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Abstract We propose three linguistically motivated metrics to quantify syn-
tactic equivalence between a source sentence and its translation. Syntactically
Aware Cross (SACr) measures the degree of word group reordering by creating
syntactically motivated groups of words that are aligned. Secondly, an intu-
itive approach is to compare the linguistic labels of the word-aligned source
and target tokens. Finally, on a deeper linguistic level, Aligned Syntactic Tree
Edit Distance (ASTrED) compares the dependency structure of both sen-
tences. To be able to compare source and target dependency labels we make
use of Universal Dependencies (UD). We provide an analysis of our metrics by
comparing them with translation process data in mixed models. Even though
our examples and analysis focus on English as the source language and Dutch
as the target language, the proposed metrics can be applied to any language
for which UD models are attainable. An open-source implementation is made
available.

Keywords translation studies - computational linguistics - tree edit distance -
syntax

1 Introduction

Readability prediction is a well-studied problem. Traditional readability for-
mulas (e.g. Flesch-Kincaid Grade Level (Kincaid et al.l [1975), Gunning Fog
Index [1952)) typically use shallow source text features such as av-
erage word and sentence length and word frequency to assess the reading
difficulty level of a given text. Recently, more complex lexical, syntactic, se-
mantic and discourse text features have been used (see for instance

Bram Vanroy

Groot-Brittanni€laan 45, 9000 Gent, Belgium
Tel.: +32°9 33 11 939

E-mail: Bram.Vanroy@QUGent.be |




12 Bram Vanroy et al.|

and Ostendorf] (2005)); Francois and Miltsakaki| (2012)); De Clercq et al.| (2014);
De Clercq and Hoste| (2016]), and [Collins-Thompson| (2014)) for an overview).
The efforts in readability research contrast sharply with research into ‘trans-
latability’: there are no well-established methods yet to assess the difficulty
level of a translation task. That is not to say that translation difficulty itself
has not been studied, though. In fact, defining translation difficulty has been
approached from a number of different directions.

It has been shown that genre, registerial and even cultural factors influence

the choices translators have to make (e.g. (2000, Section 3) concerning
literary translation, and (2004)) on registerial differences), which may

introduce difficulties of its own. In addition, there is no doubt that individual
translators may face different issues when translating the same text, and they
may even choose to translate the same text differently (see for instance
). In this paper, however, we will focus on the source and target
text itself.

According to |Campbell| (1999) and [Sun| (2015), translation difficulty can
be attributed to linguistic source text factors and translation-specific factors.
For the source text factors, we can refer to the vast literature on readability
research (see the survey by Collins-Thompson, (2014) for an overview), though
a few findings specific to translation should be highlighted.
demonstrated that source text complexity plays an important role in perceived
translation difficulty, which supports earlier findings by Mishra et al.| (2013)).
introduced a metric of translation difficulty that is based on
source text features alone, namely sentence length, degree of polysemy, and
structural complexity. looked into translation difficulty from
an empirical point of view and identified several source text elements that were
difficult to translate across different target languages, such as multi-word units,
complex noun phrases, abstract nouns and verbs. continued their
research and developed the Choice Network Analysis in an attempt to
model the mental process that underlies translation, particularly the multitude
of choices that translators can choose from given a specific source text. Building
on this, |Carl and Schaeffer| (2017) documented longer translation times when
more elaborate choices were at the translators’ disposal. This indicates that
having more options available can increase the translation difficulty in terms
of duration.

However, readability prediction and source text complexity alone do not
suffice to adequately assess the translation complexity level of a given source
text (Daems et al.} 2013} |Sun and Shreve, [2014)). This is not surprising because
readability prediction is not designed to take into account co-activation of
shared bilingual resources. Specifically, Sun and Shreve| (2014) and [Sun/ (2015)
state that translation-specific difficulties can be ascribed, in part, to the lack of
equivalence due to inherent differences between languages. Hence, this paper
will focus on the equivalence between the source and target text, specifically
their syntactic similarity.

The notion of syntactic equivalence in a multilingual setting is not easy to
define (see the next section) because syntax in itself is such a broad concept,
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so in this paper we restrict syntactic equivalence between a source and target
segment to mean three things:

(1) a. differences in word (group) order;

b. differences in dependency labels of aligned words (e.g. a subject
(nsubj) is translated as an object (obj));

c. differences in syntactic structure (dependency tree).

In Section [2| we will first discuss background literature concerning the im-
portance of syntactic equivalence with respect to translatability and previous
research of equivalence. In Section [3|we then introduce three linguistically mo-
tivated metrics to quantify syntactic equivalence between a source sentence and
its translation. First, we introduce a metric to capture linguistic word group
reordering (Syntactically aware cross; SACr). The next metric measures parse
tree label changes between source and target sentences. Thirdly, we introduce
a method to calculate tree edit distance between aligned dependency trees
(Aligned Syntactic Tree Edit Distance; ASTrED). To illustrate the different
proposed metrics, we will discuss two example sentence pairs in Section [] to
highlight how each metric accounts for different linguistic phenomena. As a
proof of concept, we also apply our metrics to an existing dataset and mea-
sure the effect syntactic changes may have on the translation process by using
mixed models (Sec. . Finally, we end with a conclusion and thoughts for
future work concerning quantifying syntactic equivalence (Sec. |§[)

2 Related research
2.1 Background

In process-based translation studies, literal translation is conceived as the eas-
iest way to translate a text and has been suggested as the default mode of
translation, which is only interrupted by a monitor that alerts about immi-
nent problems in the outcome (Tirkkonen-Condit, 2005 and Carl, this volume,
Chapter 5). In other words, translators will translate a source text literally into
the target text but as soon as an issue is encountered, translators stop working
in the literal translation mode and try to find a more appropriate solution.
Asadi and Séguinot| (2005)), for instance, observed that one group of transla-
tors processed the source text in short phrase-like segments. They translated
while reading the text and followed the source language syntax and lexical
items closely, but then rearranged the completed text segments to create a
more idiomatic target text. Literal translation, in this sense of translating
word-per-word, is identical to the concept of simple transfer in transfer-based
MT, which can occur when the lexical surface forms are the only required
differences between the source and target segment for a successful translation.
In other words, when the underlying structure of the segments is the same, a
literal translation can happen and only the lexical values need to be changed
(Andersen| [1990; (Chen and Chenl {1995).
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From a cognitive perspective, literal translation is often explained by prim-
ing (Hansen-Schirra et al., [2017)), i.e. the process in which the production of an
output (in the case of translation, the target sentence) is aided or altered by
the presentation of a previously presented stimulus (in the case of translation,
the source sentence). Priming can occur at different linguistic levels including
the morphological, semantic, and syntactic level.

In [Carl and Schaeffer| (2017, 46), building on earlier work (Schaeffer and
Carl, 2014)), ‘literal translation’ is defined by three criteria:

(2) a. each ST [source text] word has only one possible translated form
in a given context;

b. word order is identical in the ST and TT [target text];

c. ST and TT items correspond one-to-one.

To quantify the first criterion [2a] they use word translation entropy, which
indicates the degree of uncertainty to choose a particular translation from a set
of target words based on the number and distribution of different translations
that are available for a given word in a given context. To measure the second
and third criterion they use word crossings (Cross) calculated on word-aligned
source-target sentences.

Criteria [2b] and [2d for literal translation relate closely to what we consider
syntactic equivalence as described in (differences in word (group) order)
relates to criterion [2b| (identical word order) above, and [2¢| is most similar to
if ST and TT items do not correspond one-to-one, this must mean that
the syntactic structure of the source and target sentences are different. In that
respect, our interpretation for syntactic equivalence is closely linked, in part,
to the definition of ‘literal translation’ by [Carl and Schaefter| (2017)).

The affinity between ‘literal translation’ on the one hand and equivalence
on the other can also be seen in other research. Sun and Shreve, (2014])), repeated
in [Sun| (2015), suggested that translation difficulties can be attributed to the
lack of equivalence between the source and target text. Non-equivalence, one-
to-several equivalence and one-to-part equivalence situations can be the root
cause of translation difficulties. These situations can appear both at the lexical
and syntactic level. However, |Carl and Schaeffer| (2017) note that it is possible
that a source text has viable (‘equivalent’) translation options available, but
that a plethora of choices actually implies that there is not one single, obvious
translation equivalent. In our current study, we will follow the definitions of
natural equivalence (Pym) 2014, Chapter 2), applied to syntax:

— equivalence is a relation of “equal value” between a source-text segment
and a target-text segment;

— equivalence can be established on any linguistic level, from form to function;

— natural equivalence should not be affected by directionality: it should be
the same whether translated from language A into language B or the other
way round.
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Pym| (2014)) juxtaposes natural equivalence with directional equivalence,
which assumes that the equivalency relationship between a source and tar-
get text is asymmetric. For a discussion between the two approaches, see the
particularly interesting discussion sections (Pyml| 2014, Chapters 2.7, 3.9).

A similar idea to equivalence is that of translation shifts (Catford, |1965)),
which dates back to an approach to translation that is based on formal lin-
guistics. |Catford distinguished two major types of shifts, namely level shifts
(e.g. shifts from grammar to lexis in distant languages) and category shifts
(e.g. changes in word order or word class). They also contrast obligatory and
optional shifts; the former refer to shifts that are imposed as a result of dif-
ferences in the language systems, whereas the latter term is used to indicate
optional choices of the translator.

Bangalore et al.| (2015]) introduced syntactic entropy and as such expanded
translation entropy to the syntactic level. Syntactic entropy measures the ex-
tent to which different translators produce the same structure for one source
sentence. They analysed a corpus of six English source texts translated into
German, Danish and Spanish by a number of translators (24 for German and
Danish and 32 for Spanish) and manually coded the following three linguis-
tic features for all translations: clause type (independent or dependent), voice
(active or passive), and valency of the verb (transitive, intransitive, ditransi-
tive, impersonal) to quantify the syntactic deviation between translations of
the same source text, which is their implementation of syntactic entropy. They
obtained lower syntactic entropy values for target sentences that had similar
linguistic features as the source segments and obtained higher syntactic en-
tropy values for the cases where they diverged. Moreover, syntactic entropy
had a positive effect on behavioural measures such as total reading time on
the source text and the duration of coherent typing activity. This study is,
to the best of our knowledge, the only study in this field that uses linguis-
tic knowledge to quantify syntactic differences between a source text and its
human translation. As an alternative to their three manually annotated lin-
guistic features, we will suggest metrics that can be automatically derived from
comparing the syntactic structures of the source and target sentences (Sec. .

Carl and Schaefter| (2017) used word-order distortion, measured by length
of crossing links (called Cross) derived from word-aligned source-target sen-
tences to measure the degree of monotonicity in translations. A bidirectional
(symmetric) variant of Cross, which is applicable on either translation di-
rection, was introduced by [Vanroy et al.| (2019b)) (from now on referred to
as word_cross). Using word alignment in this way provides a fine-grained
(word-based) method to quantifying syntactic equivalence. An alternative,
coarse-grained, approach was suggested in [Vanroy et al.| (2019b)), who cal-
culated Cross on aligned word groups, or sequences, rather than single words
to calculate syntactic equivalence between English source sentences and their
Dutch translations (henceforth called sequence cross or seq_cross). These
sequences, however, were not linguistically motivated but derived automat-
ically adhering to a set of constraints. The lack of linguistic motivation in
seq_cross prompted the creation of the three different metrics described in
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this paper. Each metric quantifies a different aspect of syntactic equivalence
but all are based on linguistic knowledge, specifically the syntactic structures
of the source and target sentences.

There are two main different ways of annotating syntactic structures: by
means of a phrase structure or using a dependency representation. The phrase
structure representation sees sentences and clauses structured in terms of con-
stituents. The dependency representation, on the other hand, assumes that
sentence and clause structures result from dependency relationships between
words (Matthews| [1981). While the phrase structure representation is more
suitable for analysing languages with fixed word order patterns and clear con-
stituency structures, dependency representations, in contrast, are able to addi-
tionally deal with languages that are morphologically rich and have a relatively
free word order (Skut et al., [1997; |Jurafsky and Martin| |2008)). The depen-
dency relation that each dependency label represents is relative to its root
(with the exception of the root node itself), and is effectively a to-relationship
between the word and its root. For instance, in a sentence ‘He eats the cook-
ies’, ‘He’ is an nsubj (subject) to its root ‘eats’, ‘cookies’ is an obj (object) to
that root, and ‘the’ is a det (determiner) to ‘cookies’. The dependency labels,
then, are actually nodes in a directed acyclic graph, starting from the root
node of the sentence (in the example ‘eats’) and recursively going down to its
dependants. They can be represented as dependency trees. The dependency
tree of the example sentence ‘He eats the cookies’ above, can be visualised as

in Figure

eats:root

7N

He:nsubj  cookies:obj

the:det

Fig. 1 Example of a dependency tree of the sentence ‘He eats the cookies’

In recent years, research on automatic parsing methods has increased due to
the availability of linguistically annotated corpora (treebanks) for many differ-
ent languages (Haji¢ and Zeman) |2017; [Zeman et al.| |2018; Peng et al.| [2019).
However, despite their availability, the annotation schemes in treebanks vary
significantly across languages, such as between the Swedish Treebank (Nivre
and Megyesi, [2007), the Danish Dependency Treebank (Kromann) 2003), and
Stanford Typed Dependencies (de Marneffe and Manning}, [2008)). Such differ-
ences, in turn, restrict multilingual research on and comparability of syntax
and parsing (Nivre, 2015} |[Nivre et al. [2016), as well as research on natural
language processing (NLP) that relies on automatic parsers trained on tree-
banks. Universal Dependenciesﬂ (UD) is an initiative to mitigate this problem

1 See http://universaldependencies.org/ for label explanations, guidelines, and so on.
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by developing a framework for cross-linguistically consistent morphosyntactic
annotation (Nivre et al., |2016), which we will discuss further in Section

2.2 Word alignment

The metrics suggested in this research aim to compare given source and target
sentences to each other. As a starting point, the sentences need to be word
aligned to be able to compare the source and target sides on the subsenten-
tial level. In word alignment, source words are aligned with target words as a
way to find overlapping points of meaning and syntax. Aligned words should
either carry meaning that is similar to their aligned counterpart, or should
cover syntactic or morphological phenomena that are required to translate the
aligned word into the desired language (Kay and Roscheisen, [1993). In that
sense word alignment does not only involve semantic, conceptual agreement
between a source and target sentence, but also the (morpho-)syntactic connec-
tions between them. As shown in Example alignments are typically written
as pairs of indices of the aligned source and target words separated by a dash,
e.g. 0-0 1-1 2-3 3-2 4-4. Such alignments are often visualized with align-
ment tables (e.g. |Och and Neyl, 2000, Figure 1), but in this paper we opt for
line diagrams such as Figure [2|

In the current paper, we manually aligned the source and target sentences
in the examples, but in the global scope of our research, we are interested
in translatability and we envisage to use large corpora to automatically de-
tect and extract patterns that may be indicative of translation difficulties.
Manually aligning those corpora is not feasible because of their size. Instead,
we rely on automatic alignment systems. In previous research (Vanroy et al.
2019b), we justified using GIZA++ (Och and Neyl 2003)) in favor of another
tool, fast_align (Dyer et al., [2013), because of its lower Alignment Error
Rate (Och and Ney, 2000; [Mihalcea and Pedersen, [2003)).

Because word alignment occurs on the fine-grained word level, the connec-
tions between larger groups of words on each side (source and target) is not
taken into account. Take, for example, a simple English noun phrase (Ex. |3)
that has been translated into a Dutch noun phrase. The determiners ‘The’
and ‘De’ are aligned, and the nouns ‘dog’ and ‘hond’ are aligned to each other.
The alignments are given in Example

(3) a. The dog
De hond

b. 0-0 1-1

In this example, the linguistic relationship between the determiner and its
noun is not present in the word alignments; it is not clear that the determiner
and the noun are somehow linguistically connected. Generally speaking, this
means that metrics based on word-based representation focus on the position
and movement into the target language of single words. As an alternative ap-
proach, for one of our metrics (Syntactically Aware Cross (SACr); Section[3.2)),
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we want to capture the alignment of word groups. In previous research (Van-
roy et al., 2019b)), we suggested a naive sequence-based approach, but SACr
expands on that by including linguistic information to adjust those sequences.
The goal is, then, to have a metric that is based on alignment information,
but where the alignment is done between linguistically motivated groups in-
stead of words or arbitrary sequences. In the example above, that would mean
that ‘The dog’ is aligned, as a group, with ‘De hond’ rather than as single
words. We will expand on aligning word groups rather than single words in
the following sections.

2.3 Existing word-reordering metrics

The translation process research database (TPR-DB; |Carl et al., 2016) imple-
ments a word-based, direction specific metric for reordering, and calculates a
cross value based on the movements of words relative to the previously trans-
lated Wordﬂ Vanroy et al.| (2019b) take another approach by introducing a
translation-direction agnostic variant that measures the number of times that
translated words cross each other (word_cross). Example |4 (taken from [Van-
roy et al., 2019b, 104) is visualised in Figure [2| where each cross is emphasised
with a circle. The total number of these crossing links is normalised by the to-
tal number of alignments, which constitutes the word_cross value. The source
and target segments can be aligned as shown in Example Note that ‘me’ in
the source text is not aligned to an equivalent on the target side. If the source
sentence had been translated differently as ‘Soms vraagt ze mij waarom ...°,
‘me’ could have been aligned with ‘mij’. However, in this specific translation,
the indirect object is not made explicit so the source word is not aligned.

(4) a. Sometimes she asks me why I used to call her father Harold .

0 1 2 3 4 56 78 9 10 11 12
b. Soms vraagt ze waarom ik haar vader Harold noemde .

Sometimes asks  she why I her father Harold called

0 1 2 3 45 6 7 8 9

c. 0-01-2 2-1 4-3 5-4 6-8 7-8 8-8 9-5 10-6 11-7 12-9

2 We will not go into that version of Cross here but rather focus on our own implemen-
tations. See the original work for more details and |Carl et al.| (2019)) for an analysis.
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0 1 2 3 4 56 7 8 9 10 11 12

Sometimes she asks me why 1 used to call her father Harold .

N ) S

Soms vraagt ze waarom ik haar vader Harold noemde .

0 1 2 3 45 6 7 8 9

Fig. 2 Visualisation of cross in Ex. |4 with a word_seq value of 10/12 = 0.83. (modified
from [Vanroy et al. [2019b)

This approach is word-based, but as discussed in Section [2.2] an alternative
option is to encode the aligned order of the source and target sentences with
aligned word groups, or sequences. For that reason, [Vanroy et al.| (2019b])
suggested to group consecutive tokens that are word-aligned to consecutive
target tokens together to form a sequential cross metric (seq_cross). These
sequences should be as large as possible while also adhering to the following
constraints (Vanroy et al., 2019b, 104):

— each word in the source sequence (group) is aligned to at least one word in
the target sequence and vice versa;

— each word in the source word sequence is only aligned to word(s) in the
aligned target word sequence (and not to words in other target sequences)
and vice versa;

— none of the alignments between the source and target word sequences cross
each other.

Similar to word_cross, normalisation takes place based on the number
of alignments, only here it uses the alignments between the sequences rather
than the word alignments. Following these requirements, the example in Fig-
ure [2] can be modified so that instead of word movement, group movement is
quantified (Figure [3)).

0 1 2 3 4 56 78 9 10 11 12

Sometimes she asks me |\vhy IHused to caHHher father Harold|.

NS =

Soms vraagt ze‘\vaatom ik|[haat vader Harold| noemde .

0 1 2 3 45 6 7 8 9

Fig. 3 Example of seq_cross in Ex. with a total value of 2/7 = 0.286 (modified from
Vanroy et al., |2019b))
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The problem with seq_cross is that, even though the metric works on the
sequence level rather than the word level, its groups are linguistically arbitrary.
Words are grouped together based on their relative reordering but irrespec-
tive of their linguistic properties (e.g. ‘why I’ and ‘waarom ik’ in the above
examples). The need for grouping words founded on linguistic motivation gave
rise to the current research. This specific issue involving word reordering is
addressed in Section

Motivated by the findings in previous studies, the main goal of this study is
to introduce linguistically motivated, automatic, language-independent met-
rics to measure syntactic equivalence between source and target sentences in
the context of translation.

3 Metrics

As discussed in Section [I} we restrict ourselves to three sub-components of
syntactic equivalenceﬁ namely word (group) order differences, changes in the
dependency labels, and structural differences with respect to the source and
target dependency trees. To address these three individual differences, we in-
troduce three corresponding metrics. First, we build on seq_cross and pro-
pose an improved version to quantify reordering of syntactic word groups (syn-
tactically aware cross, SACr, Sec. , then we discuss how label changes play
a role (Sec. , and finally we introduce a method to calculate aligned syn-
tactic tree edit distance (ASTrED, Sec. . A concise overview table of the
metrics is given in Section [3.5] As all three metrics are based on comparing
the syntactic structures of the source and target sentences using dependency
representations, we start by explaining the chosen paradigm, Universal De-
pendencies, in closer detail.

3.1 Universal Dependencies

In all the metrics that we propose, we make use of UD annotation schemes
(Nivre et al., [2016)), which ensures comparable annotations across languages
(see Sec. [2]), such as the dependency labels of an English source text and its
Dutch translation. To illustrate: the dependency trees of the source and target
sentence of Example |4| are visualised in Figure @ and [5l In both figures, the
nodes’ labels are formatted as word_index:dependency_label:token. As can
be seen, the dependency labels of both trees use the same scheme, which allows

3 An open-source implementation of our metrics is available at https://github.com/
BramVanroy/astred.

4 Note that dependency trees are different from phrase-based trees. For a more theoretical
deep-dive into the theory behind UD, we direct the reader to the work on Universal Depen-
dencies (Nivre and Megyesi, 2007; Nivre} [2015; |[Nivre et al.l |2016)). Readers who are familiar
with different dependency grammars may still disagree with the proposed trees, which may
be due to the differences between UD and other grammars. For a critical comparison between
UD and its alternatives, see |(Osborne and Gerdes| (2019)).
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for straightforward comparison between the source and target trees without
the need to convert one tagset into another. That would not be feasible if the
source and target sentences were using different, language-specific annotation
schemes.

2:root:asks
0:advmod:Sometimes 1:nsubjishe 3:0bjme 6:ccomp:used 12:punct..
4:advmod:why 5:nsubj:l  8:xcomp:call
T:mark:#o 10:0bj:father ~ 11:xcomp:Harold

9:nmod:her

Fig. 4 Source dependency tree of Ex. ‘Sometimes she asks me why I used to call her
father Harold .”.

L:root:vraagt

0:advmod:Soms 2:nsubj:ze 8:ccomp:noemde 9:punct:.

3:advmod:waarom 4:nsubjiik  6:0bj:vader  T:xcomp:Harold

5:nmod:haar

Fig. 5 Target dependency tree of Ex. ‘Soms vraagt ze waarom ik haar vader Harold
noemde .’.

To automate the parsing process, we depend on the recently introduced
state-of-the-art stanza parser by the Stanford NLP group 2020)).
In its annotation scheme, UD allows for language-specific extensions to the
dependency relations to capture intricate properties of specific languages that
may not generalize well to others languages. These extensions are also called
subtypes because they always extend an existing UD dependency label. To
minimize the effect of small language or model-specific differences, we take a
general approach and discard these UD subtypes, so a label such as obl:tmod
(an oblique, nominal, temporal argument) will be reduced to obl.
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3.2 Syntactically aware cross

In Section 2] we referred to seq_cross, in which reordering is quantified based
on word sequences, i.e. consecutive words that are grouped together when
they adhere to given constraints, also called sequences. Syntactically Aware
Cross (SACr) expands on seq_cross by verifying that the words in generated
seq_cross groups are linguistically motivated. Figure [6] shows an example
of what we are trying to achieve. In this figure, the sequences as defined in
seq_cross are shown as dotted boxes. In SACr we verify whether these se-
quences are valid, linguistically motivated groups, and if this is not the case,
we split the sequences up in smaller groups. The solid-line boxes in the figure
represent those newly created, linguistically motivated groups. These groups
(the initial seq_cross that were found to be valid SACr groups, and the new
SACr groups that were created as a consequence of invalid seq_cross groups)
are then used to calculate a syntactically aware cross value. Note that in this
example, the number of crossing sequences has increased compared to the pre-
vious seq_cross value, as the sequence ‘Her father Harold’ is now split up
into two groups ‘Her father’ and ‘Harold’ P

0 1 2 3 4 560 78 9 10 11 12
Sometimes she asks me ‘jused to callé i‘her fathet|[Harold] .

X ) S

Soms vraagt zeHwaatomHik‘iﬂhaat vader| Haroldﬁ noemde .

0 1 2 3 45 6 7 8 9

Fig. 6 Example of SACr with a total value of 3/9 = 0.33. Dotted boxes indicate the initial
groups of seq_cross. When required, these groups are split up into linguistically motivated
SACr groups (solid boxes)

The criterion for SACr to establish linguistically inspired word groups is
that, in addition to the criteria of seq_cross, all words in a group need to be
‘connected’ to each other in the dependency tree: all nodes must exhibit one
or more child-parent relationships with other nodes in the group. In practice,
this means that siblings of a linguistic sub-tree can only be part of the same
group if their parent is also in the group. More formally, we verify in a bottom-
up, breadth-first fashion for each word that its parent in the dependency tree
is also part of the same sequence group. The topmost node is excluded from
the search because it cannot have a parent in this group. If all words in the
group do not exhibit a child-parent relationship, the initial sequence group is

5 The sentence is ambiguous: ‘her father Harold’ could be interpreted as a single phrase
(‘... her father, who is named Harold’), but here we assume that the correct meaning of the
sentence is ‘... call her father (by the name) Harold’.
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not a valid SACr group. In such an event, in an iterative manner, a smaller
sub-group of the initial sequence group is tested until a group is found for
which the criterion above holds. We probe the largest sub-groups first and if
no satisfying groups are obtained, smaller ones are tested (ultimately to the
smallest size of two words) until no more groups can be found. This can mean
that, for example, in an initial sequence group of four words only a valid sub-
group of two words is found. As a consequence, the other two words will both
be singletons (separate SACr groups consisting of only one word each).

Figure m and [§]illustrate which of the proposed sequence groups (cf. dotted
boxes in Figure are valid SACr groups in the dependency trees: when all
items in a seq_cross group show a child-parent relation with other nodes
in the group, the group is valid, but if not, new SACr subgroups will be
created (e.g. ‘haar vader Harold’ is an invalid group, but ‘haar vader’ is a valid
subgroup). In the following examples, square-cornered, blue groups are initial
seq_cross groups that are also valid SACr groups. Round-cornered orange
groups are initial seq_cross groups that are invalid SACr groups. Round
cornered blue and dashed groups are new SACr groups that are subgroups of
invalid seq_cross groups.

2:root:asks

valid group

invalid group

Fmm—— == \
1 valid subgroup |

0:advmod:Sometimes Linsubjishe 3:objme |6:cc 12:punct:.

4:advmod:why 5:nsubj:l)|8:xcomp:

~<
11:xcomp:Harold

Fig. 7 Source dependency tree of Ex. with highlighted groups: ‘Sometimes she asks me
why I used to call her father Harold .’.
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L:root:vraagt

invalid group
e ————— \
1 valid subgroup |

0:advmod:Soms 2:nsubjize 8:ccompinoende 9:punct:.

3:advmod:naarom 4:nsubj:k) (16:0bj:vader i T:xcomp: Harold
:
[}
[}
[}
J

I
1
1
I
1
[}
5:nmod:)aar!

Fig. 8 Target dependency tree of Ex. [4] with highlighted groups: ‘Soms vraagt ze waarom
ik haar vader Harold noemde .’.

Figure [6] above shows how the sequences from seq_cross have been ad-
justed according to the linguistic criteria derived from the dependency trees.
This process can only increase the number of groups, not decrease them. In
this particular case, the group ‘why I’ and ‘waarom ik’ are split into two groups
again, namely ‘why’ (‘waarom’) and ‘I’ (‘ik’) because these words are not con-
nected to each other in the dependency tree. In both the source and target tree,
the adverb and pronoun are siblings but their root is not included in the group,
causing them to not form a fully connected group. The group ‘used to call’
remains unchanged because all words are connected in the source dependency
tree. The corresponding groups ‘her father Harold” and ‘haar vader Harold’ are
also split up, because in the dependency tree ‘Harold’ is not connected to ‘her
father’/‘haar vader’. ‘her father’/‘haar vader’ are valid subgroups, though.

The final SACr value is the number of crossing alignment links between the
source and target SACr groups, normalised by the number of these alignments.
The example in Figure [f] counts three crossing links and nine total alignment
links, leading to a SACr value of 3/9 = 0.33. This contrasts with the word-
based word_cross value of the same example, which is 19/12 = 0.83, and the
seq_cross value of 2/7 = 0.29 (cf. Sec. [2.3)).

3.2.1 Cross summary

The main distinction between our three proposed cross metrics (word_cross,
seq_cross and SACr), is the size of the unit they use to calculate crossing
links with. In word_cross, the reordering of single words is quantified. Alterna-
tively, reordering can be counted when using sequences of words as alignment
points by using seq_cross. Here, consecutive words are grouped together fol-
lowing given criteria so that crossing links can be counted on aligned groups
of words rather than individual words. However these groups are not linguisti-
cally motivated. To ensure that the word groups are linguistically motivated,
SACr provides a linguistic correction of the groups of seq_cross. An initial
group of seq_cross is maintained if it is linguistically valid according to our
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criteria (each item in a group must express a child-parent relationship to an-
other item in the group). If it is not valid, new SACr subgroups are created
inside that invalid group. This means that a sentence can have the same num-
ber of seq_cross and SACr groups, or more SACr groups than seq_cross
but never less.

Whereas SACr provides a way to quantify the reordering of phrase-like
structures of a translation compared to its source text, counting the changes
of the dependency labels of a source sentence after translation sheds light on
linguistic differences of aligned words on the surface level.

3.3 Label changes

An intuitive solution to syntactic equivalence is to assess how the dependency
labels of translated words change from their aligned source text labels. To do
so, we can simply count the alignment pairs where the source and target labels
of an aligned word pair differ.

Formally, given a collection A of pairs of aligned source and target labels
between a source sentence and its translation, the total number of label changes
L is calculated as the number of alignment pairs in which the source label src
is different from the target label tgt (Eq.

L =#{(src,tgt) € A: src#tgt} (1)

where:

A = the collection of pairs of aligned source and target labels
src = the source label of a pair
tgt = the target label of a pair

For an illustrative example, consider the following active source sentence
in Ex. which has been translated into a passive construction (Ex. , and
their word alignment (Ex. [5d)).

(5) a. I saw him
nsubj root obj
b. Hij  werd door mij gezien
He was by me seen
nsubj aux case obl root
c. 0-20-31-11-420

The word alignments can be visualised as in Figure [9]

6 Note that if a label, on either the source or target side, is aligned with multiple labels
(one-to-many, many-to-one, many-to-many alignment), then all its alignments are counted
separately.
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0 1 2
nsubj root obj

1 saw him

Hij werd door mij gezien
nsubj aux case obl root

0 1 2 3 4

Fig. 9 Word alignment visualisation of Ex.

When counting the label changes, we look at each source word and compare
its label to the labels of the words that it is aligned to. To exemplify this,
consider the label changes of Ex. [f| in Table [I] leading to a total number
of four label changes. These label changes are then normalised by the total
number of alignments, leading to a value of 4/5 = 0.8.

source (label)  target (label) change

‘T’ (nsubj) ‘door’ (case) 1
‘I’ (nsubj) ‘mij’ (obl) 1
‘saw’ (root) ‘werd’ (aux) 1
‘saw’ (root) ‘gezien’ (root) 0
‘him’ (obj) ‘Hij’ (nsubj) 1

Total: 4 (normalised: 4/5 = 0.8)

Table 1 Label changes for Ex.

3.4 Aligned syntactic tree edit distance

Whereas SACr calculates a cross value on a shallow level (injected with a
tree-based grouping) to quantify word order changes, it is also possible to de-
termine deeper, structural differences between the source and target sentences.
To compare the actual source and target dependency structures, we propose
ASTrED.

As the name implies, aligned syntactic tree edit distance (ASTrED) incor-
porates a source dependency tree and a target dependency tree with the word
alignments between the source and target sentence. The goal is to modify the
labels of the source and target dependency tree so that the labels of aligned
words are identical. By doing so, we can ensure that the tree edit distance
between these modified trees takes word alignment information into account.

Consider the example sentence and its translation in Ex. [f] and its word
alignment (visualised in Figure [10). This example will be used to explain
ASTrED in the following subsections.
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(6) a. Does he believe in  love ?
aux nsubj root case obl punct

b. Gelooft hij in de liefde ?
Believes he in  the love ¢
root nsubj case det obl punct

c. 0-0 1-1 2-0 3-2 4-3 4-4 5-5

0 1 2 3 4 5

aux nsubj root case obl punct

Does he  believein love ?

7/

Geloofthij  in  de liefde?

root nsubj case det obl punct

0 1 2 3 4 5

Fig. 10 Word alignment visualisation of Ex. |§|

The metric can be summarised in the following steps, on which we elaborate
in the next subsections.

1. Parse the source and target sentences into dependency trees (using UD
labels).

2. Find grouped tokens between source and target trees based on word align-
ment. A group is defined as the minimal group of tokens in the source and
target sentences that are exclusively connected to each other through word
alignment.

3. Modify the labels of the grouped tokens in their respective trees, so that the
labels of tokens belonging to the same group get the same label. Nodes that
were not aligned, and thus do not belong to any group, remain unchanged.

4. Calculate tree edit distance between the modified trees, which measures the
structural difference between the aligned source and the target sentences.
Normalize by the average number of source and target words.

3.4.1 Constructing dependency trees

Identical to the previous metrics, we use dependency trees to represent the
source and target sentences in a linguistically meaningful way (see Sec. .
As an example, let us take the previously mentioned example Ex. [6] The
source and target sentence can each be represented as a dependency tree where
each node is internally represented as the corresponding dependency label

(Figure [11] [12).
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2:believe:root 0:Gelooft:root

— /N T— 1

0:Does:auxr 1:he:nsubj 4:love:obl 5:7:punct L:hijinsubj 4:liefde:obl 5:7:punct

| /N

3:in:case 2:in:case 3:de:det
Fig. 11 Source dependency tree of Fig. 12 Target dependency tree of
Ex. [6at ‘Does he believe in love 7. Ex. @ ‘Gelooft hij in de liefde 7.

3.4.2 Merge grouped tokens and update labels

In order to measure the structural difference between a source and target
sentence, we use tree edit distance. The tree edit distance between two trees
is the minimal number of operations that are needed to change one tree into
the other. The three possible operations are deleting, inserting, or substituting
(also called ‘renaming’) a node in the tree[] We cannot simply take the edit
distance between the source and target dependency trees, however, because
that would disregard the word alignment information. Tree edit distance in
itself is unaware of which source nodes are supposed to align with which target
nodes. To be able to calculate alignment-aware tree edit distance (the distance
between the source and target dependency structure while also taking word
alignment information into account), we modify the source and target trees
by merging their labels with respect to the word alignments. Unaligned words
remain untouched. In practice, that means that all tokens that are connected
to each other through word alignment are grouped together. Here, they are
represented (serialised) as a mapping of source label(s) to target label(s), where
source labels are separated by a pipe (|) and their corresponding target labels
by a comma.

More specifically, if we consider the example in [6] we can distinguish five
groups (Example|7)) where the corresponding words are given between brackets:

(7) — aux:root|root:root (does:gelooft|believe:gelooft)
— nsubj:nsubj (he:hij)
— case:case (in:n)
— obl:det,obl (love:de,liefde)
— punct:punct (7:7)

3.4.8 Modify dependency trees
For all items involved in a group, their respective labels in their respective

trees are updated to the serialised group. This implies that the nodes in the
source and target trees that are aligned, now have the same label. This is

7 To automate the tree edit distance calculation, we use a Python implementation (https:
//github.com/JoaoFelipe/apted) of the APTED algorithm (Pawlik and Augsten, 2015,
2016).
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important, because the goal is to calculate tree edit distance on the aligned
source and target trees.

The trees with modified labels are shown in Figures and with a
word’s original position (index) placed before the serialised label. Note how
the labels are now modified so that aligned nodes share the same label. Also
consider that if, for instance, two source nodes are aligned with one target
node, then all three will share the same modified label, such as the label
aux:root|root:root which is the alignment of ‘does ... believe’ to ‘Gelooft’.

2 aux:root|root:root

— N T

0 aux:root|root:root 1 nsubj:nsubj 5 obl:det,obl 5 punct:punct

3 case:case

Fig. 13 Modified source dependency tree of Example @ ‘Does he believe in love 7’

0 aux:root|root:root

— | T

1 nsubj:nsubj 4 obl:det,obl 5 punct:punct

N

2 case:case 3 obl:det,obl

Fig. 14 Modified target dependency tree of Example ‘Gelooft hij in de liefde 7’

3.4.4 Calculate tree edit distance

Finally, we calculate the tree edit distance between the modified trees shown
above. To change the modified source tree in Figure [13|to the modified target
tree in Figure two operations are needed, as visualised in Figure

1. the source node aux:root|root:root (orange, solid line) must be deleted;
2. the target node obl:det,obl (blue, dashed line) must be inserted.

The ASTrED score is normalised by the average number of source and
target words. This is different from the way that SACr and the label changes
are normalised: SACr is normalised by the number of alignment links between
SACr groups because the crossing links originate from those alignments. Label
changes are normalised by the number of word alignment link, because the dif-
ferences in labels are calculated between aligned labels. ASTrED is calculated
between tree representations of the source and target sentence, which means
that each word’s label in the source or target text is a node in the dependency
tree. In other words: ASTrED takes unaligned words (null alignment) into
account (see Sec. for an example), whereas SACr and label changes only
consider the alignments themselves. Therefore, ASTrED is normalised by the
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average number of source and target words. Applying that to this example,
with source sentence of six words and a target sentence of six words, we get

an ASTrED score of 2/6 = 0.33.

aux:root|root:root

aux:root|root:root | nsubj:nsubj obl:det,obl  punct:punct

SN

case:case 1 obl:det,obl,

Fig. 15 A visualisation of the two needed edits to go from modified source tree in Figure
to the modified target tree in Figure@ The orange solid box indicates the source node that
needs to be deleted and the dashed blue box highlights the target node that needs to inserted.

To reiterate: we calculate tree edit distance on the modified trees where
node labels are replaced by a serialised representation of the aligned source
and target nodes. This is done to ensure that tree edit distance takes word
alignment information into account.

3.5 Metrics overview

metric captures normalisation by

Label changes changes in dependency labels in  number of alignments
the surface form based on word

alignment
SACr reordering of linguistically moti- number of alignments
vated groups by measuring cross-
ing links
ASTrED structural difference between the avg. number of source and target

source and target dependency tree  words
while also taking word alignment
into account

Table 2 An overview of the metrics introduced in this paper.

4 Discussion with examples

As discussed before, syntactic equivalence is an ill-defined concept because it
entails different linguistic aspects: from word reordering at the surface level
to deep structural differences. For that reason we proposed three linguistically
motivated metrics (that can be used and calculated independently) that all
tackle a different part of the problem. In this section we will discuss further
what the differences between the metrics are by going over two examples that
illustrate other typical linguistic differences between English and Dutch, in
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addition to the previously given examples (active-passive, indirect speech, En-
glish do). In the following two examples we discuss subject-verb word order
and the future tense, and the translation of the English gerund to Dutch and
null alignments.

4.1 Subject-verb word order and the future tense

English is typically classified as a language with subject-verb-object (SVO)
word order, but there is no consensus on Dutch. One approach suggests that
Dutch uses the subject-object-verb (SOV) with V2, verb-second, word order
(Koster}, |1975)), where in the main clause, the finite verb must be placed second
with one constituent preceding it, and where subordinate clauses adhere to the
SOV word order. Alternatively, |Zwart| (1994) suggested that Dutch is SVO,
by dissecting the verb phrase (VP) structure of a subordinate clause in detail.

Even though that discussion exceeds the scope of this paper, the practical
implication is that in many cases (e.g. topicalisation, left dislocation, subordi-
nate clauses), the word order of English and Dutch differs.

Consider Ex. [§ where the word order of the main verb and the subject
differs between Dutch and English because of the dislocated adverb, which
leads to inversion in Dutch. The example also shows how the simple future
tense can be presented in the present tense in Dutch, which leads to the source
auxiliary ‘will’ and its root ‘go’ to be aligned with the present tense root ‘ga’.

(8) a. Tomorrow I will go  home .
advmod  nsubj aux root obj punct
b. Morgen ga ik naar huis
Tomorrow go 1 to  home .

advmod root nsubj case obl punct
c. 0-0 1-2 2-1 3-1 4-3 4-4 5-5

The alignments and word crosses can be visualised as follows in Figure [16]
The word_cross value is 2/7 = 0.29.

0 1 2 3 4 5
advmod nsubj aux root obj punct
Tomorrow 1 will go home .
Morgen ga ik naar huis .
advmod root nsubj case obl punct
0 1 2 3 4 5

Fig. 16 Visualisation of word alignment of Ex. [8| And a word_cross value of 2/7 = 0.29.

Vanroy et al.| (2019b]) suggested a sequential approach to word reordering
where consecutive words are grouped together following a given set of criteria
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(cf. Sec2.3). In the example above, this can be visualised as in Figure
showing a seq_cross value of 1/4 = 0.25.

0 1 2 3 4 5
Tomorrow wﬂl 20 |home .
Morgen ga i naar huls

0

Fig. 17 seq_cross representation of EX.Iwith a value of 1/4 = 0.25.

In this book chapter, we have proposed an improved version of seq_cross
named SACr. Whereas seq_cross is not aware of linguistic information and
naively groups word sequences together, SACr ensures that these groups are
linguistically motivated: all items in a SACr group must exhibit a child-parent
relationship to at least on other word in the group. The valid and invalid
groups are shown for both the source and target dependency trees in Figures

and

3:rt0 valid group

invalid group

0:advmod:Tomorrow 1:nsubj:I 4:0bj:home  5:punct..

Fig. 18 Source dependency tree of Ex. |8} highlighting valid and invalid groups.

L:root:ga invalid group

0:advmod:Morgen ~ 2:nsubj:zk 5:punct:.

Fig. 19 Target dependency tree of Ex. |8} highlighting an invalid group and a valid SACr
subgroup.
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The initial groups of seq_cross are not linguistically motivated but by
means of the dependency trees, we can correct these groups to ensure that all
groups are indeed linguistically valid. The alignment between these groups can
be used to quantify the reordering of syntactic word groups. In this example,
there is one crossing link which is then normalised by the total number of
alignments (five). The SACr value, then, is /5 = 0.2.

0 1 2 3 4 5

Tomorrow 1 i will go L—_l

b

Morgen ga ik

0 1 2 3 4 5

Fig. 20 SACr representation of Ex. With a value of 1/5 = 0.2. Dotted boxes indicates the
groups of seq_cross, which, when required, are split up into linguistically motivated SACr
groups (solid boxes)

In addition to word reordering, the label changes are indicative of diverging
linguistic properties. Looking at the label changes going from the source to the
target sentence in Figure we find three alignments where the labels of the
source word have changed (Table , which when normalised gives a value of
3/6 = 0.5.

source (label) target (label) change
‘Tomorrow’ (advmod)  ‘Morgen’ (advmod) 0
‘will’ (aux) ‘ga’ (root) 1
‘go’ (root) ‘ga’ (root) 0
‘home’ (obj) ‘naar’ (case) 1
‘home’ (obj) ‘huis’ (obl) 1
¢ (punct) ‘. (punct) 0

Total: 3 (normalised: 3/6 = 0.5)

Table 3 Label changes for Ex.

With ASTrED, we also provide a means to compare the underlying struc-
ture of aligned dependency trees. This is done by grouping aligned words
together in the source and target tree, changing their labels according to this
grouping in both trees, and calculating tree edit distance between the modified
trees. In Ex. |8 we can distinguish five groups (Ex. @

(9) — advmod:advmod (Tomorrow:Morgen)
— nsubj:nsubj (L:ik)
— aux:root|root:root (will:galgo:ga)
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— obj:case,obl (home:naar,huis)
— punct:punct (.:.)

We can then modify the original dependency trees (see Figures |18 and
by changing the label of each node to the serialised group that it belongs to.
The modified trees are given in:

3 aux:root|root:root

0 advmod:advmod 1 nsubj:nsubj 2 aux:root|root:root 4 obj:case,obl 5 punct:punct

Fig. 21 Modified source dependency tree of Ex. |8 ‘Tomorrow I will go home . .

1 aux:root|root:root

—— N T

0 advmod:advmod 2 nsubj:nsubj 4 obj:case,obl 5 punct:punct

3 obj:case,obl

Fig. 22 Modified target dependency tree of Ex. |8} ‘Morgen ga ik naar huis .’.

These modified trees can then finally be used to calculate tree edit dis-
tance. Figure [23| shows the two edit operations that are needed to change the
modified source tree to the modified target tree. This value is normalised with
the average number of source (six) and target words (six), which leads to a
ASTYED score of 2/6 = 0.33.

aux:root|root:root

advmod:advmod  nsubj:nsubj | aux:root|root:root | obj:case,obl  punct:punct

Fig. 23 A visualisation of the two needed edits to go from the modified source tree in
Figure|21|to the modified target tree in Figure@ The orange solid box indicates the source
node that needs to be deleted and the dashed blue box highlights the target node that needs
to inserted.

In this example, which involves a different subject-verb order in English
and Dutch, SACr clearly models how the word order of the verb with respect to
the subject has changed (Figure. Label changes, on the other hand, do not
catch the word group reordering aspect because they solely compares aligned
words, disregarding their position relative to each other. In this example, it
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does catch how the auxiliary verb ‘will’ has a different label than the present
tense of its Dutch translation ‘ga’ (root). It also finds that whereas English
allows for a ‘go obj’ construction, Dutch requires a case marker in such case,
in the form of ‘ga case obl’.

The edit operations of ASTrED (e.g. Figure highlight that tree edit
distance does not account for word reordering in some cases. That is due to the
nature of dependency trees: even though our implementation of a dependency
tree ensures that the order of sibling nodes is identical to their word order,
there is no way in the tree to know the word order position of a parent node
vis-a-vis its children. So two tree structures may be identical, but the word
order of a parent node with respect to its descendants can still differ. In this
case, the subtree structure of the subjects (‘I' and ‘ik’) and their main verb
(‘go’ and ‘ga’) are identical (it is a child-parent relationship), so the tree edit
distance for that subtree is 0, even though the word order of the source and
target sentence are different: in the English sentence the subject precedes
the verb, whereas in the Dutch translation the verb comes first. That order
difference is not visible in the trees. As such, it is clear that the reordering
metrics capture different information than ASTrED. In this case, ASTrED
catches the same differences that the label changes find, concerning the future
tense that is translated as a present tense, and the English object following
‘go’ that needs to be case-marked in Dutch. As a consequence, the node of the
future auxiliary verb (aux:root|root:root) needs to be removed from the
English source, and the case marker of the Dutch translation must be added
(obj:case,obl), to arrive at the same tree structure (see Figure . The
results of all metrics for this example are summarised in Table [

word_cross 0.29
seq_cross 0.25
SACr 0.2
Label changes 0.5
ASTrED 0.34

Table 4 Summary of the results of all metrics for Ex. 8| (rounded to two decimals).

4.2 English gerund, verb order, and null alignment

In English, gerunds are verb forms that typically end with -ing and that
most often take a nominal function. In Dutch, however, this construction is
frequently translated as an infinitive, but just as often a complete rewrite
of the original constituent seems appropriate. In the following example an
English gerund (‘Shouting’) is translated as an infinitive (‘roepen’). Both their
dependency relations to their root are csubj, meaning that they are clausal
subjects, i.e. they are the subject of a clause and they are themselves a clause.
Similar to the previous example, the word order of the object (‘for help’ and
‘om hulp’) with respect to its verb (‘Shouting’ and ‘roepen’) is a noteworthy
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difference in the source and target sentence. Finally, in this example, ‘seemed’
is translated by adding a pronoun as an objecﬁ to the verb ‘leek’ seemed,
namely ‘mij’ to me. Because of this explicitation, ‘mij’ cannot be aligned with
a source word.

(10) a. Shouting for help seemed appropriate .
csubj case obl root xcomp punct

b. Om hulp roepen leek mij gepast
For help call seemed me appropriate .
case obl csubj root obj xcomp punct

c. 0-2 1-0 2-1 3-3 4-5 5-6

The alignments in Example can be visualised in Figure 24] which also
shows the crossing links on the word level. In this case, there are two crossing
links that indicate the different word order of objects relative to their verb
in English compared to Dutch, as discussed before. After normalisation, the
word_cross value is 2/6 = 0.33.

0 1 2 3 4 5

csubj case obl root xcomp punct

Shouting for help seemed appropriate .

S/

Om hulp roepen leek mij gepast

case obl csubj root obj xcomp punct

0 1 2 3 4 5 6

Fig. 24 Visualisation of word alignment in Ex. And a word_cross value of 2/6 = 0.33

When grouping consecutive words, as discussed in Section [2.3] we find that
‘for help’ and ‘Om hulp’ each constitute a group, as well as ‘appropriate .” and
‘gepast .”. This is visualised in Figure 25] Grouping ‘for help’ and ‘Om hulp’
leads to a reduction in crossing links: now there is only one crossing. The
seq_cross value is 1/4 = 0.25.

8 Following the conventions of UD, we label ‘mij’ as an obj. The annotation guidelines
suggest that when a verb has only one object, it should be labeled as an obj and not
an iobj, regardless of the morphological case or semantic role of that word. (See https:
//universaldependencies.org/u/dep/iobj.html)
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0 1 2 3 4 5

Shouting seemed

Om hulp| roepen leck mij

0 1 2 3 4 5 6

Fig. 25 seq_cross representation of Ex. [10| with a value of 1/4 = 0.25

However, as discussed in Section the groups of seq_cross are not
linguistically motivated. To create groups that take the linguistic structure into
account, we verify that all items in a group share a child-parent relationship
with another word in that group. For this example, we can investigate the
source and target dependency trees in Figures 26 and [27] respectively.

3:root:seemed valid group

/’\ invalid group

0:csubj:Shouting | d:xcomp:appropriate  5:punct:.

2:0bl:help

1:case:for

Fig. 26 Source dependency tree of Ex. highlighting an invalid group and a valid SACr
subgroup

3:root:leek valid group

/N invalid group

2:csubj:roepen  4:objmij | S:xcompigepast  6:punct.
l

L:obl:bulp

0:case:Om

Fig. 27 Target dependency tree of Ex. highlighting an invalid group and a valid SACr
subgroup
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The visualisations of the dependency trees make clear that the groups ‘for
help’ and ‘Om hulp’ are valid because the prepositions (‘for’ and ‘om’ respec-
tively) are children of their root (‘help’ and ‘hulp’, resp.) and child-parent
relationships constitute a valid SACr group. The other groups ‘appropriate .’
and ‘gepast .” are not valid because the two words in each groups share a sib-
ling relationship rather than a child-parent relationship, which is not sufficient
to form a valid SACr group. These linguistically corrected groups have been
visualised in Figure [28] The number of crossing links is still one, but because
the invalid groups are corrected (‘appropriate .” and ‘gepast .’), the normalised
value has now changed from seq_cross 0.25 to SACr 0.2.

0 1 2 3

0 1 2 3 4

Fig. 28 SACTr representation of Ex. With a value of 1/5 = 0.2. Dotted boxes indicates the
groups of seq_cross, which, when required, are split up into linguistically motivated SACr
groups (solid boxes)

The label changes in this example are quite self-explanatory: looking at
the word alignments in Figure 24] it is evident that all the labels of aligned
words are identical on the source and target side. Therefore there are zero
label changes in this example. Nevertheless, that does not mean that are no
structural difference, as ASTrED will illustrate.

To calculate ASTrED, first the labels of the source and target trees need to
be grouped according to the word alignments. Each group should contain all
the labels of words that are connected to each other through word alignment.
In Example we can find six groups and also one unaligned word (‘mij’ me).

(11) — csubj:csubj (Shouting:roepen)
— case:case (for:Om)
— obl:obl (help:hulp)
— root:root (seemed:leek)
— xcomp:xcomp (appropriate:gepast)
— punct:punct (.:.)
— null alignment (in target): obj (mij)

As a next step, the labels of each node in a group must be updated to the
serialised group’s label. In this example, the groups always consist of only one
source and one target item. The unaligned obj node in the target sentence is
still present after changing the labels (Figures [29 and .
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3 root:root

T

0 csubj:csubj 4 xcomp:xcomp 5 punct:punct

2 obl:obl

1 case:case

Fig. 29 Modified source dependency tree of Ex. ‘Shouting for help seemed appropriate .’

3 root:root

2 csubj:csubj 4 obj 5 xcomp:xcomp 6 punct:punct

1 obl:obl

0 case:case

Fig. 30 Modified target dependency tree of Ex. ‘Om hulp roepen leek me gepast .” Note
the unalgined obj node.

Now, the tree edit distance between these modified trees can be calculated.
The structure of the source sentence is in fact exactly the same as the one in
the target sentence, with the exception of one unaligned obj node (‘mij’). The
only operation that is needed to change the source structure to the target
structure is inserting the unaligned target node (Figure . This illustrates
that ASTrED is the only one of the tree metrics that is able to take into account
null alignments. The edit operations are normalised by the average number of
source (6) and target (7) tokens, so the ASTrED value is 1/6.5 = 0.15.

3 root:root

7\ T

2 csubj:csubj |4 obji 5 xcomp:xcomp 6 punct:punct

1 obl:obl

0 case:case

Fig. 31 A visualisation of the edit (insertion, the dashed blue box) to go from the modified
source tree in Figure @ to the modified target tree in Figure @

In this example, it became clear how SACr again accurately quantifies the
reordering of linguistically motivated word groups. In particular it showed how
the subject-verb order of English and Dutch can be quantified with a single
crossing link because of the syntactically aware word grouping of ‘for help’” and
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‘Om hulp’. Because the examples were quite closely related in this example,
we did not observe any label changes. However, on a deeper structural level
we found that the structure of both sentence does differ slightly because of a
null alignment on the target side: ‘mij’ me was inserted in the translation even
though there is no source word to align it with. The results are summarised
in Table 5l

word_cross 0.34
seq_cross 0.25
SACr 0.2
Label changes 0.0
ASTrED 0.15

Table 5 Summary of the results of all metrics for Ex. (rounded to two decimals).

Generally speaking, the three metrics model three different things: SACr
specifically quantifies the reordering of linguistically inspired word groups.
When the surface word order of languages differs in specific structures, SACr
catches up on that. This is particularly evident in Example [f] where a different
word order is found twice in the same sentence (‘Sometimes she asks me
why I used to call her father Harold .’ vs. ‘Soms vraagt ze waarom
ik haar vader Harold noemde .’). Also based on the surface forms, label
changes compare the labels of the aligned words on the source and target
side. By doing so, it can quickly become evident when a source sentence and
its translation have been translated completely differently (think, for instance,
about the active-passive example in Examplewhere ansubj became an obj).
ASTYED serves a similar function but it compares the actual tree structures
of the source and target sentence while at the same time also taking the word
alignments into account. Whereas SACr and label changes work on the surface
forms, ASTrED does a deeper linguistic comparison between a source sentence
and its translation, as the last example clearly shows.

5 Proof of concept

To investigate how syntactic differences between a source text and its transla-
tion relate to difficulty, we can measure the effect that our syntactic measures
have on translation process features that may be indicative of cognitive effort,
which in turn points to translation difficulty (also see our previous research
for details and a literature overview concerning cognitive effort and transla-

tion; Vanroy et al.| |2019a[ﬁl We built mixed-effect models in R (R Core Team

2019), using the lme4 package (Bates et al. [2015) with lmerTest (Kuznetsoval

9 Other chapters in this volume also discuss new advances in cognitive effort research.
See for instance the work by Huang and Carl in Chapter 2, and Chapter 3 by Cumbreno
and Aranberri regarding cognitive effort during post-editing, and Lacruz et al. on cognitive
effort in JA-EN and JA-ES translation (Chapter 11).
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et al. |2017) to obtain p-values and perform automatic backward elimination
of effects.

We used part of the ROBOT dataset (Daems| [2016) for this analysis. The
full ROBOT dataset contains translation process data of ten student trans-
lators and twelve professional translators working from English into Dutch.
Each participant translated eight texts, four by means of post-editing (start-
ing from MT output), and four as a human translation task (starting from
scratch). Task and text order effects were reduced by using a balanced Latin
square design. The texts were newspaper articles of 150-160 words in length,
with an average sentence length between 15 and 20 words. As the goal of the
original ROBOT study was to compare the differences between post-editing
and manual translation, the texts were selected to be as comparable to one an-
other as possible, based on complexity and readability scores, word frequency,
number of proper nouns, and MT quality. For the present study, however, only
the process data for the human translation task was used. This dataset was
manually sentence and word aligned. Dependency labelling was done automat-
ically by using the aforementioned stanza parser (Qi et al., 2020).

We followed exclusion criteria suggested by Bangalore et al.| (2015) be-
fore analysing our data: exclude cases where two ST (source text) segments
were fused into one, exclude the first segment of each text, exclude segments
with average normalised total reading time values below 200ms (total read-
ing time; the time (in ms) that participants have their eyes fixated on the
source or target side, measured by eye tracking) and exclude data points dif-
fering by 2.5 standard deviations or more from the mean. After filtering, the
dataset consists of 537 data points, i.e. translated segments. All plots were
made using the effects package (Fox and Weisberg, |2019)). In parallel with
Bangalore et al.| (2015)), dependent variables from the TPR-DB (Carl et al.,
2016) were chosen, specifically total reading time on the target (TrtT) and
source (TrtS) side, and duration of coherent typing behavior (total duration
of coherent keyboard activity excluding keystroke pauses of more than five
seconds; Kdur), normalised by the number of words per segment and centred
around the grand mean (hence the negative values in the graphs)m The pre-
dictor variables were our three proposed metrics: SACr, label changes, and
ASTrED. In the full model, all three variables were included with interaction.
We performed backward elimination of effects to build the best model for each
dependent variable. Participant codes and item codes were included as random
effects.

For coherent typing behavior (Kdur), the only predictor variable that was
retained in the best performing model was the number of label changes. An
increase in label changes had a highly significant (p < 0.001) positive effect
on Kdur (estimate = 969.1, SE = 232, t = 4.18). This effect can be seen in
Figure This indicates that translators needed more time to translate those
source segments that required more label changes when translating.

10 Even though our experimental set-up is similar, our results cannot be compared to those
of Bangalore et al.| (2015) because we use a different data set, and do not use entropy but
absolute values per-segment.
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Effect of label changes on coherent typing behaviour
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Fig. 32 Effect plot for the main effect of label changes on coherent typing behaviour.

Source reading time (TrtS) was best predicted by SACr only, although
the model which included both participants and items as random effects gave
rise to convergence warnings. The main effect of SACr on TrtS was positive
(estimate = 69.82, SE = 28.39, t = 2.46) and significant (p = 0.01). The effect
can be seen in Figure[33] The model without participants as random effect did
converge and showed a similar main effect (estimate = 95.11, SE = 33.85, t
= 2.81, p = 0.005). This means that those segments that were translated by
moving more word groups or move word groups further away required more
reading time on the source side.
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Effect of SACr on source reading time
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Fig. 33 Effect plot for the main effect of SACr on source text reading time.

Target reading time (TrtT), on the other hand, was best predicted by a
combination of all three predictor variables with interaction. The three-way
interaction effect was significant (estimate = 3383.2, SE = 1173.6, t = 2.88,
p = 0.004). All effects included in the model are summarised in Table @
The interaction effect is visualised in Figure The figure shows the effect of
ASTrED values on target reading time, given a certain SACr value and number
of label changes. Only the minimum and maximum values of SACr and label
changes are included as reference points (0 and 9.7 for SACr, and 0.09 and 1
for label changes, respectively). What this indicates, is that, if SACr is low,
an increase of ASTrED or an increase in the number of label changes does not
really have that much of an impact on target reading time. However, if SACr
values are high and there is a low number of label changes, target reading time
goes down for higher ASTrED values; whereas target reading time goes up for
higher ASTrED values when SACr values are high and there is a high number
of label changes. Looking at the graph on the right (high SACr value), it would
seem that when a lot of word group reordering is required without many label
changes (blue line with negative slope), structurally similar source and target
sentences (low ASTrED) lead to a higher TrtT. Conversely, when a lot of
word group reordering is needed alongside many label changes (orange line
with positive slope), dissimilar syntactic structures (high ASTrED) positively
affect the time that translators read the target text. This conclusion should
be taken with a grain of salt, though, and additional experiments with other
data sets are required to draw more certain conclusions.



34 Bram Vanroy et al.

SACr=0 SACr=9.7
20000
10000

Label changes
= 0.09
= 1

Reading time on target (TRTT)

-10000
o o o o = = o o o o = I
o DY) a ~ o N o N 3 ~ o N
s) a o al s) a o a o al s] a
ASTrED

Fig. 34 Effect plot for the three-way interaction effect of ASTrED, label changes, and SACr
on target reading time.

fixed effect estimate SE t P
ASTrED 1034.4 819.1 1.26 .207
label changes 2662.5 1103 2.41 .016 *
SACr 1498.3 602.3 2.49 .013 *
ASTYrED : label changes -1994.7 1514.1 -1.32 .188
ASTrED : SACr -1812.6 692.3 -2.62  .009 **
label changes : SACr -2652.4 989.5 -2.68  .008 **
ASTYrED : label changes : SACr  3383.2 1173.6 2.88  .004 **

Table 6 Effect summary of three-way interaction effect between ASTrED, label changes,
and SACr on target reading time.

Unsurprisingly, the metrics are only weakly to moderately correlated, as
seen in Table[7] This is likely due to a single common factor of all metrics: they
are, at their core, all based on the same dependency labels. Different depen-
dency trees lead to different SACr groups, a change in the merged ASTrED
trees, as well as the label changes themselves. However, because each metric
uses the dependency labels in its own way, a change in dependency structures
affect specific metrics differently. The metrics are therefore mildly correlated
but they have a different effect on the translation process, as shown above.
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ASTrED label changes

ASTrED
label changes 41
SACr .40 .35

Table 7 Kendall correlation between normalised metrics: ASTrED, label changes, and SACr
(p < .01).

In this section we have calculated the effect of our proposed syntactic met-
rics on translation process features to show that our interpretation of syntactic
equivalence has an effect on the translation process. Even though our dataset
was rather small, and more elaborate experiments are needed, these findings
already confirm that, as the literature indicates (cf. Section [2), (syntactic)
equivalence does affect some translation process features such as reading time
and typing duration, which serve as a proxy for the translation difficulty. Gen-
erally speaking, this experiment arrives to the same conclusion as |Bangalore
et al.|(2015), namely that syntactically diverging source and target segments
impose difficulty on the translator. In addition, this experiment also confirms
that all three metrics seem to affect the translation process differently, which
motivates further research into this topic.

6 Conclusion and future work

In this work, we have introduced three new metrics to measure syntactic equiv-
alence between a sentence and its translation. The three metrics serve different
purposes, which is also revealed in Section [5| Keeping track of dependency la-
bel changes is an intuitive approach to see how the relation of each word to its
root has changed in the translation. Syntactically aware cross (SACr) offers a
linguistically motivated method to calculate word group reordering. Finally,
aligned syntactic tree edit distance (ASTrED) compares the deep linguistic
structure of the source and target sentence while taking word alignment into
account. We open-source the implementation of the metrics as a Python pack-
age.

Broadly speaking, we are interested in ways to quantify translation diffi-
culty. Syntactic equivalence is one part of that, as we have discussed in pre-
vious research (Vanroy et al., 2019a,b)). In future work we want to investigate
whether we can distil typical word group reordering patterns, label changes,
or structural divergence and categorize them into |Catfords obligatory and op-
tional shifts (Catford} |1965). The hypothesis is that in language pair specific
contexts, some word group orders, labels, and structures are simply incom-
patible between two languages, in which case the translator is forced to make
an obligatory shift and cannot rely on a literal translation. In addition, we
want to perform more analyses using our metrics and compare them to trans-
lation process data. As a proof-of-concept, we presented one such analysis in
Section [B] but since the used dataset is relatively small, similar experiments
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should be done to confirm, and expand on, these results. Moreover, we intend
to run equivalent experiments on different language pairs to investigate (the
difficulties between) syntactically divergent languages.

Finally, rather than calculating syntactic entropy based on the features
Valency, Voice, and Clause type (Bangalore et al.l 2015]), we are interested
in investigating the feasibility of calculating syntactic entropy based on our
metrics. Syntactic entropy can be simplified as the agreement between the
translators of the same source text with respect to the syntax of their trans-
lations. Put differently, how similar or divergent in syntax are the different
translations of the translators? Because our proposed metrics aim to quantify
syntactic equivalence between a source sentence and its translation, they are
good candidates to be used in an entropy setting to see how well translators
agree on structural or syntactic changes when translating. This information,
in turn, can be used in modelling the translatability of specific linguistic phe-
nomena.
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