotic and abiotic stimuli. These rare cell populations and 

transient cell states might challenge current definitions of cell identity but, at the same time, 

offer exciting new opportunities for biotechnological applications.  
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Although single cell transcriptomic approaches are well established in the plant field, cell-

specific responses and consequent phenotypic changes are the result of the combined effect of 

the transcriptome, epigenome, metabolome, and proteome. The coming years will be 

characterized by initiatives to start single cell multi-omics analyses (Figure 3D). Upcoming 

new methods can capture transcriptome and epigenome information from individual cells 

simultaneously, e.g. Assay for Single-cell Transcriptome and Accessibility Regions (ASTAR-

seq (70)), which can for example provide unique opportunities to understand acquired disease 

resistance or responses to other internal and external stimuli at cellular level. 

 

3.2. Single cell transcriptomics for all 

 

Although the potential of single cell transcriptomics has been illustrated in the model plant 

Arabidopsis (14, 16, 21, 32, 38, 55, 58, 59, 66, 72), the moss P. patens (33), and economically 

relevant crop species such as maize (49) and rice (68), there are clear challenges to implement 

the technology in genetically poorly characterized and emerging model plant species. In many 

cases, a set of well-defined marker genes to annotate cell clusters is simply not available and 

generating fluorescent reporter lines for dozens of cluster specific genes might be technically 

challenging due to long generation times or low efficient plant transformation protocols. 

Spatial transcriptomics approaches offer spatially resolved transcriptomics without having 

the need to generate single cells or having sets of tissue-specific marker genes to annotate cell 

identities (Figure 3E) (40, 47). The combination of cellular resolution via single cell 

transcriptomics with spatially resolved transcriptomics is specifically attractive as it offers 

opportunities to reveal cellular communication mechanisms such as ligand-receptor pairs (20) 

(Figure 3E) and could even trace e.g. signal amplification across cell types when exposed to 

chemicals, fertilizers, or pathogens.  

Given that plant cells are differentially but highly responsive to their environment and this is 

changing over time, the use of scRNA-seq in high-resolution phenotyping and breeding 

applications (including yield, abiotic/biotic stress resistance, plant immunity) has immense 

potential, but requires processing of many samples. Sample multiplexing can be useful to test 

the variety of individual cell sensitivities and responses during chemical screens or chemical 

concentration tests. Multiplexing Using Lipid-Tagged Indices for single-cell and single-nucleus 

RNA-seq (MULTI-Seq) uses lipid- or cholesterol-conjugated oligonucleotides that bind to 

plasma membranes to provide cells from each sample with an additional barcode (44). Other 
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techniques use oligo-tagged antibodies to label cells from the same sample before pooling 

samples together (61, 62). Pooling of samples prior to library preparation and sequencing 

lowers costs by an order of magnitude. The associated loss of sequence coverage might not be 

a problem when studying specific processes or for breeding purposes, as it can be sufficient to 

evaluate a subset of genes by enriching for a specific panel of gene expression using for example 

Constellation Drop-seq (C-Drop-seq) (67). Although targeted gene panels reduce the overall 

information obtained from a single cell transcriptome, they offer a higher sensitivity. 

Many of the key cellular responses to environmental stimuli occur in differentiated cells, which 

are difficult to liberate using enzymatic digestion. Additionally, some plant species might be 

specifically recalcitrant to tissue dissociation. In these cases, profiling nuclei in single nucleus 

RNA-seq (snRNA-seq) could offer a solution (21). Nuclei enrichment has been used widely in 

plants to obtain cell type-specific transcriptomes (reviewed in (2)). Fluorescence-Activated 

Nuclei Sorting for example was used to capture transcriptomes from rare cells, such as phloem 

companion cells (71) or embryonic cells (60). Recently, Arabidopsis root nuclei were used to 

profile the open chromatin regions using snATAC-seq (16, 21). In theory, the open chromatin 

state of a cell could act as a read-out for transcriptional activity (51). Indeed, snRNA-seq and 

snATAC-seq results correlated for most cell types, but snRNA-seq identified a novel cell cluster 

which was not captured in scRNA-seq data sets (21). Although the identity of this cluster is yet 

to be assigned, it suggests that these nuclei might come from cells that are not captured via 

enzymatic digestion (21). 

 

3.3. Standardization and community building 

 

Single cell RNA-seq data sets contain a wealth of information that is of use to a broad range of 

plant scientists. However, to ensure that these large, high-dimensional data sets can be properly 

mined and used by the community, we need to implement standardized procedures and 

protocols for sample preparation, quality control, data analysis, and validation. Establishing 

detailed experimental design guidelines could provide a standard in the amount of technical and 

biological replicates required per experiment and suggest means to properly validate the data 

via appropriate controls. In case of previously uncharacterized tissue types or plant species, 

bulk RNA-seq data of undigested tissues might be included to provide useful controls to 

separate gene expression changes that are triggered during tissue dissociation (14, 16, 21, 55, 

59, 68). Additionally, a quantitative indication of tissue digestion efficiency across cell types 

and developmental stages would also be beneficial during analysis (32, 58, 59, 66, 68). A set 
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of experimental and analysis guidelines could be formulated based on dedicated benchmark 

studies, which are not available in the plant field so far. 

To allow comparisons between the quickly increasing number of experiments performed by 

many different research groups across the planet, guidelines for batch effect correction will 

become very important. Moreover, when comparing different tissues and/or different species, 

unsupervised multi-data set integration algorithms will need to be developed to compensate 

for the complete absence or variable relative composition of individual cell types across 

samples (10). In such cases, gene panels related to biological processes or functions could be 

used in machine learning algorithms to automatically define cell identities across tissues and 

species (Figure 3F). This will however require well-defined and reliable GO-term annotations 

in both model and non-model plant species. In addition, machine learning algorithms could also 

be used to reduce noise between cells of the same cell type, that can for example be triggered 

by cell cycle- and cell stress-related genes (9). This strategy has already been utilized to remove 

cell cycle related genes, which could overwrite other transcriptional responses (49). These and 

other initiatives will allow us to build integrated virtual plant databases, such as the plant cell 

atlas (53). This not only serves as data repository but can also act as a communications hub to 

find consensus on experimental design, data correction and statistical analysis.  
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Glossary Terms 

 

Barcode: Small nucleotide sequence used as a unique cell- or sample-specific recognition tag 

Bulk RNA-sequencing (RNA-seq): Common name for RNA-sequencing of pooled cells, 

tissues, or organisms  

Compartmentalization: Isolating a single cell into a compartment (droplet, tube, or well) 

Cell trajectory: A biological process that causes heterogeneity among cells  

Differentially Expressed Gene (DEG): A gene with significant differences in expression levels 

between two experimental conditions  

Dimensionality reduction: The process of reducing the number of dimensions in a high-

dimensional space using visualization 

Fluorescence-Activated Cell Sorting (FACS): Flow cytometry-based method to separate and 

sort cells based on parameters such as size or fluorescence  

Gene Regulatory Network (GRN): Network of molecular regulators that is predicted to regulate 

each other’s expression levels 

Highly Variable Genes (HVG): Genes with high contribution to cell-to-cell variation within a 

homogeneous cell population 

Marker gene: Gene with a specific expression pattern restricted to a cell identity, or 

subpopulation or cells preferably across multiple data sets 

Microfluidics: Manipulation of liquids down to the picolitre range, used in single cell 

approaches to generate droplets 

Multiplets: A droplet containing two or more cells 

Protoplast: A plant cell from which the cell wall has been removed by enzymatic digestion 

Pseudo-time: Inference of time or progression through, for example, development  

Single nuclei Assay for Transposase-Accessible Chromatin-Seq (snATAC-seq): Retrieving 

information on the open chromatin status of individual nuclei  

Single-cell Transcriptomes Attached to MicroParticles (STAMPs): The combination of 

barcoded-beads with attached mRNA transcripts from a single cell 

t-distributed Stochastic Neighbor Embedding (tSNE): Dimension reduction and projection 

algorithm 

Trajectory inference: Process of ordering cells along pseudo-time to identify cellular 

transitions and developmental trajectories 

Uniform Manifold Approximation and Projection (UMAP): Dimension reduction and 

projection algorithm 
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Unique Molecular Identifier (UMI): Small oligonucleotide sequence unique to each transcript 

from an individual cell that enables quantification and correction of PCR amplification biases 
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Figures 

 

 

Figure 1. Timeline of key events in plant single cell transcriptomics. Selection of milestones 

related to the development and establishment of single cell transcriptomics in the plant field are 

illustrated by green boxes on the timeline. General technological developments are shown in 

grey and key development outside of the plant field are indicated in pink.  
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Figure 2. Schematic overview of a typical droplet-based plant scRNA-seq experiment. 

Individual cells are isolated from the tissue containing different cell identities (illustrated by 

differently colored cells) by enzymatic digestion. As an optional step (dashed line), specific cell 

populations can be enriched using FACS. Next, cells are compartmentalized together with 

barcoded beads, buffers, and enzymes required for library preparation into oil droplets. After 

droplet formation, cells are lysed, and the released mRNAs are bound to the bead; followed by 

library preparation and next generation sequencing. The data is next filtered and normalized 

after which the reads are mapped against a reference genome. Dimensionality reduction 

clustering is performed before assigning cell identities. The resulting data set can then be used 

to e.g. predict gene regulatory networks or perform trajectory inference analysis. 
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Figure 3. Application of single cell technologies in plant cell research. (a-b) Enrichment of 

subpopulation can be used to identify and characterize cell state changes along a developmental 

trajectory. Slow transitions between two states suggest gradual changes in the transcriptome, 

while fast cell state transitions, without intermediate stages, can suggesting a switch-like 

behavior in the cell states. (c) Ultra high-throughput analysis of ten-to hundreds of thousands 

of single cells could reveal heterogeneity within cells of the same cell type. The transcriptomes 

of such exceptional responders carry useful information to understand phenotypic plasticity. (d) 

Multi-omics single cell approaches can be used to correlate cell-specific transcriptome profiles 

with gene regulatory elements or other cellular information (metabolome, proteome, etc.). (e) 

Combining single cell transcriptomic profiles with spatial information can reveal cell-to-cell 

communication signals as seen in ligand-receptor mediated pathways. (f) Data depository and 

integration initiatives, like the Plant Cell Atlas, aim to unify experimental conditions and 

sample processing to allow a standardized analysis and integration of scRNA-seq data sets as 

valuable community resources.  
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