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ABSTRACT Each new video encoding standard includes encoding techniques that aim to improve the
performance and quality of the previous standards. During the development of these techniques, PSNR
was used as the main distortion metric. However, the PSNR metric does not consider the subjectivity of the
human visual system, so that the performance of some coding tools is questionable from the perceptual point
of view. To further explore this point, we have developed a detailed study about the perceptual sensibility of
different HEVC video coding tools. In order to perform this study, we used some popular objective quality
assessment metrics to measure the perceptual response of every single coding tool. The conclusion of this
work will help to determine the set of HEVC coding tools that provides, in general, the best perceptual
response.

INDEX TERMS HEVC, perceptual coding, transform skip, RDOQ, deblocking filter, SAO, CSF, percep-
tual metrics

I. INTRODUCTION

H IGH Efficiency Video Coding (HEVC)
is the latest video coding standard in

force developed by the Joint Collaborative
Team on Video Coding (JCT-VC) of the ITU-
T Video Coding Experts Group (VCEG) and
the ISO/IEC Moving Picture Experts Group
(MPEG) standardization organizations. During
the development of the standard, a set of work-

ing draft specifications, including the accepted
proposals, was published. In addition, the HEVC
Test Model (HM) reference software was pro-
vided, so that the different coding techniques
proposed could be tested.

In 2013, the first version of the standard
was released. New versions of the standard and
the reference software, including the multi-view
extensions (MV-HEVC), the range extensions
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(RExt), and the scalability extensions (SHVC),
have been launched since then.

The main goal of the HEVC standard was to
reduce the bit rate by up to 50% while main-
taining the same subjective quality as the previ-
ous H.264/AVC standard, without increasing the
complexity of the encoder. To accomplish this
goal, the HEVC standard incorporates numerous
coding techniques that attempt to reduce the
bit rate without increasing the distortion. Many
of these techniques are based on the previous
H.264/AVC standard, while other novel features,
such as Quad-tree partitioning or the Sample
Adaptive Offset (SAO) filter, were also included.

Some coding tools in the HEVC standard
include approaches that deal with the non-linear
behavior of the Human Visual System (HVS), in
order to take into account the subjective quality
perceived by humans during the encoding pro-
cess. In particular, HEVC provides the SCaling
List (SCL) coding tool, which applies a non-
uniform quantization to the transformed coef-
ficients, depending on the HVS contrast sensi-
tivity associated to their frequencies. The main
idea is that higher quantization can be applied
to the areas of the scene for which the HVS
is less sensitive, i.e., the Just Noticeable Dis-
tortion (JND) concept [1]. Some studies also
include HEVC profiles to manage the luminance
masking effect for High Dynamic Range (HDR)
video sequences, as in [2] [3], where the authors
apply a non-uniform quantization profile based
on the Intensity Dependent Quantization [4]; it
is adaptively applied to each frame based on a
tone-mapping operator. An important bit rate re-
duction is obtained for the same quality that was
measured with the specifically designed HDR-
VPD-2 quality assessment metric [5] and also
through subjective tests.

Although the coding techniques incorporated
in the HEVC standard have proven to be capable
of reducing the bit rate, it cannot be guaranteed
that they are optimized from a perceptual point
of view. During the development of the cod-
ing techniques, the Peak Signal-to-Noise Ratio

(PSNR) metric was used to measure the dis-
tortion. PSNR, like Mean Square Error (MSE),
provides a quality score based on the pixel dif-
ferences between the original and reconstructed
images. It is well known that these metrics do
not accurately reflect the perceptual assessment
of quality [6] [7] [8] [9]. However, in the existing
literature, there seems to be conflicting evidence
about the accuracy of PSNR as a video quality
metric. In [10], the authors proved that PSNR
follows a monotonic relationship with subjective
quality in the case of full frame rate encoding,
when the video content and the video encoder
are fixed.

So, in order to properly asses the perceptual
(i.e., HVS-like) performance of HEVC coding
tools, we need to employ quality assessment
metrics that provide quality scores highly corre-
lated with the quality perceived by humans. By
doing this, we will ensure that the HEVC cod-
ing tools are always evaluated to maximize the
perceptual performance of the overall encoder,
avoiding, as much as possible, the deployment
of cumbersome and time-consuming subjective
tests.

In this study, we analyze the perceptual per-
formance of the several coding tools of the
HEVC Test Model (HM) software, which con-
cerns the visual quality of a reconstructed video
sequence. We have encoded the whole set of
video sequences included in the HEVC common
test conditions [11] with different configuration
setups in order to analyze their perceptual re-
sponse, trying to understand which encoder con-
figuration maximizes the averaged perceptual
quality of the reconstructed video sequences.
So, on the one hand, we modify the encoder
by changing its configuration, and on the other
hand, we use multiple sequences (different con-
tent) to obtain this average. Therefore, under
these conditions, PSNR should not be used as
a reference metric to obtain perceptually based
conclusions [12].

Each configuration setup will determine
which coding tools are enabled, so we may
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analyze not only their individual contribution to
the perceptual performance but also their contri-
bution in combination with other coding tools. In
order to measure the video quality, we use a set
of well-known image objective quality assess-
ment metrics, as well as the new Video Multi-
method Assessment Fusion (VMAF) quality
metric developed by Netflix [13].

The main contribution of this paper is based
on the R/D performance analysis of several
HEVC coding tools, in order to properly assess
their impact on the perceptual quality of the
decoded video. Most of the available studies
about HEVC coding tools in the literature only
work with the PSNR, but very few of them are
interested in perceptual behavior; usually, they
focus only on a specific part of the encoder.
We have exhaustively analyzed the impact of
different coding tools on the perceptual quality
of the reconstructed videos, showing results that
differ from the results provided by PSNR. These
results may be useful for future studies in order
to configure the video encoder to maximize the
perceptual R/D performance.

The rest of the article is structured as follows.
An overview of the different HEVC coding tools
under study is presented in Section II. In Sec-
tion III, the methodology used in this study
is explained. Section IV shows the experimen-
tal results, while in Section V, we provide a
brief discussion of the obtained results. Finally,
Section VI summarizes the conclusions of this
study, and some future research lines are pointed
out.

II. HEVC PARAMETERS
The HEVC standard includes many configura-
tion parameters that are used to enable or dis-
able coding tools that improve the reconstructed
quality, reduce bit stream size, or simplify enco-
der complexity.

These parameters allow us to tune the cod-
ing structure, motion estimation, quantization,
entropy coding, slice coding, deblocking filter,
and rate control, among others [14]. Inside these
main coding parameter blocks, the user can en-

able or disable the use of any parameter, as well
as create a user-defined behavior for a given
parameter. For example, in the deblocking filter
parameter block, the user can enable or disable
the loop filter and also define the use of the loop
filter across the slice boundaries (subparameter:
LFCrossSliceBoundaryFlag). However, some of
these user-defined behaviors for some coding
tools (subparameters) may affect the subjective
quality. In this paper, we will focus on the gen-
eral behavior of the HEVC codec when enabling
or disabling the main coding parameter inside
each parameter block.

In this work, we have selected the following
configuration parameters for evaluation, since
they have a high impact on the visual quality
of the decoded video sequence: Scaling List,
Deblocking Filter, SAO Filter, Rate-Distortion
Optimized Quantization, and Transform Skip.

A. SCALING LIST

The HVS is not able to detect all spatial frequen-
cies with the same accuracy [15]. Numerous
studies over the past few decades have charac-
terized the Contrast Sensitivity Function (CSF)
[16] [17] [18] as the response of our HVS to
contrast variations, showing that the human eye
is least sensitive to the highest and lowest fre-
quencies.

This CSF is implemented in the quantification
stage of the HEVC standard and can be modified
by the Scaling List parameter, with three avail-
able options. By default, the encoder applies a
constant quantizer step size for all transform
coefficients (ScalingList = 0) that does not con-
sider the subjectivity of the HVS. However, the
HEVC standard includes pre-defined weighting
matrices (ScalingList = 1) that incorporate an
implementation of the CSF. These non-flat ma-
trices (like the one shown at Figure 2-b) define
an additional scaling of the quantizer step, which
varies with the transformed coefficient position,
i.e., the base function frequency [19].

The results of the study carried out by [20]
showed that, on average, the use of the weight
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(a) 8× 8 flat quantization matrix (c) 8× 8 weight quantization matrix

FIGURE 1. Default 8×8 quantization matrices for (a)
ScalingList = 0 and (b) ScalingList = 1.

FIGURE 2. Example of using deblocking filter in
BlowingBubbles frame, encoded at QP37: (a) DB disabled, (b)
DB enabled.

quantization matrices provides better subjective
quality results.

B. DEBLOCKING FILTER
This filter reduces the effect of blocking artifacts
that are inherent in the nature of the encoder.
It is used after block reconstruction, but its im-
plementation is done within the coding loop,
i.e., the reconstructed and filtered blocks will
be taken as reference for other blocks (in-loop
filter).

Its implementation is similar to the one used
in the H.264 standard [21], but it is somewhat
more simplified. In HEVC, the decoder can
adaptively choose between applying two levels
of the deblocking filter (normal or strong) or not
applying it, depending on the adjacent blocks
and a certain threshold [22]. As an example,
Figure 2 compares the use of the deblocking
filter on a part of a decoded picture. As can be
seen, the grid effect disappears when the filter
is active; however, regions that should not be
filtered out are also blurred.

In [22], the authors argue that applying the

(a)

(b)

(c)

FIGURE 3. Example of using SAO filter in SlideEditing frame,
encoded at QP32: (a) Original uncompressed (b) SAO
disabled, (c) SAO enabled.

deblocking filter increases the objective and sub-
jective quality of the decoded video sequences.

C. SAO FILTER
The Sample Adaptive Offset (SAO) filter is a
new algorithm integrated in the HEVC stan-
dard. It is located after the deblocking filter, and
together, they form the so-called in-loop filter
stage.

The main purpose of the SAO filter is to
reduce distortion in the samples. To this end, the
samples are classified into different categories,
obtaining an offset for each of them. There are
two sample processing techniques, band offset
and edge offset. The algorithm will adaptively
decide on the best strategy to use. The offset
value is transmitted through the bit stream, while
the classification of the samples is performed on
both the encoder and decoder sides to reduce the
information to be transmitted [23].

In [23], authors explain that using the SAO
filter can provide about coding gains of 3.5% on
average. To measure this gain, they have used
the Bjøntegaard-Delta Rate (BD-Rate) metric
[24], which uses the PSNR, a non-subjective
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FIGURE 4. Modified coefficient value example in 4×4
transform sub-block example for sign data hiding.

metric. Regarding the subjective quality, the au-
thors state that, based on experiments carried
out by themselves, an improvement in quality is
generally perceived. This improvement is higher
in synthetic images, as shown in Figure 3, where
SAO significantly improves the visual quality by
suppressing the ringing artifacts near edges.

D. RATE-DISTORTION OPTIMIZED
QUANTIZATION (RDOQ)
In the video encoder, optimizing the quantifica-
tion process has a significant impact on the com-
pression efficiency. The HEVC standard does
not specify the quantization function, giving
the encoder some flexibility in implementing it.
HEVC includes, since version 13 of the refer-
ence software, a more sophisticated implemen-
tation of the quantization scheme called rate-
distortion optimization quantization (RDOQ).

The purpose of RDOQ is to find the optimal
or suboptimal set of quantized transform coeffi-
cients representing residual data in an encoded
block. RDOQ calculates the image distortion
(introduced by the quantization of transformed
coefficients) in the encoded block and the num-
ber of bits needed to encode the corresponding
quantized transform coefficients. Based on these
two values, the encoder chooses, among differ-
ent coefficient blocks, the block which provides
the better Rate Distortion (RD) cost [25].

Note that RDOQ is an effective method in
terms of increasing the R/D performance. How-
ever, in [26], the authors claim that the PSNR-
based mathematical reconstruction quality im-
provement attained by this technique is percep-

tually negligible in terms of how the human
observer interprets the perceived quality of the
compressed video data.

E. TRANSFORM SKIP
The Transform Skip parameter in the HEVC
standard allows the encoder to bypass the trans-
formation stage. In this way, the prediction er-
rors are coded directly in the spatial domain.

During the development of HEVC, three
transform skip modes were proposed and tested,
but the standardization committee finally de-
cided to use a single mode, the skipping trans-
form in both the vertical and horizontal direc-
tions [27]. This mode was found to improve the
compression of synthetic video sequences such
as remote desktop, slideshows, etc.

Finally, the HM reference software includes
an additional parameter, called TransformSkip-
Fast, which enables or disables reduced testing
of the transform-skipping mode decision in or-
der to speed it up.

F. SIGN DATA HIDING
The transform coefficient coding in HEVC in-
cludes an option, called sign data hiding or sign
bit hiding, that hides the coding of the sign flag
of the first non-zero coefficient at the parity of
the absolute sum of the coefficients. If the parity
does not match the sign of the first non-zero
coefficient and there are a sufficient number of
significant coefficients, the encoder will modify
the amplitude of a block coefficient until the
desired sign is obtained [28].

As an example, in Figure 4-a, we have a
transformed sub-block of size 4 x 4, whose
absolute sum is 47. By convention, an even value
would derive a negative sign for the first non-
zero coefficient. Following the block in zig-zag
order from left to right and from top to bottom,
the first non-zero coefficient is 14, which has a
positive sign. This is why the encoder changes
the value of a coefficient (Figure 4-b) so that
the absolute sum will be even. The selection of
the coefficient to be modified is determined by
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the Rate-Distortion criteria, which chooses the
coefficient with the lowest R/D cost.

This compression technique achieves an aver-
age BD-Rate reduction of 0.6% for the All Intra
coding mode. Modifying the coefficient values
tends to increase the distortion, so the BD-Rate
gain is obtained thanks to the rate reduction
provided by this technique and not due to a
quality increase.

III. METHODS AND PROCEDURES
In this work we have followed the indications
established by the Common Test Condition [11].
This document defines a regulatory framework
establishing a set of defined sequences and sev-
eral base configurations for HM. The set of
test sequences are classified in six large groups
(A–F). The classes A, B, C, and D represent
video sequences with different contents, video
resolutions, frame rates, and bit depths. Class E
is focused on head and shoulders videos typ-
ically used in video conference applications,
and class F is devoted to computer generated
videos and content screen applications (no nat-
ural video sequences).

In this work, we have focused only on the All
Intra Main (AI Main) configuration mode, and
therefore, no temporal processing and analysis
was performed. We have only used the All Intra
coding mode under the following criteria: (a)
As most perceptual metrics are only available
for images (not videos), the objective video
quality measurement would be more accurate
when using the All Intra coding mode since
these metrics are unable to capture the motion-
related artifacts. (b) Most of the coding tools
analyzed in this paper have a direct impact on the
reconstruction quality as a result of a prediction
process where the residual error is quantized and
the entropy is encoded. So, with the indepen-
dence of using spatial or temporal prediction, the
quality distortion is due to the quantization of the
prediction error. If two prediction blocks (one
spatial and the other temporal) produce the same
residual error, the reconstruction quality should
be the same for a given quantization value, so the

TABLE I. HEVC test sequences

Class Sequence name Resolution Frame
count

Frame
rate

Bit
depth

A

Traffic

2560x1600

150 30 8
PeopleOnStreet 150 30 8
Nebuta 300 60 10
SteamLocomotive 300 60 10

B

Kimono

1920x1080

240 24 8
ParkScene 240 24 8
Cactus 500 50 8
BQTerrace 600 60 8
BasketballDrive 500 50 8

C

RaceHorses

832x480

300 30 8
BQMall 600 60 8
PartyScene 500 50 8
BasketballDrill 500 50 8

D

RaceHorses

416x240

300 30 8
BQSquare 600 60 8
BlowingBubbles 500 50 8
BasketballPass 500 50 8

E
FourPeople

1280x720
600 60 8

Johnny 600 60 8
KristenAndSara 600 60 8

F

BaskeballDrillText 832x480 500 50 8
ChinaSpeed 1024x768 500 30 8
SlideEditing 1280x720 300 30 8
SlideShow 1280x720 500 20 8

quality of the prediction and not the prediction
itself (temporal or spatial) determines the final
reconstruction quality.

Table I defines the set of test sequences used
in this paper.

In order to analyze the R/D performance of
the coding tools described in the previous sec-
tion, we use the Bjontegaard BD-Rate metric
[24], which shows the rate-distortion perfor-
mance. We followed the instructions defined in
the HEVC conformance test standard [11]; the
QPs 22, 27, 32, and 37 are used to conform the
PSNR curves that allow the computation of the
BD-Rate performance. As we are using other
objective perceptual metrics like MS-SSIM and
VMAF, we decided to add one more QP (QP
= 42) in order to better fit the dynamic range
response of these metrics, and as a consequence,
provide more accurate BD-Rate results.

The BD-Rate values have been obtained for
each metric and each coding configuration.
These values show the bit rate savings (in
percentage) between two rate-distortion curves.
Due to the fact that the BD-Rate calculation
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was initially developed for the PSNR metric
using third degree polynomial interpolation and
four values per curve, the use of this algorithm
applied to other metrics and with five points (QP
values) per curve is not always optimal. There-
fore, the interpolation method has been replaced
by the Piecewise Cubic Hermite Interpolating
Polynomial (PCHIP) [29] for higher accuracy.

To evaluate the influence of each parameter
on the perceptual quality described in Section II,
all test sequences have been coded by switching
these parameters on and off, resulting in 64
configuration setups. These setups have been run
using the reference software HEVC Test Model
(HM) version 16.20 [30].

Due to the large number of measurements
to be made, the use of subjective tests such
as DMOS has been ruled out. Instead, we
have proposed obtaining numerical values from
Bjøntegaard-Delta rate measurements using the
following objective quality metrics: SSIM, MS-
SSIM, VIF, PSNR-HVS-M, and VMAF.

The SSIM (Structural Similarity) [9] and the
MS-SSIM (Multi-Scale SSIM) [8] metrics are
based on the hypothesis that the HVS is highly
adapted to extract structural information from
the scenes. Both metrics consider luminance,
contrast, and structure information of the scenes,
whereas MS-SSIM also considers the scale.

The VIF (Visual Information Fidelity) [31]
metric uses the Natural Scene Statistics (NSS)
model along with an image degradation model
and components of the HVS to obtain the quality
information.

The PSNR-HVS-M metric [32], a modified
version of the PSNR, considers the contrast
sensitivity function (CSF) and the between-
coefficient contrast masking of DCT basis func-
tions.

These metrics, unlike the PSNR, attempt to
characterize the subjectivity of the HVS and do
not include temporal information in their quality
assessment algorithms.

The newest perceptual quality metric is the
VMAF metric, developed by Netflix [13]. Un-
like the previous metrics, VMAF makes use of

novel machine learning techniques to estimate
the result that would be obtained through sub-
jective tests. To do that, this metric has been
trained with inputs from real DMOS tests as
well as three algorithms: VIF, DLM (Detail Loss
Measure) [33], and TI (Temporal Perceptual In-
formation) [34]. VIF measures the information
fidelity loss, while DLM and TI measure the de-
tail loss and the amount of motion, respectively.

Other works in the literature use VMAF: (a) in
[35], the authors proved a strong correlation be-
tween subjective DMOS studies and the VMAF
values obtained for a set of 4K sequences, (b)
in [36], the authors also show a high corre-
lation with the MOS values obtained for HD
and UHD content, and (c) in [37], an analysis
of different quality metrics for multi-resolution
adaptive streaming showed that VMAF obtained
the highest correlation with perceptual quality.

We have to say that the VMAF metric can be
used for just one frame or for the whole video
sequence. As the rest of the quality metrics only
work at frame level, we decided to use VMAF
for each frame in order to be coherent with the
experiment setup and to avoid undesired effects
when comparing all quality metrics results.

Regarding rate-distortion curves obtained in
this work, the reference rate-distortion curve was
obtained with the default All Intra Main configu-
ration, whose parameters are shown in Table II.

IV. EXPERIMENTAL RESULTS
In this section, we show the results obtained after
coding the set of test sequences when enabling
and disabling the coding tools described in Sec-
tion II with respect to the default configuration.

In order to measure the R/D performance
of the different HEVC coding tool configura-
tions, we have used the BD-Rate metric, as
described in the previous section. The results
from Tables III-A to III-F are provided by the
BD-Rate metric, showing the R/D performance
of the different coding tool setups measured
by different perceptual quality metrics for all
video sequences under evaluation (classes A to
F). Negative values in these tables correspond
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TABLE II. Default values of the analyzed parameters

Parameter Value

QP 22, 27, 32, 37, 42
ScalingList 0

LoopFilterDisable 0
SAO 1

RDOQ 1
RDOQTS 1

TransformSkip 1
TransformSkipFast 1

SignHideFlag 1

to BD-Rate reductions or perceptual gains, and
positive values correspond to BD-Rate increases
or perceptual losses, with respect to the default
or reference values (first row in Tables III-A to
III-F).

In these tables, we have omitted the Sign-
HideFlag coding tool, as it does not provide
significant changes in the image distortion (see
Section IV-F). The SignHideFlag parameter is
enabled in all tests, since this is its default value.

The complete set of tables, including the Sign-
HideFlag parameter, for each of the classes, as
well as for each specific video sequence, are
available at the GATCOM research group’s web-
site [38].

To make the data in the tables easier to read,
we have highlighted the cells with BD-Rate re-
ductions as a heat map. The higher the reduction
is, the greener the cell is. Each row corresponds
to a specific permutation of the configuration
parameters; the first row, highlighted in bold,
shows the reference setup (default settings).

The first column is the permutation number,
and it is used only as a reference in the text.
The next five columns correspond to the en-
abling/disabling status of the following coding
tools: SCL corresponds to ScalingList; SAO cor-
responds to SAO filter; DB corresponds to the
inverse logic of the LoopFilterDisable parame-
ter, that is, disabling DB means disabling the De-
blocking filter; RDOQ includes both the RDOQ
and RDOQTS coding tools; and TrSk includes
both TransformSkip and TransformSkipFast.

The values scored by the metrics are not nor-
malized, so each metric provides results in a
different scale. However, we express the results
in terms of the BD-Rate performance metric
(percentage of rate reduction/increase), so we
can compare results, hiding the real scale of each
metric.

We have also performed a time profile of
every single coding tool analyzed in this study
to determine their average coding complexity.
Considering both evaluation metrics, the percep-
tual R/D and the coding complexity, we may
propose the proper coding tool configuration
that better perceptual results provide with a bal-
anced coding complexity.

In the following subsections, we will describe
the results obtained showing the perceptual be-
havior of each coding tool under study, and in
the next section, an analysis and discussion of
these results will be provided.

A. SCALING LIST
When activating the ScalingList coding tool,
a non-uniform quantization based on the con-
trast sensitivity function (CSF) is applied in the
encoder quantization process. By default, it is
disabled, so we have analyzed the perceptual
influence of enabling it.

The results show that enabling the Scaling
List parameter is perceptually beneficial for al-
most all settings and perceptual metrics. This
can be seen by comparing rows 1 to 16 (SCL
disabled) with rows 17 to 32 (SCL enabled)
of the result tables, where the second group of
coding settings generally has a lower BD-Rate
value than the first group. Taking into account
the base configuration (row 1), just by enabling
only the ScalingList coding tool, all perceptual
metrics report BD-Rate reductions for all test
video sequence classes. Regarding SCL coding
complexity, when it is enabled the average enco-
ding time increases between 3.47% and 8.44%,
depending on the applied quantization (QP), as
shown in Table IV.

From the results in Tables III-A to III-F, we
can extract the following main results: (a) when
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TABLE III-A. Average coding performance [% BD-Rate] for Class A

# SCL SAO DB RDOQ TrSk SSIM MS-SSIM VMAF VIF PSNR
HVSM

1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 −0.03 −0.03 0.06 −0.04 −0.04
3 0 1 1 0 1 5.6 2.29 11.93 3.84 5.38
4 0 1 1 0 0 5.54 2.24 11.95 3.8 5.34
5 0 1 0 1 1 0.26 1.03 1.32 −0.27 1.51
6 0 1 0 1 0 0.24 1 1.38 −0.31 1.46
7 0 1 0 0 1 5.91 3.46 13.48 3.61 7.05
8 0 1 0 0 0 5.86 3.42 13.51 3.57 7
9 0 0 1 1 1 0.18 0.21 −2.08 0.03 0.26

10 0 0 1 1 0 0.15 0.19 −2.03 −0.01 0.21
11 0 0 1 0 1 5.78 2.47 10.02 3.82 5.61
12 0 0 1 0 0 5.73 2.43 10.03 3.8 5.56
13 0 0 0 1 1 0.38 1.56 −3.32 −0.47 3.05
14 0 0 0 1 0 0.35 1.53 −3.27 −0.51 2.99
15 0 0 0 0 1 6.01 4.08 8.68 3.28 8.65
16 0 0 0 0 0 5.95 4.03 8.69 3.24 8.59
17 1 1 1 1 1 −0.38 −0.2 −0.18 −0.34 −0.63
18 1 1 1 1 0 −0.44 −0.24 −0.13 −0.38 −0.68
19 1 1 1 0 1 4.28 1.41 10.71 2.43 3.41
20 1 1 1 0 0 4.23 1.38 10.76 2.4 3.37
21 1 1 0 1 1 −0.11 0.81 1.12 −0.62 0.85
22 1 1 0 1 0 −0.17 0.77 1.18 −0.66 0.79
23 1 1 0 0 1 4.59 2.56 12.24 2.18 5.01
24 1 1 0 0 0 4.54 2.53 12.29 2.15 4.96
25 1 0 1 1 1 −0.19 0 −2.35 −0.34 −0.38
26 1 0 1 1 0 −0.25 −0.04 −2.29 −0.38 −0.43
27 1 0 1 0 1 4.46 1.6 8.78 2.42 3.63
28 1 0 1 0 0 4.4 1.57 8.86 2.39 3.59
29 1 0 0 1 1 0 1.34 −3.58 −0.85 2.37
30 1 0 0 1 0 −0.06 1.29 −3.53 −0.89 2.31
31 1 0 0 0 1 4.68 3.16 7.45 1.86 6.56
32 1 0 0 0 0 4.63 3.12 7.52 1.83 6.51

TABLE III-B. Average coding performance [% BD-Rate] for Class B

# SCL SAO DB RDOQ TrSk SSIM MS-SSIM VMAF VIF PSNR
HVSM

1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 −0.07 −0.06 −0.03 −0.06 −0.08
3 0 1 1 0 1 5.27 3.74 12.66 5.59 7.18
4 0 1 1 0 0 5.22 3.7 12.69 5.56 7.13
5 0 1 0 1 1 0.33 1.4 1.24 0.08 2.12
6 0 1 0 1 0 0.25 1.34 1.22 0.01 2.03
7 0 1 0 0 1 5.67 5.35 14.06 5.71 9.52
8 0 1 0 0 0 5.62 5.31 14.08 5.68 9.47
9 0 0 1 1 1 0.4 0.49 −1.92 −0.06 0.45

10 0 0 1 1 0 0.32 0.43 −1.95 −0.13 0.37
11 0 0 1 0 1 5.68 4.22 10.34 5.36 7.62
12 0 0 1 0 0 5.63 4.18 10.34 5.33 7.56
13 0 0 0 1 1 0.48 2.3 −2.94 −0.2 4.12
14 0 0 0 1 0 0.4 2.23 −2.98 −0.27 4.03
15 0 0 0 0 1 5.78 6.38 9.23 5.23 11.68
16 0 0 0 0 0 5.73 6.34 9.23 5.19 11.62
17 1 1 1 1 1 −0.72 −0.48 −0.47 −0.6 −1.06
18 1 1 1 1 0 −0.78 −0.52 −0.52 −0.71 −1.17
19 1 1 1 0 1 2.76 1.91 9.85 2.53 3.14
20 1 1 1 0 0 2.71 1.87 9.85 2.45 3.06
21 1 1 0 1 1 −0.4 0.9 0.75 −0.57 0.95
22 1 1 0 1 0 −0.45 0.85 0.71 −0.68 0.83
23 1 1 0 0 1 3.16 3.45 11.26 2.58 5.22
24 1 1 0 0 0 3.11 3.41 11.25 2.51 5.13
25 1 0 1 1 1 −0.34 −0.01 −2.47 −0.7 −0.63
26 1 0 1 1 0 −0.39 −0.05 −2.52 −0.82 −0.74
27 1 0 1 0 1 3.17 2.37 7.59 2.33 3.56
28 1 0 1 0 0 3.11 2.34 7.57 2.24 3.46
29 1 0 0 1 1 −0.26 1.77 −3.5 −0.89 2.92
30 1 0 0 1 0 −0.31 1.73 −3.55 −1.01 2.8
31 1 0 0 0 1 3.27 4.46 6.5 2.11 7.32
32 1 0 0 0 0 3.22 4.41 6.47 2.02 7.22
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TABLE III-C. Average coding performance [% BD-ate] for Class C

# SCL SAO DB RDOQ TrSk SSIM MS-SSIM VMAF VIF PSNR
HVSM

1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 −0.23 −0.22 −0.16 −0.18 −0.26
3 0 1 1 0 1 2.1 2.89 10.43 4.54 5
4 0 1 1 0 0 1.98 2.76 10.34 4.48 4.81
5 0 1 0 1 1 0.79 1 0.85 0.38 1.65
6 0 1 0 1 0 0.57 0.78 0.67 0.2 1.38
7 0 1 0 0 1 3.01 4.06 11.25 4.95 6.75
8 0 1 0 0 0 2.89 3.92 11.14 4.88 6.55
9 0 0 1 1 1 0.71 0.59 −1.84 0.25 0.65

10 0 0 1 1 0 0.5 0.38 −2.06 0.07 0.4
11 0 0 1 0 1 2.89 3.56 8.02 4.78 5.76
12 0 0 1 0 0 2.79 3.44 7.85 4.72 5.58
13 0 0 0 1 1 1.39 2.02 −2.71 0.72 3.77
14 0 0 0 1 0 1.17 1.8 −2.93 0.54 3.51
15 0 0 0 0 1 3.73 5.33 7.13 5.32 9.14
16 0 0 0 0 0 3.63 5.19 6.96 5.25 8.95
17 1 1 1 1 1 −0.02 −0.2 −0.32 −0.09 −0.22
18 1 1 1 1 0 −0.27 −0.44 −0.55 −0.34 −0.56
19 1 1 1 0 1 0.8 1.22 7.75 2.99 2.97
20 1 1 1 0 0 0.59 0.99 7.46 2.83 2.66
21 1 1 0 1 1 0.77 0.75 0.51 0.25 1.35
22 1 1 0 1 0 0.51 0.5 0.26 −0.01 0.99
23 1 1 0 0 1 1.68 2.28 8.59 3.34 4.59
24 1 1 0 0 0 1.48 2.05 8.31 3.17 4.27
25 1 0 1 1 1 0.67 0.36 −2.24 0.14 0.37
26 1 0 1 1 0 0.42 0.13 −2.53 −0.12 0.04
27 1 0 1 0 1 1.57 1.85 5.4 3.2 3.65
28 1 0 1 0 0 1.37 1.62 5.02 3.04 3.35
29 1 0 0 1 1 1.32 1.74 −3.12 0.56 3.44
30 1 0 0 1 0 1.08 1.48 −3.41 0.29 3.08
31 1 0 0 0 1 2.36 3.5 4.49 3.66 6.94
32 1 0 0 0 0 2.16 3.26 4.12 3.5 6.63

TABLE III-D. Average coding performance [% BD-Rate] for Class D

# SCL SAO DB RDOQ TrSk SSIM MS-SSIM VMAF VIF PSNR
HVSM

1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 −0.12 −0.21 −0.22 −0.2 −0.28
3 0 1 1 0 1 −0.42 0.97 10.54 4.34 4.77
4 0 1 1 0 0 −0.45 0.78 10.4 4.25 4.55
5 0 1 0 1 1 1.76 0.38 0.6 0.06 0.92
6 0 1 0 1 0 1.61 0.15 0.33 −0.15 0.63
7 0 1 0 0 1 1.56 1.48 11.05 4.44 5.8
8 0 1 0 0 0 1.51 1.27 10.91 4.35 5.55
9 0 0 1 1 1 0.41 0.1 −1.94 0.09 0.28

10 0 0 1 1 0 0.29 −0.12 −2.27 −0.1 0
11 0 0 1 0 1 0.04 1.12 8.25 4.45 5.14
12 0 0 1 0 0 0.04 0.94 7.97 4.36 4.9
13 0 0 0 1 1 3.19 0.71 −2.68 0.22 2.27
14 0 0 0 1 0 3.05 0.47 −3 0.02 1.97
15 0 0 0 0 1 3.25 1.99 7.49 4.63 7.32
16 0 0 0 0 0 3.25 1.8 7.22 4.54 7.08
17 1 1 1 1 1 0.87 0.01 −0.33 −0.03 −0.19
18 1 1 1 1 0 0.71 −0.27 −0.54 −0.28 −0.52
19 1 1 1 0 1 0.67 −0.12 8.07 2.95 2.97
20 1 1 1 0 0 0.67 −0.3 7.82 2.82 2.69
21 1 1 0 1 1 2.56 0.34 0.24 −0.01 0.64
22 1 1 0 1 0 2.39 0.06 0.01 −0.27 0.29
23 1 1 0 0 1 2.53 0.31 8.62 2.98 3.84
24 1 1 0 0 0 2.5 0.12 8.37 2.85 3.54
25 1 0 1 1 1 1.28 0.07 −2.38 0.04 0.06
26 1 0 1 1 0 1.13 −0.21 −2.7 −0.21 −0.27
27 1 0 1 0 1 1.1 −0.01 5.8 3.03 3.28
28 1 0 1 0 0 1.13 −0.17 5.43 2.91 3.01
29 1 0 0 1 1 4.02 0.63 −3.11 0.12 1.97
30 1 0 0 1 0 3.86 0.35 −3.43 −0.14 1.62
31 1 0 0 0 1 4.19 0.76 5.05 3.13 5.34
32 1 0 0 0 0 4.21 0.58 4.67 3.01 5.05
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TABLE III-E. Average coding performance [% BD-Rate] for Class E

# SCL SAO DB RDOQ TrSk SSIM MS-SSIM VMAF VIF PSNR
HVSM

1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 −0.06 −0.06 −0.08 −0.07 −0.1
3 0 1 1 0 1 2.98 2.26 8.85 3.46 4.65
4 0 1 1 0 0 2.89 2.19 8.72 3.41 4.56
5 0 1 0 1 1 2.14 2.24 1.28 0.42 2.7
6 0 1 0 1 0 2.08 2.17 1.2 0.35 2.59
7 0 1 0 0 1 5.39 4.76 10.31 3.86 7.46
8 0 1 0 0 0 5.3 4.69 10.18 3.81 7.37
9 0 0 1 1 1 0.59 0.74 −2.14 0.28 0.68

10 0 0 1 1 0 0.53 0.67 −2.23 0.21 0.58
11 0 0 1 0 1 3.64 3.1 6.4 3.69 5.31
12 0 0 1 0 0 3.54 3.02 6.29 3.63 5.22
13 0 0 0 1 1 3.35 3.8 −2.61 0.75 4.96
14 0 0 0 1 0 3.29 3.73 −2.69 0.67 4.85
15 0 0 0 0 1 6.77 6.57 5.94 4.15 9.87
16 0 0 0 0 0 6.67 6.49 5.84 4.09 9.77
17 1 1 1 1 1 −0.59 −0.44 −0.25 −0.43 −0.77
18 1 1 1 1 0 −0.64 −0.49 −0.34 −0.5 −0.85
19 1 1 1 0 1 1.5 1.16 7.5 2.25 2.77
20 1 1 1 0 0 1.43 1.11 7.42 2.21 2.71
21 1 1 0 1 1 1.53 1.77 1 −0.03 1.86
22 1 1 0 1 0 1.48 1.72 0.91 −0.11 1.77
23 1 1 0 0 1 3.86 3.6 8.9 2.6 5.47
24 1 1 0 0 0 3.78 3.55 8.82 2.55 5.39
25 1 0 1 1 1 0 0.3 −2.53 −0.18 −0.11
26 1 0 1 1 0 −0.05 0.25 −2.63 −0.25 −0.2
27 1 0 1 0 1 2.16 1.99 4.95 2.46 3.41
28 1 0 1 0 0 2.09 1.95 4.89 2.42 3.34
29 1 0 0 1 1 2.73 3.33 −2.99 0.26 4.1
30 1 0 0 1 0 2.68 3.27 −3.09 0.18 4
31 1 0 0 0 1 5.22 5.38 4.49 2.86 7.82
32 1 0 0 0 0 5.14 5.32 4.42 2.81 7.74

TABLE III-F. Average coding performance [% BD-Rate] for Class F

# SCL SAO DB RDOQ TrSk SSIM MS-SSIM VMAF VIF PSNR
HVSM

1 0 1 1 1 1 0 0 0 0 0
2 0 1 1 1 0 3.9 4.68 3.38 5.52 4.29
3 0 1 1 0 1 2.33 1.11 5.39 2.2 2.58
4 0 1 1 0 0 6.65 6.21 10.24 9.23 7.43
5 0 1 0 1 1 1.11 1.3 0.32 −0.48 1.55
6 0 1 0 1 0 5.13 6.11 3.73 5.8 5.9
7 0 1 0 0 1 3.53 2.56 5.74 2.46 4.17
8 0 1 0 0 0 7.91 7.74 10.6 9.5 9.09
9 0 0 1 1 1 1.36 1.56 0.7 0.95 1.72

10 0 0 1 1 0 5.43 6.59 3.15 7.95 5.8
11 0 0 1 0 1 3.7 2.77 6.43 3.93 4.29
12 0 0 1 0 0 8.08 8.06 10.04 11.67 8.86
13 0 0 0 1 1 2.56 3.19 0.27 1.26 4.07
14 0 0 0 1 0 6.77 8.38 2.75 8.29 8.31
15 0 0 0 0 1 5.02 4.61 5.99 4.25 6.76
16 0 0 0 0 0 9.52 10.06 9.64 12.02 11.51
17 1 1 1 1 1 −0.29 −0.11 −0.25 −0.82 −0.2
18 1 1 1 1 0 3.55 4.63 3.2 5.39 4.06
19 1 1 1 0 1 1.06 0.37 4.18 1.35 1.45
20 1 1 1 0 0 5.4 5.54 8.99 8.38 6.26
21 1 1 0 1 1 0.8 1.18 0.05 −0.58 1.31
22 1 1 0 1 0 4.76 6.03 3.55 5.64 5.63
23 1 1 0 0 1 2.25 1.8 4.54 1.59 2.98
24 1 1 0 0 0 6.66 7.05 9.45 8.64 7.86
25 1 0 1 1 1 1.04 1.46 0.42 0.84 1.48
26 1 0 1 1 0 5.07 6.55 2.89 7.77 5.54
27 1 0 1 0 1 2.39 1.96 5.2 3.03 3.09
28 1 0 1 0 0 6.82 7.44 8.81 10.76 7.61
29 1 0 0 1 1 2.24 3.05 0 1.12 3.78
30 1 0 0 1 0 6.41 8.3 2.49 8.08 8.01
31 1 0 0 0 1 3.68 3.77 4.77 3.32 5.5
32 1 0 0 0 0 8.24 9.42 8.42 11.09 10.21
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TABLE IV. Average relative CPU encoding time
increase/decrease [%], when enabling/disabling a single
coding tool from the default encoder configuration (negative
values mean time savings)

QP 22 QP 27 QP 32 QP 37 QP 42 Avg.

SCL on 7.41 8.44 6.57 5.18 3.47 6.21
SAO off −0.3 −0.21 −0.53 −0.37 −0.58 −0.4

DB off −0.22 −0.18 −0.41 −0.24 −0.26 −0.26
RDOQ off −16.56 −10.77 −6.4 −1.89 1.5 −6.82
TrSkp off −15.78 −14.83 −14.24 −13.29 −13.22 −14.27

SBH off −3.25 −2.72 −2.17 −1.49 −1.03 −2.13

enabling the SCL coding tool (no matter the
status of the rest of the coding tools), we obtain
average BD-Rate reductions with all objective
quality metrics and video classes (from 0.7%
with SSIM to 1.4% with PSNR-HVS); (b) when
combining the SCL and RDOQ coding tools, the
BD-Rate saving increases an additional 0.9% on
average for all objective video quality metrics,
so both coding tools complement each other
in terms of R/D performance; (c) an exception
should be noticed with class D video sequences
and the SSIM metric, where enabling the SCL
coding tool shows an average BD-Rate increase
of 0.9%. (d) The best result was provided by
the VMAF metric, scoring an average BD-Rate
reduction of 3.58% when both in-loop filters are
disabled (SAO and DB) and RDOQ is enabled
in class A video sequences.

B. DEBLOCKING FILTER
The deblocking filter minimizes the blocking
effect produced by the block partitioning of im-
ages during the encoding process. By disabling
this filter, the blocking artifacts become visible
as the QP value increases.

As can be seen in Tables III-A to III-F, better
perceptual performance is provided when the
DB coding tool is enabled, independently of the
status of the rest of coding tools. This general
behavior is observed in all video classes with
all the objective quality metrics. The average
BD-Rate improvement when enabling DB de-
pends on every objective quality metric and also
on the video class. For example, the SSIM,
MS-SSIM, and PSNR-HVS metrics always re-

port average BD-Rate savings of 1.2%, 1.5%,
and 2.4%, respectively. However, VMAF (in all
video classes) and VIF (in classes A and B)
report BD-Rate savings when disabling the DB
and SAO coding tools (between 0.4% and 1.1%
BD-Rate savings). With respect to coding com-
plexity, when DB filter is disabled, an average
0.3% reduction of the encoding time is observed,
as shown in Table IV.

C. SAO FILTER
The SAO filter is a technique that attempts to
minimize the distortion that is mainly introduced
by the quantization step.

We find that in most cases, the perceptual
metrics get higher BD-Rate values when dis-
abling the SAO filter. This perceptual worsen-
ing is more significant in the synthetic video
sequences (class F).

However, the VMAF metric gets better
(lower) BD-Rate values for all video classes;
it obtains even better results than the results
obtained by the default configuration when the
SAO filter is disabled, especially if the DB filter
is also disabled. The BD-Rate reductions range
from 1.8% to 4.4%; the best results occur when
both in-loop filters are disabled. When work-
ing with class F videos, the VMAF BD-Rate
reductions are very low when the SAO filter is
disabled; they are always under 1%.

The VIF metric shows a similar behavior to
VMAF when working with video classes A and
B, achieving up to 0.5% BD-Rate savings when
SAO is disabled (0.2% on average).

Finally, as with the deblocking filter, when
disabling this filter no significant impact on
coding complexity is observed, showing also an
average encoding time reduction of 0.5%, as
shown in Table IV.

D. RATE-DISTORTION OPTIMIZED
QUANTIZATION (RDOQ)
The RDOQ algorithm achieves an estimated
optimal quantization value that minimizes the
Rate-Distortion cost. In this analysis, we have
also disabled the RDOQTS parameter, which
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deactivates the RDOQ calculation for blocks
marked as Transform Skip.

Although the PSNR metric is used by the
RDOQ algorithm to measure distortion, looking
at the results, we can see that disabling RDOQ
parameters implies a deterioration of BD-Rate
values for most of the perceptual metrics and
video sequence classes. The benefits of enabling
RDOQ are more remarkable for the VMAF met-
ric, where on average, 9.8% BD-Rate savings
are achieved by enabling the RDOQ coding tool.

When disabling the RDOQ tool, the coding
complexity varies depending on the quantization
parameter. The highest encoding time reductions
are obtained when low quantization values are
used (15.78% reduction at QP=22), as shown in
Table IV. As the QP value increases, the enco-
ding time savings are progressively reduced.

E. TRANSFORM SKIP
The TransformSkip and TransformSkipFast pa-
rameters are enabled by default, since they are
able to obtain great BD-Rate savings for artifi-
cial or synthetic videos (those belonging to class
F).

In Table III-F, corresponding to synthetic or
artificial video sequences, we can observe that
disabling transform skip parameters causes a
significant deterioration of BD-Rate values: all
perceptual metrics get BD-Rate increases rang-
ing from 3.6% to 7%.

If we analyze the other video classes, we
can see that all of them have slight BD-Rate
reductions when disabling the transform skip
parameters; these reductions are mostly close to
0% and are never higher than 0.4%.

When disabling the TransformSkip tool, the
average encoding time is significantly affected.
As stated in Section II-E, disabling this tool
reduces the encoding time by almost 15%, as
shown in Table IV.

F. SIGN DATA HIDING
The SignHideFlag coding tool, which is acti-
vated by default, enables a data compression
technique called Sign Data Hiding that provides

TABLE V. Average coding performance [% BD-Rate] by
disabling Sign Data Hiding to default configuration

Class SSIM MS-SSIM VMAF VIF PSNR
HVSM

Class A 0.93 1.18 0.79 1.18 1.12
Class B 0.84 0.95 0.77 1.04 0.94
Class C 0.88 0.83 0.74 0.84 0.9
Class D 1.02 1 0.68 0.89 0.99
Class E 0.52 0.59 0.6 0.68 0.68
Class F 1.05 1.03 0.67 −0.12 1.08

Average 0.87 0.93 0.71 0.75 0.95

an average reduction of 0.6% in BD-Rate, re-
gardless of the rest of the settings, as seen in
Section II-F.

This coding tool produces a relatively high
reduction in rate compared with the very low
distortion that it produces, i.e., the perceived
quality reported by the perceptual metrics re-
mains almost the same, but the rate is reduced
much more.

Table V shows the BD-Rate values obtained
by disabling this parameter in the default con-
figuration. As can be seen, by disabling this
algorithm, an average BD-Rate increase from
0.71% to 0.95% is achieved.

Since this technique barely distorts the im-
ages, we have not included the column corre-
sponding to this parameter in the results tables.
Instead, it has been kept in its default state
(enabled). The complete tables, including the
results of the analysis of the SignDataHiding
coding tool, will be available on the GATCOM
research group website [38].

V. DISCUSSION
As shown in the previous section, there are cod-
ing tools that are perceptually ranked in the same
way using all objective quality metrics in every
video sequence class, and other coding tools
have different behaviors depending on the video
classes and/or the objective quality metric used.
So, in this section, we will discuss and analyze
in detail the results of the encoding tools, taking
into account the relationships among them, the
metrics and classes, and the reported perceptual
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behavior.
As stated previously, enabling the Transform

Skip parameter works better in the sequences of
class F, whereas for the rest of the classes, dis-
abling it slightly increases the perceptual report
given by almost all metrics. So, for classes A to
E, we can simplify the analysis of the rest of
coding tools by disabling Transform Skip and
only enabling it when working with videos of
class F.

When enabling the Scaling List (SCL) coding
tool, we can see that a better perceptual response
is reported by almost all metrics, achieving av-
erage BD-Rate savings of 0.9%. The behavior
of the SCL coding tool is the one expected,
since it is well known in the literature that the
use of a CSF-based quantizer, implemented by
the HEVC through the scaling list coding tool,
improves the subjective quality of decoded video
[20].

When disabling the RDOQ coding tool, all
objective quality metrics show significative BD-
Rate increases in all video classes. The average
increment of BD-Rate provided in that case, for
all metrics and video sequences, is about 4.16%,
rising up to 11.5% for VMAF when working
with class A. Therefore, we do not recommend
deactivating the RDOQ parameter in any case.
As there is for every general rule, there is an
exception. In this case, the SSIM metric per-
ceives an average BD-Rate reduction of 0.08%
in sequences of class D; this goes up to 0.4%
when disabling SCL and enabling both in-loop
filters, again showing the inability of SSIM to
properly score the class D video sequences when
compared with the rest of the objective quality
metrics.

From the previous analysis, we have shown
that in order to provide a better perceptual qual-
ity performance for all objective metrics and
video sequence classes, we have to (a) enable the
SCL and RDOQ coding tools and (b) only en-
able the TrSk when working with class F video
sequences (artificial or synthetic contents).

So, from now on, we will consider that the
SCL and RDOQ coding tools are always en-

TABLE VI. BD-Rate evaluation of in-loop filters, with
SCL=RDOQ=1 and TrSk=0 (=1 for class F)

SAO DB SSIM MS-
SSIM VMAF VIF PSNR-

HVSM
Class A

1 1 -0,44 -0,24 -0,13 -0,38 -0,68
1 0 -0,17 0,77 1,18 -0,66 0,79
0 1 -0,25 -0,04 -2,29 -0,38 -0,43
0 0 -0,06 1,29 -3,53 -0,89 2,31

Class B
1 1 -0,78 -0,52 -0,52 -0,71 -1,17
1 0 -0,45 0,85 0,71 -0,68 0,83
0 1 -0,39 -0,05 -2,52 -0,82 -0,74
0 0 -0,31 1,73 -3,55 -1,01 2,80

Class C
1 1 -0,27 -0,44 -0,55 -0,34 -0,56
1 0 0,51 0,50 0,26 -0,01 0,99
0 1 0,42 0,13 -2,53 -0,12 0,04
0 0 1,08 1,48 -3,41 0,29 3,08

Class D
1 1 0,71 -0,27 -0,54 -0,28 -0,52
1 0 2,39 0,06 0,01 -0,27 0,29
0 1 1,13 -0,21 -2,70 -0,21 -0,27
0 0 3,86 0,35 -3,43 -0,14 1,62

Class E
1 1 -0,64 -0,49 -0,34 -0,50 -0,85
1 0 1,48 1,72 0,91 -0,11 1,77
0 1 -0,05 0,25 -2,63 -0,25 -0,20
0 0 2,68 3,27 -3,09 0,18 4,00

Class F
1 1 -0,29 -0,11 -0,25 -0,82 -0,20
1 0 0,80 1,18 0,05 -0,58 1,31
0 1 1,04 1,46 0,42 0,84 1,48
0 0 2,24 3,05 0,00 1,12 3,78

abled, and the TrSk is only enabled for class
F video sequences. Under this assumption, we
will analyze the behavior of the in-loop filters.
In Table VI, we show the BD-Rate results of
the SAO and DB configurations for each video
class, keeping in mind that the rest of the coding
tools are enabled/disabled as mentioned above.
We have highlighted the maximum average BD-
Rate savings of each quality metric and video
class.

As can be seen, the general behavior of in-
loop filters has two opposite positions: (a) the
SSIM, MS-SSIM, and PSNR-VHS quality met-
rics provide the best perceptual results in all
video classes when both filters are enabled,
showing maximum BD-Rate savings of 0.28%,
0.35%, and 0.66%, respectively, and (b) VMAF
(classes A to E) and VIF (classes A and B) say
just the opposite, showing maximum BD-Rate
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savings of 3.40% and 0.95%, respectively, when
both in-loop filters are disabled. However, it is
worth saying that (a) when working with class F
videos, there is a consensus between all metrics
in enabling both in-loop filters to maximize the
BD-Rate savings, (b) the VIF metric changes its
scoring, suggesting that the best configuration
for video classes C, D, and E is the one that
enables both in-loop filters, joining the group
formed by the SSIMM, MS-SSIM, and PSNR-
VHS metrics, and (c) with respect to the VMAF
metric, we have noticed that it is able to report
average BD-Rate savings of 2.53% when only
the DB filter is enabled and 0.45% when both
filters are enabled.

Although all the objective quality metrics are
designed to assess the quality in a way as close
as possible to the way that the HVS does, each
one uses a different approximation. Some of
them perform the subband decomposition in-
spired by complex HVS models, while others
extract structural information from the viewing
field or even use the spatio-temporal statistical
patterns found in signals captured from the vi-
sual field for which the HVS is adapted. There-
fore, as we can see in this study, we obtain
different quality assessments depending on the
metric. In cases where all metrics report BD-
Rate variations in the same direction, the con-
clusion is straightforward, but when the metrics’
reports are opposite, a subjective test to validate
the results is suggested.

In order to advance a preliminary subjective
evaluation that sheds light on the metrics con-
troversy around the in-loop filters’ behavior, we
have performed a simple subjective test with one
class A video sequence. Class A has the highest
BD-Rate differences (3.4%) found between the
two options: enabling or disabling both in-loop
filters (see Table VI). We have chosen a frame of
a video sequence where the difference between
the VMAF R/D curves of the two options is
maximum. We have found that frame 22 of the
Traffic_2560x1600_30 video sequence shows a
5.25% BD-Rate reduction when disabling both

(a) Original

(b) With in-loop filters

(c) Without in-loop filters

FIGURE 5. Comparison of cropped section of frame 22 of
sequence Traffic (2560x1660) encoded with QP = 42, at
8.5Mbps

filters, taking as reference the configuration with
the filters enabled. We have observed just no-
ticeable perceptual differences at QPs 37 and 42
with respect to the original frame. These artifacts
are more noticeable when the in-loop filters are
disabled. In Figure 5, we show a cropped area
of frame 22 (encoded with QP = 42), where
the blocking artifacts are clearly visible when
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disabling both filters.
We have to mention that the results given by

the VMAF are not biased by the image content
or by the frame size, as its results are consis-
tent through different frame sizes and content.
A good correlation with the DMOS and MOS
values of the VMAF has been reported [35]–
[37], showing that it can be considered a robust
metric. Notice that although the behavior shown
in Figure 5 seems to say that the VMAF metric
does not correctly assess the perceived quality
when both filters are disabled, it shows good
results when only the DB filter is enabled. Al-
though this observation does not mean that in-
loop filters should always be enabled, a more
detailed and carefully designed subjective eval-
uation test should be performed to determine the
best in-loop filter configuration for the A to E
video sequence classes.

Finally, another performance metric we may
use to assess the most proper coding tool con-
figuration is their contribution to the overall
HEVC coding complexity. In Table IV we have
shown the time profiling results of each individ-
ual coding tool under study, showing their im-
pact on the overall HEVC encoding complexity.

If we enable all coding tools but the TrSk
(the best R/D perceptual configuration) the cor-
responding HEVC overall complexity will be re-
duced in an 14.27%, on average, when compared
to the default HEVC configuration. If we decide
to also disable the in-loop filters, SAO and DB,
we will get an additional coding time reduction
of 0.66%.

VI. CONCLUSIONS
In this article, we have analyzed how the HEVC
coding configuration parameters impact the per-
ceptual rate-distortion. To do so, we have used
the whole video sequence set defined in the
HEVC common test conditions reference and
obtained the Bjøntegaard Delta Rate (BD-Rate)
measurements for a set of perceptual metrics
widely used by the research community. Then,
we analyzed how each HEVC coding tool im-

pacts the perceptual BD-Rate and how this re-
lates to other coding tools.

After analyzing the results provided by the set
of HEVC coding tools under evaluation, we have
arrived at the following conclusions:

a) The coding tools with the highest impact on
the overall perceptual quality performance
are RDOQ and SCL for all metrics reported
in this study, so they should be always
enabled.

b) TrSk should be enabled when working with
class F videos (artificial, synthetic video
contents), as significant perceptual gains
are reported. However, for the rest of the
video classes, it is slightly better to disable
this coding tool. By disabling TrSk, the
overall coding time is reduced by 15%.

c) The in-loop filters, SAO and DB, show op-
posite behaviors when working with video
classes A to E, where
i) one set of metrics (SSIM, MS-SSIM,

and PSNR-HVS) implies that both filters
should be enabled to maximize the per-
ceptual BD-Rate savings,

ii) VMAF implies that both filters should
always be disabled, and

iii) VIF shows the same results as VMAF for
classes A and B, but for classes C, D,
and E, it goes in the same direction as
the other metrics.

The recommended HEVC coding tools confi-
guration that will maximize the perceptual R/D
should enable both SCL and RDOQ and disable
TrSk (enabling it only with class F videos).
As discussed in the previous section, there is
no agreement with respect to the in-loop filters
(SAO and DB). Three alternatives exist: (a) en-
able both filters, (b) disable them, and (c) only
enable DB filter. The encoding complexity of
both filters is low; therefore, their complexity
does not help so much to take a firm decision.
So, to determine the best option, we need to
design specific subjective tests, taking into ac-
count the target video classes, to decide which
one should be used.
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The data presented in this article is intended
to help other researchers to determine the best
encoder configuration, depending on the type
of sequence to be coded, to maximize the per-
ceptual rate-distortion performance, taking into
account the coding tools complexity. Also, it
can be useful to choose the most appropriate
perceptual metric to be used in the design of
subjective tests.

As future work, we plan to extend this study
by including more HEVC coding tools and per-
form exhaustive subjective tests to determine the
perceptual-based settings that should be config-
ured in the HEVC encoder to maximize the R/D
quality performance.
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