Journal of Network and Systems Management (2021) 29:16
https://doi.org/10.1007/510922-020-09581-6

Self-organizing fog support services for responsive edge
computing*

Tom Goethals - Filip De Turck - Bruno
Volckaert

Received: 23 June 2020 / Accepted: 4 December 2020

Abstract Recent years have seen fog and edge computing emerge as new
paradigms to provide more responsive software services. While both these con-
cepts have numerous advantages in terms of efficiency and user experience by
moving computational tasks closer to where they are needed, effective service
scheduling requires a different approach in the geographically widespread fog
than it does in the cloud. Additionally, fog and edge networks are volatile, and
of such a scale that gathering all the required data for a centralized scheduler
results in prohibitively high memory use and network traffic. Since the fog is
a geographically distributed computational substrate, a suitable solution is to
use a decentralized service scheduler, deployed on all nodes, which can monitor
and deploy services in its neighbourhood without having to know the entire
service topology.
This article presents a fully decentralized service scheduler, labeled “SoSwirly”,

for fog and edge networks containing hundreds of thousands of devices. It
scales service instances as required by the edge, based on available resources
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and flexibly defined distance metrics. A mathematical model of fog networks is
presented, along with a theoretical analysis and an empirical evaluation which
indicate that under the right conditions, SoSwirly is highly scalable. It is also
explained how to achieve these conditions by carefully selecting configuration
parameters. Concretely, only 15MiB of memory is required on each node, and
network traffic in the evaluations is less than 4Kbps on edge nodes, while 4-6%
more service instances are created than by a centralized algorithm.

Keywords fog computing - fog networks - service scheduling - service
orchestration - edge computing - service provisioning - swarm intelligence

1 Introduction

In recent years, fog computing and edge computing have emerged as paradigms
to improve the QoS, efficiency and responsiveness of software services by of-
floading certain computational tasks from the cloud to the geographically
widespread fog[1]. Simultaneously, various IoT applications and Smart City
initiatives[2] have increased the importance and the physical size of the fog
and edge, and the diversity of functionality deployed in them.

While both fog and edge computing can be advantageous by moving soft-
ware services closer to end users and data in the network edge[3], the service
scheduling algorithms used in the cloud are not designed for the conditions in
the heterogeneous and geographically spread out fog and edge.

Unlike cloud networks, fog and edge networks are very volatile, with con-
stantly changing network conditions and topologies. Not only can devices sud-
denly appear or disappear in the network, but the physical location of edge
nodes such as vehicles and mobile phones can also change rapidly.

Clouds generally contain powerful servers that can run many service in-
stances, and services can be migrated between machines with little penalty.
However, in the fog hardware is often less powerful and it is harder to migrate
services due to the distances and resource limits involved. Therefore, it is im-
portant to take these constraints into account. As a corollary, scaling in the
cloud is very geographically constrained, while the nature of the fog is more
suited to scaling across many devices over a wide geographical area, placing
service instances close to where they are required to minimize latency.

Finally, because cloud servers are clustered in data centers, service schedul-
ing can usually be handled by a single, centralized scheduler instance. Even
distributed cloud data centers are usually few in number and connected by
high-bandwidth connections, so that a single scheduler instance in any of
them can gather all the required information to make scheduling decisions.
However, the fog and edge contain orders of magnitude more devices than
clouds, connected at lower bandwidths. Combined with the volatility of the
fog, this makes gathering all the required data for scheduling decisions on a
single node unrealistic; a fully decentralized solution is more suitable.

While a decentralized solution can address the issues listed so far, it can
also pose new problems. Most importantly, the resource use on fog nodes and
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edge nodes will be higher than with a centralized algorithm, because each
node needs to perform part of the network communication and calculation
that would otherwise be done in the cloud. Additionally, since there is no
longer any static, single controlling entity (e.g. the cloud), global actions such
as creating an overview of all running nodes or forcefully pushing updates will
be more difficult.

This article presents a decentralized approach to serverless fog and edge
service scheduling, named SoSwirly (Self organizing Swirly), which is based on
five requirements taken from the challenges presented in this section:

— Req. 1 Handle changing topologies and moving nodes in near real-time

— Regq. 2 Take fog node locations and resource limits into account

— Regq. 3 Balance the number of service instances versus QoS requirements,
such as minimal overall latency

— Req. 4 Scale to hundreds of thousands of edge devices through a self-
organizing, decentralized approach

— Req. 5 Work on a wide range of fog and edge devices by minimizing
resource requirements

This article shows how the proposed solution meets the requirements by
building a theoretical model of fog nodes as service providers, leading to an
implementation of SoSwirly and a theoretical and empirical analysis of its
performance. The conclusions show that SoSwirly is highly scalable under the
right conditions, and that these conditions can be achieved in a variety of
situations by tuning configuration parameters depending on fog node density.

For the remainder of this article, a fog network (including the edge) with
frequent changes to its network and nodes will be referred to as a swirl. A
fog node is synonymous with a service provider and similarly, a service client
or edge node client indicate an edge node. Finally, an edge service refers to a
process of any kind that is dependent on the fog and runs on an edge device.

The rest of the article is organized as follows: Section 3 presents existing
research related to the topic, while in Section 4 a mathematical model of fog
nodes and fog networks is constructed as a basis for the implementation and
evaluation of the solution. The solution itself and its implementation details
are presented in Section 5, while Section 6 explores the theoretical properties of
the implementation. The evaluation methodology for the solution in a number
of scenarios is described in Section 7, the results of which are presented in
Section 8. Finally, Section 9 discusses a number of topics for future work, and
Section 10 summarizes how the solution and the evaluation results meet the
proposed requirements.

2 Motivation
Previous work related to fog service deployment resulted in Swirly[4], which

is aimed at large-scale deployments of services in fog networks and can han-
dle real-time topology updates. Swirly allows the combined optimization of a
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single generic distance metric and number of service instances in a fog net-
work. However, due to its centralized approach, the memory requirement and
network traffic at the node running the algorithm are limiting factors for its
scalability. To solve these problems, and to eliminate the need for a cloud
node, this work aims to create a distributed approach for the same optimiza-
tion problem, while fulfilling the requirements put forth in Section 1. The core
tenet of this approach is that each node is responsible for mapping only a small
nearby part of the global topology, its neighbourhood. This concept of neigh-
bourhoods can, with the right configuration parameters, ensure that nodes
only have to communicate with a constant number of neighbours, no matter
how large the node topology grows. Additionally, the traditional planning hi-
erarchy is inverted by making edge nodes responsible for deciding which fog
nodes they want to address for a specific service.

As an example application, when using roadside units (fog nodes) near
highways the algorithm makes it possible for services to “follow” clusters of
cars (edge devices) by allowing edge nodes to constantly switch to the nearest
units for service calls, and increasing the number of services in busy areas.
Because of the decentralized approach, this can be done locally and on a large
scale, without the need for cloud processing and the accompanying additional
latency.

3 Related Work

A literature review by Maenhaut, Volckaert, Ongenae and De Turck[5] dis-
cusses challenges related to service orchestration, resource management and
pricing in (distributed) clouds and the fog. An overview of the challenges in
fog and edge computing is presented by Avasalcai, Murturi and Dustdar[6].
Their study focuses specifically on challenges in resource management, secu-
rity and network management, with regards to the volatile network conditions
and low-power devices often found at the network edge.

To support the scaling of services in the fog and edge, several studies have
focused on extending the concept of serverless computing to these areas. For
example, the Fog Functions presented by Cheng, Fuerst, Solmaz and Sanada[7]
are compact and scalable pieces of functionality, created through a custom pro-
gramming model which ensures independency of the device and platform they
are run on. Gadepalli, Peach, Cherkasova, Aitken and Parmer[8] argue that
current virtualization technologies are too demanding and slow for responsive
services on extremely low-power devices. They present aWsm, a serverless
framework based on WebAssembly with startup times measured in microsec-
onds. Although the implementation of SoSwirly presented in this article is
focused on containers, the design allows for the adoption of these or similar
virtualization technologies.

A recent literature review of container orchestration in fog networks[9]
shows that the most popular research directions in this area involve Docker
containers, scaling, QoS, and resource management. The approach presented
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in this article is in line with these facets, although the design of SoSwirly
allows for flexible QoS requirements and the use of other forms of software
deployment (e.g. Virtual Machines, unikernels[10]).

A study by Guerrero, Lera and Juiz[11] compares several multi-objective
evolutionary algorithms in the context of fog service placement. Although these
algorithms can take a large number of parameters into account and produce
near-optimal results, they are by necessity used in centralized schedulers and
for small-scale scheduling due to their speed. In contrast, SoSwirly aims to
optimize only distance and number of services, but at a much larger scale.
Similarly, a study by Hosseinzadeh et al.[12] provides an overview of vari-
ous multi-objective optimization algorithms in service networks, but in the
context of selecting optimal services rather than deploying them in optimal
locations. Stévant, Pazat and Blanc[13] propose a framework which monitors
and optimizes service placement to minimize QoS requirements, represented
by response time in their evaluation. The difference with the approach in this
article is that SoSwirly attempts to balance QoS requirements versus total used
resources. Although the default Kubernetes[14] scheduler is centralized, an al-
ternative scheduler by Casquero et al.[15] allows for distributed fog scheduling
in Kubernetes. However, this approach is aimed at industrial automation, and
the work in this article aims to go beyond the scale limits of Kubernetes[16].
Considering the cloud-oriented nature of Kubernetes, and its limits in terms
of deployable pods, this work is not aimed at Kubernetes clusters, but instead
uses small parts of its API where useful in communication between nodes.
While the proposed solution in this manuscript primarily relies on decentral-
ization to avoid network traffic bottlenecks caused by monitoring nodes from
a central location, the work by Vaton et al.[17] models network delay with hid-
den Markov models to greatly reduce the amount of monitoring traffic at the
cost of processing power. However, the decentralized nature of SoSwirly allows
tuning each node separately should they encounter network bottlenecks, and
since it is aimed at low-resource devices with little processing power to spare,
advanced traffic reduction methods are not integrated. A closely related frame-
work proposed by Santos, Wauters, Volckaert and De Turck[18] is aimed at
optimizing latency in 5G networks and takes an application-oriented approach,
placing the constituent microservices of an application on specific fog nodes
to minimize latency and traffic overhead. Unlike their work, the solution in
this article is agnostic of application architecture and transitive dependencies;
a similar effect emerges from placing each service as close as possible to its
direct dependencies, which can be achieved by carefully designing the distance
metric for SoSwirly.

Compared to the aforementioned studies, the novel aspect of SoSwirly is
that it is fully decentralized and works in near real-time, reacting to topology
changes in milliseconds to seconds, depending on network latencies. It com-
bines most of the discussed features by taking into account node resources,
node mobility, service latency, and the number of service instances, while al-
lowing for specific implementations using additional parameters. Meanwhile,
the framework itself uses minimal resources and is highly scalable, because
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it only considers the status of nearby nodes. To the best of our knowledge,
there are no decentralized frameworks or solutions with the same goals and
properties.

Table 1: Definitions of symbols used in Section 4.

[ Symbol [ Definition

Ag the service area of a fog node based on its resources, see Ce
Ap area closer to a fog node than to any other fog node
Ap area within D,, metric distance
A generic area, usually the entire service topology
rE radius of Ag, or distance to its border in a specific direction
rp distance(s) to the border of Ap
rp radius of Ap, or distance to its border in a specific direction

pe(z,Yy) edge node density at position x, y

pr(z,y) fog node density at position x, y
Ce number of service clients supported by a fog node, based on its resources
Cp scale factor between physical distance and metric distance
Cy expected fog node density, used in areas with low ppg
Dy, maximum metric distance value

D(p1,p2) metric distance between pl and p2
Apz the geographical area represented by a single pixel

4 Fog Node Model

In this section, a theoretical model of fog nodes and fog networks is con-
structed, which helps to meet the requirements put forward in Section 1 that
are related to the fog network topology, specifically Req. 1 through Req. 4.
Table 1 summarizes the symbols used in this section that are not explicitly
defined through equations.

Asper Req. 3, SoSwirly should support QoS requirements. This is achieved
by defining a distance metric from fog nodes to edge nodes, and optimizing it
so that edge nodes are always serviced by the “closest” available fog node in
terms of the distance metric. Furthermore, a maximum distance value can be
defined to put a limit on the search area for fog nodes and to serve as a hard
cap for acceptable service quality (e.g. the fog node is too distant, is planned
to go down, has limited bandwidth).

As shown in Fig. 1, each fog node has a number of service areas, which
can be idealized as circles, based on its properties and the fog nodes in its
neighbourhood:

— Apg, defined by radius rg, is the capacity area of a fog node, representing
the physical area it can service based on the capacity C, imposed by its
resources.

— Ap, with radius rg, is the responsibility area of a fog node. All edge nodes
within this area should be serviced by a fog node because they are closest
to that fog node than any other.
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(b) Example of two edge nodes at dif-
ferent physical distances from a fog
node, but with the same metric dis-
tance, resulting in a range of values for

(a) Idealized responsibility areas of a
fog node. TP

Fig. 1: The different responsibility areas of a fog node.

— Ap, with radius 7p, is the proximity area of a fog node. All edge nodes
within this area are close enough that they can be serviced by the fog node
without going over the maximum distance metric value.

The radii of these areas can be naively calculated using

1
rp = 1
F = (1)
Ce
= - 2
rE p— (2)
rp(0) =r,Vr,0: D(r,0) = Dy, (3)

Where pr and pg represent the density of fog and edge nodes respectively,
and D,, is the maximum distance value between a fog node and any edge
node it services. D(r,#) is a function that returns the metric distance of the
point r, 6. Note that the distance function can return multiple values for rp
for any 6, as shown in Fig. 1b. In this example, el and e2 lie in the same
direction #, but with a different . However, the metric distance for both is
equal, so rp(0) returns a range of values. Therefore, for Ap to be an actual
circle, its radius must be the maximum value of rp(f). In cases where the
distance metric preserves the relative ordering between all points, 7p can be
reduced to

Tp = Cpo (4)

In which C}, is a constant that describes how the distance metric scales with
the physical distance between points. The definition of rg naively assumes a
constant edge node density. Assuming the distance metric uses a coordinate
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system (z’,y'), a more accurate value for rg is found by solving the follow-
ing equation[19] for the area A, which can be transformed back to Cartesian
coordinates:

// Iy )pe(,y) -da’-dy =C. (5)
A
While the Jacobian[20] J(z',y’) makes this equation cumbersome, the co-

ordinate system can be treated as polar coordinates where r is the metric
distance and € is the direction of the node:

//027r rpg(r,0)-dr-df = C. (6)

Since the distance function can not calculate 6, the following version can
be used in cases where 6 is not known without losing accuracy:

/27r7“pE(r) -dr =C. (7)

In all cases, for a uniform density pg these equations reduce to Eq. 2

27
// rpg -dr-df = C, (8)
0

T29 0=2m
7 =C, 9
{QPEL ©)
Ce
r= - 10
p—— (10)

Note that while Eq. 2 assumed the use of the Euclidean metric, this version
is based on the distance metric expressed as polar coordinates. Therefore, the
resulting r must be converted from metric distance to geographical distance
before using it with Cartesian coordinates (e.g. a geographical map). Using
these definitions, some conditions can be stated for a well-organized service
topology:

— If rp > rg, the fog node will not have enough capacity to handle its entire
responsibility area. This means there are not enough active fog nodes, or
they are not in the right places.

— If rp > rp, the fog node will have to support some nodes that fall outside
its proximity area, so that some edge nodes will have a greater metric value
than technically allowed. Again, this points to not enough active fog nodes
or erroneously placed fog nodes.

— If rp > rp, the fog node has sufficient capacity to handle its responsibility
area, but can not handle a changing topology where it has to start servicing
extra edge nodes that fall between rg and rp. This means the fog nodes
are not sufficiently powerful to support the maximum metric distance.



Self-organizing fog support services for responsive edge computing* 9

These requirements can be expressed in a single equation as

re <rp<Tg (11)

While this equation has its own merit in predicting efficient fog node op-
eration given sufficient information, these relations can be used to determine
requirements for the fog node density pr. For the moment, rp is assumed to
be calculated as in Eq. 4. Then, since

< min (Cpo, Ce ) (12)

PR TPE

there are two conditions for pp, namely

(13)

e (14)

As a result, the following equation shows how to calculate minimal fog
node density at any location based on edge node density and the maximum
distance:

1 PE
pPF = max (FCQDQa C> (15)
pm e

At this point C, can be substituted with a more advanced relation between
geographic distance and metric distance. The metric pressure P represents the
inverse concept of Cp, indicating the inflation of metric distance with respect to
geographical distance at any point, calculated over the shape of the topology.
Assuming a point pl with Cartesian coordinates, and that D(pl,p2) gives the
metric distance between pl and any other point p2, the metric pressure P can
be defined at pl as

Ia T m ql’gi d4
P(pr) = Azl (16)
Where p2 represents each point in the area A of the Swirl and ||pl, p2||
is the Euclidean distance between pl and p2. In practice, P will either be
known from a few measurements or will not need to be calculated, reducing
the computational load this would represent.
Using this definition, it follows that P can replace 1/Cj, in Eq. 15, since
a smaller C, inflates D(pl,p2) and thus P. As a result, equations can be
constructed to calculate the minimal fog node density pr(x,y) at any location
in a Swirl, and the minimum number of fog nodes N¢,4 required to service a
given area of a Swirl, using any distance metric:
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I (xyy)z /)E(JJ,:U)
>
pr(z,y) > max ( D2 G (17)
1 (xay)Q pE(xay)
> .
Ntog /Amax< D2 G dA (18)

4.1 Fog Neighbourhood Discovery

The maximum distance value D,, in Eq. 4 represents the maximum distance
between edge nodes and their service providers. However, fog nodes also inter-
act with each other in the form of a neighbourhood discovery process, which is
explained in Section 5.1. Ideally, the maximum distance used in this discovery
process would be a single value, for example D,,, used by edge nodes. However,
Fig. 2 illustrates how this can lead to problems. While f3 is in the green circle,
and thus should clearly be known to f1, f2 is too far from f1 for f3 to be
discovered through it.

fp / f2: (x2,y2)

f3

Fig. 2: Potential problem with fog discovery when using a constant maximum
distance for discovery. Fog node f3, despite being in the green circle represent-
ing the neighbourhood of f1, will not be discovered because the connecting
node 2 is too far away from fl. Ap, with radius rp, is drawn as a circle for
illustrative purposes.

This problem can be solved if, similar to how minimum fog node density is
calculated, the maximum discovery distance D), depends on both maximum
metric distance and local fog node density, so that

D y(z,y) = maz (Dm, Cf) (19)
Tpr (2, Y)
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Where C¢ is a constant representing the expected fog node density. The
higher this number is, the more connected the fog network will be, but traf-
fic and resource use will increase with it. Note that this does not solve the
problem of f1 being unable to discover f2, but it will enable f2 to discover
f1. Eventually, f3 will find f1 through f2, at which point f1 will discover its
remaining neighbours.

There is a possible solution for D,,; which would allow the use of a single
value while discovering all required nodes, if instead of pp(z,y) the minimum
value of pp over the entire topology is used. However, this would result in
an unnecessarily large neighbourhood for most fog nodes, and a lot of traffic
overhead.

4.2 Distance Metric Coordinates

The native coordinate system of the distance metric may contain any number
of dimensions with discontinuous values (e.g. binary flags or enum values).
However, an explicit coordinate transformation with respect to a fully differ-
entiable manifold[21] is required to properly calculate positions and relative
distances between fog nodes and edge nodes in terms of the distance metric.
Additionally, while the Euclidean metric is (implicitly) used in all equations
so far, with the distance metric used as a function, the distance metric should
instead be treated as a metric, but one which is only defined on its native co-
ordinate system. This subsection shows how the distance metric values deter-
mined by nodes can be used to construct surrogate distance metric coordinates
for nodes in Cartesian and polar coordinates.

In terms of polar coordinates, the metric distance d is assumed to scale
with r, which is also the assumption in C, in Eq. 4. Examples of metrics with
this property are geographical distance between nodes and latency under nor-
mal circumstances, within a reasonable margin of error. This type of distance
metric transforms the topology shown in Fig. 3a into distances and node po-
sitions similar to those shown in Fig. 3b. However, in other cases the distance
metric will be more complex and it will not scale equally with Cartesian or po-
lar coordinates in every dimension, nor at every location, as shown in Fig. 3c.
Moreover, two physically very different nodes may map onto the same location
in terms of distance metric coordinates.

This presents problems for advanced functionality where the coordinates
of the nodes are required, e.g. predicting node movement and trajectory in
terms of the distance metric. However, if the distance metric preserves relative
Euclidean distances, accurate surrogate coordinates can be constructed for
each node, similar to Fig. 3b, by assuming that r is the measured distance d
and 0 is the same as the angle between both nodes in polar coordinates.

When constructing surrogate coordinates from the point of view of a point
pl, it can be placed at the origin with coordinates (0,0). The surrogate coor-
dinates of a point p2 : (r, ) relative to pl are thus defined in polar coordinates
as
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O

4

,* p2(10,1/4)

< lipLp2ll =5 ~’d=10
O' O'
’ ’
Clt @ p1000)
(a) Physical topology (b) Assumed position of p2
p2(10,11/8)
d= :l_Q .-
Ovioo)

(c) Real position of p2

Fig. 3: Example of erroneous assumption of distance metric coordinates from
known positions and measured metric values between pl and p2. 6 is not known
from measurements, but has to be assumed.

p2/ = (D(pl,pQ), 9) (20)
In Cartesian coordinates, the metric ratio s can be used to scale the relative
distance between pl and p2:
. Dlp2) (21)
[Ip1, p2||

The entire issue is circumvented in all equations so far by using the ge-
ographical (Cartesian) coordinates of nodes, either because it makes no dif-
ference or because the potential error is very small. For example in Eq. 17
pe(x,y) is used instead of p(r, @), but this makes no difference since it merely
describes the local node density of an infinitesimal region, without respect to
another point. Other concepts, such as the metric pressure P, were specifically
designed to avoid having to use the metric coordinate system. However, these

surrogate coordinates may be useful in future work.

4.3 Fog Hardware Placement

While Eq. 17 allows for the calculation of the minimum required fog node
density at any location, it is very general and difficult to implement. The
evaluations in this article use a more straightforward distance metric so that
1/C}, can be used rather than P(x,y). Furthermore, it is more useful to have
a version of the equations that can handle discrete regions with piecewise
constant densities (e.g. pixels).
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The discrete version of Eq. 17 using a straightforward distance metric is

1 PE (Ia y)AP-T > (22)

in which A,, represents the surface area of a single region. In the case of
pixels, this is a constant and the following can be substituted

A 1
Co=" pp=—5—s 23
Ce pp ﬂ_Cngn ( )
which are both constant, resulting in a short version of Eq. 22
pr(x,y) = max(pp, pe(z,y)Ca) (24)

This equation can be used to determine the minimum total number of fog
nodes over the entire topology, giving the discrete version of Eq. 18

X Y
Njog =YY max(py, pr(z,y)Cla) (25)

Note that both Eq. 24 and 25 are only valid if the distance metric preserves
relative distances so that the quotient of the metric distance and physical
distance can be represented by C),, and furthermore that all discrete regions
are the same size, in which case A, is constant. In other cases, the equations
will be similar, but more terms will have to be calculated for each region.

5 Fog Service Provisioning

SoSwirly, the solution presented in this article, requires a number of logical
components to fulfill the requirements listed in Section 1. A decentralized node
discovery algorithm is required to keep track of changing topologies on a large
scale, as per Req. 1 and Req. 4. Similarly, Req. 2 and Req. 8 must both
be taken into account in a scheduler component, which finds the best fog node
to use as a service provider. Upon finding a suitable node, or when the service
provider changes, Req. 1 requires a component that can forward any requests
to the correct node. This section describes how these logical components are
implemented by software components, with Req. 5 implicitly present in the
design through the choice of Golang and lightweight dependencies, e.g. using
a straightforward DNS solution, using FLEDGE agents instead of Kubelets.
FLEDGE[4] is a lightweight container orchestrator for edge nodes, similar to
K3s[22], but fully compatible with Kubernetes master nodes.

The chosen distance metric is implemented as a custom ping web service
that determines latency. This choice of metric, which is implicitly assumed
to scale with geographical distance, allows the basic properties of SoSwirly
to be explained intuitively, by relying on the reduced forms of the equations
presented in Section 4.
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The logical components are divided among two separate services, which
are implemented in Golang for the evaluations in Section 7. The fog node
service, deployed on all fog nodes, is responsible for managing fog services
based on edge node requests and for discovering other fog nodes in its neigh-
bourhood. The edge node service is deployed on all edge nodes and monitors
which services on an edge node require fog support services. When required,
these support services are requested from the nearest (active) fog node, which
is found by traversing fog node neighbourhoods discovered by the fog node
service.

Central to both services is the algorithm for node discovery, which fog
nodes use to discover their neighbourhoods and edge nodes use to find an
optimal service provider.

In principle, the edge node service is not limited to running on edge nodes.
It can also be deployed on fog nodes, allowing a tiered fog architecture in which
each layer detects the services running on its devices and attempts to deploy
the required support services in a higher layer.

5.1 Neighbourhood Discovery

Algorithm 1 presents the general outline of the algorithm used to discover
nearby fog nodes from any node.

At the start of each discovery round, a queue Ngpecr is created from the
elements of the list of known nodes Nyjown, and nodes discovered through
other means N, which do not yet have a distance assigned to them. The
list of nodes to ignore Njgnore is initialized, to which nodes are added that are
beyond the maximum distance and should not be contacted again this round.
As long as there is a node left in N¢peck, the first element n. is taken from
the queue. The algorithm first checks if the distance to n. should be updated
this round by calling ShouldReping. If so, the distance d[n.] is determined and
updated and d,, . is calculated by the AdjustedDistance function according to
Eq. 19. If the new distance to n. is smaller than d,,q., the node is added to (or
updated in) the list of known nodes, and its list of known nodes is fetched into
Npew- These nodes are in turn added to the list of nodes to check through the
MergeNodes function, which only adds those nodes of Nyey t0 Nepeck which
are not in Nepeck, Ninown O Nignore. Additionally, the flag inReach is set to
true, and the minimal distance d,,;, for this round is updated if necessary. If
the new distance to n. is larger than d,,.., the node is added to the list of
nodes to ignore. However, if the minimum distance in this discovery round is
also larger than d,,,, the algorithm has not yet found a way to nodes within
its neighbourhood. Therefore, the list of nodes known to n. is fetched and
merged with the list of nodes to check, in an attempt to find closer nodes.
Additionally, if there is only one known node, or the distance to n. is smaller
than the smallest distance so far, d,,;, is also updated to narrow the search
field. If neither of these conditions are true, ¢, is removed from the list of
known nodes if it is in there. When the queue Ngyown 1S empty, the inReach
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function Discover(selfNodeType, Ninown, Nnew) is
Neheek = Nignown U Nnew
Nignore =
if Nepeer 7 0 then
‘ dmin = D(selfNodeType, Neheck [0])
inReach = false
while N_jccr # 0 do
Ne = Neheck [0}
Remove(Ncheckz nE)
if ShouldReping(n.) then
d[nc] = D(selfNodeType,n.)
dmaz = AdjustedDistance(Len(Ninown))
if d[n¢] < dmaz) then
add(Nknown7 nc)
Npew = GetKnownNodes(n.)
MergeNodes(Nepecks Nnew, Nignore)
inReach = true
dmin = mln(dmznv d[nc])
else
Add(Nignor67 nc)
if dinin > dmaes then
Npew = GetKnownNodes(n.)
MergeNodes(Nehecks Nnews Nignore)
if Len(Ngnown) < 1 or dlcn] < dmin then
‘ dmin = dlcn
else
| Remove(Ngnown, cn)
end

end

end
if inReach then
Nremove = @ for n ¢ Nknown do
if d[n] >AdjustedDistance(Len(Ngpown)) then
‘ Add(Nremovan)
end

Ninown = Ninown N Nremove
end

function ShouldReping(cy ) is
| customizable implementation, default true
end
function GetKnownNodes(cy ) is
| webservice call to n.
end
function AdjustedDistance(n) is
Plocal = pass/n
return dmaq-maz(1, \[(plocal)
end
function MergeNodes(Neheck, Nnew, Nignore) is
‘ Ncheck = Ncheck U (Nnew n Nignore N Nknown)
end

Algorithm 1: Node discovery mechanism used in both the fog node service

and the edge node service.



16 Tom Goethals, Filip De Turck, Bruno Volckaert

flag is checked to remove any nodes beyond the maximum distance from the
list of known nodes, because such nodes may have been added while d,,;, was
larger than d,,qq

When contacting another node, a node will always pass its node type (e.g.
edge or fog) in the request. When a fog node is contacted by an edge node,
it will simply respond and the distance between the two can be determined
by the edge node. When a fog node is contacted by another fog node, it will
check if it already discovered that node; if not it will add the node to a queue
of nodes to contact on the next discovery round.

As explained in Section 4.1, the maximum distance for fog node neighbour-
hood discovery should not be a constant value, but should depend on local fog
node density as well. The local fog node density can be estimated by consider-
ing how many fog nodes have been discovered by using the default maximum
distance; the new maximum distance can be calculated from it according to
Eq. 19. However, edge nodes still use a constant maximum distance to discover
optimal service providers in accordance with Eq. 4.

Ideally, all discovered fog nodes should be contacted during each discovery
round to determine their new distance. However, to reduce neighbourhood size
and limit edge node traffic, the ShouldReping function can be implemented
differently for fog and edge nodes, enabling different timeouts on nodes that
are far away. For example, while some fog nodes beyond the maximum distance
are kept in the list of known nodes, this feature allows the algorithm to only
contact them every 2 or 3 rounds.

5.2 Fog Node Service

FogService EdgeService

NodePinger NodePinger ServiceMonitor

(FogNodePinger) \ ‘,,1 (EdgeNodePinger) i j (FledgeServiceMonitor)
— —",»'
(Fledog;ggeritl'::tsc::alor) % Webservice methods [ ServiceMesher

Service Manager — ------ssosssesssresrsessesesnanaes » Webservice methods

ServiceLocator
(HostsServiceLocator)

Function call <—>‘

Webservice call <-------- >

Fig. 4: Components of the fog node service and the edge node service and their
interactions.

The left side of Fig. 4 shows the components of the fog node service and
their interactions.

The FogNodePinger, an implementation of NodePinger, periodically at-
tempts to discover fog nodes in its neighbourhood according to Algorithm 1.
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It is used by the webservice methods to return a list of known fog nodes, and
in turn calls on the webservice methods of other fog nodes for neighbourhood
discovery.

The Service Manager handles requests from edge nodes to add or remove
them as service clients. When adding a service client, it checks if there are
sufficient resources to handle extra service clients or services, and starts any
services needed by the edge node client if they are not yet running. When a
service is started, it is loaded from a configuration file containing a Kubernetes
PodSpec[23] which is sent to the Orchestrator for deployment. When a service
client is removed, the Service Manager checks each service used by that client
to see if there are still enough other clients using them. If the number of
clients for any service is below a configurable minimum, all remaining edge
node clients are notified to try and find a different fog node for that service.
If successful, the migration is confirmed to each client, they are then removed
from that service and the Service Manager instructs the Orchestrator to stop
and remove the service itself. If a single edge node fails to find another suitable
service provider, the edge node clients are notified that the migration should
be reverted.

The FledgeOrchestrator is an implementation of Orchestrator and deploys
Kubernetes pods through a FLEDGE agent. It supports only the two methods
described above; one to deploy a pod and one to stop a pod.

5.3 Edge Node Service

The components of the edge node service are shown on the right side of Fig.
4, along with their interactions and web service calls to and from the fog node
service.

As in the fog node service, the EdgeNodePinger is responsible for discover-
ing nearby fog nodes as per Algorithm 1. The difference is that the results of
each discovery round are actively used, by sending them to the ServiceMesher,
which takes further action based on the support services required by the edge
node.

To determine which support services are required, the FledgeService Moni-
tor periodically checks all running pods managed by the local FLEDGE agent
and compares them to a configurable map of edge service names and the fog
services they depend on. When a new pod is detected, the map is consulted
and any required fog services are forwarded to the ServiceMesher.

The ServiceMesher uses the fog nodes discovered by the FEdgeNodePinger
to find a suitable service provider for the required services passed by the Fledge-
ServiceMonitor. For each service S it first attempts to find a fog node which
already has S deployed, in order of increasing distance, up to the maximum
distance. If this fails, the closest node with enough available resources to de-
ploy S is selected as service provider, no matter the distance. The selected
node is then notified that the edge node requires S, and registers itself as a
service client for S at that fog node. Note that this can result in multiple ser-



18 Tom Goethals, Filip De Turck, Bruno Volckaert

vice providers for a single edge service, depending on pre-existing deployments
in the fog. If for any reason a fog service deployment fails, or the edge node can
not be registered as a client, the search for a service provider continues. This
approach is in line with the original Swirly algorithm[24], which prefers nearby
fog nodes with active service deployments and free resources over empty fog
nodes when possible. Any connections from the edge service are redirected
to the correct fog node by the HostsServiceLocator. For the purposes of this
article, this naive implementation of ServiceLocator assumes that the name of
the fog service is used as a DNS name when it is called by the edge service.
This assumed DNS name is linked to the IP address of the fog node by adding
a line in the hosts file [25] of the edge node.

As described in Section 5.2, a fog node can ask edge node clients to migrate
to a different service provider for a specific service. When this happens, the
ServiceMesher attempts to find a service provider as described in the previ-
ous paragraph, with the exception that the resulting fog node must already
be running the required fog service, and is different from the current service
provider. If a suitable fog node is found, the edge node assigns it as backup
service provider and adds itself as a client for the required service to ensure
that it can be serviced. If any of these steps fail, the edge node reports to the
original service provider that the migration has failed, otherwise it reports the
migration can proceed. In the final step, the edge node client is instructed by
the fog node to either confirm or revert the migration. When confirming, the
backup service provider is given active status and the HostsServiceLocator is
updated accordingly. When reverting, the edge node removes itself from the
backup service provider as client.

6 Theoretical Performance

In terms of processing and memory, the average computational complexity of
neighbourhood discovery using Algorithm 1 is O(r%pr). r% describes the area
with which a fog node interacts, while the amount of interaction increases with
pr. Extending this to interaction with edge nodes, the complexity is O(r%pr)
on edge nodes and O(r%pg) on fog nodes. However, in the worst case a fog
node has to search a significant fraction of all fog nodes to find any that belong
to its neighbourhood. These adverse situations may be caused by topological
features as shown in Fig. 2, or because the (randomly) assigned start node
for the discovery process is several times the maximum distance away. In both
cases performance will converge to the average situation within a few discovery
rounds, but worst case complexity is therefore O(F') in terms of processing.
Detecting and deploying support services has a best case complexity of
O(1) in terms of processing, since the closest fog node is known from the dis-
covery process and can be found in constant time. In situations with very few
fog resources left, worst case performance is O(r%pr), since all neighbouring
fog nodes may have to be consulted to find one with free resources. Average
complexity is between these extremes, depending on the amount of nearby
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Table 2: Summary of processing complexity.

Best Average Worst

Neighbourhood discovery - O(rZpr) O(F)

Fog discovery (edge node) - O(ripr) O(F)
Fog discovery (fog node) - O(r%pE) O(r%pE)
Service deployment o) | o(1/(1 — Z—?)) O(r¥pr)

edge nodes and fog nodes, resulting in O(1/(1—pg/pr)). In all cases, memory
complexity is O(r%pr). Table 2 summarizes the computational complexities
for all cases.

In all cases, the complexity of network throughput will be the same as pro-
cessing complexity, since every action in neighbourhood discovery and service
deployment requires a webservice call.

Because the best and average case complexities are based only on local node
densities and maximum discovery distance, Req. 4 is met by the theoretical
performance of SoSwirly.

7 Evaluation Methodology

This section describes the evaluation setup, the scenarios involved in the eval-
uation and their limitations, in which terms SoSwirly is evaluated and how
the results are measured. The code of SoSwirly, including the tools used for
the evaluations, is made available on Github!.

7.1 Evaluation Setup

All evaluations are run on the IDlab Virtual Wall [26] using two servers, each
with 48GiB RAM, two Intel E5-2650v2 CPUs and a Gigabit Ethernet connec-
tion. One server is used to host a number of fog node services, while the other
hosts a number of edge node services.

To support running multiple fog and edge nodes on a single machine, and
for other nodes to be able to access them, a number of changes are made to
the code that are enabled through the configuration flag testMode. testMode is
designed to use incremental node names and port numbers so that each node
knows where to reach another node by name alone. Additionally, it disables
the actual deployment of a pod in FLEDGE so as to not overload the server
with pod deployments. Finally, only one FLEDGE instance is started, running
a single instance of the service which edge nodes are configured to detect, and
each edge node service monitors this single instance.

While the services can thus be run on a single server, they create a large
number of network connections between them. This was found to put a prac-
tical limit on how many nodes can be emulated simultaneously, so the evalua-

1 https://github.com/togoetha/soswirly
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(a) (b)

Fig. 5: Part of the physical area of Belgium used to generate node topologies
and evaluate SoSwirly. The scale in (a) represents edge node density, where teal
is low density, and red through green represent high densities. (b) shows the
required fog node density as calculated using Eq. 24, using the same density
scale. The darker blue shows that in the surrounding towns, pg is overridden
by the required maximum distance. (c¢) shows the service areas of selected fog
nodes (background omitted). Orange is A, blue is Ag and green is Ap.

tions are limited to a maximum of 250 fog nodes and 150 edge nodes. Although
this does not represent the topological scale SoSwirly is meant to operate at,
it is impossible to simulate thousands of nodes on the Virtual Wall, and con-
clusions can still be drawn from evaluations within these limits.

7.2 Swirl Generator

The evaluations use randomized Swirls created by the Swirl generator. This
generator accepts a number of parameters (e.g. number of fog nodes, maximum
distance) and a population density bitmap as input, and uses the equations
from Sections 4 and 4.3 to generate edge and fog nodes at suitable, but random,
positions. The output of this tool is a set of configuration files that are used
to start all the generated nodes on the evaluation servers. An example input
density bitmap is shown in Fig. 5a, with the results of Eq. 24 in Fig. 5b. A
small-scale visualization of the output of the generator is shown in Fig. 5c,
overlaid with calculated Ap, Ar and Ag of a few selected fog nodes. Note
that the responsibility areas take the shape of a Voronoi diagram and Ap is
not defined by a single value rp. This is because the equations in Section 4
assume an ideal shape for A, while the actual shape is dependent on random
factors (e.g. placement of fog nodes, choice of active fog nodes, stability of
distance metric over time). However, SoSwirly will attempt to produce Ar as
close to ideal as possible, and the equations still hold when rg is defined as
the maximum distance between a fog node and the boundary of Ap.
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The density bitmaps are generated by another tool, which combines official
census data and GEOJSON][27] data into population density bitmaps. For the
evaluations, data from StatBel[28] on the statistical sectors of Belgium[29]
and population per statistical sector[30] is used. The statistical sectors are
on average 1km?, although they are smaller in cities, and larger in sparsely
populated areas, making them sufficiently fine-grained.

7.3 Scenarios

The base density bitmap used to generate Swirls is similar to that shown in Fig.
5a, but encompasses a larger area of around 660km?2. Its right side is focused
on Brussels, while the middle and left include the surrounding countryside. It
contains population densities from 0/km? to around 40000/km?. Considering
the artificial nature of the evaluation, the parameters needed for the equations
in Section 4.3 are approximated. Population density is used as a substitute for
pe(r,y), while fog node capacity C. is set at 50.000, making C, 1,25-10~8km?.
For the chosen metric and the given scenario, C, can be set to 1 pixel per
metric distance unit. These parameters are used to calculate the minimal fog
density for each scenario. No cases are examined that contain only heavily
populated areas or countryside, since in cities rp can simply be lowered to
suit the higher pg and pp, stabilizing performance, and in the countryside
rp can be increased to suit the discovery process. A mixed case exposes the
stability and performance of SoSwirly when using a single set of parameters
over a wide range of node densities.

As explained in Section 3, there are fundamental differences between SoSwirly
and recent related work. The results of solutions based on evolutionary algo-
rithms can be superior, but these solutions are centralized and can not run
in near real-time. Others run in real-time, but require a central component or
have different use cases (e.g. optimizing all the components of an IoT applica-
tion in the fog). Keeping these nuances in mind, the efficiency of SoSwirly is
compared to the conceptually comparable but centralized Swirly, and NSGA-
I1, a generic multiobjective genetic algorithm[31]. For NSGA-II, the optimiza-
tion parameters are average distance between fog and edge nodes, and the
number of service instances. The same parameters are used as by Guerrero,
Lera and Juiz[11], except the evaluation is performed using both 400 and 5000
generations. Additionally, since the maximum distance is a soft restriction in
SoSwirly, any distance above 100 is penalized by a factor of 5 in NSGA-II to
discourage it.

7.3.1 Neighbourhood Discovery

This scenario determines the impact of the neighbourhood discovery algorithm
on fog nodes. Using only a set of fog nodes, the neighbourhood discovery
algorithm is evaluated in terms of CPU use, memory use and network traffic.
The number of fog nodes is varied from 50 to 250 in steps of 50, while the
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maximum distance is varied from 50 to 150 in steps of 50. Due to practical
limits in the evaluation setup, the combination of 150 maximum distance and
250 fog nodes is not tested. For each combination of parameters, SoSwirly
is run for 10 generated swirls. Additionally, the accuracy of neighbourhood
discovery is measured to determine the optimal maximum distance. For this
scenario, discovery rounds are run on each node every 5 seconds. While this
reaction time may be too high for certain scenarios with stringent real-time
requirements, it is configurable, and can be lowered significantly depending on
the requirements.

Using Eq. 24, the minimum number of fog nodes Ny, for the evaluation
is 119 for a maximum distance of 50, 40 for a maximum distance of 100 and
27 for a maximum distance of 150. Although the test parameters go below
the minimum number of nodes for a maximum distance of 50, these cases will
show how SoSwirly reacts when not provided with enough fog nodes.

7.8.2 Service Deployment

In this scenario, the combined impact of fog node discovery, service detection
and fog service deployment on edge nodes is measured in terms of CPU use,
memory use and network traffic. The maximum discovery distance is set at
100, and 100 fog nodes are used for this scenario. Due to hardware limitations,
this scenario was only evaluated for 100 and 150 edge nodes.

7.8.8 Topology Efficiency

Additional information extracted during the evaluation of the Service Deploy-
ment scenario is used to determine how effectively SoSwirly minimizes both
the number of active fog nodes and the average distance between edge and
fog nodes. Both of these optimization parameters will be compared between
SoSwirly and the centralized algorithms Swirly and NSGA-II, in addition to
the time taken for each algorithm to determine a solution. For both Swirly
and NSGA-II, the scenario is first prepared and only the timing of the actual
algorithm is measured. For SoSwirly, the measured time includes some web
service calls due to its decentralized nature and the necessity to gather node
information ad-hoc.

7.4 Resource Measurement

Each evaluation is run for 5 to 10 minutes, depending on the required time to
start all nodes, with resource levels logged every 10 seconds. The full range of
data over time is not presented in this article because most of it represents the
evaluation script starting up the required nodes. The results presented focus on
the last measurement, which is the most resource intensive period representing
a fully initialized, stable cluster in which neighbourhood discovery is mostly
completed, but is still periodically checking for new nodes.
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Considering the number of processes involved in the evaluations, CPU use
per process is approximated by measuring global CPU use and dividing it by
the number of nodes. The disadvantage of this approach is that it is impossible
to measure the specific CPU use of nodes in extreme situations, such as the
densely populated city center. However, this approach was chosen because
measuring CPU use for each process separately may have an undue influence
on CPU use itself. Despite this approach, the results allow for an analysis of
CPU use in different situations in Section 8.

Unlike CPU use, memory use is measured for each process separately, taken
from /proc/<pid>/stat. Because of this, memory use is examined for only
one topology per set of evaluation parameters rather than 10, allowing for an
analysis of extreme cases. This approach is representative of all cases; while
the topologies are generated randomly, they are still governed by the rules
of the model in Section. 4. This is confirmed by comparing memory use per
node across all the topologies; if the memory use of the most demanding nodes
of each topology is compared, the standard deviation is 1.9%. For the least
demanding nodes, the standard deviation is 2.1%.

Network traffic is measured globally from /proc/net/dev and divided by
the number of nodes, for the same reasons CPU use is measured globally. In
the Neighbourhood Discovery scenario, only the lo adapter is examined because
all traffic is local, in the Service Deployment scenario only the traffic on the
eth0 adapter is measured, which indicates traffic between fog nodes and edge
nodes.

8 Results

This section contains the results for the evaluations described in Section 7,
along with a discussion of the results. The values in the presented charts are
median values, with error bars representing minimum and maximum values.

8.1 Fog Discovery

Fig. 6 shows the memory required by the fog node service for different maxi-
mum distances and varying numbers of fog nodes. In the median cases, memory
use increases linearly with the number of fog nodes in the topology, which is
in line with the expected theoretical performance. However, the maximum
distance has less of an effect than expected. This is due to the dynamic ad-
justment of the maximum distance for nodes in low density areas per Eq. 19.
Remembering that for a maximum distance of 50, 118 fog nodes would be
required, many fog nodes can not find any neighbours unless they use Eq. 19
to dynamically increase their maximum discovery distance. The results show
that this mechanism works properly, increasing the maximum discovery dis-
tance significantly when required, to the point that fog nodes have a similar
memory requirement for maximum distances of 50 and 100. This also explains
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Fig. 6: Memory requirements of the fog service for different amounts of fog
nodes, and maximum discovery distances of 50, 100 and 150 units.

why median memory use at these maximum distances barely rises with the
number of fog nodes, since for a lot of nodes the dynamic increase in maxi-
mum distance will be lower, resulting in only slightly larger neighbourhoods
on average. A maximum distance of 150 removes the effect of this mechanism
entirely, causing a behavior similar to theoretical complexity.

The minimum cases all require around 14MiB memory, independent of the
evaluation parameters. These are nodes in low density areas which have few
neighbours even when the maximum distance is stretched. The maximum cases
represent the nodes in the city center that have large amounts of neighbours
regardless of maximum distance. Their memory use increases as expected with
both maximum distance and number of fog nodes.

Overall, memory use is between 14MiB and 20Mib, which is low enough to
deploy the fog service on low-power hardware with minimal resources.

The CPU use per node is shown in Fig. 7. Note that the results are rep-
resented in % of a single core. In the median case, CPU use is low, barely
increasing with fog node density and increasing linearly with maximum dis-
tance. These results are better than expected from the theoretical performance,
even in cases that are unaffected by dynamically adjusted maximum distance.
The minimum and maximum cases indicate that overall performance can vary
from about 50% to 500% of median performance. However, the extreme cases
may be influenced by the evaluation itself, if the CPU use sample happens to
coincide with a lot of process monitoring activity.

To give an indication of the spread of CPU use for nodes in different situa-
tions, the number of neighbours discovered by each node are monitored during
the evaluation. For example, with 50 fog nodes and a maximum distance of
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Fig. 7. CPU load of the fog service for different amounts of fog nodes, and
maximum discovery distances of 50, 100 and 150 units.

50, each node has 1 to 4 neighbours, with a median of 2. In the case of 200
fog nodes and a maximum distance of 150, nodes have 1 to 84 neighbours,
with a median of 38. Therefore, it is likely that the median cases in the chart
also represent the median CPU use of nodes in each topology, and the most
demanding nodes need about 200% of the CPU use of those cases.

In absolute numbers, the fog node service requires 0.3-0.6% of one CPU
core. Although the evaluations are run on a relatively powerful CPU, the
service should be able to run on low-power hardware with no performance
problems.

Fig. 8 shows the network throughput per fog node related to neighbour-
hood discovery. These results are in line with the theoretical performance,
although less pronounced than expected, with relatively small error margins
caused by randomly generated topologies. Network throughput is less affected
by dynamically adjusted maximum distance because the nodes with an in-
creased maximum distance contact fewer other nodes overall. In turn, they
have smaller lists of fog nodes known to them, causing both less and smaller
responses during the discovery process. This means that while the memory use
results show that the adjustment mechanism results in finding more neighbour-
ing nodes, this does not necessarily result in higher network traffic for those
nodes affected by it. In absolute numbers, network throughput is 30Kbps to
110Kbps.

In real life scenarios, the parameters of SoSwirly (e.g. maximum discovery
distance, expected fog node density) can be tuned so that the number of dis-
covered neighbours is similar to that in the evaluations. Certainly, no more
than 100 immediate neighbours should be tracked by any fog node. In combi-
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Fig. 8: Network traffic at a single fog node for different amounts of fog nodes,
and maximum discovery distances of 50, 100 and 150 units.

nation with the results, this means that the fog service is capable of running
on low-power devices with limited resources, and that it is highly scalable as
long as node densities remain low enough.

For example, in Internet of Vehicles (IoV) applications using roadside units,
the distance metric will likely involve vehicle velocity, and discovery rounds will
be frequent due to rapidly changing relative distances. Because these roadside
units are usually at the same distance from each other along well-defined tra-
jectories and can be discovered in sequence, the maximum discovery distance
for fog nodes (roadside units) can be lowered so each unit only discovers a few
others in its neighbourhood. For fast moving edge nodes (cars), the maximum
distance at which they can discover fog nodes can be increased to ensure they
can reach sufficiently distant fog nodes in case a switch is required. This does
not lead to performance problems, since the fog nodes themselves are sparsely
connected.

The results indicate that, with proper tuning of parameters for a given node
topology, the discovery algorithm behaves according to its theoretical perfor-
mance, that it scales according to Req. 4, and that the resource requirements
are sufficiently low to satisfy Req. 5.

Fig. 9 shows the accuracy of the neighbourhood discovery algorithm. This
number represents how many nodes in its neighbourhood a fog node has actu-
ally discovered. The result represents a global number, indicating how many
neighbours in total have been discovered compared to a perfect neighbour
graph. A high accuracy is important, since it determines how well edge nodes
can find an optimal service provider by traversing fog node neighbourhoods.
Paradoxically, accuracy goes down as the number of fog nodes increases, espe-
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Fig. 9: Accuracy of neighbourhood discovery for different amounts of fog nodes
and maximum discovery distances of 50, 100 and 150 units. 100% means a fog
node discovered all other fog nodes within the maximum distance.

cially with a maximum distance of 50 where not even the dynamic adjustment
mechanism can compensate. However, this is largely up to the random gener-
ation of swirls, since fog nodes are sometimes placed too far away from others,
start their discovery process with nodes on the other side of the topology, or
may encounter adverse features as shown in Fig. 2. For minimum distances
over 100, accuracy is high enough that edge nodes can find an optimal service
provider in over 95% of the cases, even under these adverse conditions.

8.2 Service Deployment

Fig. 10 shows the network traffic and CPU use observed during the service
deployment evaluation. Although both network traffic and CPU use rise about
10% as 50% more edge nodes are added, this is likely the result of more fog
nodes being activated to service the additional edge nodes, which in turn leads
to more active fog nodes being discovered and tracked by each edge node. In
absolute terms, the edge node service causes only 3Kbps network traffic and
requires 0.2% of a single CPU core. Even considering the powerful processors
in the evaluation setup, this shows that it can run on low-power, low-resource
edge hardware. Memory requirements are similar to those of the fog node
service, between 14 and 16.5MiB depending on local fog node density. In swirls
with 150 edge nodes, only 0.5% more memory is required in the median case
than in those with 100 edge nodes, showing that the number of edge nodes in
a swirl has no significant effect on the memory use of the edge node service.
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Fig. 10: Average network traffic at edge nodes for service topologies with 100
fog nodes, and 100 or 150 edge nodes.

These results indicate that service discovery and deployment by edge nodes
scales according to Req. 4, and that the resource requirements are low enough
to meet Req. 5.

8.3 Topology Efficiency

Fig. 11 shows how many fog nodes are activated by the evaluated algorithms
in service topologies with either 100 or 150 edge nodes. SoSwirly is almost as
efficient as Swirly, requiring 4% to 6% more nodes in the median cases. Consid-
ering that Swirly is a centralized approach, while in SoSwirly each node acts in
its own best interests, a small efficiency penalty is to be expected. The results
also show both Swirly and SoSwirly outperforming NSGA-II. Even after 5000
generations, NSGA-II activates about 10% more nodes than SoSwirly, show-
ing that SoSwirly can generate good service topologies with only its limited
knowledge about neighborhoods.

The distance between edge nodes and their service providing fog nodes
is shown in Fig. 12. In the solutions generated by SoSwirly, median distance
is only 1-2% higher than in the solutions of the centralized Swirly, and both
are well below the maximum metric distance of 100. However, the maximum
distances in the solutions generated by SoSwirly are almost 300% higher than
those in topologies generated by Swirly. Note that this mostly concerns edge
nodes that are beyond the maximum distance of any fog node to begin with.
These cases are few and far between, and the enormous distances between
them and their assigned fog nodes are always caused by adverse features in
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Fig. 11: Number of activated fog nodes in service topologies with 100 or 150
edge nodes, comparing SoSwirly to centralized algorithms. NSGA-II is evaluted
at 400 and 5000 (5k) generations.

the node topology, combined with worst-case starting nodes for neighbourhood
discovery, both issues of randomly generated topologies that can be fixed in
real-life scenarios. Compared to NSGA-II after 5000 generations, the median
distance in topologies generated by Swirly is about 30% lower, showing an
overall better optimization when it comes to latency. However, the maximum
distances are about 43% higher than those generated by NSGA-IT (546 vs 382),
owing to a lack of global knowledge about the topology.

Finally, Fig. 13 shows the times required for each algorithm to determine
their solutions. Note that this chart uses a logarithmic scale to accommodate
NSGA-II, and that the time measured for Swirly is somewhat unreliable be-
cause it is very close to Oms. Compared to Swirly, SoSwirly requires about 100
times more processing time to optimize the service topology. However, in the
case of SoSwirly, the measured time necessarily includes gathering fog node
information via web service calls, whereas for Swirly and NSGA-II the infor-
mation is already present. Nevertheless, all nodes of SoSwirly require between
20ms and 180ms to find an optimal service provider. Depending on the number
of generations used by NSGA-II, it is around 100 to 1000 times slower than
SoSwirly. Considering the efficiency of NSGA-II, this shows that SoSwirly can
work significantly faster and more efficient than NSGA-II in the evaluated
scenario.
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Fig. 12: Distance of edge nodes to fog nodes in service topologies with 100
or 150 edge nodes, comparing SoSwirly to centralized algorithms. NSGA-II is
evaluted at 400 and 5000 (5k) generations.
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9 Future Work

While this article presents a fully operational, self-contained solution for self-
organizing fog service scheduling, there are several possible improvements and
additions to both the concept and implementation.

SoSwirly relies heavily on passive monitoring of nodes to solve problems.
For example, if a fog node becomes unavailable, this will be detected during
the next discovery round. However, until that happens any requests to services
on that node may fail. Active monitoring of the services used by an edge node
can reduce the time required to find a new service provider, improving QoS.

In areas with high edge node densities, it can be useful to scale services
instances within small but powerful fog nodes, rather than scaling the number
of fog nodes. This is not possible with the implementation of SoSwirly pre-
sented in this article, but alternative implementations of the ServiceLocator
can provide this functionality in the edge node service without modifying the
core algorithms and components. However, the fog node service would need
additional per-service parameters and resource monitoring to automatically
scale them as their load changes. Alternatively, a container orchestrator that
supports service scaling by default can be supported by implementing Orches-
trator, to be used on fog nodes where it is applicable.

In general, edge nodes calculate the distance to many fog nodes in their
neighbourhood during each discovery round, but most of this information is
discarded after the closest nodes are found. If the discovery rounds happen
sufficiently frequently, the historical distance data may be used to determine
if the edge node, or any fog node, is moving, and at which time it would
be advantageous to proactively switch to another fog node. However, as seen
in Section 4, the exact coordinates of a fog node can not be known, so any
solution to this must rely on reported distances alone.

Edge nodes determine their optimal service provider through discovery
rounds, during which the distance to each eligible fog node is updated. To
support true real-time updates, fog nodes could send distance updates to the
edge nodes they service whenever a significant change in distances occurs. This
would result in more CPU use on fog nodes, but would also allow edge nodes to
instantly switch to another service provider if their current one is experiencing
technical issues or is moving too far away.

10 Conclusion

In the introduction, the challenges of scheduling services with regards to the
scope and hardware properties of the fog and edge are discussed, and a number
of requirements for the presented solution are proposed.

SoSwirly, a fully decentralized fog service scheduler, is presented as a so-
lution. A mathematical model of fog nodes and fog networks is presented,
which forms the basis for an implementation of SoSwirly in Golang and an
analysis of the fog nodes required for a specific swirl. It is explained how the
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proposed requirements are met by the design of SoSwirly, and its theoretical
performance is explored.

To verify its performance, SoSwirly is experimentally evaluated in terms
of CPU use, memory use and network traffic. The results show that in all
cases, performance is equal to or better than the theoretical performance,
confirming that SoSwirly is highly scalable in geographical terms, as long as the
maximum discovery distance and node densities are balanced at every location.
It is explained that in some cases the dynamic scaling of maximum discovery
distance inflates the memory use and CPU use of nodes in topologies with a
small default discovery distance, and that the overall resource requirements
are low enough to be deployed on a wide range of devices.

Further evaluations show that the node discovery algorithm is accurate
enough for edge nodes to find their optimal service provider by traversing
fog node neighbourhoods. Additionally, the service topologies generated by
SoSwirly are generally as efficient as those generated by the centralized Swirly.
Additionally, it is shown that SoSwirly can generate service topologies much
faster than a generic algorithm such as NSGA-II, and that the topologies are
more efficient than those generated by NSGA-IIL.

Some topics for future work are discussed, for example more extensive
monitoring of node availability, scaling to multiple service instances on fog
nodes and allowing edge nodes to change service providers proactively.
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