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Abstract—The ever-increasing need for real-time communica-
tion of factory processes in one hand, and the offered flexibility of
wireless communication on the other, is pushing Time Sensitive
Networking (TSN) evolution towards the wireless networks. By
definition, wireless networks are non-deterministic due to their
random channel access mechanism. In order to introduce TSN
vision to the wireless world, such randomness needs to be
controlled. In this paper, we implement a low-overhead beacon-
based time synchronization mechanism that offers synchroniza-
tion accuracy of as low as 10 µs, on average, for low beacon
interval. Such accuracy is achieved by implementing a follow-up
beacon packet, in addition to beacon mechanism itself, in order to
account for any delays in sending beacons. The synchronization
mechanism is tested in different intra and inter access point
communication settings.

Index Terms—TSN, time synchronization, WiFi, beacon based

I. INTRODUCTION

Traditionally, factory devices have been using field buses to

enable critical communication between them, thus, fulfilling

the reliability, data rate, and time requirements. Over time,

such communication has been replaced by the Real-Time

Ethernet (RTE) that is based on the IEEE 802.3 standard. IEEE

802.3 standard by its CSMA/CD channel access mechanism

is non-deterministic by definition, violating the requirement of

real-time communication due to its random introduced delays.

Consequently, to provide determinism and real-time commu-

nication, IEEE 802.3-based legacy networks have employed a

set of Time-Sensitive Network (TSN) standards.

Despite its benefits of offering mobility and reducing de-

ployment costs, wireless communication is merely used for

non-critical none-time sensitive industrial communication. The

ever-increasing need for real-time communication and accu-

rate control of industrial processes is pushing TSN evolu-

tion further to wireless networks as well. To support TSN

over wireless networks, low-overhead highly-accurate time

synchronization methods need to be extended beyond wired

network [1].

The most widely used wireless standard is IEEE 802.11,

which, similarly to IEEE 802.3, is non-deterministic due to

its channel access mechanism that is based on CSMA/CA.

Consequently, IEEE 802.11 can not be used for critical factory

communication as is. Several time-division multiple access

(TDMA) mechanisms have been proposed in the past [2],

[3], to enable determinism and reliability in IEEE 802.11.

Some of them were concentrated in the downlink only, leaving

aside the need for determinism in uplink too. Nevertheless, the

determinism should be ensured for end-to-end communication,

employing wired-wireless interaction.

The first step towards end-to-end TSN is a low-overhead

and accurate distribution of time information to all entities in

the network. Especially the overhead needs to be minimized

in the wireless part of the network. To this end, in this paper,

we will show a low-overhead beacon-based synchronization

algorithm. We will use openwifi platform [4], [5] to implement

a beacon follow-up mechanism that increases the accuracy.

The paper is organized as follows. First of all, in section II

we will give an overview of related research work. In section

III we will discuss the time synchronization mechanism and

its implementation based on beacons. Section IV will describe

the measurement methodology for synchronization accuracy

measurements. In section V we will show the results of time

synchronization and scheduling accuracy. Finally, section VI

concludes the paper.

II. RELATED WORKS

We will focus the discussion in this section on two aspects:

studies that are related to extending the time synchroniza-

tion boundaries to wireless networks and studies related to

wired-wireless solutions that enable inter-segment end-to-end

deterministic communication. The latter one depends heavily

on the time synchronization accuracy to achieve end-to-end

determinism.

Precise Time Protocol (PTP) [6] is used in the wired

networks to offer sub-µsecond time accuracy between nodes.

Its accuracy depends heavily on the way how timestamping

is done on the node itself. Its accuracy decreases when the

software timestamping is used. PTP relies on the estimation

of the time-of-arrival (ToA) of the synchronization packet. To

this end, a small variation of the channel impulse response

(CIR) produces variation of the ToA, introducing thus syn-

chronization errors in the PTP. In [7] authors offer an enhanced

timestamping method for increased synchronization accuracy

under channel variation conditions for the wireless link. The

enhanced timestamping method uses the CIR to accurately es-

timate the ToA in line-of-sight (LOS) and none-LOS (NLOS)

scenarios [7]. While the synchronization accuracy is increased

compared to standard PTP, the solution requires changes at the

hardware level, which in many cases would not be feasible as

the client nodes are already deployed in the network. Contrary,



we try to limit the changes at the client side only to soft-

ware changes to surpass PTP synchronization accuracy over

wireless links. In [8] authors implement the aforementioned

enhanced method and validate it in an SDR implementation

of both access point (AP) and client side.

In [9] and [10] authors propose to synchronize the timing

of AP and client to their respective time synchronization

function (TSF) timers. By default, as the TSF timers of the

AP and the client are synchronized, the timing of AP and

client will be synchronized too. However, the problem with

such a solution is that the reference time is the TSF timer

itself, and not the actual time of the AP. The main limitation is

that it provides internal synchronization in a wireless network

with no possibility to extend the synchronization to the wired

network or to other APs.

Authors in [2] offer TDMA MAC protocol on top of 802.11

hardware with the possibility of µsecond time synchronization

between nodes. The synchronization method is based on three-

way handshaking between nodes to determine the pairwise

clock offset as well as round-trip delay. Such an approach is

not standardized and is applicable only for mesh networks,

leaving open questions regarding its scalability for the man-

aged modes where a single AP will serve several end clients.

In [11] presents a hybrid wired/wireless centralized ar-

chitecture approach for ensuring determinism for wireless

industrial applications. They propose a node architecture for

deterministic AP that organizes traffic from and to end-nodes

using a TDMA-based MAC on top of IEEE 802.11 physical

layer. The solution is evaluated on the network simulator.

Similarly, [3] presents a hybrid usage of TDMA and CSMA

on wireless links. The TDMA is achieved only in downlink by

changing the power management flag for certain clients at the

AP. Still, this approach will not require tight synchronization

between nodes at the expense of achieving only downlink

determinism.

Contrary to PTP-based synchronization mechanisms in [7],

[8], where delay request-response is used, the presented so-

lution in this paper uses beacon-based mechanism for time

synchronization that keeps the overhead limited in the wireless

channel. In addition to research presented in [9], [10], we

extend the time synchronization to inter-AP scenarios by

controlling AP TSF from the wired network.

III. SYNCHRONIZATION MECHANISM AND ITS

IMPLEMENTATION

In IEEE 802.11 beacons are used in both mesh as well as

managed typologies to offer possibilities for the new devices

to discover already present networks. Each beacon contains

parameter information, such as SSID, supported data rates,

operational channel, traffic indication map (TIM) for power

saving mode clients, etc. In addition to this, beacons contain

also the TSF that is a 64-bit 1 µsecond counter that is used to

synchronize the timings between WiFi devices. In the managed

mode beacons are transmitted by APs to advertise the presence

of the network. WiFi clients and AP are synchronized based

on TSF by letting each client updating its TSF counter based
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Fig. 1. The wireless node architecture

on the TSF counter received on the last beacon from the

AP. Such synchronization is used only by the WiFi cards

themselves to correctly calculate the time, like e.g. when the

network allocation vector (NAV) time ends. Consequently,

such synchronization is unaware of the time in the host itself

and does not change the host time itself.

In the 2012 standard amendments [12], a new information

element, time advertisement (TA) tag, was introduced in the

beacon packet to relate the TSF counter with the time of the

host itself. The time advertisement can be encoded in two

ways, either as the Coordinated Universal Time (UTC) time

when the TSF counter was zero or as a timestamp offset to

the TSF. Though the mechanism exists, the standard does not

mention how such information can be used by the other hosts

to synchronize their times, neither how the host or AP can

control the TSF counter themselves.

To implement the beacon-based time synchronization the

following components are needed: the protocol stack that

supports the TA tag on the beacon, the component that will

send beacon follow-up packets (when TSF is not set by the

PHY itself), a controlling entity (a SYNCH-APP) that will

initiate the control of the TSF counter by the driver, and a

processing entity (a client SYNCH-APP) that will process

received beacons and follow-up packets to control the time

of the host.

Software Defined Radio (SDR) platforms are feasible as

they offer higher flexibility in both MAC and PHY layer

parameters that users can control, in contrast to commercial

chips. Thus, for our APs we used openwifi platform [4], where

we implemented the mechanism to control the TSF timer and

send the follow-up beacon packets.

The AP node architecture is shown in Figure 1a. The

synchronization application entity is implemented using Click

modular router [13], while hostapd1 is used for the AP. The

synchronization application periodically initiates the control

1https://w1.fi/hostapd/



of the TSF counter by the driver level. The actual TSF

counter is calculated at the driver level (nearer to the card

itself) to avoid any stack delay impact in the calculated TSF

value. To determine the current TSF timer, the synchronization

application entity needs to know the exact UTC when the TSF

counter was initialized. For this, we implemented an additional

control message in the hostapd itself to get such information.

Consequently, the synchronization application will use hostapd

control interface to get the UTC when the TSF counter was

initialized and pass such information to the driver level. The

driver itself will calculate the actual TSF counter, based on

current UTC, and set it.

The beacon is timestamped with the TSF counter at the

driver level. Consequently, the beacon TSF counter is not the

actual TSF counter when the beacon is transmitted. Even-

though the transmission of the beacon packet does not follow

the random channel access mechanism, it can be delayed due

to the clear channel assessment (CCA) mechanism when the

channel is found busy and by the PCF inter-frame space (PIFS)

time. Thus, relying only on the beacon to synchronize, the

error will be up to PIFS time in the best case, not accounting

for other errors introduced by busy channel under high loads.

Moreover, the synchronization error between two clients from

two different APs can be as high as twice of PIFS time. Thus,

a follow-up beacon packet is implemented that will inform

the host for the actual TSF counter when the beacon left the

AP radio. Once the beacon is transmitted, the actual TSF

timer is collected by the driver level when the transmission

interrupt happens generating the beacon follow-up packet.

The beacon follow-up packet will contain only two fields as

payload: the TSF counter and the beacon sequence number

to relate the follow-up packet with the beacon packet. The

synchronization entity can choose the periodicity of follow-

up beacons too, reducing the overhead further. On the client

side, the synchronization application entity at the user-level

will process beacons and follow-up packets to adjust the host

system time. For the client side, commercial chips can be used

as there is no need to control any of the low-level parameters as

in AP. The client node architecture is shown in Figure 1b. The

synchronization application will rely on the provided received

timestamp for beacons by the underlying layers.

Let T0 be the actual time when the TSF timer was initial-

ized, TSF1 be the timestamp of the beacon, and TSF2 be the

timestamp when the beacon will start to be transmitted. TSF2

will be sent to the receiver side using the follow-up beacon.

The receiver side will save the timestamp when the beacon was

received, TS1 and when the follow-up beacon was received

TS2. The time elapsed from the point when the beacon was

timestamped until its reception at the receiver will be:

Telapsed = TSF2 − TSF1 + TXtime (1)

where TXtime is the time it takes to transmit the beacon

packet and can be calculated at the receiver side based on

the data rate used and the length of the packet. As all the

values mentioned are known to the receiver after receiving
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Fig. 2. Synchronization mechanism time diagram

the follow-up beacon, the receiver can calculate the current

time by the following formula:

Tnow = T0 − Telapsed + TS2 − TS1

= T0 + TSF2 + TXtime + TS2 − TS1

(2)

In Figure 2 the time diagram of synchronization mechanism

is shown. As shown in the figure there might be an uncorrected

time difference between clients and the AP due to delays in

the timestamping at the receiver side, however, this delay will

be negligible and will not accumulate over time.

In case when multiple APs are used in the network, they

need to be synchronized by the wired network. To achieve

network-wide time synchronization, it is assumed that one of

the synchronization possibilities in the wired network is used

[14], [15].

IV. TIME SYNCHRONIZATION MEASUREMENT SETUP

With regard to validating the accuracy of synchronization

mechanism, a measurement methodology that is independent

of the synchronization mechanism itself has to be designed.

Thus, we make use of a parallel path to validate the synchro-

nization accuracy.

In PTP Linux implementation2 the synchronization mech-

anism itself reports the time offsets to the master clock. In

beacon-based synchronization application, attention is given

also to the time offsets between two different wireless devices

at a certain time. Moreover, as beacon intervals are comparably

smaller than re-synchronization periods in PTP, reporting

offsets every beacon interval will be quite an overhead. Thus,

we use a parallel wired path to periodically measure the time

difference between client nodes to validate the mechanism.

The measuring setup is shown in Figure 3. All nodes under

test (AP and clients) will be connected to a wired test network.

In the wired test-network, a single node will send broadcast

packets periodically. Such packets will be received at all other

nodes under test and the receiving timestamp will be logged

by each node. Then, the time difference between logged in-

formation will show the time offset between respective nodes.

Measurements do not dependent on any processing stack delay

of the transmitting node, while on the receiving node they are

2http://linuxptp.sourceforge.net/
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timestamped at the driver level (the lowest possible point in

the stack). For inter-AP synchronization measurements, two

APs are synchronized using PTP over the wired network, and

the time difference between clients connected to different APs

will be evaluated similarly.

The time difference between devices is calculated as δij =

Rxi−Rxj ; i 6= j, where i and j are two different client nodes

in the network. The standard deviation, σij , represents the time

difference jitter between nodes, while µij represents the mean

value of the difference and pr90 represents the 90th percentile

of the difference.

V. RESULTS

In the following, the time synchronization mechanism is

validated in different intra and inter-AP settings, against the

time difference between clients over time, its cumulative dis-

tribution function (CDF), and its mean and standard deviation.

Experimental tests were performed using openwifi APs,

with beacon follow-up packets enabled, and clients using

COTS hardware. In case when APs were using COTS hard-

ware, beacon follow-up packets can not be used as well as the

TSF can not be controlled from the AP due to driver limitation.

Consequently, in such a case only clients from single AP can

be synchronized, while the wired-segment of the network can

not control the TSF counter of the AP. We benchmark the

results achieved by the proposed mechanism with the results

achieved with PTP over wireless link.

1) openwifi AP case: In this scenario, single opnewifi AP

and commercial clients were used to validate synchronization

measurements. First, the TSF counter was not controlled by

the synchronization entity but left to run in its own (Figure

4) while in the second case the TSF counter was controlled

(Figure 5). In the latter case, the time of the AP host was

also controlled by a PTP master in the wired network. The

synchronization error does not change in both cases (Figure

4 and Figure 5, being smaller than ∼17 µs in 90% of cases.

However, in the second case the standard deviation is smaller

due to the control of the TSF from the user-space, with σ

16.58 µs compared to 22.18 µs of the previous case.

2) PTP over WiFi case: We benchmark the synchronization

accuracy of the proposed time synchronization mechanism by

running PTP over WiFi. Clients and AP are synchronized using
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Fig. 4. Synchronization error between clients when TSF is uncontrolled
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Fig. 5. Synchronization error between clients when TSF is controlled by PTP

PTP over WiFi using PTPd 3 implementation. To the best

of knowledge of the authors, there are not any WiFi cards

that support hardware time stamping. The time-stamping of

the packets is done above the driver in the stack, decreasing

thus the accuracy of the synchronization mechanism. In this

setup, the AP was set to ptpd master while the clients were the

ptpd slaves. We used the same parallel measurement method,

to determine the time offset between client nodes. As shown

in Figure 6b, the synchronization error between two nodes

associated with the same AP will be smaller than 50 µs in

90% of the cases, with σ of 20.12 µs. It can be seen that

the beacon based synchronization mechanism with follow-up

beacon support offers 50% lower time offset between WiFi

clients than PTPd over WiFi (using software timestamping).

3) Beacon interval: can impact the synchronization accu-

racy between clients connected to the same AP. Larger the

beacon interval, longer the time between subsequent synchro-

nization moments for the clients. To asses such impact we

performed 30 minutes long measurements for each beacon

interval setting using the measurement setup shown in section

IV using openwifi AP. In Figure 7 statistics of synchronization

error between nodes for different beacon intervals are shown.

It is seen that by increasing the beacon interval the standard

deviation of the synchronization error is increased, however,

the average value in any of the cases was smaller than 20 us.

3https://manpages.debian.org/testing/ptpd/ptpd.8.en.html
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Fig. 6. Synchronization error between clients when PTPd over WiFi is used.
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Fig. 7. Impact of the beacon interval on the synchronization error statistics.

The box plot shows 25th and 75th percentile, with outliers

greater than 90th and lower than 10th percentile, respectively.

The case of beacon interval of 1 second had the highest 90th

percentile, 34.5 us. However, the normal setting for the beacon

interval is 100 ms. This shows that even under low-quality

link conditions, when the client will miss some beacons, up

to a second, still it will remain time-synchronized with a

synchronization error lower than 21 µs, on average. Table I

summarizes statistics for each case.

Another factor that impacts the synchronization accuracy

is the load in the wireless network. Higher the load in the

network, the higher the possibility for the beacons to be

delayed due to busy channel conditions. On the other hand,

higher the node load, slower the processing of the packets by

the user-level synchronization application. Similarly, we did

tests using the same setup with a single openwifi AP, with

beacon interval of 100 ms. In the case of no load there was

no traffic between any of the client nodes under test connected

to the AP. In the case of network load there was a single Iperf

stream between two clients connected to the AP, that were

different from the client nodes under test. In this case, the

TABLE I
IMPACT OF BEACON INTERVAL ON STATISTICS OF ABSOLUTE

SYNCHRONIZATION ERROR

Stats Beacon Interval [ms]

50 100 500 1000

σ [us] 15.54 18.03 23.21 26.06

µ [us] 10.21 15.04 20.12 21.03

90% [us] 19 24 35 34.5

generated traffic in the network will impact only the beacon

and follow-up packets and sending time, but will not increase

the load on the clients under test itself. In the case of node

load the Iperf stream was running between both clients under

test. In such a case, clients that need to synchronize were

generating/receiving traffic that will increase the processing

load. In both cases, the required bandwidth was set to 20

Mbps. For each of the 3 scenarios, two different measurements

of 20 minutes were conducted at different times. As can be

seen in Figure 8 the synchronization accuracy is not affected

by the network load. Under network load conditions beacons

might be delayed, however, such an impact is compensated

by the follow-up beacon. Under the node load condition the

packets can be delayed by the driver and the timestamping at

the receiver side might be not correct. This is compensated

with the relative time difference between beacon processing

time and follow-up beacon packet processing time that will

filter out such delays or any possible batch processing effect

on the client side.

4) Inter-AP synchronization: The mechanism to control the

TSF counter in the AP offers the possibility to have end-to-

end time synchronization between wired and wireless network

segments. To this end, the AP system time will sub-ordinate

to a master clock in the wired network using one of the

synchronization possibilities [14], [15], while the TSF counter

will sub-ordinate to the system time of the AP. Thus, AP

will behave like a wired-wireless time synchronization bridge.

Hereby, the time reference for all the clients in the wireless

network will be the same and will be fed by the time master

from the wired network segment.

To check the synchronization accuracy in such cases, we

perform the measurements for time offset between wireless

clients that are connected to two different APs. Both APs were

openwifi APs, while one client under test was connected to the

first AP, while two other clients under test were connected to

the second AP. Both APs used the same beacon interval of 100

ms. Figure 9 shows the statistics of synchronization error in the

inter-AP case. The mean synchronization error is 16.2 µs for

inter-AP case compared to 14.7 µs in intra-AP case. Similarly,

standard deviation, σ, in inter-AP case is increased to 13.3 µs

compared to 11.11 µs in case of intra-AP. This small increase

in absolute synchronization error statistics in inter-AP case is

related to the accuracy of the synchronization between APs

themselves. As the beacon-based synchronization always uses

an absolute time reference (the UTC when TSF counter was

0), the AP application needs to start at the time when the
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Fig. 9. Statistics of absolute synchronization error for inter-AP case.

AP system times are already synchronized. If there will be a

fixed small offset between the absolute time on the first and

second APs, then such fixed offset will be reflected to the

synchronization error between inter-AP clients too.

VI. CONCLUSIONS

In this paper a beacon-based time synchronization mech-

anisms that extends the time synchronization to wireless

segment of the networks is shown. The node architecture

for the AP and wireless end nodes is designed, with no low

level changes at the end node side. The time synchronization

mechanism is validated in both intra and inter AP communi-

cation settings and it is benchmarked to the PTP performance

over wireless link. It is shown that the in case of intra-

AP setting, the synchronization performance depends on the

synchronization accuracy of the APs as well. The impact of

the beacon interval as well as the load on the wireless link

is validated to. Further improvements can be done in order

to decrease the overhead and increase the synchronization

accuracy. This includes the ability of the physical layer to

timestamp the beacon packet itself, without the need for the

follow-up packet. Future research can be done on how such

beacons can be used for traffic scheduling in wireless network.
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