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Preface

This dissertation is the culmination of four years of doctoral research. During these years,
I have had the opportunity to work on two research projects that were intimately related,
but still quite different. The common thread in these projects is their connection to
topological order and the use of tensor network representations of many-body quantum
states in the process of solving the problem at hand.

The first project consisted of studying non-Abelian topological phase transitions in
Levin-Wen string-net models using a variational class of tensor-network states. This re-
search was performed in collaboration with Jose Carrasco, Bram Vanhecke, Laurens Van-
derstraeten, Jutho Haegeman, Frank Verstraete and Julien Vidal. The resulting article
was published in Ref. [1].

The second project concerns the use of Levin-Wen models as quantum error correcting
codes and the simulation of their error correction thresholds. It combines insights from
topological quantum field theory with tensor network techniques in order to obtain the first
error correction threshold for a two-dimensional error correcting code (of qubits) subject to
generic noise, for which universal quantum computation can be performed within its code
space. This research was performed in collaboration with Guanyu Zhu, Lander Burgelman
and Frank Verstraete. After three years of work and about 180 000 CPU hours worth of
simulations, my collaborators and I have detailed our findings on this topic in Ref. [2].

[1] A. Schotte, J. Carrasco, B. Vanhecke, L. Vanderstraeten, J. Haegeman, F. Verstraete,
and J. Vidal, “Tensor-network approach to phase transitions in string-net models”,
Physical Review B, vol. 100, no. 24, p. 245 125, 2019.

[2] A. Schotte, G. Zhu, L. Burgelman, and F. Verstraete, “Quantum error correction
thresholds for the universal fibonacci turaev-viro code”, 2020. arXiv: 2012 .04610
[quant-ph].

This dissertation will cover the research performed in Ref. [2]. For completeness, the
content of Ref. [1] is provided in Appendix E.
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Nederlandstalige samenvatting

Achtergrond: kwantumcomputers en foutcorrectie
Doordat transistoren steeds kleiner worden en we stilaan in het regime komen waarbij
kwantummechanische effecten een belangrijk rol beginnen te spelen, is het duidelijk dat
we binnenkort de limiet zullen bereiken van wat mogelijk is met klassieke computers. In de
jaren 80, is het idee ontstaan om die kwantummechanische effecten te benutten om buiten
de grenzen van klassieke computers te treden. Het resultaat is een nieuw soort computer,
genaamd de kwamtumcomputer. Deze heeft fundementele verschillen ten opzichte van
een klassieke computer. De kwantumcomputer maakt namelijk gebruik van kwantumbits
(qubits) in plaats van klassieke bits. Door de principes van de kwantummechanica te
gebruiken kan een kwantumcomputer bepaalde berekeningen uitvoeren die onmogelijk
zijn voor zelfs de krachtigste klassieke supercomputers.

Een belangrijk voorbeeld hiervan is het simuleren van kwantumveeldeeltjessystemen.
De simulatie van deze systemen zou kunnen leiden tot een enorme vooruitgang in kwantum-
chemie, vastestoffysica en bijvoorbeeld ook in farmaceutisch onderzoek. Deze uitgebreide
mogelijkheden hebben ertoe geleid dat er grote belangstelling is voor kwantumcomputers
in zowel de academische wereld als in the tech industrie. Het bouwen van een kwantum-
computer blijkt echter een bijzonder grote uitdaging. Een van de grootste hindernissen is
het feit dat elke onvermijdbare interactie met de omgeving zorgt voor kleine foutjes die de
berekening kunnen verstoren en tot een verkeerd resultaat kunnen leiden. Zulke fouten ko-
men ook voor in klassieke computers, maar voor kwantumcomputers is de situatie een stuk
ingewikkelder. Ten eerste zijn fouten in klassieke computers beperkt tot "bit-flips"(waarbij
een bit van 0 naar 1 wordt veranderd of vice versa) terwijl deze in kwantumcomputers de
toestand kunnen transformeren naar een continuüm aan foutieve toestanden. Ten tweede
beïnvloeden metingen in kwantummechanica de toestand van het systeem dat gemeten
wordt. Hierdoor is het een erg delicate taak om fouten in een kwantumcomputer te detec-
teren zonder deze daardoor te verstoren. Bovendien stelt het “no-cloning” theorema dat
het onmogelijk is om kwantumtoestanden gewoonweg te kopiëren als “back-up”.

In 1995 ontdekte Peter Shor de eerste kwantumfoutcorrigerende code. Dit is een me-
thode waarmee de kwantumtoestand van “logische” qubits beschermd kan worden tegen
fouten door deze op te slaan in de toestand van een groter aantal fysieke qubits. Sinds-
dien is kwantumfoutcorrectie (QEC) uitgegroeid tot een bloeiend onderzoeksdomein. In
het algemeen bestaat een QEC procedure uit drie verschillende stappen: eerst wordt de
kwantumtoestand van de N logische qubits geëncodeerd in een groter aantal fysieke qu-
bits. De resulterende toestand zal zich steeds bevinden in een 2N -dimensionale deelruimte
genaamd de coderuimte van de totale fysieke Hilbert ruimte. Deze fysieke qubits worden
dan blootgesteld aan ruis (in de vorm van willekeurige fouten op individuele qubits) die
de toestand uit de coderuimte zullen halen. Hierna wordt er een reeks van metingen uit-
gevoerd (genaamd syndrome measurements), om uit te zoeken wat voor fouten gebeurd
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zijn. Zoals reeds vermeld, moet men hierbij erg voorzichtig zijn om de geëncodeerde in-
formatie niet te verstoren. Op basis van de resultaten van deze “syndrome” metingen,
zal een algoritme uiteindelijk beslissen welke stappen moeten worden ondernomen om de
oorspronkelijke toestand te herstellen. Voor deze laatste stap bestaan verschillende stra-
tegieën (decoders), die elk een verschillende mate van bescherming bieden tegen bepaalde
soorten ruis. Deze verschillende decoders worden vaak vergeleken op basis van hun fout-
correctiedrempel. Dit is een getal dat aanduidt wat de maximale intensiteit is van de ruis
waartegen een bepaalde decoder bescherming biedt.

Een veelbelovende klasse van foutcorrigerende codes zijn topologische codes. Dit zijn
codes waarbij de logische kwantumtoestand, die men tracht te beschermen tegen fou-
ten, wordt opgeslagen in de grondtoestandsruimte van een tweedimensionaal topologisch
kwantumsysteem. Topologische kwantumsystemen vertonen topologische kwantumfasen
van materie, die niet beschreven kunnen worden door het gebruikelijke paradigma van
symmetriebreking in de klassieke fysica. Deze systemen worden gekenmerkt door een ont-
aarding van de grondtoestandsruimte en door het feit dat ze onconventionele excitaties
vertonen die zich noch als bosonen noch als fermionen gedragen. Deze bijzondere excitaties
worden anyonen genoemd. De topologische systemen waar ze in voorkomen kunnen on-
derverdeeld worden in twee categorieën. Deze categorieën worden gebaseerd op de manier
waarop een paar anyonen kan samensmelten tot een nieuw anyon. Voor Abelse modellen
is de uitkomst van zo’n samensmelting steeds uniek, terwijl er bij niet-Abelse modellen
meerdere mogelijke uitkomsten zijn. Hoewel deze laatste soort ingewikkelder is, leidt het
wel tot interessante implicaties. Men kan namelijk voor sommige niet-Abelse modellen de
taken van een universele kwantumcomputer uitvoeren door paren van anyon te creëren,
ze rond elkaar te winden volgens bepaalde patronen, en ze dan terug samen te smelten.

In topologische codes zorgen lokale fouten ervoor dat er paren van deze anyonen ont-
staan. De correctieprocedure bestaat er dan in deze deeltjes op de juiste manier samen te
brengen zodat ze elkaar opheffen en het systeem naar de juiste grondtoestand terugkeert.
Er zijn verschillende gekende topologische codes. De meest bekende is de surface code,
een Abelse code die door Kitaev werd geïntroduceerd in 1997 en, omwille van zijn hoge
foutcorrectiedrempel, momenteel wordt gebruikt in een aantal experimentele opstellingen
om de eerste kleinschalige kwantumcomputers te maken.

Naast het beschermen van de logische qubits tegen lokale fouten, vereist een werkende
universele kwantumcomputer ook de mogelijkheid om een universele verzameling van ope-
raties uit te voeren op deze logische qubits. Dit moet bovendien gebeuren op een manier
waarbij ze te allen tijde beschermd blijven tegen fouten. Dit blijkt een grote uitdaging voor
de meeste foutcorrigerende codes. In veel gevallen is er een grote extra kost verbonden aan
het veilig kunnen uitvoeren van dergelijke universele kwantumoperaties. Voor sommige
niet-Abelse topologische codes kunnen universele berekeningen echter worden uitgevoerd
zonder dat men ooit de coderuimte moet verlaten, waardoor dit dus ook intrinsiek veilig
gebeurt (en zonder extra kost). Zulke codes zijn daarom een aantrekkelijk alternatief voor
de huidige aanpak op basis van Abelse codes, maar tot voor kort was er zeer weinig ge-
weten over hun foutcorrectiedrempel (m.a.w. of ze ook werkelijk voldoende bescherming
kunnen bieden tegen realistische hoeveelheden ruis).

Het vinden van foutcorrectiedrempels voor universele niet-
Abelse codes
In de laatste jaren is veel vooruitgang geboekt in het onderzoek naar niet-Abelse topologi-
sche codes. Men is er in geslaagd om voor sommige codes deze error tresholds te schatten.
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Dit onderzoek maakte gebruik van fenomenologische modellen die een versimpelde weer-
gave bieden van niet-Abelse codes. In plaats van te werken met een microscopisch model
van fysieke qubits die zijn blootgesteld aan ruis, werd er gewerkt met modellen waarin
fouten worden voorgesteld als het ontstaan van paren van anyonen en als de beweging van
deze anyonen. Hoewel dit een sterke aanwijzing is dat niet-Abelse codes ook hoge foutcor-
rectiedrempels hebben, ontbraken er tot op heden resultaten over foutcorrectiedrempels
voor meer realistische ruis op het niveau van fysieke qubits in een microscopische be-
schrijving van een universele niet-Abelse code. Deze thesis beschrijft de eerste succesvolle
poging om dit te veranderen.

We definiëren hiervoor een nieuwe topologische foutcorrigerende code die gebaseerd is
op string-net modellen. Dit is een familie van topologische kwantumsystemen die werd
ontdekt door Levin en Wen in 2005 en waarvan wordt gedacht dat ze alle topologische
fasen kan beschrijven. Specifiek gebruiken wij een aangepaste versie van het Fibonacci
string-net model, dat anyonische excitaties bevat die universeel zijn.

Door gebruik te maken van inzichten uit topologische kwantumveldentheorie, kunnen
we ingewikkelde kwantumtoestanden van de fysieke qubits eenvoudig voorstellen aan de
hand van superposities van fusiediagrammen van anyonen. Bovendien stellen deze inzich-
ten ons ook in staat om af te leiden hoe de lading van anyonische excitaties gemeten kan
worden, wat overeenkomt met de eerder beschreven syndrome measurements. We geven
daarna een gedetailleerde beschrijving van hoe deze metingen kunnen worden uitgevoerd
als een reeks van elementaire operaties en metingen op een klein aantal qubits. Ook alle
ingrepen die nodig zijn in de correctieprocedure worden op deze manier beschreven.

Het grootste obstakel in het simuleren van deze foutcorrigerende code is het bepalen
van de anyonen die onstaan door individuele fouten op fysieke qubits. We maken hiervoor
gebruik van zogenaamde tensornetwerktoestanden. Dit is een theoretische methode voor
het beschrijven van kwantumveeldeeltjessystemen die gebaseerd is op recente inzichten
in kwantumverstrengeling, een eigenschap die intristiek is aan kwantummechanische sys-
temen. Tensornetwerktoestanden laten ons toe om kwantumveeldeeltjessystemen bij lage
energie zeer efficient te modelleren en zijn daarom uitermate geschikt om de zeer complexe
toestanden van de fysieke qubits te beschrijven nadat er door lokale fouten groepen van
anyonische quasideeltjes zijn ontstaan. Dit stelt ons in staat om fouten op qubit-niveau
te beschrijven aan de hand van collectieve eigenschappen van de excitaties die zij creëren.

Gewapend met deze kennis en voortbouwend op het eerder vermelde onderzoek met
fenomenologische modellen, construeren we een methode voor een volledige simulatie van
de foutcorrectie in de ontwikkelde code. Deze simulatie beschrijft hoe de kwantumtoestand
van het systeem verandert door de invloed van ruis op qubits door de impact van de
metingen die worden uitgevoerd en door de operaties die worden toegepast tijdens de
correctieprocedure. De microscopische ruis wordt hierbij voorgesteld als een model van
willekeurige Pauli-operatoren die worden toegepast op individuele qubits. Deze methode
wordt vervolgens gebruikt om de allereerste schatting van de foutcorrectiedrempel in een
volledig microscopische universele niet-Abelse foutcorrigerende code uit te voeren.
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1 | Introduction

This dissertation studies the use of Levin-Wen models as quantum error correcting codes
and the simulation of their error correction thresholds. In doing so, three different themes
in physics are combined: topological order, tensor networks, and quantum error correction.
Before giving a more technical introduction to the research presented in this dissertation,
we provide a brief introduction to these three topics to familiarize the reader with the
broader context wherein this dissertation should be understood.

1.1 Topological order and anyons
For a long time, it was believed that the Landau-Ginzburg theory of symmetry breaking
[1] described all possible phases of matter. In the late 1980s, however, the study of chiral
spin states [2, 3] in the context of high temperature superconductivity, revealed that these
states contain a new kind of order that can not be attributed to symmetry breaking. Due
to the connection with topological quantum field theory, the new type of order was named
topological order. While experiments showed that chiral spin states did not provide the
right description of high temperature superconductivity, it was found that the similarity
between these states and fractional quantum Hall (FQH) states [4, 5] makes it possible to
use the theory of topological order to describe different FQH states, confirming that the
theory was realized in real physical systems.

Several definitions of topological order exist [6]. In 2+1 dimensions, most of them are
built around the following two key features [7]. The first one is a robust topological ground
space degeneracy. Here, robust means that this degeneracy is stable against generic per-
turbations of the Hamiltonian [8, 9] and has a stable energy gap (in the thermodynamical
limit). Note that since it is robust against any local perturbation (given that the system is
large enough), this includes perturbations that break any possible symmetry. Meanwhile
topological refers to the fact that this degeneracy typically depends on the topology of
space, e.g., on the genus of a closed surface as in Fig. 1.1.

The second defining property is the non-Abelian geometric phase of topologically de-
generate ground states [10, 11, 12], which is a unitary matrix U associated to a closed path
of Hamiltonians. For example, for a system defined on a torus, there are two such paths

g=0
g=1 g=0

Figure 1.1: Orientable surfaces with genus g = 0, 1, 2.

1



CHAPTER 1. INTRODUCTION

associated to shearing and squeezing the torus. The transformation of the ground space
under these actions is given by the matrices S and T , whose quantum numbers uniquely
define the topological phase of the system.

Besides the two properties listed above, topologically ordered systems in 2+1 dimen-
sions are characterized by the low-energy excitations that appear on top of the degenerate
ground space. Contrary to the situation arising in three spatial dimensions1, exchanging
a pair of identical particles in two spatial dimensions may result in any2 phase eiθ, rather
than only ±1. The special cases θ = 0, π correspond to bosons and fermions, respectively.
Particles with other values of θ are called anyons [14]. Their complete mathematical de-
scription relies on category theory, which will be discussed in Sec. 2.1. For a pedagogical
introduction on anyon models, the reader is referred to Ref. [15].

1.2 Quantum computing and quantum error correction
In the 1980s the idea originated that quantum mechanics could be used as a resource
to simulate other quantum mechanical systems and to perform computations that are
intractable for classical computers [16, 17]. In particular, inherent quantum properties such
as interference and entanglement can be exploited for information processing purposes,
resulting in a novel computing paradigm. Since then, quantum computing has grown into
a very active field of research [15, 18] and the experimental efforts to realize a scalable
quantum computer are well on their way.

Broadly speaking, a quantum computer should be understood as a device that can
perform the following operations on a quantum state (which is typically a system of qubits)
in a controlled fashion:

• Initialization: one must be able to initialize the system in some known initial
quantum state (e.g., |000〉 for a system of 3 qubits).

• Unitary evolution: by performing a circuit of unitary multi-qubit gates, the system
is evolved according to some unitary operator. In order to realize any generic unitary
with arbitrary precision, a universal gate set (consisting of a few 1 and 2-qubit gates)
is required.

• Measurement: measure the quantum states in some basis.

Noise induced by interactions with the environment and errors caused by imperfect
hardware cause a serious threat to an ongoing quantum computation. Indeed, the quantum
information manipulated by a quantum computer is extremely fragile, since it is encoded
in nonlocal correlations between different parts of the system. Therefore, it is crucial that
this quantum information is protected adequately.

To understand the nature of this challenge we will start by illustrating how classical
information, consisting of bits, can be protected from errors. On classical information, the
only possible errors are bit-flips (0 ↔ 1). Classical information can be protected against
such errors by using a classical error correcting code. This is a method in which a number
of logical bits (containing the information that we wish to protect) are encoded in a greater
number of physical bits. The simplest example of a classical error correcting code is the

1Exhanging a pair of particles twice in 3 spatial dimensions results in a path which can always be
untangled and shrunk to a trivial path. Hence, the phase that is picked up when exchanging a pair has to
square to 1.

2Technically, these exchange phases must always be a root of unity [13].
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CHAPTER 1. INTRODUCTION

repetition code, in which one logical bit is replaced by 3 copies of itself:

0 7→ 000,
1 7→ 111.

In case one of these three bits, for example the first one, is affected by an error, this
transforms these states to

000 → 100,
111 → 011.

Clearly, as long as more than one of the physical bits is affected, we can recover the initial
information using

100, 010, 001 → 000,
011, 101, 110 → 111.

If the probability for an error is p on each of the three bits, the probability that we fail to
recover the initial information correctly is Pfail = 3p2− 2p3. Hence, when 3p2− 2p3 < p or
p < 1/2, the three bit repetition code improves the reliability of the encoded information.
We can play the same game with N bits instead of 3 to further improve the reliability.
For large N , and with p = 1

2 − ε, one finds that

Pfail ∼ e−Nε2 ,

meaning that for any p < 1/2, we can recover the initial information with an arbitrary
degree of certainty by increasing N .

Similar to their classical counterparts, quantum error correcting codes protect the state
of logical qubits by encoding it in the state of a higher number of qubits3. Contrary to
classical information however, protecting quantum information against noise is a highly
nontrivial task due to the following difficulties which arise in the quantum case:

• A continuum of possible errors: While errors on classical information consist
exclusively of bit-flips, errors on qubits are unitary transformations. To protect quan-
tum information against errors, we must be able to protect it against any unitary
transformation, rather than some discrete set of possible errors.

• Measurements disturb the state: Detecting the occurrence of errors (in order
to know what correction to apply) must happen without destroying the encoded
information.

• No cloning: Due to the no-cloning theorem, one cannot simply protect quantum
information by making additional copies of it.

In general, quantum error correcting codes encode the state of k logical qubits using n
physical qubits. The information is thus encoded in a 2k-dimensional subspace, called the
code space, of the 2n-dimensional physical Hilbert space. Errors on the physical qubits,
will generally4 take their total quantum state out of the code space. Errors are detected

3In general, there is no need to restrict to two level systems as the fundamental building blocks.
4Note that errors which do not take the state out of the code subspace map one logical state to another

and are thus undetectable.
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through measurements, called syndrome measurements, which must be carefully chosen as
to not destroy the encoded information. Based on their outomes (called the syndrome),
an appropriate sequence of unitary gates is applied to return the state to the code space.
The error correction procedure succeeds if the combined action of the noise, measurement
and correction operations is trivial inside the code space.

The first example of a quantum error correcting code was found by Shor in 1995 [19].
It encodes one logical qubit using 9 physical qubits which are grouped in three clusters:

|0〉 7→ |0̄〉 ≡ 1
2
√

2

(
|000〉+ |111〉

)(
|000〉+ |111〉

)(
|000〉+ |111〉

)
,

|1〉 7→ |1̄〉 ≡ 1
2
√

2

(
|000〉 − |111〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
,

and in general: α |0〉 + β |1〉 7→ α |0̄〉 + β |1̄〉. Errors are detected in two steps. First, the
observables σz ⊗ σz ⊗ 1 and 1 ⊗ σz ⊗ σz are measured within each of the three clusters.
Note that this does not give us any information about the encoded state, which is crucial
in order to avoid destroying the superposition α |0̄〉+ β |1̄〉. This information is sufficient
to determine which, if any, of the three qubits within a cluster is flipped compared to the
other two. We can then apply a σx operator to that qubit to flip it back. Second, the
6-qubit observables σ⊗6

x ⊗1⊗3 and 1⊗3⊗σ⊗6
x are measured. This allows us to detect which,

if any, of the clusters has a different sign than the others. This can then be corrected by
applying σ⊗3

z to said cluster.
A generic unitary error, up to a physically irrelevant global phase, can be expanded as

U = ei(εxσx+εyσy+εzσz) ≈ 1 + iεxσx + iεyσy + iεzσz +O(|ε|2) .

Upon performing the syndrome measurements described above, such a generic unitary
will collapse to a bit-flip error (σx), a phase-flip error σz or both (σy = iσxσz) with a
probability of order |ε|2. Hence, this code also provides protection against generic unitary
errors, rather than only against bit-flip and phase-flip errors. For recovery to fail, at least
two bit-flip errors must happen within a single cluster, or a phase-flip error must happen
withing at least two clusters. If the unitary U was applied to every qubit, the probability
of such events is of the order |ε|4, which confirms that when |ε| is small enough, the Shor
code improves the reliability of the encoded quantum information.

Shortly after the discovery of the first quantum error correcting codes [19, 20, 21], it
was found that quantum error correction is possible even when the recovery procedure
itself involves imperfect gates [22, 23, 24]. Schemes with this property are called fault-
tolerant and their existence confirms that quantum computation is indeed possible despite
the fact that physical quantum gates will never be perfect. The only requirement is that
they are close enough to the perfect case.

In the early 2000s, Kivaev showed that it is possible to simulate (and hence perform)
universal quantum computation by braiding anyons [25]. This scheme, known as topological
quantum computation has the advantage that operations performed through braiding are
inherently fault-tolerant by construction. The simplest model of anyons which allows for
universal quantum computation through braiding is the Fibonacci model [26].

The degenerate ground space of topological systems (see Sec. 1.1) can be used as the
code space of an error correcting code. Local errors will then create pairs of anyonic
excitations, which must be brought back together and annihilated in order to return to
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the code space. The stable energy gap of topological systems means that they do offer a
level of passive error protection, which can be combined with active error correction (i.e.,
actively fusing pairs of anyonic excitations) for nonzero temperatures in order to offer a
high level of protection against thermal noise. Experimental realizations of topological
systems, however, are not practical for the construction of quantum computers, which are
more likely to use qubits as a fundamental resource.

Fortunately, the techniques of topological quantum error correction can be used with-
out relying on any experimental realization of topologically phases. One can encode the
logical state in a ground state of a local topologically ordered Hamiltonian defined on a
system of qubits (regardless of the actual Hamiltonian governing the time evolution of
those qubits). This Hamiltonian operator can then be measured actively such that errors
result in the creation of pairs of (quasiparticle) anyonic excitations. One can then apply
the machinery of topological error correction to fuse and annihilate these quasiparticle
excitations. The most famous and simultaneously simplest example of a topological code
is the surface code (or the associated toric code) [25, 27].

As a way to provide some intuition on the principles at play in topological codes, we
conclude this section by giving a brief introduction on the toric code. The toric code is
defined on a square lattice with the periodic boundary conditions of a torus. The code
space is then defined as the ground space of the following Hamiltonian:

H = −
∑
v

Qv −
∑
p

Bp , (1.1)

where the sums run over all vertices v and all plaquettes p, and the operators Qv and Bp
are defined as

Qv =
⊗
e∈v

σez =
σz

σz

σz σz ,

Bp =
⊗
e∈p

σex =
σx

σx

σx σx .

For an L×L square lattice with periodic boundary one has n = 2L2 edges, L2 vertices and
L2 plaquettes. However, because of the torus topology, not all Bp and Qv operators are
independent: one has

∏
p′ 6=pBp′ = Bp, and similarly:

∏
v′ 6=v Qv′ = Qv. The groundspace

of Eq. (1.1) must, therefore, satisfy L2 − 2 independent5 constraints, meaning that it is
four-dimensional (thus encoding the state of k = 2 logical qubits).

If we think of the qubit states |0〉 and |1〉 as “non-occupied” and “occupied” edges,
respectively, then the vertex stabilizers Qv enforce the condition that only an even number
of occupied edges are allowed to meet in every vertex. The condition

∏
pBp |ψ0〉 = |ψ0〉

means that ground states of Eq. (1.1) are superpositions of different configurations of loops.
If we denote a classical configuration of loops on the lattice by C (and the corresponding
quantum state by |C〉), then we can define the following functions:

L1(C) = #(occupied horizontal edges on a single column) mod 2 ,
L2(C) = #(occupied vertical edges on a single row) mod 2 .

We can now associate the logical states |00〉 , |01〉 , |10〉 , |11〉 with the following basis of
5Note that [Qv, Bp] = [Qv, Qv′ ] = [Bp, Bp′ ] = 0.
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σz
σz

σzσz σx σx

σx

σx

σz
σz σz σz

σx
σx

σx

σx σx

(a)

Z̄1

X̄1

(b)

Z̄2

X̄2

(c)

Figure 1.2: (a) Excitations in the toric code. The shaded disks and squares represent
violated vertex and plaquette operators, respectively. The (dual) lines connecting each
pair represent the string of errors that created them. (b,c) The logical operators on the
toric code.

the code space:

|ψ00〉 = 1
N

∑
C:L1(C)=0
L2(C)=0

|C〉 ,

|ψ01〉 = 1
N

∑
C:L1(C)=0
L2(C)=1

|C〉 ,

|ψ10〉 = 1
N

∑
C:L1(C)=1
L2(C)=0

|C〉 ,

|ψ11〉 = 1
N

∑
C:L1(C)=1
L2(C)=1

|C〉 ,

where N is a normalization factor. One can easily verify that the logical operator Z̄1 ≡
σz ⊗ 1 corresponds to a dual string of σz operators winding along the torus vertically, as
indicated on Fig. 1.2(b). Analogously, the logical operator Z̄2 ≡ 1 ⊗ σz corresponds to a
dual string of σz operators winding along the torus horizontally, as indicated on Fig. 1.2(c).
Meanwhile, the logical operators X̄1 ≡ σx ⊗ 1 and X̄2 ≡ 1⊗ σx correspond to a string of
σx operators winding along the torus.

We can now consider what happens when the system is subjected to errors in the
form of random Pauli operators. When a string of σx errors are applied, this will result
in a pair of violated vertex operators Qv at its endpoints [see Fig. 1.2(a)]. Such pairs
of excitations can always be removed by applying an appropriate string of σx operators
in order to recombine them. The specific correction to remove a pair of excitations not
unique. The only requirement is that the correction and error paths are homologically
equivalent, i.e., that the joint path of the original string or errors and the correction forms
a contractible loop (does not wind around the torus). Indeed, whenever the combined
path of error and correction forms a homologically trivial cycle, their combined action is
identical to a product of plaquette operators. On the other hand, if their combined path
is homologically non-trivial, their combined action results in the application of a logical
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operator (X̄1, X̄2 or X̄1X̄2), which corrupts the encoded information. A similar situation
arises for σz errors, where a dual string of errors results in a pair of violated plaquette
operators Bp at its endpoints.

Correcting the encoded information thus amounts to finding the correct paths along
which to fuse pairs of excitations, such that the combined path of all errors and correction
operators does not percolate around the torus. It can be shown that when the probability
p of an error on each physical qubit stays below a certain threshold pc, a good correction
strategy will result in the probability Pfail of causing a logical error to decrease expo-
nentially with the system size L. In the optimal case, the error correction threshold is
pc ≈ 0.109 [27].

1.3 Tensor networks

During the previous two decades, tensor network states [28, 29, 30] have emerged as a vital
tool for both the theoretical and numerical study of strongly correlated quantum many-
body systems. Their strength originates in the fact that they can be used to describe low-
energy states of interacting systems in terms of local entanglement degrees of freedom,
which allows for a very efficient representation of these states despite the exponential
scaling of the quantum many-body Hilbert space.

Consider a quantum many-body system of N particles on sites s = 1, . . . , N which all
have a local Hilbert space of dimension d. In general, the wave function of such a system
can be written as

|ψ〉 =
∑

i1,i2,...,iN

Ci1i2...iN |i1〉 |i2〉 . . . |iN 〉 , (1.2)

where {|is〉 | is = 1, . . . , d} is a basis for the local Hilbert space of the particle on site s.
Since the total Hilbert space has dimension dN , a generic state requires us to specify dN
complex coefficients Ci1i2...iN . As N increases, describing generic states in the total Hilbert
space quickly becomes intractable.

In many cases however, the phyical states of interest contain some additional structure
which permits a more efficient representation. In particular, it is believed that low energy
eigenstates of gapped Hamiltonians with local interactions obey an area-law scaling of the
entanglement entropy [31].

The coefficient Ci1i2···iN in Eq. (1.2) can be thought of as a tensor with N d-dimensional
indices. Since this tensor completely determines the quantum state6, one can represent
the state graphically as follows:

|ψ〉 = C

i1 i2 · · · iN

. (1.3)

Tensor network states are states for which this tensor is decomposed as a contraction
of smaller tensors:

C

i1 i2 · · · iN

= A(1) A(2) A(N)

i1 i2 · · · iN

. (1.4)

The lines connecting the different tensors represent sums over shared indices, which are
called virtual indices. One can interpret them as representing the entanglement between

6That is, with a fixed choice for the basis of the local Hilbert spaces.
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different parts of the system. The number of possible values for a virtual index is called
its bond dimension.

For generic states, the bond dimension of these virtual indices will scale exponentially
with the system size. For states obeying an area law for the entanglement entropy, however,
one can show that the bond dimension of the virtual indices scales at most polynomially
with the system size. Hence, this allows for a much more efficient representation of the
wave function than the one used in Eq. (1.2). The structure of the decomposition in (1.4)
depends on the nature of the state under consideration. One of the most famous class
of tensor network states are matrix product states (MPS) [32, 33]. This class of tensor
network states was conceived to represent ground states of translation invariant quantum
spin chains. Their structure is as follows:

C

i1 i2 · · · iN

= A

i1 i2 · · · iN

A A . (1.5)

The state in Eq. (1.2) can then be written as

|ψ〉 =
∑

i1,i2,...,iN

Tr
[
Ai1Ai2 ...AiN

]
|i1〉 |i2〉 ... |iN 〉 , (1.6)

where {Ai | i = 1, . . . , d} is a set of D ×D matrices.
A similar construction exists for a large class of many-body operators called matrix

product operators (MPOs):

O =
∑

i1,...,iN

∑
j1,...,jN

Tr
[
Ai1j1 ...A

iN
jN

]
|i1...iN 〉 〈j1...jN | , (1.7)

or, equivalently,

O = A

i1 i2 · · · iN

A A

j1 j2 · · · jN

. (1.8)

This class of tensor network states has been generalized to two or more dimensions,
yielding projected entangled pair states (PEPS) [34]. Similar to MPS states, they consist
of tensors that map a set of virtual degrees of freedom to physical degrees of freedom.
These tensors are arranged according to the lattice on which the spin system is defined
and their virtual indices are then contracted. For a square lattice, the resulting state looks
as follows:

|ψ〉 = . (1.9)
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1.4 This dissertation
The biggest theoretical challenge in achieving scalable quantum computation is the con-
struction of more efficient schemes for quantum error correction and fault-tolerance [35,
36]. Topological quantum error correcting codes (QECC), with the most famous represen-
tative being the surface code [25, 27, 37, 38, 39], are among the most promising candidates
for near-term implementation due to their geometric locality which makes them well suited
for practical implementation using state-of-the-art hardware technology such as supercon-
ducting or semiconducting qubits, ion traps, silicon photonics, NV centers, cold atoms,
just to name a few. Surface codes allow for high quantum error correction thresholds,
but have the drawback that one needs a very large overhead of magic states to make the
scheme universal for quantum computation [36, 39, 40].

In order to overcome this limitation, one has to consider topological codes which allow
for non-Clifford logical gates. One approach in this direction is to consider stabilizer
codes in higher dimensions, which allow for non-Clifford transversal gates [41, 42, 43].
Notably, it was discovered recently that one can draw upon the advantages of such higher
dimensional models using only a two-dimensional array of qubits by using time to emulate
a third spatial dimension in a 2D measurement-based quantum computing architecture
[44, 45]. A perpendicular direction is to look beyond the stabilizer formalism and consider
non-Abelian codes in 2D which are universal for quantum computation without the need
for magic-state distillation [46]. In this dissertation, we follow this second path, as we
believe that this is a more natural setting for hardware platforms currently being pursued.

Most conventional topological error correcting codes fall within the framework of the
stabilizer formalism [47] and admit quasiparticle excitations which can be characterized as
Abelian anyons. However, braiding of these excitations does not allow for a universal gate
set. Similarly, double semion topological codes [48, 49], while going beyond the stabilizer
code class, exhibit Abelian topological order and are not universal. In order to achieve
universal topological quantum computation, a necessary condition is to use systems with a
more intricate topological order allowing for non-Abelian anyonic excitations, which have
the property that the fusion of two anyons can yield several outcomes [46]. In particular,
braiding of Fibonacci anyons can be used to realize a fault-tolerant universal gate set [26].
Several lattice models supporting this non-Abelian topological order have been proposed,
such as Kitaev’s quantum double models [25] or the string-net models of Levin and Wen
[50]. While their ground space is still defined as the simultaneous eigenspace of a set of
mutually commuting local check operators, their description falls beyond the stabilizer
formalism.

In recent years, there has been significant progress in the study of quantum error cor-
rection and decoding for non-Abelian topological codes with a non-stabilizer structure,
including numerical estimates of their error thresholds [51, 52, 53, 54, 55]. These works,
however, assume the existence of a protected anyonic fusion space and only consider phe-
nomenological noise models on this space, while not specifying a concrete underlying mi-
croscopic quantum mechanical spin model suitable for the description of realistic quantum
computer implementations.

In this work, we remedy this shortcoming by considering a non-Abelian error correcting
code consisting of generic qubits subjected to depolarizing noise. We focus on one of the
simplest of those codes, the Turaev-Viro code constructed from the Fibonacci string-net
model [50]. Building on the pioneering work of König, Kuperberg and Reichardt [56] and
of Bonesteel and DiVincenzo [57], we construct a set of measurements and quantum gates
which map arbitrary qubit errors to the Turaev-Viro subspace, and make crucial use of
the framework of tensor networks for simulating the error correction process, giving rise to
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surprisingly high quantum error correction thresholds. Using a clustering decoder and a
fixed-rate sampling noise model, we have obtained a 4.7% threshold for the code subjected
to depolarizing noise, and a 7.3% threshold for pure dephasing noise. These numbers are
comparable to the code-capacity error threshold of the surface code, which is around 10%
for i.i.d. bit-flip or phase-flip noise [27, 58, 59, 60].

Before giving an overview of the content of this dissertation, let us provide a brief
review of the history and current status of the Turaev-Viro codes. After Witten [61]
and Atiyah’s [62] early introduction of the formalism of topological quantum field theory
(TQFT) in the 1980s, Turaev and Viro introduced a path integral in terms of a discrete
state-sum describing a wide class of 2+1D topological quantum field theories. This led to
new quantum invariants of 3-manifold generalizing Witten’s quantum invariants in 1992
[63]. Around 1997, Kitaev had the crucial insight that the problem of constructing quan-
tum error correcting codes is effectively equivalent to the one of constructing quantum
spin systems providing a Hamiltonian realization of such topological field theories. He
introduced a class of quantum double models [25], of which the simplest Abelian version
D(Z2) is the well-known toric code. The non-Abelian codes in the quantum double family
can be used to implement universal fault-tolerant logical gate sets without magic state dis-
tillation. In 2005, Levin and Wen generalized and categorified Kitaev’s quantum doubles
by introducing string-net models [50], which provide a local Hamiltonian realization of all
Turaev-Viro TQFTs. These models capture all non-chiral topological orders (Abelian and
non-Abelian) in 2D, including topological orders of the toric code and Kitaev’s quantum
double model as specific examples. In 2010, König, Kuperberg and Reichardt [56] studied
a class of Levin-Wen models with a modular input category from the point of view of error
correction and called them Turaev-Viro codes. They developed the tube algebra for this
modular case and defined a complete basis of the anyonic excitations. In 2012, Bones-
teel and DiVincenzo proposed the quantum circuits to measure the vertex and plaquette
projectors in the Fibonacci Levin-Wen model [57] and hence made the first step towards
practical implementation of Turaev-Viro codes with ordinary qubits by devising an error
detection scheme.

Several technical difficulties had to be solved however to turn their error detecting
scheme into an error correcting one. First, the original string-net model proposed by
Levin and Wen [64] does not admit an easy microscopic description of all types of anyonic
excitations in the corresponding topological phases, but only the fluxons (plaquette exci-
tations). As we will see, a single vertex error in this model can bring the system out of
the string-net subspace such that the created excitations are no longer anyons as in the
case of phenomenological anyon models [51, 54, 55], making error correction and decoding
quite challenging. For that purpose, an extended string-net model was defined on a tailed
lattice [65, 66] (see also Ref. [67] where tail qubits were introduced for the purpose of
incorporating charged and dyonic excitations in topological phases). In the same work
[65, 66], a scheme to trap vertex errors and a tadpole swapping scheme to trap plaquette
errors were introduced.

In this work, we adopt this tailed-lattice construction and use a similar strategy to
trap local vertex errors. We introduce a measurement scheme in terms of tube algebras
or tube operators [68, 69] whose outcomes contain more syndrome information than the
ones reported in Refs. [65] and [66]. This tube algebra enables the definition of an anyonic
fusion basis, which can be used to effectively describe the system evolution in the simpler
language of an anyon model. We then use the tensor network description of those tube
algebras to convert microscopic noise processes such as Pauli errors into anyon-creation
processes. The last step needed to calculate error correcting thresholds then consists of
simulating the error correcting process.

10



CHAPTER 1. INTRODUCTION

It is tempting to think that an efficient classical simulation of the error correction
process for the Fibonacci Turaev-Viro code is impossible, since braiding Fibonacci anyons
is universal for quantum computation. This issue has been addressed in Ref. [55] for a
phenomenological Fibonacci anyon model (in which the physical degrees of freedom are
anyons as opposed to qubits) and it was demonstrated that it is possible to simulate
the error correction threshold with a polynomial complexity. This is because, unlike
the quantum computation process where the computational anyons are braided along
topologically nontrivial worldlines, the worldlines of noise-created anyons in the error
correction process are topologically trivial most of the time. As long as the system is below
the percolation threshold corresponding to anyon generation, this classical simulation can
be performed in an efficient way. Our work extends the applicability of that result to the
case where the physical degrees of freedom are qubits subject to arbitrary noise processes
and, hence, allows us to determine error thresholds through classical simulations.

Overview

There are in essence two main achievements detailed in this dissertation. The first is
the construction of a non-Abelian topological quantum error correcting code consisting of
regular qubits and the design of a complete protocol for error detection and correction in
this code. The second is the classical simulation of this error correction procedure using
tensor network techniques resulting in an estimate for the associated error correction
threshold for a microscopic noise model of Pauli errors.

For the reader’s convenience, this dissertation is split up in three parts. The first
part consists of one chapter, which provides some technical background on ribbon graphs
and on their relation to the Levin-Wen model. Most important equations here, will be
repeated in the subsequent parts in order to keep them more or less self contained and
improve their readability. Hence, the reader may skip this chapter if they wish, and read
it selectively instead when referred back to from later chapters. The second part consists
of three chapters which are dedicated to the construction of the error correcting code, the
design of a complete error correction scheme including all necessary measurement and re-
covery cicuits, and the detailed definitions of several decoding schemes. Finally, the third
part considers the classical simulation of the error correction process for a depolarizing
noise model and presents the numerical results obtained from said simulations.

The flow of this dissertation is as follows:

Chapter 2 introduces the theoretical framework of ribbon graphs which will be used
extensively throughout this dissertation. We start with a very condensed overview of the
necessary category-theoretic definitions and proceed by defining the ribbon graph Hilbert
space for an input category C. Largely following Ref. [56], we then discuss its most impor-
tant properties. By introducing a basis for this Hilbert space, known as the anyonic fusion
basis, ribbon graph states can be interpreted in terms of anyonic fusion states of the dou-
bled category DC. We define an operator algebra, known as the tube algebra [68], whose
central idempotents form projectors on the different topological sectors of the doubled
category. This tube algebra, together with the interpretation of ribbon graph states as
doubled anyonic fusion states, form the guiding principle throughout the remainder of our
discussion. We conclude this chapter by illustrating how the Levin-Wen model naturally
arises in the context of a lattice realization of the ribbon graph Hilbert space.

Chapter 3 contains a complete and self-contained definition of the extended string-

11



CHAPTER 1. INTRODUCTION

net code together with a discussion of its most imporant properties. Our starting point is
the Fibonacci Levin-Wen string-net model [50] of qubits arranged on a hexagonal lattice,
defined from the algebraic data of the Fibonacci unitary fusion category (UFC). We adopt
an extension of the string-net model that serves as the basis for an error correcting code.
This extension has a twofold motivation. On the one hand, we need a way of correcting
violations of the ribbon graph branching rules that can be induced by generic errors at
the level of the lattice qubits. Moreover, we require a concise way of characterizing the
excitation spectrum in terms of anyonic charges by defining the action of the tube algebra
idempotents in the bulk of the lattice model. Both of these requirements can be met by
adding an additional “tail edge” to each plaquette, inspired by the constructions introduced
in Refs. [65], [66] and [67] for similar reasons.

These considerations then lead to a model of qubits arranged on the edges of a tailed
hexagonal lattice on the torus whose fourfold degenerate ground space serves as a topo-
logical quantum memory and effectively encodes two logical qubits, and whose excited
states can be interpreted as fusion states of doubled Fibonacci anyons. By generalizing
the torus setup (genus = 1) to a higher-genus surface, one can scale up the number of
logical qubits, which grows approximately linearly with the genus. One can hence perform
universal quantum computation via topological operations corresponding to the elements
of the mapping class group of the high-genus surface, which can be generated by Dehn
twists [26, 56, 70].

After defining the code as the ground space of the extended string-net model, we study
its anyonic excitations. We formulate the action of the tube algebra on lattice qubits, and
introduce the lattice realization of the anyonic fusion basis of Chapter 2.

Chapter 4 contains detailed definitions of all protocols for error detection and cor-
rection. Generic errors on the lattice qubits can cause violations of the string-net (ribbon
graph) branching rules. Such a violation can be interpreted as a string ending in a vertex
of the lattice, resulting in a qubit state that lies outside of the string-net subspace, which
can therefore not be captured as an anyonic fusion state. Circuits for detecting vertex
violations were first introduced in Ref. [57]. We define local unitary circuits that can
correct an arbitrary combination of vertex errors by pulling the corresponding string end
onto the tail edge of the associated plaquette. These vertex correction circuits are similar
to those used in Refs. [65] and [66]. After returning the system to the string-net subspace
in this way, we define circuits for syndrome extraction, again guided by the concept of the
tube algebra. Measuring the idempotents of the tube algebra in each plaquette reveals the
location and charge of all anyonic excitations in the system, yielding the error syndrome.

Utilizing the ribbon graph formalism, we naturally arrive at a local unitary circuit
which can perform these charge measurements. Equipped with this protocol for syndrome
extraction, we are left with the task of recovery, which consists of moving excitations on
the lattice and fusing them to back to the anyonic vacuum, thereby returning the system
to the code space. Similar to the Abelian case, a logical error occurs when an anyon is
wound along a nontrivial cycle of the torus in this process. Building on and extending
previous works [56, 65, 66, 70, 71, 72], we design protocols for the necessary recovery
operations at the level of the qubits.

Chapter 5 describes the decoding procedure itself, which entails deciding which re-
covery operations should be carried out for a given error syndrome. We rely on recent
advances in error correction for non-Abelian anyon models [51, 52, 55] and tailor the de-
coders introduced there to our specific code, as well as further design new decoders for
our purpose. The main difficulty that arises for the non-Abelian case is the fact that error
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correction has to proceed in an iterative fashion because of indeterminacy of fusion out-
comes for non-Abelian anyons. Specifically, we adapt a clustering decoder to our setting
and further design a fusion-aware iterative matching decoder.

These considerations conclude our discussion of the code definition and associated
error correction protocol, giving a complete scheme for error correction in an extended
Fibonacci Turaev-Viro code.

In Chapter 6, we study the construction of PEPS representations of string-net ground
states. We then generalize this construction to obtain an explicit tensor network repre-
sentation of generic anyonic fusion states that appear as excitations in our model. These
PEPS representations will prove essential for the classical simulation of the error correc-
tion process, as they enable us to calculate overlaps matrix elements of generic microscopic
qubit errors.

In Chapter 7, we finally move on to our second main result: the classical simulation
of the error correction procedure and the estimate of the error correction threshold. After
some general comments on the classical simulation of non-Abelian quantum error correc-
tion, we define a fixed-rate sampling model of depolarizing noise. The main problem to be
tackled here is the question of how to determine what distribution of anyonic excitations is
generated by Pauli errors acting at the level of the lattice qubits. The complex description
of the excited anyonic fusion states in terms of qubit states makes this a highly nontrivial
task however. By using the PEPS representations of these states, constructed in Chapter 6,
we quantitatively analyze the effect of Pauli noise on the code, which effectively allows
to translate a physical error rate at the level of the qubits to an anyon generation rate.
We can hence simplify the classical simulation of the decoding problem to the simulation
of noise-driven dynamics of anyonic fusion states, which is infinitely more feasible than
directly simulating the full microscopic model itself in the qubit basis. Having overcome
this main difficulty, we adapt recently developed techniques for simulating non-Abelian
error correction [55] to the hexagonal geometry and doubled Fibonacci excitations relevant
to our model. We conclude this chapter by giving a complete overview of all necessary
steps in the classical simulation of error correction in our code.

Chapter 8 contains the result obtained using the Monte Carlo simulations detailed in
Chapter 7 for the decoders introduced in Chapter 5. In all cases a very distinct threshold
behavior is visible. We then briefly compare these result to those of the surface code with
similar assumptions. To the best of our knowledge, our results provide the first threshold
estimate for a two-dimensional error correcting code of qubits which is universal for topo-
logical quantum computation, without the need for additional non-topological operations.

Finally, in Chapter 9, we summarize the results and discuss some possible future
research directions. These include the adaptations of our error correction protocols to a
full fault-tolerant scheme and investigating planar string-net codes with suitable boundary
conditions.
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Part I

Technical background
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2 | Ribbon graphs

The extended string-net model which we will define in Chapter 3 is best introduced in the
context of topological quantum field theory. In particular, it can be understood as a local
Hamiltonian realization of the Turaev-Viro TQFT. Hence, the associated error correcting
code should be thought of as a microscopic realization of a Turaev-Viro code [56] on a
system of qudits. In this chapter, we introduce the ribbon graph Hilbert space originating
from the Turaev Viro TQFT. We introduce a basis of this Hilbert space which allows us to
interpret ribbon graph configurations in terms of anyonic fusion states. We then discuss
the tube algebra which emerges naturally in this context. We conclude by illustrating how
the Levin-Wen string-net model emerges naturally when constructing a lattice realization
of the ribbon graph Hilbert space.
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CHAPTER 2. RIBBON GRAPHS

2.1 Category theory primer
The mathematical underpinning op topological order and anyon models, is category the-
ory. Category theory in itself is a broad field of mathematics, which has been studied
intensively for several decades, For the purpose of this work however, we do not need
the full mathematical machinery of category theory. Instead, we will give a condensed
overview of the algebraic data of unitary fusion categories and unitary modular tensor
categories, which are needed for defining our model in the remainder of this chapter.

A unitary fusion category (UFC) C is defined by a finite set of simple objects

{a1, a2, . . . aN}, (2.1)

and a collection of algebraic data for this set. The core of this data is formed by the fusion
algebra

a× b =
∑
c

N c
abc , (2.2)

where N c
ab ∈ N are called the fusion coefficients. The fusion algebra satisfies the following

associativity condition: ∑
e

N e
abN

d
ec =

∑
f

Nf
bcN

d
af . (2.3)

We define

δcab =
{

0 if N c
ab = 0 ,

1 otherwise.
(2.4)

Among the simple objects, there must be a unique unit element 1, satisfying N b
1a =

N b
a1 = δa,b for all a, b ∈ C. For each a ∈ C, there is a unique element a∗ ∈ C satisfying

(a∗)∗ = a, and N1
ab = N1

ba = δa∗,b.
A UFC associates to every fusion (resp. splitting) vertex, an N c

ab-dimensional vector
space V c

ab (resp. V ab
c ) over C. For simplicity, we will restrict to the multiplicity-free case,

i.e.: N c
ab = δcab.

The fusion associativity condition (2.3) then implies that the fusion or splitting vector
spaces corresponding to different orderings of fusion or splitting, are isomorphic:⊕

e

V e
ab ⊗ V d

ec '
⊕
f

V f
bc ⊗ V

d
af . (2.5)

The linear map between those two vector spaces is given by a 6-index object called the
F -symbol:

a b c

d

e
=
∑
f

F abe
∗

cd∗f

a b c

d

f . (2.6)

The F -symbol is only defined for allowed fusion vertices. We use the convention that it is
zero outside this subspace:

F abecdf = δabeδe∗cdδadfδbcf∗F
abe
cdf , (2.7)

where δabc = δc
∗
ab. The F -symbol must satisfy the following consistency condition, called

the pentagon equation:

F cfg
∗

e∗dl∗F
baf∗

e∗lk∗ =
∑
h

F baf
∗

g∗ch∗F
hag∗

e∗dk∗F
cbh∗
k∗dl∗ . (2.8)
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CHAPTER 2. RIBBON GRAPHS

Each simple object a ∈ C, we define a constant da ∈ R called the quantum dimension:

da = 1∣∣F aa∗1aa∗1
∣∣ . (2.9)

The quantum dimensions satisfy

dadb =
∑
k

N c
abdc , d1 = 1 , and da∗ = da . (2.10)

The total quantum dimension D is defined as

D =
√∑

a

d2
a . (2.11)

Finally, the F -symbol, when viewed as a matrix [F abcd ]fe = F abecdf , must be unitary on
the subspace on which it is defined:

[(F abcd )−1]ef = [(F abcd )†]ef =
(
[F abcd ]fe

)∗
, (2.12)∑

f

(
F abe

′
cdf

)∗
F abecdf = δe,e′δabeδe∗cd .

A unitary ribbon category (URC) is obtained by adding the notion of braiding and
twists to a UFC. Braiding is a unitary operation between fusion spaces that corresponds
to a counterclockwise exchange:

Rab : V c
ab → V c

ba :

ba

c

7→

ab

c

= Rabc

ab

c

. (2.13)

Note that since we are working in the multiplicity-free case, Rabc is simply a complex phase.
It’s inverse corresponds to a clockwise exchange:

(Rba)−1 : V c
ab → V c

ba :

ba

c

7→

ab

c

=
(
Rbac

)∗ ab

c

. (2.14)

Similar to the pentagon equation (2.8) for the F -symbol, the R-symbol must obey consis-
tency conditions called the hexagon equations:

Rcae F
c∗a∗e
db∗g Rcbg =

∑
f

F a
∗c∗e

db∗f Rcfd F
b∗a∗f
dc∗g , (2.15)

(
Race

)∗
F c
∗a∗e
db∗g

(
Rbcg

)∗ =
∑
f

F a
∗c∗e

db∗f

(
Rfcd

)∗
F b
∗a∗f
dc∗g . (2.16)

In a URC, every simple object a is assigned a topological phase θa, used to “untwist”
a ribbon:

a

= θa

a

,

a

= (θa)∗
a

. (2.17)
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CHAPTER 2. RIBBON GRAPHS

The topological phase is related to the R-symbol as follows:

θa =
(
Raa

∗
1

)∗
. (2.18)

A Unitary Modular Tensor Category, is a unitary ribbon category for which the R-
matrices satisfy a certain nondegeneracy condition. We will not need the technical defini-
tion of modularity. For more details, we refer the reader to Ref. [73].

2.1.1 The Fibonacci category

Throughout this dissertation, we will place a special focus on the Fibonacci category. This
category contains two simple objects:

{1, τ}, (2.19)

with only one nontrivial fusion rule

τ × τ = 1 + τ . (2.20)

The pentagon equation (2.8) with these fusion rules only has one solution that satisfies
the unitarity condition (2.12). The only nontrivial F -matrix is

[F ττττ ] =
(
φ−1 φ−

1
2

φ−
1
2 −φ−1

)
, (2.21)

where φ =
√

5+1
2 is the golden ratio. For all other combinations of indices, F ijmkln is either

1 or 0, depending on whether or not the corresponding indices in Eq. (2.7) satisfy the
branching rules.

The quantum dimensions are

d1 = 1 , dτ = φ , (2.22)

and the total quantum dimension is then given by

D =
√

1 + φ2 =
√

2 + φ =
√√

5φ . (2.23)

The hexagon equation admits two solutions, which are related by complex conjugation.
We will use the following:

Rττ1 = e
4πi
5 , Rτττ = e

−3πi
5 , (2.24)

the other R-symbols allowed by the fusion rules are R1a
a = Ra1

a = 1 for any a.
Finally, the modular S-matrix is

S = 1√
2 + φ

(
1 φ
φ 1

)
. (2.25)

2.2 The ribbon graph Hilbert space
The ribbon graph Hilbert space is the Hilbert space associated to a surface by the Turaev-
Viro TQFT defined by a unitary fusion category C [56]. Even though it is defined for
any unitary fusion category, we consider the special case where the input category C is a
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CHAPTER 2. RIBBON GRAPHS

unitary modular tensor category. Furthermore, in addition to the conditions (2.7), (2.8)
and (2.12) that are satisfied for every UMTC, we impose the following three conditions
for the F -symbols:

F ijmkln = F jimlkn∗ = F lkm
∗

jin = F imjk∗nl

vmvn
vjvl

, (2.26)

F ii
∗1

j∗jk = vk
vivj

δijk , (2.27)(
F ijmkln

)∗
= F linjkm∗ . (2.28)

The first of these conditions is known as tetrahedral symmetry, the second one is a nor-
malization condition and the third condition is an alternative formulation of the unitarity
condition Eq. (2.12).

Let Σ be a compact orientable surface with a boundary, where we place a single marked
point on each connected component of the boundary. A ribbon graph is a labeled, directed
graph embedded into Σ, with internal vertices of degree two and three, and a vertex of
degree one at each marked boundary point of Σ. The ribbons are labeled with the labels
of C. Reversing the direction of an edge in the ribbon graph corresponds to conjugating
the edge label. Edges assigned the trivial label 1 can be added to or removed from a given
ribbon graph, as the vacuum label denotes the absence of a ribbon. We require that each
internal vertex satisfies the fusion rules, i.e.: that δijk = 1 for every vertex with incoming
lines i, j and k.

The ribbon graph Hilbert space HΣ is the space of formal linear combinations of ribbon
graphs, modulo the following relations:

i
=

i
, (2.29)

ij = δj1 di , (2.30)

i

j

m

k

l
=
∑
n

F ijmkln

i

j
n

k

l
. (2.31)

A convenient relation, known as the bubble bursting equation, follows from Eqs. (2.31)
and Eq. (2.27):

k′

k

i j = vivj
vk

δkk′

k

. (2.32)

Another convenient relation that follows from Eq. (2.27) is

i j

=
∑
k

vk
vivj

δijk∗

i j

k

i j

. (2.33)

From here on, in order to simplify the notation and the graphical representations, we
will assume that C is self-dual, meaning i = i∗ for all labels i ∈ C. This allows us to drop
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CHAPTER 2. RIBBON GRAPHS

the orientations in the ribbon diagrams. The generalization to non-self-dual categories is
straight-forward. A much more elaborate treatment of the ribbon graph Hilbert space,
including the non-self-dual case, can be found in Ref. [56]. However, for our purpose, this
simplified and condensed summary is sufficient.

We now consider the case where Σ is the n-punctured sphere, Σn = S2\(A1∪· · ·∪An),
where each Ai represents a disk. To each hole we assign a single marked boundary point
p ∈ ∂Ai. A labeling ` of Σn associates to each marked boundary point p a label `(p) ∈ C.
The ribbon graph Hilbert space HΣn can then be decomposed as

HΣn =
⊕
`

H`Σn , (2.34)

where H`Σn is the subspace spanned by ribbon graphs with an edge labeled by `(p) con-
nected to p, for every marked boundary point p.

We can define a basis for HΣn based on a pants decomposition of the surface Σn. A
pants decomposition is associated to a rooted binary tree with n − 1 leaves, where the
root and leaves each correspond to a hole in Σn. Its internal vertices of degree three
correspond to pants segments, each isomorphic with Σ3, while its edges correspond to
cylindrical segments, each isomorphic with Σ2. An example of a pants decomposition of
Σ4 is depicted in Fig. 2.1. For a given pants decomposition, a basis for HΣn is obtained

Figure 2.1: A standard pants decomposition for the sphere with four punctures Σ4.

by fixing the ribbon graph on each leaf to

k

ji

l
≡

k

j
li

, (2.35)

on each internal segment and on the root to

l ≡
l
, (2.36)

and finally connecting the ribbons in each pant segment. The set of all allowed label
assignments of this ribbon graph, constitutes a basis for HΣn . An inner product on HΣ
can now be defined by setting these basis states to be orthonormal. This basis is called
a computational basis, since it provides a way of encoding HΣn into 5n − 6 qudits. A
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more general construction, based on specific triangulations of Σ, exists and gives rise to
an entire family of computational bases for HΣn [56]. These different computational bases
can be related using the equivalence rules (2.29), (2.30) and (2.31), ensuring that the inner
product they define is unique.

2.3 Dehn twists and braid moves on HΣ

Consider the set Q ∈ Σ of all marked boundary points. Diffeomorphisms f : Σ→ Σ that
map the Q onto itself, define an action on HΣ. Two special types of such transforma-
tions, known is Dehn twists and braid moves, are of particular interests to us, because of
their relation with the topological properties of anyon models (i.e.: the R-matrices and
topological phases appearing in Sec. 2.1.

A Dehn twist corresponds to a 2π-counterclockwise twist along a simple closed curve
on Σn. If we consider the non-contractible curve γ,

γ , (2.37)

then a Dehn twist D(γ) along this curve acts as

D(γ) : i 7→
i
, (2.38)

or, schematically

D(γ) :
i
7→

i
.

A braid move acts on two holes of a pair of pants in Σn and is defined as a π-
counterclockwise twist along a simple closed curve on Σn enclosing the two holes, followed
by a π-twist in the opposite direction on each of the legs corresponding to the two holes,

kj

i
7→

jk

i
, (2.39)

or, schematically

kj

i

7→
k j

i

.

The action of both Dehn twists and braid moves on HΣ follows by linearly extending
their action on the computational basis ribbon graphs to the full Hilbert space.

2.4 The anyonic fusion basis
States described using the computational basis constructed above, do not transform cleanly
under the action of the mapping class group generators, making them inconvenient op-
erationally. Below, we will define an orthonormal basis that simultaneously diagonalizes
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all Dehn twists and behaves nicely under braid moves. While the construction itself is
tedious, this basis will reveal much more of the mathematical structure of HΣ, and will
prove invaluable for the rest of this work. In particular, this construction will reveal the
relation between states in HΣ and the Drinfeld center or categorical double DC of the
input category C.

It is important to note that the categorical double of a unitary fusion category is
always braided, meaning that one does not need to specify braiding properties for the input
category in order to have emergent anyon statistics. In the special case we are considering
however, that where the input category C is itself modular, the Drinfeld center has a special
structure. For a modular input category C the categorical double DC is isomorphic to the
direct product of C and its reverse category C̄: DC ∼= C ⊗ C̄ [74]. The reverse category C̄ is
obtained from C as follows: for each label a ∈ C, there is a corresponding label ā ∈ C̄ which
is the same as a, except for its chirality, which is opposite: θā = (θa)∗. Furthermore the
R-matrix is replaced by Rb̄c̄ā = (Rcba )∗, which one can interpret as swapping the meaning
of clockwise and counterclockwise. The doubled category DC ∼= C ⊗ C̄ then has elements
{a⊗ b̄ | a ∈ C, b̄ ∈ C̄}, which we will denote as ab̄ ≡ a⊗ b̄, fusion rules

δaā′bb̄′cc̄′ = δabc δā′b̄′c̄′ = δabc δa′b′c′ , (2.40)

and numerical data

θaā′ = θaθā′ = θa(θa′)∗ , (2.41)

Rbb̄
′ cc̄′

aā′
= Rbca R

b̄′c̄′

ā′
= Rbca (Rc′b′a′ )∗ , (2.42)

F aā
′ bb̄′ eē′

cc̄′ dd̄′ ff̄ ′
= F abecdf F

a′b′e′
c′d′f ′ . (2.43)

In the following, we will exploit this structure, in order to make the connection between
HΣ and the Drinfield center of C explicit.

A vacuum line, denoted by a dashed line, is defined as a weighted superposition of
ribbons with different labels,

= 1
D
∑
i

di
i
. (2.44)

On can easily show that vacuum loops have the property that all other ribbons can freely
pass over them:

i

=

i

, (2.45)

where the hashed area inside the vacuum loop denotes a generic ribbon graph configu-
ration. This represents a local identity, where the ribbon graphs inside the hashed area
and outside the diagram are assumed to be the same for the left- and right-hand side.
Intuitively, vacuum loops render the region they contain invisible from ribbon graph con-
figurations outside. Another useful identity is

= D , (2.46)

which means we can pull one vacuum loop out of another.
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Fix a pants decomposition for Σn associated to some rooted binary tree T , and fix a
labeling ` of the marked boundary points like in Eq. (2.34). A labeling of T assigns an
anyon label from the input category C to every edge of T . Such a labeling of T is said to be
fusion-consistent if the fusion rules of C are satisfied at every internal vertex of T . A pair of
labelings of T is said to be boundary-consistent with ` if for each marked boundary point
p, the labels a and b assigned to the corresponding leaf of T by the respective labelings of
T satisfy

δab `(p) = 1. (2.47)

A pair of fusion-consistent labelings d of T that is boundary-consistent with ` is called a
`-consistent doubled anyonic fusion diagram.

The anyonic fusion basis for H`Σn is then an orthonormal basis indexed by `-consistent
doubled anyonic fusion diagrams. We still haven’t defined the ribbon graph states |`, d〉 ∈
H`Σn , that correspond to the `-consistent doubled anyonic fusion diagram d. We will
do this by first constructing a three-dimensional ribbon graph on the thickened surface
Σn × [−1, 1], and then reducing it to a regular ribbon graph on Σn.

Think of each of the labelings in d as a ribbon graph, and embed these in the two-
dimensional slices Σn × {1} and Σn × {−1} of the thickened surface, respectively. Place
the marked boundary points of Σn in Σn×{0}, and add a vacuum loop in Σn×{0} around
each of the boundary components. Then close off the diagram by adding a ribbon graph
edge in Σn × {0} labeled by `(p) connected to every boundary point p, and connect the
corresponding edges of the graphs in Σn×{1} and Σn×{−1} to this new edge, inside the
vacuum loop around p,

p

−1

+1a

b

` , (2.48)

where the vertical direction represents the additional coordinate. Boundary consistency
of d ensures that the vertex created by this closing off of the diagram is a valid ribbon
graph vertex. Finally, in order to reduce the resulting diagram to a state in H`Σn , visualize
it as a two-dimensional ribbon graph with crossings in Σn (this requires slightly offsetting
Σn × {1} and Σn × {−1}, the convention for the offset only affects the phase of |`, d〉 ).
These crossings can be resolved using the R-symbol of the input category by combining
(2.13), (2.31) and (2.27) into

i j
=
∑
k

vk
vivj

Rijk
j i
k

ji

. (2.49)

The state |`, d〉 ∈ H`Σn is defined as the resulting superposition of ribbon graphs in Σn that
is obtained by resolving all crossings in this way. The three-dimensional ribbon graphs
introduced here can be manipulated in the same way as regular ribbon graphs in Σn, and
it is sometimes useful to perform manipulations in the three-dimensional picture before
reducing the ribbon graph back to two dimensions. It was shown in Appendix A of Ref. [56]
that the anyonic fusion basis is a complete orthonormal basis for H`Σn . A basis for the
entire Hilbert space HΣn is then obtained by taking the union of the bases for all values
of ` according to (2.34).
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The anyonic fusion basis states of HΣ2 take the form

|k, `, a, b〉 = k
a

b

` ≡

k

a b

`

. (2.50)

Reducing this to a two-dimensional ribbon graph yields

k

a b

`

= 1
D
vavb

∑
α,β

vαvβ
∑
γ,δ

dγdδR
aα
γ Rαbδ G

kδγ
αabG

βaδ
bα`G

kβα
aγδ

k

β
`α

, (2.51)

where the six-index G-symbol is defined as

i

j kλ

µν = vλvµvνG
ijk
λµν

i

j k
. (2.52)

From Eqs. (2.26), (2.28), (2.31) and (2.32), it then follows that, for an input category
describing a self-dual anyon model,

Gijkλµν = 1
vkvν

F ijkλµν . (2.53)

For the general case of HΣn with a standard pants decomposition we get anyonic fusion
basis states of the form

|~̀,~a,~b,~c, ~d〉 =
c1

c2

d1
d2

an−1 bn−1

`n
an

bn

dn−3

cn−3

`1 `2 `3 `n−1

a1 b1 b2a2 a3 b3

. (2.54)

Note that the doubled ribbons were crossed before attaching them to the root `n. This
is a matter of convention, and was done to give it the same geometry as the other leaves
in the pants decomposition. The vacuum loop around the root puncture of the pants
decomposition is unnecessary in principle, but was added here to further symmetrize the
expression between all punctures1. These choices are particularly convenient for the case
of self-dual input categories that we are considering here.

1The inclusion is this additional vacuum loop should be accompanied by a factor 1/D in order to ensure
proper normalization. We choose not to write it explicitly to avoid additional clutter. Unless mentioned
otherwise, proper normalization is always assumed for anyonic fusion basis states.
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Reducing basis state (2.54) to a two-dimensional ribbon graph, is done by first using
Eqs. (2.33) and (2.14) to reduce all doubled interior lines to single lines, which gives

|~̀,~a,~b,~c, ~d〉 =
∑
~k,~l

(
n∏
x=1

vkx
vaxvbx

)n−3∏
y=1

vly
vcyvdy

(Rbnankn

)∗

a1 b1 a2 a3b2 b3

c1

c2

d1

d2

an−1 bn−1

`n
an

bn

dn−3

cn−3

a1
b1

k1 k2a2
b2

b3
a3d1

c1

k3

l1

bn
an

kn−1

l2

kn

ln−3

an−1
bn−1

`1 `2 `3 `n−1

.

(2.55)

The leaf segments can then be reduced as in (2.51), while the pants segments in (2.55)
can be reduced as follows:

ij

k

f
e

d

c b
a

= vavbvcvdvevf
∑
γ,δ

dγdδR
ad
γ G

kbδ
defG

cδγ
daeG

jδa
γdcG

ijk
δba

ij

k

. (2.56)

By combining all of this, one finds

|~̀,~a,~b,~c, ~d〉 =
∑
~α,~β,~k

X~a,~b,~c,~d,~̀

~α,~β,~k,~l

k1

`1

k2 k3

l1
l2

`2 `3

kn−1

`n
kn

ln−3

β1

α1

β2

α2

β3

α3

βn−1

αn−1

βn

αn

`n−1

, (2.57)

where the coefficients X(~a,~b,~c,~d,~̀)
~α,~β,~k,~l

follow from Eqs. (2.55), (2.51) and (2.56).
The basis states of the anyonic fusion basis for a given pants decomposition, can be

interpreted as fusion states of anyons from the doubled category DC. Indeed, one can
easily verify that the topological phases and the R-matrix match with (2.41) and (2.68),
respectively, by computing the action of a Dehn twist and of a braid move. Furthermore the
bases corresponding to different pants decompositions are related by the correct doubled
F -symbol (2.43). These calculations are performed in detail in Ref. [56]. For completeness,
we include them (for the self-dual case) below.

2.4.1 The action of Dehn twists, braiding, and recoupling on the anyonic
fusion basis

Consider a cylindrical segment in the pants decomposition (for which we have constructed
the anyonic fusion basis), with labels a and b assigned to it by an anyonic fusion basis state
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|`, d〉. The three-dimensional ribbon graph in Σ2× [−1, 1] corresponding to this cylindrical
segment, can be represented as the thickened disk

a

b

, (2.58)

where the shaded region denotes the inner component of (∂Σ2) × [−1, 1]. Note that we
have applied (2.45) in order to pull a vacuum loop from the shaded region. This vacuum
loop can be thought of as originating at one of the boundary components inside the
shaded region, using (2.46). For simplicity we will stop drawing the outer boundary of the
cylindrical segment. A Dehn-twist along a non-contractible curve γ around the cylinder
acts on this three-dimensional ribbon graph in exactly the same way as it would on a
regular ribbon graph (2.38), giving

D(γ)

a

b
=

a

b

=

a

b
= θaθ

∗
b

a

b
, (2.59)

where the resulting state was simplified by moving the ribbons to Σn × {0} and pulling
them through the vacuum loop, and using (2.17) to remove the resulting kinks. The
above identity shows that the anyonic fusion basis diagonalizes Dehn twists, and that
the corresponding eigenvalues are the topological spins of the doubled anyons given in
Eq. (2.41).

Now consider a pants segment, with corresponding labels a, b and c, and a′, b′ and c′
in |`, d〉. The resulting three-dimensional ribbon graph is

a

a′

b

c

b′

c′

, (2.60)

where we have again pulled a vacuum loop from one of the shaded regions. A braid move
on the two interior holes acts in the same way it would on a regular ribbon graph (2.39),
giving

a

a′

b

c

b′

c′

7→
a

a′ b

b′

c′

c

=
a

a′
b

c

b′

c′

= Rbca

(
Rc
′b′
a′

)∗ a

a′
b

c

b′

c′

, (2.61)
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where we have again pulled the upper and lower ribbons through the vacuum loop, and
have used (2.13) and (2.14) to remove the resulting kinks. A quick glance at (2.42) confirms
that the is again consistent with the interpretation of fusion basis state as fusion states of
doubled anyons.

Finally we investigate the relation between anyonic fusion basis states associated with
different pants decompositions of Σn. For this we can simply use Eq. (2.31) on both the
top and the bottom ribbon graph independently in the three-dimensional picture. For Σ4
this gives the relation

`4

b b′

`1

a da′ d′

e
c

e′
c′

`2 `3

=
∑
f,f ′

F abecdf F
a′b′e′
c′d′f ′

`4

b b′

`1

a da′ d′

f ′

c

f

c′

`2 `3

, (2.62)

which is indeed the correct F -matrix for of the doubled theory DC given in Eq. (2.43).

2.4.2 Higher-genus surfaces

The definition of the anyonic fusion basis can be extended to surfaces of a higher genus.
Consider a surface Πn with genus g, and n punctures. We start by noting that Πn home-
omorphic to the (n+ g)-puncuted sphere Σn+g with a handle (a punctured torus) glued g
punctures. This is known as a handle decomposition.

As before, we start by fixing a pants decomposition of Σn+g corresponding to a rooted
binary tree T of our choosing. Anyonic fusion basis states of HΠn are then labeled with a
labeling ` of the n marked boundary points, a doubled anyonic fusion diagram d of n+ g
anyons (including the root), and a set  of g doubled anyon labels which we will call the
handle labels. As before, the doubled anyonic fusion diagram d must be `-consistent. In
addition to this, it must also be consistent with the handle labels , by which we mean
that for a handle h ∈ {1, . . . , g} with handle label (h) = b+b−, the doubled anyonic label
a+a− of the corresponding leaf of T must satisfy δa+b+b+ = δa−b−b− = 1

The state |`, d, 〉 HΠn is then constructed similarly as the anyonic fusion basis states
on the punctured sphere. Start by constructing the three-dimensional ribbon graph corre-
sponding to the doubled fusion diagram d on Σn+g×[−1, 1]. In the n regular punctures, the
diagram is closed off according to the boundary labeling ` using (2.48). In the remaining
g punctures, the diagram is closed off using one of the following ribbon configurations:

b−

b+

a−a+

,

b− b+

a−a+

, (2.63)

where a+ and a− are the labels of the corresponding edge in the doubled fusion diagram,
and b+ and b− are the handle labels of the corresponding handle h.

Finally, this three-dimensional ribbon graph in Πn × [−1, 1] is reduced to a regular
ribbon graph in Πn as before, using Eq. (2.49) to remove any crossings. The two possible
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choices for the handle configuration in (2.63) result in two nonequivalent bases. The
unitary operator relating them can be found in Ref. [56]. For a+ = a− = 1, it is given
by the S-matrix of the doubled category C ⊗ C̄. Note that Eqs. (2.59) and (2.61) are still
satisfied, meaning that the resulting ribbon graph states indeed transform appropriately
under the action of the mapping class group.

On a torus, the anyonic fusion basis states (with the first handle choice and  = ef̄)
take the following form:

|~̀,~a,~b,~c, ~d, e, f〉 =

`1 `2

a1 b1

c1

d1 dn−2

cn−2

`n

dn−1

cn−1

e f

b2a2 an bn

, (2.64)

where the gray rectangle represents the periodic boundary conditions of a torus.
The subspace of HΠn where all punctures have the doubled anyon label 11̄ is called

the anyonic vacuum, and is isomorphic to HΠn=0 . It follows from (2.63), that the anyonic
vacuum on a surface with nonzero genus is degenerate. For a torus, this degeneracy is
precisely the number of anyon labels in C⊗C̄, as can be deducted from (2.64). The vacuum
subspace on a torus is spanned by the different possible handle labels. These states are
locally indistinguishable since the loops around the handle can be continuously deformed
in an arbitrary way without changing the resulting state.

Note that in the case where the doubled anyons associated to the punctures of the torus
have a trivial total charge (corresponding to cn−2 = dn−2 = 1 above), the handle labels in
the corresponding anyonic fusion states have no influence on braiding operations on these
anyons, since the loops around the handle ( the lines labeled with e and f above) can always
be pulled through a group of anyons with a trivial total charge without changing the state.
In practice, when working with states with a trivial total charge, one can largely ignore the
precise value of the handle loop labels, since they can not be affected by local operations
on HΠ . The only operations that can modify the handle labels are those involving paths
that are homotopically nonequivalent to the ribbons connected to the punctures. An
example of such an operation is a clockwise exchange of two punctures along a path that
is homotopically nonequivalent to the ribbons connecting these punctures in the anyonic
fusion basis [e.g.: when using the basis in (2.64), exchanging the first two punctures along
a path that crosses the vertical gray boundary]. Subspaces with fixed handle loop labels
 = ef̄ , are not invariant under such operators. Indeed, describing the outcome of this
exchange (in the original basis), will yield a superposition in the loop labels e and f . An
extensive treatment of fusion spaces of anyons on a torus can be found in Ref. [75], the
“outside” and “inside” bases introduced there, correspond to the first and second handle
choices [depicted in (2.63)], respectively.

2.5 The tube algebra
Let ΣA and ΣB be two surfaces, and let Σ be the surface obtained by gluing these surfaces
together along one or more boundary components, in such a way that the marked boundary
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points are matched. Ribbon graphs on σA and ΣB with matching edge-labels in the glued
boundary components, can then be glued together to form a ribbon graph on Σ. In this
way, we can associate to every element s ∈ HΣB a linear map ŝ : HΣA → HΣ. The result
of acting with ŝ on state t ∈ HΣB is a linear combination of ribbon graphs comprising s
and t that have matching boundary labels. The map

̂ : HΣB → ĤΣB (2.65)

is an isomorphism between vector spaces, hence we can interpret ribbon graphs as both
states and operators interchangeably. Since the composition of operators in ĤΣ2 is again
an operator in ĤΣ2 , they define an operator algebra, known as Ocneanu’s tube algebra
[68]. The computational basis of HΣ2 then corresponds to the basis {Oklαβ} of ĤΣ2 with

Oklαβ =
k

β
lα

. (2.66)

Consider the operators

Pab̄kl ≡
1
D
vavb
vk

k

a b

l

, (2.67)

corresponding to (a rescaling of) the anyonic fusion basis states (2.50) of Σ̂2. One can
show that stacking two such anyonic fusion basis states yields

k
a

b

`k′
a′

b′
= D δaa′δbb′

vk
vavb

k′
a

b

` . (2.68)

Hence, the operators Pab̄l ≡ Pab̄ll are the simple idempotents of the tube algebra:

Pab̄l ≡
1
D
vavb
vl

l

a b

l

. (2.69)

Similarly, the operators Pab̄kl with k 6= l are nilpotent.
In general the simple idempotents Eq. (2.69) do not commute with all elements from

the tube algebra. In particular, if any nilpotents Pab̄kl (k 6= l) exist for some pair of labels
ab̄, then these will not commute with the simple idempotents Pab̄l since Eq. (2.68) implies
Pab̄l Pab̄kl = Pab̄kl and Pab̄kl Pab̄l = 0. For every pair of labels ab̄, one can construct a unique
central idempotent as follows:

Pab̄ =
∑

l | δabl=1
Pab̄l . (2.70)

These central idempotents project on the different anyon superselection sectors in a punc-
ture: for a state ψ ∈ HΣn that is a superposition of basis states (2.54), stacking the central
idempotent Pab̄ onto the ith hole results in the state where we only keep those basis states
in the superposition with anyon label ab̄ associated to the ith hole. Note that since these
projectors commute with all elements of the tube algebra, the anyon label of a puncture
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is stable against local deformations of the ribbon graph (obtained by locally acting with
tube algebra elements). Stacking the irreducible idempotent Pab̄l on the ith hole instead,
further limits the resulting superposition to states with boundary label l in the ith hole.

The simple idempotents can be expressed in the basis of basic tube operators Eq. (2.66):

Pab̄l =
∑
αβ

P
(abl)
αβ Ollαβ , (2.71)

where the coefficients P (abl)
αβ follow from (2.51)

P
(abl)
αβ = 1

D2
dadb
vl

vαvβ
∑
γ,δ

dγdδR
aα
γ Rαbδ G

lδγ
αabG

βaδ
bαl G

lβα
aγδ . (2.72)

For the Fibonacci input category (FIB), the doubled category is known as the doubled
Fibonacci category (DFIB):

DFIB = FIB× FIB∗ = {1, τ} × {1̄, τ̄} . (2.73)

The central idempotents corresponding to these 4 anyon types are given by

P11̄ = 1
D2 (O1111 + φO11ττ ) , (2.74)

P1τ̄ = 1
D2

(
Oττ1τ + e4πi/5Oτττ1 +

√
φe−3πi/5Oττττ

)
, (2.75)

Pτ 1̄ = 1
D2

(
Oττ1τ + e−4πi/5Oτττ1 +

√
φe3πi/5Oττττ

)
, (2.76)

Pτ τ̄ = 1
D2

(
φ2O1111 − φO11ττ + φOττ1τ + φOτττ1 + 1√

φ
Oττττ

)
. (2.77)

where φ = (1+
√

5)/2 is again the golden ratio. The last entry decomposes into two simple
idempotents: Pτ τ̄ = Pτ τ̄1 + Pτ τ̄τ with

Pτ τ̄1 = 1
D2 (φ2O1111 − φO11ττ ) , (2.78)

Pτ τ̄τ = 1
D2

(
φOττ1τ + φOτττ1 + 1√

φ
Oττττ

)
. (2.79)

It is important to note that both the +1 eigenstates of Pτ τ̄1 and those of Pτ τ̄τ , should
be interpreted as containing a τ τ̄ anyon. It follows from Eq. (2.68) that their respective
+1 eigenspaces are related through the nilpotent operators

Pτ τ̄1τ = e−3πi/10 φ

D
O1τττ , and Pτ τ̄τ1 = e3πi/10

√
φ

D
Oτ1ττ , (2.80)

as follows

Pτ τ̄1τPτ τ̄1 = Pτ τ̄τ , Pτ τ̄τ1Pτ τ̄τ = Pτ τ̄1 . (2.81)

2.6 The Levin-Wen model as a lattice realization of HΣ

We now turn to the realization of the ribbon graph Hilbert space HΣn as the ground space
of a lattice spin model. We will consider surfaces Σn containing n punctures and no other
boundary components.
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Let T be a triangulation of Σn, and denote its dual graph by Λ. Then Λ is a connected
graph with vertices of degree three (each corresponding to a triangle in T ). Note that
we take Λ to contain boundary edges for each hole, corresponding to edges in T that lie
along the boundary of the respective holes. We now modify the Λ as follows: for each
hole, remove all but one of the boundary edges, and then remove the resulting vertices of
degree two by identifying the two edges for each of them. The are then left with a lattice
containing exactly one boundary edge for each hole, and vertices of degree 3.

A qudit with local Hilbert space He = CN is placed on each edge e of Λ, where N
is the number of anyon labels in the input category C. We choose an orthonormal basis
{|i〉e} for this local Hilbert space, where each basis element is labeled by an anyon type of
C. This gives a lattice spin system with a Hilbert space H ≡ (He)⊗E = (CN )⊗E , where E
is the number of edges in Λ.

For every vertex v in Λ, we define the following vertex operator:

Qv =
∑
ijk

δijk |ijk〉 〈ijk| , (2.82)

where i, j and k are the labels of the qubits associated the three edges connected to vertex
v. One can easily see that all Qv operators commute with one another, meaning that they
can be simultaneously diagonalized. We denote the simultaneous +1 eigenspace of all Qv
by Hs.n. ≡ {|ψ〉 ∈ H | ∀v : Qv |ψ〉 = |ψ〉}, and will refer to it as the string-net subspace of
H. Let P be the number of plaquettes in Λ, and let ∆ ' Σn+P be the surface obtained by
placing a puncture at the center of each plaquette in Σn. The states in Hs.n. can then be
regarded as (superpositions of) ribbon graphs on ∆ by embedding the lattice Λ in surface
∆. More precisely, one can show that the string-net subspace is isomorphic to

⊕
`H

(`,1P )
Σn+P

,
which is the subspace of H∆ defined by the condition that all P holes corresponding to
plaquettes in Λ must have a trivial boundary label.

For each plaquette p of the lattice Λ, we now introduce a plaquette operator which
corresponds to adding a vacuum loop (devided by the total quantum dimension) around
the puncture in Σn+P , that corresponds to the said plaquette:

Bp

∣∣∣∣∣
m1

m2

m3

jr

j1

j2

mr
mr−1

j3

〉
= 1
D

∣∣∣∣∣
m1

m2

m3

jr

j1

j2

mr
mr−1

j3

〉
= 1
D2

∑
s

ds

∣∣∣∣∣
m1

m2

m3

jr

j1

j2

mr
mr−1

j3

s

〉
. (2.83)

Its action on Hs.n. can be determined by repeatedly using Eq. (2.31) to pull the interior
loop onto the lattice, giving

Bp = 1
D2

∑
s

dsO
s
p , (2.84)

with

Osp

∣∣∣∣∣
m1

m2

m3

jr

j1

j2

mr
mr−1

j3

〉
=

∑
k1,..,kr

(
r∏

ν=1
F
mνjν+1jν
skνkν+1

) ∣∣∣∣∣
m1

m2

m3

kr

k1

k2

mr
mr−1

k3

〉
. (2.85)

Note that it follows form the F -symbol condition (2.7) that Bp = 0 outside the subspace
where all involved vertices v satisfy the vertex condition imposed by Qv, meaning Bp is
properly defined on the entire Hilbert space H.

Using the identity (2.46), one can see that the operators Bp are in fact projectors.
They are in fact the lattice realization of the central idempotent P11̄ of the tube algebra
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defined in Eq. (2.70). Furthermore, because Bp corresponds to adding a vacuum loop
around a puncture inside plaquette p, all Bp operators commute. Hence, {Qv} ∪ {Bp} is
a set of commuting projectors.

We can now introduce the following Hamiltonian on H:

HΛ = −
∑
v

Qv −
∑
p

Bp , (2.86)

for which the ground space HΛ is precisely the simultaneous +1 eigenspace of all Qv and
Bp operators. We claim that HΛ is isomorphic to HΣn . Indeed, since adding a vacuum
loop around a puncture allows any ribbons to be pulled across it ( effectively hiding the
presence of the said puncture), the +1 eigenspace of Bp inside Hs.n. is isomorphic to⊕

`H
(`,1P−1)
Σn+P−1

. By this reasoning, one finds that the simultaneous +1 eigenspace of all Qv
and Bp operators is isomorphic to HΣn .

A state in the ribbon graph Hilbert space HΣn can be explicitly mapped to the ground
space HΛ of HΛ with the map

ΓΛ : HΣn → HΛ

whose action is defined as follows:

• Given a state in HΣn , continuously deform the ribbons in an arbitrary way to avoid
all (imaginary) punctures at the centers of the plaquettes of Λ. This deformation
yields a state in

⊕
`H

(`,1P )
∆ , which can be identified with a lattice state in the string-

net subspace. This lattice state is then an eigenstate with eigenvalue +1 of all the
vertex operators Qv.

• Apply the total projector B =
∏
pBp to this lattice state to map it to the ground

space of the string-net Hamiltonian HΛ.

It was shown in Ref. [56] that this map defines an isomorphism between the ribbon graph
Hilbert space HΣn and the string-net ground space HΛ, which confirms our claim that
HΛ ' HΣn .

For the case where where n = 0, (2.86) is precisely the Levin-Wen Hamiltonian intro-
duced in Ref. [50], which is conjectured to describe all doubled topological phases. It’s
important to note that the braiding properties of the input category C are not required
to define the Levin-Wen model, which is defined for any unitary fusion category satisfying
the additional rules (2.27), (2.26) and (2.28). In fact, the original construction has since
been generalized in order to drop these additional requirements, for example see Ref. [76].
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Error correction with the
extended string-net code
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3 | The extended string-net code

From the discussion on the ribbon graph Hilbert space and its realization as the ground
space of the Levin-Wen model in Chapter 2, one may have inferred the following: states of
lattice qudits that respect the fusion rules of a category C in all vertices, can be understood
as superpositions of fusion states containing at most |P | anyons in DC, where |P | is the
number of plaquettes. However, reality is a bit more restrictive: only those anyons in DC
that can correspond to a trivial boundary label can appear in the fusion states above.

One can modify the Levin-Wen model in order to remove this restriction [67], such that
any fusion state of |P | doubled anyons can be realized inside the string-net subspace. This
modification consists of including one tail edge in every plaquette as shown in Fig. 3.1, in
order to allow for strings to end inside plaquettes.

Figure 3.1: The tailed honeycomb lattice.

In this chapter, we consider this extended string-net model as the basis for a quantum
error correcting code. We start by defining it starting from the algebraic data of a unitary
fusion category. We then discuss code deformations, the action of the tube algebra, and
the anyonic fusion basis for the string-net subspace.
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p

v

Figure 3.2: Qudits arranged on the tailed honeycomb lattice. The support of Bp and Qv
are indicated in blue and orange, respectively. The red edges represent a valid string-net
configuration of qubits in the |1〉 state when using the Fibonacci input category.

3.1 Definition of the code

The extended string-net code is a microscopic realization of a Turaev-Viro code [56]. Its
code space is defined as the ground space of the extended Levin-Wen string-net model [67].
This is a microscopic model of qudits situated on the edges of a tailed trivalent lattice Λ,
obtained by modifying the Levin-Wen Hamiltonian [50] to accommodate one additional
“tail edge” in every plaquette as shown in Fig. 3.2. The code space is hence denoted by
HΛ. Below, we give a summary of its definition and of its most important properties.

The model is defined starting from the algebraic data of a unitary fusion category C.
For simplicity, we limit ourselves to multiplicity-free self-dual categories. The generaliza-
tion to generic unitary fusion categories is straightforward but quite tedious. Since we will
work with the Fibonacci category later (which is self-dual), we will not be needing the
general case. The algebraic data of such an object consists of:

1. String types: A set of all possible string types {1, i2, . . . , iN}. The label 1 is referred
to as the vacuum label, and represents the absence of a string on a particular edge.

2. Branching rules: The set of all triplets {i, j, k} that are allowed to meet at a vertex
(also known as fusion rules). We introduce the symbol δijk defined by the branching
rules as

δijk =
{

1, if the triplet {i, j, k} is allowed,
0, otherwise.

(3.1)

For every label i, there is unique dual label i∗ satisfying δii∗1 = 1, and (i∗)∗ = i.
Note that we are considering self-dual categories1, which satisfy i∗ = i for every
string type i.

3. Numerical data: For each string type i, a real constant di, called the quantum
dimension, satisfying

didj =
∑
k

δijkdk , d1 = 1 , and di∗ = di , (3.2)

and a six-index symbol F ijmkln , which is a complex constant dependent on 6 string
types i, j, k, l,m, n. These quantities are required to satisfy the following consistency

1For generic unitary fusion categories, one must pick an orientation for every edge. An edge with label
i∗ is equivalent to an edge with label i and the opposite orientation.
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conditions:

physicality : F ijmkln δijmδklm∗ = F ijmkln δilnδjkn∗ (3.3)

pentagon equation :
N∑
n=1

Fmlqkpn F
jip∗
mnsF

jsn
lkr = F jip

∗

q∗krF
r∗iq∗

mls (3.4)

unitarity :
(
F ijmkln

)∗
= F linjkm∗ (3.5)

tetrahedral symmetry : F ijmkln = F jimlkn∗ = F lkm
∗

jin = F imjk∗nl

vmvn
vjvl

(3.6)

normalization : F ii
∗1

j∗jk = vk
vivj

δijk (3.7)

where vi =
√
di.

Note that for self-dual categories, the F -symbols are real-valued.
We associate the string types to the elements of an orthonormal basis of the qudit

Hilbert space CN at each edge. The extended Levin-Wen Hamiltonian is then defined as:

HΛ = −
∑
v

Qv −
∑
p

Bp , (3.8)

where v and p label the vertices and plaquettes of the trivalent (tailed) lattice Λ, and
{Qv, Bp} are a set of commuting projectors whose support is shown in Fig. 3.2.

For every vertex v, the three-body projector Qv imposes the branching rules:

Qv
∣∣i j

k
〉

= δijk
∣∣i j

k
〉
. (3.9)

The subspace Hs.n. of states that satisfy all vertex projectors is known as the string-net
subspace. States in Hs.n. can be understood as superpositions of string-nets, which are
defined as string configurations that obey the branching rules.

We will work with the tailed honeycomb lattice shown in Fig. 3.2, for which the pla-
quette projector Bp is a 16-body operator. On a generic trivalent tailed lattice, is defined
as

Bp = 1
D2

∑
s

dsO
s
p , (3.10)

where D =
√∑

i d
2
i , and

Osp

∣∣∣∣∣
m1

m2

m3

jr

j1
j2

mr

jr+1

mr−1

j3

x

〉
= δx,1

∑
k1,...,kr+1

δk1,kr+1

( r∏
ν=1

F
mνjνjν+1
skν+1kν

) ∣∣∣∣∣
m1

m2

m3

kr

k1
k2

mr

kr+1

mr−1

k3

1

〉
. (3.11)

The error correction scheme and numerical simulations described in Chapters 4, 5 and
7 were designed specifically for the Fibonacci input category (C = FIB), which contains
only two string types, 1 and τ . Hence the model we consider in the remainder of this
dissertation is a system of qubits. We choose to relate the string types to the standard
computational basis states: 1 → |0〉 and τ → |1〉. The only nontrivial fusion rule is
τ × τ = 1 + τ , which leads to the following branching rules:

δijk =
{

1, if (ijk) ∈ {111, ττ1, 1ττ, τ1τ, τττ},
0, otherwise.

(3.12)
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The quantum dimensions are
d1 = 1 , dτ = φ , (3.13)

where φ = 1+
√

5
2 is the golden ratio. The only nontrivial F -matrix is

[F ττττ ] =
(
φ−1 φ−

1
2

φ−
1
2 −φ−1

)
. (3.14)

For all other combinations of indices, F ijmkln is either 1 or 0, depending on whether or not
the corresponding indices in Eq. (3.3) satisfy the branching rules.

The ground space of Hamiltonian (3.8) has a degeneracy that depends on the genus
of the surface on which the model is defined. On a torus, and with the Fibonacci input
category, the code space is four-dimensional, which enables one to encode the state of two
logical qubits.

3.2 The fattened lattice picture
It is convenient to think about the string-net Hilbert space as the lattice realization of the
ribbon graph Hilbert space on a punctured surface (see Chapter 2 for more details). For
our purpose, it is sufficient to state that this is the space of formal linear combinations
of labeled trivalent graphs which satisfy the branching rules Eq. (3.1), modulo continuous
deformations and the following relations:

ij = δj1di , (3.15)

i

j

m

k

l
=
∑
n

F ijmkln

i l
n

kj
. (3.16)

The second relation is known as an F -move or 2-2 Pachner move.
These ribbon graphs are defined on a compact, orientable, surface ∆ containing one

puncture for every plaquette in the lattice. Each boundary component has a unique
marked boundary point, and ribbons are only allowed to end on these marked boundary
points. We can relate ribbon graphs on the surface ∆ to string-nets using the “fattened
lattice” picture, which represents an embedding of the lattice Λ in the surface ∆ as shown
in Fig. 3.3(a). Whenever ribbons have a more complicated shape that can’t be smoothly
deformed to the shape of the embedded lattice, one can first deform them using 2-2 Pachner
moves, and 1-3 Pachner moves. The latter are defined as

i

j kλ

µν = vλvµvνG
ijk
λµν

i

j k
, (3.17)

where
Gijkλµν = 1

vivλ
F νjλkµi = 1

vνvk
F ijkλµν . (3.18)

The action of Osp, defined in Eq. (3.11), can be represented in the fattened lattice
picture as the inclusion of a loop with label s around the puncture in plaquette p. Hence,
the action of the plaquette projector Bp can be represented on the fattened lattice as
follows:

Bp : 7→ 1
D

, (3.19)
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(a) (b)

Figure 3.3: (a) A ribbon graph on the fattened lattice. (b) The corresponding string-net
configuration on the lattice. The grey edges correspond to qudits in the |0〉 state, while
the state of the black edges is given by the string type of the corresponding piece of the
ribbon graph in (a).

where
= 1
D
∑
i

di
i
. (3.20)

The dashed loop is referred to as a vacuum loop. Note that we have omitted the tail
edge on the right hand side of Eq. (3.19). After resolving the loop into the lattice using
a sequence of F -moves, a trivial tail edge should be included. Keep in mind that Bp = 0
whenever there is a (nontrivial) ribbon ending in the puncture p, which corresponds to a
nontrivial tail edge.

Ground states (up to a normalization factor) then correspond to ribbon graph con-
figurations without any ribbons ending in punctures, and where a vacuum loop is added
around every puncture as shown in Fig. 3.4. A short calculation shows that ribbons can
be “pulled across” vacuum loops without changing the corresponding string-net state,
meaning that one can obtain the same ground state by applying the

∏
pBp to different

string-net states.

Figure 3.4: Two ribbon graphs on the fattened lattice representing the same string-net
ground state.

3.3 Code deformation using Pachner moves
The Pachner moves introduced above can be used to relate string-net states defined on dif-
ferent lattice geometries. In particular, when transforming the lattice Λ to Λ′, Eqs. (3.16)
and (3.17) give the appropriate map between the corresponding code spaces HΛ and HΛ′ ,
defined as the ground spaces of Hamiltonians HΛ and HΛ′ , respectively. For instance,
applying the unitary F -move (see Fig. 4.3) to the qudits on certain edges of a ground
state, transforms this state to a ground state of the string-net Hamiltonian defined on a
new lattice obtained by recoupling these edges in the original lattice. The recoupling of
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2-2 Pachner
move

HΛ HΛ′

2-2 Pachner
move

HΛ HΛ′

Figure 3.5: Lattice deformations by 2-2 Pachner moves on different edges. The affected
edge is highlighted in pink, the other edges contained in the F -matrix is are highlighted
in blue.

1-3 Pachner move 

Figure 3.6: Lattice deformation by 1-3 Pachner move. The white dots on the left represent
ancilla qudits. The fine-graining process (left to right) entangles the three ancilla qudits
into the code space. The coarse-graining process (right to left) disentangles the three
central qudits out of the code space.

lattice edges by a 2-2 Pachner move is shown in Fig. 3.5. The lattice deformation corre-
sponding to a 1-3 Pachner move is shown in Fig. 3.6, where one adds a triangular loop
on the original vertex. The 1-3 Pachner move can be thought as a fine/coarse-graining
process. In Fig. 3.6 one entangles three ancilla qudits (white dots) from left to right and
add them into the code space, which effectively fine-grain the lattice. The inverse process
from right to left disentangles the qudits in the center out of the code space, which effec-
tively coarse-grains the lattice. Both 2-2 and 1-3 Pachner moves can be implemented via
unitary circuits as will be shown in Sec. 4.2.

3.4 Anyonic excitations
Localized excitations in the string-net model exhibit anyonic statistics, described by the
quantum double DC of the input category C [50]. It is important to note that the cate-
gorical double of a unitary fusion category is always braided. Hence, the input category
C does not need to include any braiding structure for the excitations to have well defined
anyonic statistics. When the input category C is modular (implying it is braided), such
as for C = FIB, the doubled category has a special structure DC ∼= C ⊗ C̄, and its string
types can be labeled by pairs a+a− with a+, a− ∈ C (see Chapter 2 for more details). For
notational simplicity, we will drop the bar notation for labels in C̄, and we will indicate
the string-types of the doubled category with bold labels: a = a+a− ∈ DC.

The motivation for introducing the tail qudit in every plaquette is that they allow
us to define the action of an operator algebra known as Ocneanu’s tube algebra [68] in
TQFT (see Sec. 2.5), at the level of the lattice qudits. The central idempotents of the tube
algebra form projectors onto the different superselection sectors of the theory. By defining
their action on an individual plaquette, one obtains a set of projectors corresponding to
the different possible values of the doubled anyonic charge contained in that plaquette .
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...

2-2 Pachner move
 (F-move)

1-3 Pachner move

(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.7: Derivation of the expression for the tube operator.

The generators of this algebra act on an individual plaquette as

Oxyαβ

∣∣∣∣∣
m1

m2

m3

jr

j1
j2

mr

jr+1

mr−1

j3

x′
〉

= δx,x′

∣∣∣∣∣
m1

m2

m3

jr

j1
j2

mr

jr+1

mr−1

j3

x y
α

β

〉
(3.21)

= δx,x′
vαvβ
vy

∑
k1,...,kr+1

F
j1jr+1x
αβkr+1

( r∏
ν=1

F
mνjνjν+1
αkν+1kν

)
F
kr+1k1y
αj1β

∣∣∣∣∣
m1

m2

m3

kr

k1
k2

mr

kr+1

mr−1

k3

y

〉
.

This corresponds to gluing the “tube”

x

β

yα
(3.22)

onto the tail edge and resolving it into the lattice using a sequence of 2-2 Pachner moves
followed by a 1-3 Pachner move, as shown in Fig. 3.7.

For the Fibonacci input category, the doubled category (DFIB) contains the labels
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{11,1τ, τ1, ττ}, which label the different corresponding projectors

P11 = 1
D2 (O1111 + φO11ττ ) , (3.23)

P1τ = 1
D2

(
Oττ1τ + e4πi/5Oτττ1 +

√
φe−3πi/5Oττττ

)
, (3.24)

Pτ1 = 1
D2

(
Oττ1τ + e−4πi/5Oτττ1 +

√
φe3πi/5Oττττ

)
, (3.25)

Pττ = 1
D2

(
φ2O1111 − φO11ττ + φOττ1τ + φOτττ1 + 1√

φ
Oττττ

)
. (3.26)

Note that Bp = P11 i.e., the ground space is precisely the anyonic vacuum. The last entry
decomposes into two simple idempotents: Pττ = Pττ1 + Pτττ , with

Pττ1 = 1
D2 (φ2O1111 − φO11ττ ), (3.27)

Pτττ = 1
D2

(
φOττ1τ + φOτττ1 + 1√

φ
Oττττ

)
. (3.28)

This decomposition of the central ττ idempotent into two simple idempotents should be
interpreted as the fact that a ττ anyon charge in a plaquette does not fix the state of its
tail qubit. The corresponding projector has a block-diagonal form with the two blocks
corresponding to a |0〉 or a |1〉 state for the tail qubit. We label these two cases as ττ1 and
τττ , respectively. Both are in the ττ anyon sector and their respective +1 eigenspaces are
related as follows:

Pττ1τPττ1 = Pτττ , Pτττ1Pτττ = Pττ1 , (3.29)

where

Pττ1τ = e−3πi/10 φ

D
O1τττ and Pτττ1 = e3πi/10

√
φ

D
Oτ1ττ (3.30)

are nilpotent operators.

3.5 The anyonic fusion basis
An important property of the extended Levin-Wen model is the fact that one can construct
a basis of the string-net subspace Hs.n., whose elements are labeled by fusion states of |P |
anyons (of the doubled category DC), where |P | is the number of plaquettes. This basis
is called the anyonic fusion basis. Below, we will give the expressions for these bases in
terms of ribbon configurations in the fattened lattice picture, for modular input categories.
More details on their origin in the ribbon graph Hilbert space were given in Sec. 2.4.

For simplicity we first show anyonic fusion basis states on a sphere. Since we are
considering the fusion space of anyonic excitations in plaquettes, the corresponding fusion
diagram are labeled by the string types of the doubled category DC (indicated by bold
labels):

|~a,~b〉 =

a2 a3

b1
b2

an−1

an
bn−3

a1

. (3.31)
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As mentioned above, the anyon label of a plaquette alone does not always fix the state
of the tail qudit. Hence, to fully specify the state, we must also fix the tail labels

~̀= [`1, `2, . . . , `|P |],

where ~̀ must be consistent with the anyon labels of all plaquettes. For C = FIB, the
allowed combinations of plaquette anyon (DFIB) labels a = a+a− and tail labels ` are
(a+a−)` ∈ {111,1ττ , τ1τ , ττ1, τττ}, which are simply all combinations satisfying δa+a−` =
1.

Throughout the remainder of this work, we will often adopt a slight abuse of notation
by also using a bold label to indicate the joined labels of the plaquette anyon and tail
labels: a = (a+a−)`. It will always be clear from the context whether or not a bold label
includes the tail label. In particular, only leaf labels can contain a tail label. Internal
branch labels of a doubled anyonic fusion tree never include them, since they do not
correspond to plaquettes.

An anyonic fusion basis is determined by fixing the branching structure of the corre-
sponding fusion tree and its embedding in the fattened lattice. The basis states are then
labeled as |~̀, ~a,~b〉, where ~̀ are the tail labels, ~a are the leaf labels (corresponding to the
anyon charge of each plaquette), and ~b are the internal branch labels. Before embedding
them into the fattened lattice, the corresponding ribbon configurations are

|~̀, ~a,~b〉 =

`n

`1 `2 `3 `n−1

a+1 a−1 a+2 a+3a−2 a−3

b+1
b+2

b−1
b−2

a+n−1 a−n−1

a+n

a−n

b−n−3

b+n−3

(3.32)

=
∑
~α,~β,~k

X
~̀,~a,~b

~α,~β,~k,~l

k1

`1

k2 k3

l1
l2

`2 `3

kn−1

`n
kn

ln−3

β1

α1

β2

α2

β3

α3

βn−1

αn−1

βn

αn

`n−1

, (3.33)

where the coefficients X ~̀,~a,~b

~α,~β,~k,~l
are found by resolving the crossings in Eq. 3.32 using

i j
=
∑
k

vk
vivj

Rijk

j i
k

ji
, (3.34)

followed by a sequence of F -moves and 1-3 Pachner moves. The object Rijk above is known
as the R-matrix of the input category C, and defines its braiding properties. It must satisfy
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certain consistency equations, which are listed in Sec. 2.1. For the Fibonacci category, the
only nonzero entries are

Rττ1 = e
4πi
5 , Rτττ = e

−3πi
5 , R1a

a = Ra1
a = 1 , (3.35)

where a ∈ {1, τ}. The necessary calculations to obtain X ~̀,~a,~b

~α,~β,~k,~l
were performed explicitly

in Sec. 2.4.
After picking some embedding in the fattened lattice, we find

|~̀, ~a,~b〉 =

a2

a4a3

a1

b (3.36)

=
∑
~α,~β,~k,~l

X
~̀,~a,~b

~α,~β,~k,~l

α1

β1
`1

α3

β3
`3

α2

β2
`2

α4

β4
`4l

k4

k2

k3

k1

, (3.37)

where we chose not to draw the leaves with vacuum labels explicitly, but included vacuum
loops in the corresponding plaquettes instead. The fattened lattice state above corresponds
to the case where only 4 plaquettes carry a nontrivial anyonic charge, other cases are
analogous. The final expression for the anyonic fusion basis states (as a state of qudits)
can then be found by resolving these ribbon graph configurations into the lattice.

Different anyonic fusion bases (that is, bases corresponding to trees with different
branching structures, or different embeddings in the fattened lattice), can be related using
F -moves, braid moves and Dehn twists defined by the categorical data of DC:

b c

e
d

a

=
∑
f

F abe
cdf

b c

f

d

a

, (3.38)

ab

c

= Rab
c

ab

c

,

ab

c

=
(
Rba

c

)∗ ab

c

, (3.39)

a

= θa

a

,

a

= (θa)∗
a

. (3.40)

Due to the particular structure of the doubled category, DC ' C ⊗ C̄, its numerical data
can be deducted from that of the input category C. In particular, one has

F abe
cdf = F

a+b+e+
c+d+f+

F
a−b−e−
c−d−f−

, (3.41)

Rab
c = Ra+b+

c+ (Rb−a−c− )∗ , (3.42)
θa = θa+(θa−)∗ . (3.43)
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Figure 3.8: Fusion diagram of a system of anyons defined on a torus. Note the line
wrapping around the torus.

We discussed how these are obtained for modular input categories in more detail in Sec. 2.4.
The construction of anyonic fusion basis states on a torus is similar. An important

difference is that fusion states of anyons on a torus requires us to specify a handle label (see
Sec. 2.4.2 for more details), which determines how the state transforms when an anyon is
moved along a non-contractible loop [75]. An example of such a fusion state is shown in
Fig. 3.8. Anyonic fusion basis states are then labeled as |~̀, ~a,~b, c〉, where ~̀, ~a and ~b are
again the tail, leaf and internal branch labels, respectively, and c is the handle label. The
corresponding ribbon configurations are

|~̀, ~a,~b, c〉 =

a2

b1

an

bn−2

a1

bn−1

c

=

`1 `2 `n

a+1 a−1 a+2 a−2

b+1

b−1

a+n

b−n−2

b+n−2

b−n−1

b+n−1

c−

a−n

c+

, (3.44)

where the gray box represents the periodic boundary conditions of a torus. Note that
the handle label must satisfy δbn−1cc or, equivalently, δb+

n−1c
+c+ and δb−n−1c

−c− , for the
corresponding ribbon graph to obey the branching rules. The crossings on the right-hand
side of Eq. (3.44) must again be resolved using Eq. 3.34, which will lead to superposition
of ribbon configurations similar to Eq. (3.33). These ribbons must then be embedded in
the fattened lattice like in Eq. (3.37), and resolved into the lattice using F -moves.

Ground states of the model correspond to (linear combinations of) configurations in
which all plaquettes carry a trivial charge (ai = 11, bj = 11, ∀ i, j). On a torus, the
degenerate ground space is spanned by the states |~1, ~11, ~11, c〉, where ~1 and ~11 represent
arrays containing only trivial entries. One can show that these states are indeed orthonor-
mal. Hence, when storing the state of two logical qubits (for C = FIB), this information
is encoded in the handle label. The operations that affect the handle, are precisely those
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in which anyons interact along a non-contractible path such as the process depicted in
Fig. 3.9. As long as no such operations are performed, the encoded information is pre-
served. Local qubit errors will create pairs, triplets or quadruplets of nontrivial anyons
in neighboring plaquettes. The initial ground state can then be recovered by fusing these
nontrivial anyons pairwise until none are left, without creating any non-contractible loops
in the process.

Clearly, all anyonic fusion basis states correspond to exceedingly complicated super-
positions of qubit states. It would seem that this makes them highly impractical for any
actual computation. Fortunately, however, one can formulate a tensor network representa-
tion for such states, which enables us to use them for practical applications (in particular,
see Sec. 7.5). This tensor network representation is derived in Chapter 6.

a a bb

(a)

c d

(b)

Figure 3.9: (a) Topologically nontrivial process which results in a logical error: two pairs
of anyons (a,a) and (b, b) are created by local qubit errors. The anyons are then fused
along the dotted black paths with outcomes c and d. (b) The fusion diagram of the
resulting state winds around the torus.
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4 | Error correction scheme

We now present the circuits to measure and fix arbitrary local errors. From here on,
we will work exclusively with the Fibonacci input category, hence we are working with a
system of qubits on a lattice. Our overall error correction procedure is composed of two
major steps:

1. Measure all the vertex operators Qv in the extended Levin-Wen model Eq. (3.8), and
apply a correction which fixes the vertex errors through unitaries UV conditioned by
a measurement projection PV . This measurement and correction processes projects
the many-body state onto the string-net subspace Hs.n..

2. After projecting to the string-net subspace Hs.n., we apply additional measurement
circuits to measure the simple idempotents of the tube algebra [Eqs. (3.23), (3.24),
(3.25), (3.27), and (3.28)] and extract the error syndromes, i.e., the anyon charges
and tail labels of all plaquettes. Based on these syndromes, we use our decoders to
identify the error location (up to equivalence classes) and apply the corresponding
recovery maps to project the state back to the code (ground) space HΛ. We note
that the code space is a subspace of the string-net subspace: HΛ ⊂ Hs.n..

In the following chapter, we discuss all measurement and recovery operators required to
implement these steps. In particular, we discuss the vertex measurement and correction
processes in Sec. 4.1, the anyon charge measurements in Sec. 4.2, and the recovery opera-
tions in Sec. 4.3.
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4.1 Vertex measurements and correction
Certain types of errors, such as a single bit-flip error σex or a coherent error generated
by the Pauli-X operator, i.e., eiθσex , can cause a violation of the vertex projector Qv for
a vertex v adjacent to edge e. As illustrated in Fig. 4.1, a vertex error corresponds to a
broken string ending at that vertex (in the string-net configurations of the system wave
function). Note that a generic error such as eiθσex will put the system wave function in a
superposition of violating and not violating the vertex condition at any adjacent vertex
v. When we measure the vertex operator Qv, we project to either of the two situations.
Vertex violations can be resolved by local unitary operators, which take the system back
to the string-net subspace Hs.n.. Intuitively, one can think of the action of these operators
as pulling string ends into the tail edge of a neighboring plaquette:

7→ . (4.1)

Figure 4.1: A configuration that violates the branching rules by having string-endings in
3 vertices, indicated the red dots.

Previously, the circuit for measuring the vertex errors has been discovered in Ref. [57].
Here we adopt this circuit to measure the top, middle and bottom vertices, with three
ancilla qubits (white dots) denoted by t, m and b, respectively, as shown in Fig. 4.2(a-c).
The circuit for measuring the top and bottom are symmetric, so we only show the top
one in Fig. 4.2(a). For the middle vertex m, we also apply a measurement of the tail
qubit at the end of the circuit. To respect the usual convention of quantum circuits, we
represent the unoccupied edge as |0〉, which corresponds to the vacuum string label 1, and
the occupied edge as |1〉 corresponding to the string label τ . The ancilla qubits are all
initialized in the state |0〉.

We apply a correction UV , conditioned by the measurement results of the three vertex
operators and the tail qubit, to fix the vertex error. This correction is selected out of 14
possible unitaries:

Um,1 : 7→

7→

Um,τ : 7→

47



CHAPTER 4. ERROR CORRECTION SCHEME

Ut,1 : 7→

7→

7→

Ut,τ : 7→

7→

7→

Utm,1 : 7→

7→

7→

Utm,τ : 7→

7→

Utb,1 : 7→

7→

7→

7→

7→

Utb,τ : 7→

7→

7→

7→

7→

Utmb,1 : 7→

7→

7→

7→

Utmb,τ : 7→

7→

7→

7→

Note that we have omitted the mappings which are mirror symmetric (t↔ b) to the listed
ones.

The corresponding quantum circuits of the above unitaries are listed in Fig. 4.2(d-
l). For gates which do not have overlap in qubit support, we can parallelize them in a
single time step, as indicated by the dashed boxes. As we can see, most of the unitary
circuits have depth 1 or 2, while only one of them, Utb,τ in Fig. 4.2(i), has depth 4. The
overall measurement and correction circuit is summarized in Fig. 4.2(m) where we have
parallelized the measurement of the three vertex operators into a depth-5 circuit (in terms
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Figure 4.2: Measurement and correction circuit for the vertex errors. (a) The qubit
labeling. The black dots represent data qubits, while the white dots represent ancilla
qubits for measurements. (b,c) The measurement circuit for the top and middle vertex
projectors. The circuit for measuring the bottom vertex can be inferred by symmetry.
(d-l) The circuits for pulling an open string into the tail edge when certain vertices are
violated. (m) The overall circuit for measuring and correcting vertex errors. The first
part of the circuit measures the three vertex projectors. The second part is the unitary
UV conditioned on the measurement results which is summarized in (d-l).
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of the unitary gates). When taking into account the readout of the ancilla qubits before
applying UV , the depth is 6. Note that we have neglected the step of state preparation
of the ancilla qubits in the beginning, because in the situation of repetitive syndrome
measurements, the ancilla qubits can always be prepared during the application of the
correction unitary UV . Overall, the depth of the measurement circuits ranges from 5 to 9,
or from 6 to 10 when taking into account the measurement step.

Note that a different scheme of fixing vertex errors has been previously proposed in
Refs. [65] and [66], which also uses tail qubits and hence has a similar spirit.

4.2 Anyon charge measurements
After measuring the vertex operators and applying the corresponding corrections on the
extended string-net code, we have transformed the many-body state to the string-net
subspace Hs.n., where it can be described in terms of anyonic fusion states. The local
qubit errors, including both the Pauli-X and Z types, now result in the creation of anyonic
excitations inside Hs.n..

As explained in Sec. 3.4, one can measure the anyonic charge of a plaquette using the
central idempotents of the tube algebra. To fully characterize an excitation, we must also
measure its tail label. A joint measurement of the anyonic charge and the tail label is
achieved by measuring the irreducible idempotents of the tube algebra, listed in Eqs. (3.23-
3.25), (3.27), and (3.28). Measuring these irreducible idempotents is done in 3 steps:

1. Grow a tube inside the plaquette by introducing ancilla qubits and performing the
appropriate quantum circuit, as shown in Fig. 4.5.

2. Measure the tube qubits in the appropriate basis.

3. Either trace out the tube qubits immediately, or first resolve the tube back into the
lattice before tracing out the ancillas.

As a basic ingredient, the quantum circuit to implement the F -move (2-2 Pachner
move) operation F abecdf in the Fibonacci Turaev-Viro code is shown in Fig. 4.3. This circuit
was first proposed in Ref. [57]. The F -move operation can be viewed as a controlled unitary
operation, where the external legs a, b, c, d are control qubits determining the resulting
unitary F abcd , with the matrix elements being [F abcd ]ef . For the Fibonacci Turaev-Viro code,
the F-matrix is given in Eq. (3.14). The circuit inside the red dashed box, composed of a
5-qubit Toffoli gate in between two single-qubit rotations, applies the conditional unitary
corresponding to the F-matrix F ττττ , where Ry(±θ) = e±iθσy/2 are single-qubit rotations
about the y-axis with angle θ = tan−1(φ−

1
2 ). Note that this conditional unitary is only

activated if the control qubits a, b, c and d are all in the |1〉 state corresponding to the
string label τ . All the other conditional unitaries are implemented by the rest of the
quantum circuit.

Based on the circuit for 2-2 Pachner move (F -move), one can also implement the 1-3
Pachner move with unitary circuit, as shown in Fig. 4.4. The protocol consists of the
following steps: (1) Initialize three ancilla qubits (white dots) in state |0〉. (2) Apply a
CNOT gate which entangles the data qubit labeled j to the new ancilla qubit on the same
edge, CNOT: |j〉 |0〉7→|j〉 |j〉, as shown in (a) and (b). (3) Apply a modular-S gate on one
ancilla to create a tadpole diagram, as shown in (b). The modular–S does the following
transformation: S : |0〉7→

∑
λ
dλ
D |λ〉. For the Fibonacci Turaev-Viro code, the modular

S-matrix is
S = 1√

2 + φ

(
1 φ
φ −1

)
. (4.2)
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Figure 4.3: Quantum circuit to implement the F -move (2-2 Pachner move) operation F abecdf

for the Fibonacci Turaev-Viro code.

Figure 4.4: Quantum circuit to implement the 1-3 Pachner move for the Fibonacci Turaev-
Viro code.

(4) Apply an F -move to absorb the tadpole onto the edge, as shown in (b) and (c). (5)
Apply another F -move to sweep edge λ to attach the right leg (with label k), as shown in
(c) and (d). From left to right, the circuit effectively fine-grain the lattice by entangling
the three ancilla qubits into the code space. One can also reverse the circuit (from right
to left) which corresponds to a coarse-graining process disentangling three qubits out of
the code space.

The “growing” of a tube onto the tailed lattice can then be implemented by a quantum
circuit, as shown in Figs. 4.5 and 4.6. We start with the tailed lattice in Fig. 4.5(a) with
data qubits (black dots) residing on every edge. We then introduce three ancilla qubits
(white dots) in Fig. 4.5(b) initialized at |0〉. From panel (b) to (e), we apply a series of
operations to achieve a 1-3 Pachner move to add a triangle loop below the tail: (1) Apply
a CNOT gate which entangles the data qubit on the tail to the new ancilla qubit on the
tail, CNOT: |y〉 |0〉 7→ |y〉 |y〉, as shown in (b) and (c). (2) Apply a modular-S gate on one
ancilla to create a tadpole diagram, as shown in (b), i.e., S : |0〉7→

∑
α
dα
D |α〉. (3) Apply an

F -move to absorb the tadpole onto the tail, as shown in (c) and (d). (4) Apply another
F -move to sweep edge α to attach the left edge, as shown in (d) and (e). Afterwards, we
apply a sequence of F -moves to sweep edge α around the whole plaquette, after which it
ends up in the upper side of the tail. In this way, we have grown a tube. Note that as a
result, the qubits on the plaquette and tail edges (with labels ki and y in Fig. 4.5(a)) get
rotated one position counterclockwise. The details of the quantum gates in this circuit are
shown in Fig. 4.6. As we can see, in total 9 F -moves have been applied.

After growing the tube, the anyon charge can be inferred by measuring the four qubits
on the tube. In order to find the appropriate basis for this measurement, we first note that
the growing procedure can be thought of as creating a vacuum bubble [in Fig. 4.5 (c)],
stretching it out along the boundary of the plaquette, and finally resolving only half of it
into the lattice. The remaining half then constitutes the tube in Fig. 4.5 (j). In terms of
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. . .

F-move
(2-2 Pachner move)
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0

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.5: Protocol and circuit of growing a tube onto a puncture in a plaquette on a
tailed lattice via a sequence of local gates and Pachner moves.

ribbon diagrams the stretched out vacuum bubble inside the plaquette can be written as

∑
α

dα
D

y

α

=
∑
α

dα
D

y
α

=
∑
α,β

dα
D

vβ
vαvy

y

α

y β

=
∑
α,β,x

1
D
vx
vy

y

α
α

y
β
β
x

. (4.3)

The sequence of F -moves appearing in the grow circuit corresponds exactly to resolving
only the outer tube into the lattice1. If we denote the initial state of the lattice qubits as
|Ψ0〉 =

∑
y εy |φy〉 ⊗ |y〉 and the ancillas are initially in the |000〉 state, then the action of

the grow circuit is

|Ψ0〉 ⊗ |000〉 7→
∑
y

εy
∑
α,β,x

1
D
vx
vy
Õyxαβ (|φy〉 ⊗ |y〉)⊗ |yαβ〉 , (4.4)

where we used the following abbreviation for the tube state vectors∣∣∣∣∣
x

β

yα
〉
≡ |x〉 ⊗ |yαβ〉 ,

1Note that resolving both the inner and the outer tube into the lattice would yield a trivial operation,
since they constitute the vacuum bubble together.
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Figure 4.6: The complete quantum circuit for the joint measurement of the anyon charge
and tail label of a plaquette. Note that after the grow circuit, qubit 13 corresponds to the
tail edge.

and where
Õyxαβ ≡

∑
γ

Fαxβαyγ Oyxαγ (4.5)

is the operator which corresponds to resolving a outer tube2 into the lattice. If a mea-
surement projects the tube qubits onto the state

|ψ〉 =
∑
α,β

Aαβ |x〉 ⊗ |yαβ〉 , (4.6)

then the full state gets projected onto

|Φ〉 ⊗ |ψ〉 = 1
N

(∑
α,β

1
D
vx
vy

(Aαβ)∗ (1⊗ 〈x|) Õyxαβ(|φy〉 ⊗ |y〉)
)
⊗ |ψ〉 , (4.7)

whereN is a normalization factor. Hence, by selecting the basis for the measurement of the
tube qubits carefully, we can effectively apply the idempotent projectors Eqs. (3.23-3.28)
or the nilpotent operators Eq. (3.30).

We choose the following basis3 for the measurement of the tube qubits:

|ψ11〉 = 1
D

∣∣∣∣∣ 1 1

1

1

〉
+ φ

D

∣∣∣∣∣
1

τ

1τ
〉

(4.8)

= |0〉 ⊗ 1
D

(
|000〉+ φ |011〉

)
≡ |0〉 ⊗ |ψ̃11〉 ,

2Note that it has a different shape than our convention Eq. (3.22), hence the F-matrix in Eq. (4.5)
3There are seven ways to label a tube according to the Fibonacci fusion rules. Hence, the 7 vectors

below span the string-net subspace for the 4 qubits on the tube.

53



CHAPTER 4. ERROR CORRECTION SCHEME

|ψ1τ 〉 = 1
D

∣∣∣∣∣
τ

τ

τ1

〉
+ e4πi/5

D

∣∣∣∣∣
τ

1

ττ
〉

+
√
φ

e−3πi/5

D

∣∣∣∣∣
τ

τ

ττ
〉

(4.9)

= |1〉 ⊗ 1
D

(
|101〉+ e4πi/5 |110〉+

√
φe−3πi/5 |111〉

)
≡ |1〉 ⊗ |ψ̃1τ 〉 ,

|ψτ1〉 = 1
D

∣∣∣∣∣
τ

τ

τ1

〉
+ e−4πi/5

D

∣∣∣∣∣
τ

1

ττ
〉

+
√
φ

e3πi/5

D

∣∣∣∣∣
τ

τ

ττ
〉

(4.10)

= |1〉 ⊗ 1
D

(
|101〉+ e−4πi/5 |110〉+

√
φe3πi/5 |111〉

)
≡ |1〉 ⊗ |ψ̃τ1〉 ,

|ψττ,1〉 = φ

D

∣∣∣∣∣ 1 1

1

1

〉
− 1
D

∣∣∣∣∣
1

τ

1τ
〉

(4.11)

= |0〉 ⊗ 1
D

(
φ |000〉 − |011〉

)
≡ |0〉 ⊗ |ψ̃ττ,1〉 ,

|ψττ,τ 〉 =
√
φ

D

∣∣∣∣∣
τ

τ

τ1

〉
+
√
φ

D

∣∣∣∣∣
τ

1

ττ
〉

+ 1
φD

∣∣∣∣∣
τ

τ

ττ
〉

(4.12)

= |1〉 ⊗ 1
D

(√
φ |101〉+

√
φ |110〉+ 1

φ
|111〉

)
≡ |1〉 ⊗ |ψ̃ττ,τ 〉 ,

|ψττ,1,τ 〉 =
∣∣∣∣∣

τ

τ

1τ
〉

= |1〉 ⊗ |011〉 ≡ |1〉 ⊗ |ψ̃ττ,1,τ 〉 , (4.13)

|ψττ, τ,1〉 =
∣∣∣∣∣

1

τ

ττ
〉

= |0〉 ⊗ |111〉 ≡ |0〉 ⊗ |ψ̃ττ, τ,1〉 . (4.14)

Note that the coefficients appearing in the different states are proportional to those in the
corresponding irreducible idempotents in Eqs. (3.23)-(3.25), (3.27) and (3.28), or nilpo-
tents in Eq. (3.30) respectively. In fact, these states are precisely the anyonic fusion basis
states on Σ2, as described in Eq. (2.51).

The measurement of the tube qubits in Fig. 4.5(j) is done in three steps:

1. Measure the tail qubit (label x).

2. Apply one of the following unitaries4 conditioned on the measurement of the tail
qubit:

4 The operators below must of course be completed to true unitary operators. The missing terms were
left out to improve readability.
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(a) if the tail qubit is in state |0〉 (string label 1):

U1 = |0〉
(
|00〉 〈ψ̃11|+ |11〉 〈ψ̃ττ,1|+ |10〉 〈ψ̃ττ, τ,1|

)
,

(b) if the tail qubit is in state |1〉 (string label τ):

Uτ = |0〉
(
|00〉 〈ψ̃ττ,τ |+ |11〉 〈ψ̃ττ,1,τ |+ |01〉 〈ψ̃1τ |+ |10〉 〈ψ̃τ1|

)
.

3. Measure qubits 16 and 17 in Fig. 4.6 in the Z-basis.

Once the tube qubits have been measured in the basis Eqs. (4.8)-(4.14) using the
procedure above, we can trace out the three ancilla qubits [15, 16 and 17 in Fig. 4.6,
constituting the inner three edges of the tube in Fig. 4.5(j)] to return to the initial tailed
lattice layout with a single tail qubit in each plaquette [i.e., the configuration in Fig. 4.5(a)].
This results in the following POVM:{

P11, P1τ , Pτ1,
1
φ2P

ττ
1 ,

1
φ
Pτττ ,

1
φ
Pττ1 ,

1
φ2P

ττ
τ

}
. (4.15)

Note that both a ττ1 and a τττ excitation corresponds to two different measurement
outcomes. However, within each of these pairs, the post-measurement states are not iden-
tical. For instance, a ττ1 excitation can result in measurement outcomes |ψττ,1〉 and
|ψττ,1,τ 〉. Obtaining outcome |ψττ,1〉, effectively applies the Pττ1 idempotent, meaning the
post-measurement state will have trivial tail label 1. On the other hand, the outcome
|ψττ,1,τ 〉 corresponds to the application of the Pττ1τ nilpotent. Since Pττ1τ = Pτττ Pττ1τPττ1 ,
this means the plaquette initially contained a ττ1 excitation, which gets transformed to a
τττ excitation in the post-measurement state. The situation for a τττ excitation is analo-
gous. Hence these measurements do not preserve the tail label in case of a ττ anyon, and
a subsequent measurement might yield a different outcome. It is important to note that
this only affects the tail label within one anyon sector, the anyon label itself cannot be
altered by subsequent measurements.

In case one prefers to preserve the tail label of excitations in subsequent measurements5,
an additional step is required before tracing out the three ancillas. This step consists of
resolving the tube into the lattice by applying the gates of the grow circuit in reverse,
as indicated in Fig. 4.7. For measurement outcome |ψ〉 defined Eq. (4.6), the resolving
process is equivalent to the following transformation on the post-measurement state in
Eq. (4.7):

|Φ〉 ⊗ |ψ〉 7→
∑
α,β

AαβOxyαβ (|Φ〉 ⊗ |x〉)⊗ |000〉 . (4.16)

This guarantees that the initial tail label y will indeed be recovered. For instance, when
obtaining the |ψττ,1τ 〉 measurement outcome, the resolving process result in the applica-
tion of the Pτττ1 nilpotent on top of the Pττ1τ nilpotent applied by the measurement, resulting
in the combined action Pττ1 = Pτττ1Pττ1τ , meaning that the tail label is now preserved.

The same result can be achieved by using repeated measurements with the circuit in
Fig. 4.6. In case one measures a ττ excitation but finds that the tail label gets flipped
[corresponding to the tube states in Eqs. (4.13) and (4.14), and the last two entries in

5Possibly, this could improve the performance of certain decoders. Furthermore, we will assume this
for the numerical simulations discussed in Chapter 7.
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the POVM Eq. (4.15)], each subsequent measurement6 has a fixed probability of flipping
the tail label back to its initial value (as determined by the first measurement). For a
ττ1 excitation, it follows from Eq. (4.15) that the probability that n measurements are
required before the post-measurement state has a trivial tail label is φ−(n+1). Hence, on
average, φ2 measurements are required to ensure that the tail label is preserved for a
ττ1 excitation. Likewise, for a τττ excitation the probability of needing n measurements
to recover the initial tail label is φ−(2n−1), resulting in an average of φ measurements.
Whether one should choose for the longer measurement circuit depicted in Fig. 4.7 or for
repeated measurements with the shorter measurement circuit depicted in Fig. 4.6 depends
on what types of excitations are more likely to appear.
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Figure 4.7: Alternative quantum circuit for the joint measurement of the anyon charge
and tail label of a plaquette, which does preserve the tail label.

The procedure described above determines the anyon charge of a single plaquette. By
repeating it for all plaquettes, we obtain the complete error syndrome (in the form of the
anyonic content of every plaquette), which must then be passed to a decoding algorithm
to determine the appropriate recovery operation to be performed (see Chapter 5).

4.3 Recovery operations
After extracting the error syndrome as described above, the decoding algorithm will sug-
gest a sequence of actions to take to fuse pairs of anyonic excitations along specific paths.
There are two types of fundamental recovery operations: Fuse, and Exchange. Here we
will introduce the quantum circuits that implement these recovery operations. The key
components of these circuits include the 2-2 Pachner moves and the 1-3 Pachner moves as
introduced in Chapter 3 and the corresponding unitary circuits introduced in Sec. 4.2.

4.3.1 Fuse

We start by defining fuse as a recovery operation that fuses anyons in neighboring pla-
quettes. The fuse protocol is shown in Fig. 4.8 for the case where an anyon a2 inside a
plaquette is fused with the anyon a1 inside its left neighboring plaquette. Other fusing di-
rections will have a very similar process and we omit showing all of them. The application

6Provided that no errors happen on qubits in or adjacent to the plaquette between these repeated
measurements.
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of this protocol to a particular example of a ribbon graph state is illustrated in Fig. 4.9
with further parallelization of the steps in the protocols shown in Fig. 4.8.

Before detailing the quantum circuit to fuse a pair of neighboring anyons, we consider
what such an operation means on the level of the ribbon graphs introduced in Chapter 3.
We consider two plaquettes p1 and p2, and wish to fuse the anyons contained within them.
For this purpose, we pick an anyonic fusion basis which explicitly shows the total charge
b = b+b− of the anyons a1 = (a+

1 a
−
1 )`1 and a2 = (a+

2 a
−
2 )`2 contained in the two plaquettes:

|ψ~ab,~c〉 = ≡
a+1 a−1

`1

a+2 a−2

b+

c+j+1

b−

`2

c−j+1

c+j

c−j

, (4.17)

where we have denoted all other branch labels on the fusion tree collectively by ~c, and
have omitted showing all other leaf labels {a3,a4, . . .}. We will refer to these other leaf
labels collectively as ~aot, writing ~a = [a1,a2, ~aot] . For simplicity, we only show the
corresponding ribbon graphs, and not their embedding in the fattened lattice as described
in Sec. 3.5.

After the syndrome measurement detailed in Sec. 4.2, the system is in definite charge
eigenstate for all plaquettes, which means that the leaf labels ~a are fixed in the state
superposition, while the internal labels {b, ~c} are not. In general we then have

|Ψ0〉 =
∑
b,~c

αb,~c |ψ~ab,~c〉 . (4.18)

The fusion basis state |ψ~ab,~c〉 appearing in this decomposition, can be rewritten as follows:

|ψ~ab,~c〉 = 1
D

a+1 a−1

`1

a+2 a−2

b+ b−

`2

1

c+j+1c+j

c−j c−j+1

= 1
D
∑
`=1,τ

F b
−b+1
b+b−`

a+1 a−1

`1

a+2 a−2

b+ b−

`2

`b+ b−

c+j+1c+j

c−j c−j+1

, (4.19)

where we have used the property that vacuum loops can be “doubled” (see Eq. 2.46 in
Sec. 2.4), and have applied an F -move on the double ribbon b+b− of corresponding to
the total charge of plaquettes p1 and p2. The fusion of the anyons in these plaquettes
corresponds replacing the upper part of the diagram in Eq. 4.19 by a single puncture as
follows

a+1 a−1

`1

a+2 a−2

b+ b−

`2

`b+ b−

c+j+1c+j

c−j c−j+1

7→

`

c+j+1

c−j+1

c+j

c−j
b−b+ . (4.20)
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The fusion can then be represented by the following map on anyonic fusion basis states:

fuse : |ψ[a1,a2,~aot]
b,~c 〉 7→

∑
`=1,τ

F b
−b+1
b+b−` |ψ

[b`,~aot]
~c 〉 , (4.21)

where7

|ψ[b`,~aot]
~c 〉 =

`

c+j+1

c−j+1

c+j

c−j
b−b+ . (4.22)

The post-measurement state |Ψ0〉 then gets mapped to

|Ψ0〉 7→ |Ψ1〉 =
∑
b,~c

αb,~c

∑
`=1,τ

F b
−b+1
b+b−` |ψ

[b`,~aot]
~c 〉 . (4.23)

Measuring the tail label and the anyonic charge of plaquette p1 after fusing the two anyons,
will yield outcomes b` with the probabilities

p(b`) =
∑
~c

∑
`=1,τ

∣∣∣αb,~c F
b−b+1
b+b−`

∣∣∣2 . (4.24)

Note that the probabilities for the outcomes of a tail measurement, depend only on the
total charge b. Furthermore, in any measurement scheme where the anyonic charge of a
plaquette is measured independently of its tail label, these measurements will commute.

At the end of the charge measurement cycle, we normally trace out the tube qubits
or resolve the tube into the lattice. However, before fusing a pair of anyons, we can keep
the tube on the left plaquette (instead of growing it again) in the beginning of the fusion
protocol, as shown in Fig. 4.8(b). The purpose is to carry out the subsequent F -moves for
an edge to climb around the tube without encountering any broken string as in the case
with a single tail qubit on the left plaquette.

The central idea of the protocol is to merge the two plaquettes and hence the corre-
sponding plaquette excitations, while also combining the tail qubits such that the vertex
excitations also get merged. Overall, this process fuses the two anyon charges inside the
two plaquettes. The protocol starts at the end of measurement cycle t. One first applies
an F -move (2-2 Pachner move) that sweeps the central edge between the two plaquettes
towards the left plaquette, as shown in Fig. 4.8(b). After several F -moves, the central
edge now climbs onto the tail of the left plaquette as shown in Fig. 4.8(d). Now we apply
an F -move to move the tail on the right plaquette onto the left tail in Fig. 4.8(e). In
Fig. 4.8(e), we further sweep the central edge onto the tube. After several steps of further
moves, the central edge now forms a triangular bubble with the other two edges in the
bottom of the left plaquette, as shown in Fig. 4.8(h). One now applies a 1-3 Pachner
move to absorb the bubble into the vertex in Fig. 4.8(i), and now the left and right pla-
quettes are merged into a single large plaquette. The corresponding procedures with the
example of the ribbon graph state is also illustrated in Fig. 4.9(a-h). Now we trace out all
the qubits residing on the left tail and only a single tail qubit remains in the lattice, as
shown in Fig. 4.8(j). We are now left with two ribbons going into the same tail and which
correspond to the fused anyon charge a1 × a2. Note that due to the non-Abelian nature,
the fused anyon can be in a superposition of multiple anyon charge eigenstates, and hence

7To be precise, we should have written |ψ[b`,111,~aot]
b,~c 〉, since plaquette p2 now has a trivial anyonic charge,

and the total charge of plaquettes p1 and p2 remains unchanged.

58



CHAPTER 4. ERROR CORRECTION SCHEME

. . .

. . .

. . .

(b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p) (q)

(a)

fuse

(r)

F-move
(2-2 Pachner move)

 

F-move

 

F-move

 

F-move

 

F-move

 

F-move

 

1-3 Pachner
move

 

cut
(trace out)

 

1-3 Pachner
move

 

F-move

 

F-move

 

F-move

 

CNOT

 

vertex measurment
and conditioned unitary

 

glue the tube

 

measurement
projection onto 
anyon charge

eigenstate 

 cut
(trace out)

 

0
0

t

b

m

end of measurement cycle t
 

end of measurement cycle t + 1
 

starting measurement cycle t + 1
 

Figure 4.8: (a) The basic idea of the fuse protocol: fuse anyons a1 and a2 by moving a2
on the right plaquette to the left plaquette and then fuse them into a single anyon with
charge a1 × a2. (b) Starting the fuse protocol in the end of measurement cycle t. The
tube on the left plaquette is preserved for the convenience of the fuse protocol. (c) Use
an F -move to sweep the middle edge towards the left plaquette. (d) Sweep the central
edge onto the left tail. (e) Use an F -move to shuttle the right tail onto the left tail. (f-h)
Keep sweeping the middle edge until it reaches the bottom vertex of the left plaquette.
(i) Apply a 1-3 Pachner move to shrink the triangular bubble on the bottom vertex. (j)
Cut the tubes and extra tail by tracing out all the qubits except the one on the root. Now
the two plaquettes have been merged into one and the two anyons are fused into one with
charge a1×a2, which is in general in a superposition state. (k) Apply a 1-3 Pachner move
to grow a triangular bubble on the top vertex of the right plaquette. (l-n) Use F -moves to
keep sweeping the new edge towards the bottom edge and hence grow a new plaquette on
the right. Apply a CNOT from the qubit residing on the middle edge to another ancilla
qubit initialized at |0〉, which splits the edge into two. (o, p) Prepare an ancilla qubit at
|0〉 on the new tail. Measure the vertices t, m and b, and apply the unitary UV conditioned
on the measurement result to pull the broken string in and fix all the vertex errors. We
have now rebuilt the tailed lattice in (p). (q,r) In the next measurement cycle t+ 1, start
by growing and measuring the tube to project the fused anyon charge a1×a2 to a definite
anyon charge b′, and then resolve all the tubes back to the tailed lattice.
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Figure 4.9: Illustration of the fuse protocol with an example of a ribbon graph state
with two anyons a1 and a2 and their total branch charge b. Note that we have further
parallelized the fuse protocol in Fig. 4.8 by simultaneously doing the plaquette merging
and growing a new plaquette on the right.

may not have a definite charge yet. For example, if a1 = a2 = τ1τ ≡ τ1, then one has
a1 × a2 = 11 + τ1.

Since the two initial plaquettes are now merged into a single one, we need to grow
another plaquette to recover the original lattice, which is accomplished in Fig. 4.8(k-p).
The growing is achieved by first applying a 1-3 Pachner move in Fig. 4.8(k) to grow a
triangular bubble on the top vertex, followed by a sequence of F -moves that sweep the
newly created edge to form the original middle edge dividing the two plaquettes, illustrated
in Fig. 4.8(n). Now we need to regrow the tail on that middle edge. We first apply a CNOT
from the qubit (black dot) residing on the edge on an ancilla qubit (white dot) initialized in
the state |0〉 in order to split the edge in two, as shown in Fig. 4.8(n). We further prepare
another ancilla qubit (white dot) in the state |0〉 corresponding to the tail qubit (dashed
line) in Fig. 4.8(o). We then measure the vertex projectors Qv on the three vertices t, m
and b and apply the corresponding unitary UV to pull the potentially broken string into
the tail based on the measurement result V , using the measurement and unitary circuits
previously shown in Fig. 4.2 in Sec. 4.1. We note that if there is no error introduced in the
recovery process, the vertices t, m and b should not have any error and the strings on them
should not be broken. However, in reality, additional errors will be introduced during the
recovery, and one hence needs to apply the vertex measurements and unitary UV to pull
the string in. Although we have introduced the plaquette growing process separately, we
note it can actually be parallelized with the merging of the two original plaquettes, as
illustrated in Fig. 4.9(d-i).

After performing the fusion protocol described here, one obtains a state where the
second plaquette has a vacuum charge (Bp = 1), while the first plaquette contains the
total charge of the two excitations that where fused. Note that the first plaquette is not in
a definite charge state, instead, it contains a superposition of all possible values of the total
charge of the two fused excitations. Likewise, its tail label is also in a superposition of 1
and τ . In principle, no more actions are required, since the excitations have been fused as
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Figure 4.10: Illustration of the counter-clockwise exchange protocol with an example of
ribbon graph state. (a-f) A sequence of F -moves gradually rotates the two plaquettes and
the tails accordingly. (g) In the end of the protocol, the position of the two anyons have
been exchanged with the ribbons attached to them being braided.

expected. However, in the numerical simulation described in Chapter 7, we will assume
that after every fusion process, the fusion outcome is projected to some definite anyon
label and tail label. This can simply be achieved by including the charge measurement
circuit of Sec. 4.2 in the first plaquette at the end of the fusion procedure.

4.3.2 Exchange and move

The second type of recovery operation is a counterclockwise/clockwise exchange (braiding)
of anyons in neighboring plaquettes. The need for this operation arises when one wants
to transport an anyon along a path (which might include plaquettes containing nontrivial
excitations). In Fig. 4.10, we show the counterclockwise exchange protocol along with the
example of the same ribbon graph state shown above in Fig. 4.9. The central idea is to
rotate the central edge dividing the two plaquette such that the two plaquettes undergo a
counterclockwise exchange. One also needs to shuttle the tail accordingly. The final ribbon
graph state after the exchange operation is shown in Fig. 4.9(g), and a counterclockwise
exchange/braid can be clearly seen on the ribbon graph. Note that, when applied to ex-
citations with a definite anyon and tail labels, these labels are preserved by the exchange
procedure.

We define move as a process of shuttling anyon a from plaquette A to plaquette B
along some specified path, as illustrated in Fig. 4.11 with a path A → C → B. This is
achieved through a sequence of clockwise or counterclockwise exchanges with all plaquettes
along this path. Note that if any other anyons are encountered on the path, the results of
the move procedures with clockwise and counterclockwise exchanges are not identical, as
they differ by a braid in the anyonic fusion space.

In case all plaquettes along the path have a vacuum charge, one could also implement
the movement procure as a sequence of fusions, since fusion with a 11 anyon is trivial.
However, note that this does not guarantee that the tail label of the excitation that is
being moved, is preserved. In particular, when fusing any ττ anyon ( ττ1 or τττ ) with
a neighboring trivial (vacuum) anyon, the probabilities for the measurement outcomes of
the tail qubit after the fusion are 1/φ2 and 1/φ for the outcomes |0〉 and |1〉, respectively,
independent of the tail label of the excitation prior to the fusion. This is due to the fact
that only the doubled anyon label of an excitation is topologically protected, its tail label
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Figure 4.11: Two equivalent processes to move anyon a1 from plaquette A to plaquette
B through the path A→C→B. (a-c) Implement the move through two steps of counter-
clockwise exchange between plaquettes A and C, and then plaquettes C and B. The anyon
reaches plaquette B in (C). (d-f) Implement the move through two steps of clockwise
exchange of neighboring plaquettes. Note that the ribbon graph states (b) and (e) are
equivalent because the exchanges happen with vacuum plaquettes and since ribbons can
be pulled across those (see Eq. (2.45) in Sec. 2.4, and also Fig. 3.4 in Sec. 3.2). In the
same way, the state in (c) is equivalent to the one in (f). However, if any plaquette on the
movement path contains a nontrivial anyon, the resulting states are not equivalent, since
they correspond to different sequences of braid-moves on the fusion state.

is not and can thus be changed by local interactions if one is not careful. Furthermore,
the exchange procedure is considerably simpler than the fusion protocol.
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5 | Decoding algorithms

After the error syndromes (anyon charges) on all the plaquettes are measured using the
circuits discussed in the previous chapter, this syndrome information is passed to a decoder,
which in turn outputs the recovery operations required to correct the errors.

In this chapter we discuss two types of decoding algorithms. The first type is the
clustering decoder which has been previously applied to decode a phenomenological model
of Fibonacci anyons [55]. This decoder is based on a hierarchical clustering algorithm [53]
and shares a similar strategy to the hard-decision renormalization-group decoder [77]. The
clustering decoder does not use the detailed syndrome information corresponding to the
anyon type. Instead, it just uses the limited syndrome information of the presence of
absence of anyon, i.e., whether the anyon charge is nontrivial or trivial (in the doubled
vacuum sector 11).

The second type is a fusion-aware iterative minimum-weight perfect matching (MWPM)
decoder which modifies the standard MWPM algorithm and incorporates the detailed
syndrome information corresponding to anyon type into the decoding strategy. As a com-
parison, we also show the results of a “blind” iterative MWPM decoder which does not
use the detailed syndrome information of anyon type but only the presence or absence of
anyon. Due to the use of the detailed syndrome information, the logical error rate of the
fusion-aware iterative MWPM decoder is lower than the other one.
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Figure 5.1: The decoding graph of the extended string-net code. By connecting the center
of the plaquettes of the tailed lattice, we obtain a triangular lattice (blue) as the decoding
graph. The anyons charge (grey circles) on the plaquettes of the tailed lattice serve as the
syndromes in the error correction scheme and are located on the vertices of the triangular
decoding graph.

We will indicate the syndrome using a decoding graph, shown in Fig. 5.1. This is a
triangular lattice which is the dual of the original trivalent graph on which the extended
string-net code is defined. Anyon charges located in the plaquettes of the trivalent graph,
correspond to syndromes on vertices of this triangular decoding graph.

5.1 Clustering decoder
The spirit of the clustering decoder is based on the charge conservation of anyons. As
will be discussed in Sec. 7.4, local noise generates certain pairs or, more generally, clusters
of anyons. Since these anyon clusters are generated from the vacuum sector 11, i.e., the
ground space of the extended string-net code, the total charge of each anyon cluster should
still be trivial (11) due to charge conservation. Therefore, if we fuse all the anyons within
a particular cluster by moving them towards the same plaquette, we will get a total trivial
vacuum charge 11, i.e., all the anyons are annihilated back to the vacuum sector.

However, the decoder does not know which cluster each anyons were generated from
based on the syndrome information. Therefore, the decoder may not always apply a correct
recovery operation to fuse all the anyons originating from the same cluster. Instead, the
decoder may fuse anyons from different clusters, effectively joining the two clusters. Due
to the total charge conservation and the fusion rule 11 × 11 = 11, we know the total
anyon charge of the two clusters is still zero. If we fuse all the anyons in these two
clusters together, all the charges will still be annihilated into the vacuum 11. The same
argument applies to merging multiple clusters. As long as the size of the joined cluster is
much smaller than the system size, all the errors can be corrected by merging them into
the vacuum 11. On the other hand, if the joined anyon cluster forms a non-contractible
(homologically nontrivial) region, i.e., either wrapping around a cycle of a torus or more
generally a high-genus surface in the context of a closed manifold, or connecting two
or more gapped boundaries in the context of an open manifold, the recovery operation
with the merging procedure may still annihilate all the anyons but end up applying a
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nontrivial logical operator along certain homologically nontrivial cycle 1 which will cause
a logical error and the decoder fails. It is also possible that such a non-contractible anyon
cluster will have a nonzero total charge, therefore there is some residual anyon after the
merging procedure which cannot be annihilated. In both cases, we will claim a failure
of the clustering decoder. Therefore, in order to apply a successful recovery operation,
we need to make sure that the individual clusters are annihilated before growing to a
size comparable to the system size, i.e., with a linear dimension comparable to the code
distance.

The clustering decoding algorithm for the Fibonacci Turaev-Viro code defined on a
torus is summarized below by the pseudo-code and will be explained in detail with a
concrete example:

Algorithm (clustering decoder)

# Measure the anyon charge of each plaquette on the tailed trivalent lattice; store the nontrivial
anyon charge in a list “anyon_charge"
anyon_charge = get_syndrome(state);

# Initialize a cluster for each plaquette with a nontrivial charge
clusters = Cluster(anyon_charge);

# Join any connected clusters
join(clusters, 1);

# While there is more than one nontrivial charge
while size(anyon_charge)>1

# Fuse all anyons within each cluster and measure
the resulting charge

for cluster in clusters
fuse_anyons(cluster);

# Discard any empty cluster with trivial vacuum charge 11;
clusters = non_vac(clusters);

# Grow each cluster by a unit length on the triangular
decoding graph

grow(clusters, 1);

# Join any overlapping clusters
join(clusters, 0);

end

# If the list of nontrivial anyon charge is empty, i.e., with no remaining anyon
if anyon_charge == []

# The decoder declares success
return Success

# If there is a single nontrivial remaining charge
else

# The decoder claims failure
return Failure

1In the case of open manifold with gapped boundaries, the logical operator corresponds to nontrivial
relative homology cycle.
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As described above, for a given state of the entire system, we first measure the tube
operator within each plaquette of the tailed lattice using the circuit in Figs. 4.5 and 4.6
and obtain the corresponding anyon charge as the syndromes on the decoding graph. This
process is defined as get_syndrome() in the decoding algorithm, with the state as the
input and anyon_charge as the output. Now we initialize a cluster on each non-zero
anyon charge, defined as clusters=Cluster(anyon_charge) in the above algorithm. An
example for the decoding graph on a torus with the initial clusters (blue shadow) is
shown below:
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In the next step, we call join(clusters, 1) to join neighboring clusters which are
separated by only 1 lattice spacing. Within each cluster we randomly choose a root anyon,
and move all the other anyons to the root and finally fuse all of them into a single anyon.
The move operation is the recovery operation introduced in Sec. 4.3.2 and Fig. 4.11. We
note that the order of moving and detailed path do not affect the resulting state after
fusing all the anyons within each order, and therefore we could choose an arbitrary order.
The only requirement is that the chosen paths must be inside each cluster. For simplicity,
we choose the shortest paths (with shortest graph distance) towards the root anyons from
all the remaining anyons (indicated by the red arrows in the figure below), and start
moving the anyons in an order with an increasing graph distance between the remaining
and root anyons in our numerical simulation.

A

B

C

D

E

F

(A)

(A)

(B)

(C)

(D)

(E)

(F)

(A)

G H I J K

(G) (H) (I) (J) (K)

During the classical simulation of the error correction process, which we will detail
in Chapter 7, we will actively check whether any anyon path l forms a non-contractible
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(homologically nontrivial) cycle, which will give rise to a logical error as previously illus-
trated in Fig. 3.9 in Chapter 3. The anyon path here is the sum of the error path and
the recovery path: l = le + lr. We note that, although the decoder itself does not have
access to such information, the classical simulation does. We can hence claim failure of
the decoder in our Monte Carlo simulation, if such non-contractible cycle occurs.

If the decoder does not fail, we continue to measure all the charges of the root
anyons. If the measured charge in a particular cluster is zero, i.e., in the vacuum sec-
tor 11, we discard the corresponding cluster. The list of clusters hence gets updated via
clusters=non_vac(clusters).
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In the next step, we need to call grow(clusters, 1) to grow each remaining cluster
by one unit of lattice spacing in all possible directions (six directions for each vertex within
the cluster), as indicated by the blue arrows in the figure below. As shown in the figure,
the remaining two clusters (blue) grow to the larger clusters (green and orange):
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Next, we call join(clusters, 0) to join overlapping clusters, i.e., any two clusters
sharing a common set of vertices will be joined into a single one and this process is done
iteratively until there are no overlapping clusters. In the current example, the green and
red clusters in the above figure are joined into a single bigger cluster (blue) in the following
figure:
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After the merging of clusters, we repeat the above process, i.e., fuse all the anyons
within each cluster (indicated by the red arrows in the above figure) and discard the
empty cluster with trivial total charge 11 (vacuum), and then further grow and join the
remaining clusters. This iteration is stopped when we have zero or one remaining nontrivial
anyon charge.

After the end of the above iteration, we are at the final stage of our decoding algorithm.
If there is no any remaining nontrivial anyon charge, i.e., anyon_charge == [], we then
have successfully corrected all the errors, and the decoder declares success. In the other
situation with a single nontrivial remaining anyon, we end up with a logical error, and
will claim failure of the decoder.

5.2 Fusion-aware iterative matching decoder

The fusion-aware minimum-weight perfect matching (MWPM) decoder applies matching
on the anyons with a preferred order of matching certain types of anyons according to
the underlying structure in the anyon pair generation under the Pauli noise, which will be
discussed in detail in Sec. 7.4.

As we have stated before, the non-Abelian Fibonacci fusion rule τ × τ = 1 + τ implies
that a typical fusion of anyons in DFIB has probabilistic outcome into one of several fusion
channels, e.g., τ1×ττ = 1τ+ττ . This is in stark contract to Abelian anyon models, where
fusion processes are always deterministic. This difference can be seen using a graphical
representation of the fusion rules (which we will call a fusion graph from now on) as shown
in Fig. 5.2(a,c,d). Since standard minimum-weight perfect matching (MWPM) decoder
of the Abelian surface code is based on deterministically fusing pairs of Abelian anyons
into the vacuum sector, this type of decoder will not work properly when applied to the
Fibonacci string-net code.

In Ref. [51], a MWPM decoder has been applied to the non-Abelian phenomenological
Ising-anyon model, corresponding to the Ising category {1, σ, ψ}. The corresponding fusion
rules are:

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ, (5.1)
as illustrated in the fusion graph Fig. 5.2(b). The basic strategy there is to apply MWPM
to pair up and fuse a particular type of anyons: the σ-anyons. As indicated by the above
fusion rule, the matched pair of anyons either fuse into the vacuum or the ψ-anyon. When
new ψ-anyons are generated from fusion, one further applies MWPM to pair and fuse
all the pre-existing and newly generated ψ-anyons. Afterwards, one can clean up all the
anyons and hence correct all the errors if the decoder succeeds.
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(a) (b)

(c) (d)

Figure 5.2: A graphic representation of the fusion rules (fusion graph) of (a) Toric code;
(b) Ising category; (c) Fibonacci category (FIB); (d) doubled Fibonacci category (DFIB)
corresponding to the Fibonacci Turaev-Viro code. The fusion graph is a directed graph
with the directed edge pointing from pair of incoming anyons represented by one vertex
to the possible fusion outcome represented by another vertex. (a) and (b) have non-cyclic
fusion structure, while (c) and (d) are cyclic.

For the Fibonacci Turaev-Viro code, we can adopt a similar strategy. We first apply
MWPM to pair up and fuse all the existing anyons, which will either fuse to vacuum or
a certain type of anyons. We then apply MWPM again to match the newly-generated
anyons. We iterate above process until all the anyons are annihilated into the vacuum
and then declare success of the decoder if no logical error occurs. If there is any residual
anyon or a logical error corresponding to any anyon-path forming a non-contractible cycle,
we claim failure of the decoder. One can further introduce a particular order for merging
different types of anyons, similar to the above case in the phenomenological Ising-anyon
model in Ref. [51].

However, this type of MWPM decoder does not have a threshold. The underlying
reason is related to the particular fusion structure of the Fibonacci and doubled-Fibonacci
categories. As shown in Fig. 5.2, the Ising category has a non-cyclic fusion structure [54]
such that the fusion graph does not have any cycle (an edge pointing from and to the
same vertex, i.e., the same anyon type). In contrast, both the Fibonacci category (FIB)
and the doubled Fibonacci category (DFIB) have a cyclic structure, i.e., containing at
least a cycle in the fusion graph, which complicates the fusion process. As we can see,
the Ising fusion rule naturally implies a pair creation process: a pair of anyons, either two
σ-anyons or two ψ-anyons are generated from the vacuum 1. Applying the matching can
immediately annihilate these pairs into the vacuum. If one of the σ-anyon might further
split into a σ-anyon and a ψ-anyon, we get a triplet (σ, σ, ψ) which still contains a pair
of σ. When applying the above MWPM algorithm, two σ’s will be paired up and must
generate a ψ-particle if the anyons still stay close by. A further matching with the other
ψ can annihilate the pair of ψ’s back to the vacuum 1.

As we can see, such pair creation mechanism naturally fits the above MWPM algo-
rithm. However, the Fibonacci category (FIB) and its doubled version (DFIB) does not
have such simple pair creation structure. In FIB, two τ -anyons can fuse into τ as well
due to the cyclic structure, which can further fuse with another τ into the vacuum 1.
This means that not only a pair of τ can be generated from the vacuum 1, but also a
triplet (τ, τ, τ). In fact, due to the cyclic structure, any number of τ can be created from
the vacuum. The absence of a pair generation structure is in contrast to the situation in
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the Ising category where only pairs of σ can be generated from the vacuum. Similarly,
in DFIB, two τ1 can fuse into τ1, which means a triplet (τ1, τ1, τ1) or more τ1 can be
generated from the vacuum 11. Similar argument applies to triplets of 1τ and ττ . In the
example of Pauli noise, we will see in Sec. 7.4 that a single Pauli-X or Pauli-Y error can
create 2, 3 or 4 anyons, without a clear pair creation mechanism like the σ-anyons in the
Ising category.

Now we can give a proof that the above MWPM decoder does not have a threshold
for the Fibonacci Turaev-Viro code (DFIB). Consider a counterexample shown in Fig. 5.3,
where two triplets of τ1 anyons are created by O(1) errors from the vacuum and spatially
separated by O(d), i.e., the order of the code distance. Note that since these triplets
were created separately, the total fusion space factorizes into a tensor product structure
of the fusion spaces of the two separate triplets, as is indicated by the red curve diagrams
(see Sec. 7.6) in Fig. 5.3(a). According to the algorithm stated above, we will first apply
MWPM to pair up all the present anyons2. As indicated by the highlighted edges in
Fig. 5.3(b), two of the anyons within each triplet are matched, while one anyon within
one cluster is matched with the one in another triplet. We then fuse the matched anyon
pair by transporting one anyon (randomly chosen) along the highlighted path to fuse
with the other anyon. Since the two anyons involved in the second fusion process do not
have a definite total charge, both 11 and τ1 are possible outcomes. The probabilities of
these events are 1/φ2 and 1/φ, respectively, as follows from Eq. 4.24 in Chapter 4. Both
outcomes will lead to the same situation eventually: if the outcome is τ1 that anyon will
be located near one of the other τ1 anyons (obtained from the two other fusion processes),
and will then be matched with it by the MWPM decoder (and that fusion will yield a τ1
anyon). In case the outcome is 11, one ends up with the configuration in Fig. 5.3(c). Since
anyons from the two triplets were fused, the two remaining anyons are now part of the
same fusion tree, as indicated by the their joint curve diagram. We then apply MWPM to
pair up the two remaining anyons. A short path is preferred by the matching algorithm as
shown by the highlighted edge. When fusing the anyons along this short path, the anyon
path forms a non-contractible (homologically nontrivial) cycle, which equivalently applies
a chain of errors of length O(d) and hence induces a logical error.

In summary, when applying the above MWPM algorithm, even O(1) errors may not
be corrected, meaning the effective code distance in this decoding scheme is only O(1)
instead of O(d). Therefore, the logical error rate is not exponentially suppressed as a
function of code distance d, and the decoder does not have a threshold. As one can easily
see, such an issue also exists in the case of single copy of the Fibonacci category (FIB).
Nevertheless, we note that such problem is not present in the case of the triplet (σ, σ, ψ)
in Ising anyon models mentioned above. Using the MWPM algorithm for the Ising-anyon
model, one will first apply matching only to the σ-anyons within each triplet, which fuse
into a ψ-particle, and then apply matching to the ψ-anyons, which fuse the two remaining
ψ-anyons within each cluster. The non-cyclic feature of Ising fusion rule avoids the above
issue.

Due to this issue, we need to modify the MWPM algorithm for FIB and DFIB. As
we have seen, the main issue is that sometimes the matching algorithm pairs up anyons
which are far apart and do not belong to the same anyon cluster generated from the
vacuum. Therefore, we propose an iterative MWPM algorithm. In each iteration, we
apply the MWPM algorithm, but only fuse the matched anyon pairs which are within a
certain fusing radius r (starting at one lattice spacing in the first iteration). When fusing

2If the total number of anyons is odd, then there will be a single anyon which is not paired up with any
other anyon.
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(a) (b) (c)

Figure 5.3: Illustration of the absence of threshold when applying the usual MWPM
algorithm to the Fibonacci Turaev-Viro code. (a) Two triplets of 1τ anyons are created
from the vacuum by O(1) errors and are spatially separated apart at the order of code
distance O(d). The underlying fusion structure is indicated by the curve diagrams. (b)
Pairs chosen by the MWPM decoder (indicated by highlighted blue edges). For each
pair of the matched anyons, one of them (randomly chosen) will be transported along the
highlighted path to fuse with the other. (c) Result of the fusion processes suggested by the
MWPM decoder. The MWPM algorithm will now select the shortest path (highlighted in
blue), which will create a non-contractible cycle when the fusion is performed.

(a) (b) (c)

Figure 5.4: Resolve the issue in the previous example in Fig. 5.3 by applying the iterative
MWPM algorithm. In panel (b), one applies MWPM algorithm to match three pairs of
anyons. The matched pair involving anyons from different triplet clusters has a graph
distance 3, exceeding the fusing radius r = 1 in the first iteration. Therefore, the fusion
of this matched pair is rejected. In panel (c), the two previously matched pairs were fused
and there are four remaining anyons. Apply another MWPM will match two pairs of
anyons within their own cluster and hence successfully correct the errors.
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a certain anyon pair, we may generate some new anyons. Therefore, we match and fuse
anyons until all possible anyon pairs within the fusing radius r have been fused and begin
the next iteration by increasing the fusing radius by one lattice spacing, i.e., r → r+1. We
keep doing this until all the anyons are annihilated. During this process, if any anyon path
forms a non-contractible cycle, we claim failure. If there is a single remaining anyon
in the end of the algorithm, we also claim failure. Otherwise, we declare success. As
we will see in the next section, the numerical simulation suggests that such an iterative
MWPM algorithm does actually have a threshold.

The above iterative MWPM algorithm is summarized below:

Algorithm (iterative MWPM)

# Measure the anyon charge of each plaquette on the tailed trivalent lattice; store the nontrivial
anyon charge in a list “anyon_charge"
anyon_charge = get_syndrome(state);

# Initialize the fusing distance at one lattice spacing
r=1;

# While there is more than one anyon left
while size(anyon_charge) > 1

# Apply the matching algorithm; only record anyon pairs with
maximal distance r and the corresponding path connecting
them
[pairs, paths]=MWPM(anyon_charge, r);

# If no anyon pair within the fusing radius is matched
if pairs == []
# Increase the fusion radius by one lattice spacing

r = r+1;

else
# Fuse the anyons along the paths given by MWPM; update
the list “anyon_charge" with the fused anyon charge; drop the
vacuum charge 11 from the list “anyon_charge"

anyon_charge = fuse_anyons(pairs,
paths);

end

# If there is no anyon excitations left
if anyon_charge == []

# The decoder declares success
return Success

# If there is a single anyon left
else

return Failure

As we can see, the iterative MWPM algorithm shares a similar hierarchical structure
with the clustering algorithm where the cluster is grown by one lattice space in each
iteration. When we apply this algorithm to the previous triplet example, we see that the
previous issue is resolved, as illustrated in Fig. 5.4. In the first iteration, we have fusing
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Figure 5.5: Illustration of the fusion-aware iterative MWPM decoder with an example
of initial anyon configuration. (a) Four anyons clusters are generated from the vacuum
sector. The anyon charges are shown on the nodes and branches of the curve diagram (see
the branch label on the cluster with four 1τ anyons). The two ττ1 clusters are created
by σz-errors. (b) Match and fuse ττ1 anyons only with fusing distance r = 1. (c, d)
Match and fuse τ1 anyons only with fusing distance r = 1. (e) Match and fuse 1τ anyons
only with fusing distance r = 1. The matched path (dashed lines) between the lower two
anyons has length 2 and hence exceeds the fusing distance r = 1. The fusion between
these two anyons is hence rejected. (f) Continue to match and fuse 1τ anyons with fusing
distance r = 2. (g) In the second iteration, the decoder increases the fusing distance to
r = 2, and hence is able to match and fuse the remaining pair of 1τ anyons.

radius r = 1. So when we apply matching, the fusion of the matched pair with a long
separation (three lattice spacing) is rejected by the decoder since the separation exceeds
the fusing radius. When we do the matching again, these anyons get matched and fused
with their neighboring τ1 anyons generated from the last fusion. Therefore, all the fusion
still occur within each triplet cluster and all the anyons are fused back into the vacuum.

In the above iterative MWPM algorithm, we have not used any detailed syndrome
information about the anyon types, similar to the case in the clustering algorithm. We
call such an algorithm ‘blind’. On the other hand, there are definitely certain features and
patterns in the anyon creation process. Therefore, we expect that an iterative MWPM
decoder which is fusion-aware, i.e., has access to the detailed information of anyon type,
should have a better performance. In particular, in the context of depolarizing noise, we
will show in Sec 7.4 that a single σz error generates a pair of anyons with charge ττ1 in
neighboring plaquettes. This is a distinct feature of σz error when the system is exposed
to all three types of noise (σx, σy, σz). In order to exploit such error feature, we require
the decoder to have the following behavior: when the fusion-aware MWPM decoder sees
a pair of ττ1 anyons, it will prefer to match and fuse them first, rather than to pair any
of them with other types of anyons. This choice will tend to clean up the anyon clusters
generated by σz errors first, and avoids to fuse anyons belonging to different anyon clusters
which will join these two clusters.

We hence propose the following modification to obtain the fusion-aware iterative
MWPM decoder. In each iteration, we start matching and fusing specific type of anyons
in the following order [ττ1, τ1, 1τ , τττ , ττ1, τ1, 1τ ]. We only start fusing the next type
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once the current type of anyon pairs within the fusion radius have all been fused. After
we exhausted all the types, we match and fuse the remaining anyons ‘blindly’ within the
fusing radius r, i.e., ignoring the detailed anyon charge type. In this case, one is allowed
to match and fuse anyons with different anyon types. We then increase the fusing radius
by one lattice spacing (r → r + 1) and continue to the next iteration.

Now we explain the reason of choosing the above order of fusion. According to the
fusion graph in Fig. 5.2(d), one can choose the fusion order from left to right such that the
anyon types generated in the fusion process are never on the left of the current type on
the fusion graph. In that case, we can choose either the fusion order [ττ , τ1, 1τ ] or [ττ ,
1τ , τ1]. Note that here we do not distinguish ττ1 and τττ and they make no difference in
the fusion graph. However, due to the structure of σz-noise as mentioned above, we prefer
to match and fuse ττ1 first. On the other hand, τττ -anyons are less likely to be produced,
so we fuse them after τ1 and 1τ . Then when we start fusing τττ -anyons, we are again on
the very left of the fusion graph and will again produce all types of anyons (ττ1, τ1, 1τ ,
and τττ ). Therefore, after exhausting fusion of τττ , we still need to start fusing ττ1, τ1
and 1τ in turn.

We illustrate this algorithm with a specific example in Fig. 5.5. As we can see that the
initial configuration in Fig. 5.5(a) has several anyon clusters generated from the vacuum
sector by local noise, and each cluster has a total vacuum charge 11. In particular,
two clusters of ττ1 anyons (green) are created by σz errors. The anyon clusters are all
connected together, which poses significant challenge for the decoder. Now the decoder
starts with fusing radius r = 1 and only perform matching on the ττ1 anyons as shown in
Fig. 5.5(b). As we see, the two pairs of ττ1 are immediately matched and fused into the
vacuum sector, and we are left with two separate anyon clusters with τ1 (blue) and 1τ
(orange) anyons. Due to the significant separation, decoding becomes much easier now.
The decoder continues to match and fuse only the τ1 anyons, which takes two steps to
annihilate all the τ1 anyons, as shown in Fig. 5.5(c, d). The decoder now switches to match
the 1τ anyons. It performs two steps of matching and fusion with fusing radius r = 1
in (e,f), and has exhausted the matching of all possible anyon pairs with a separation
of one lattice spacing. Now the decoder increases the fusing distance to r = 2, and
matches the remaining pair of 1τ anyons separated with two lattice spacing in (g), which
are then fused into the vacuum. We can conclude that in this case, the fusion awareness
makes the decoding much easier than the blind MWPM decoder which could prefer to join
neighboring anyon clusters into a larger cluster and hence increases the chance of failure.

As we will see in the numerical results in the next section, this fusion-aware itera-
tive MWPM decoder does give an overall improvement in logical fidelity over the ‘blind’
iterative MWPM decoder.

We note that Ref. [51] has also adopted such fusion-aware strategies to the clustering
decoder in the context of Ising anyon model, i.e., clustering different types of anyons sep-
arately in a certain chosen order. We have also adopted this strategy to the Fibonacci
Turaev-Viro code (DFIB). However, we do not observe any advantage compared to the
clustering decoder described in Sec. 5.1 which does not use the detailed syndrome informa-
tion of anyon types. This is potentially related to the sophisticated cyclic fusion structure
of Fibonacci anyon as opposed to the non-cyclic fusion structure of Ising anyons.
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Threshold simulation
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6 | Tensor network representations
of anyonic fusion states

It is well known that string-net ground states allow for a remarkably simple PEPS (pro-
jected entangled pair state) representation, constructed from the algebraic data of the
input category [78, 79]. Below, we will illustrate how such a tensor network representation
is obtained, and then expand on these known results by constructing an explicit PEPS
representation of any anyonic fusion basis state on a tailed lattice.
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6.1 A tensor network representation for the string-net ground
states

We start by constructing the PEPS representation of the ground state

N
∏
p

Bp (⊗e |1〉e) , (6.1)

where N is a normalization factor. Graphically, (a patch of) this state can be represented
as

= N
∑
{µ}

dµ1dµ2 · · ·

µ1 µ2

µ3 µ4 , (6.2)

where qudits in the |1〉 state are represented by the gray edges. To find the state from
this graphical notation, one has to resolve the loops appearing in Eq. (6.2) into the lattice.
This is done in two steps. First we fuse the neighboring loops along each edge using
Eq. (2.33):

µ

ν
=
∑
k

vk
vµvν

δµνk

µ

ν

µ

ν

k .

Then, the resulting configuration at every vertex is resolved into the lattice using Eq. (2.52):

i

j kλ

µν = vλvµvνG
ijk
λµν

i

j k
. (6.3)

The PEPS tensor is obtained by splitting the factor in Eq. (6.3) evenly between the two
adjacent vertices. The result is

ν ′ µ

µ′ν

λ′ λ

i

j k

i′
j′

k′
= δii′δjj′δkk′δλλ′δµµ′δνν′

√
vivjvkG

ijk
λµν , (6.4)

where i′ , j′ and k′ represent the physical degrees of freedom associated to the qudits on
the 3 edges. Note that the physical degrees of freedom are doubled, since each of them
is appearing at the two vertices connected to a given edge. The diagonal structure of
Eq. (6.4), ensures that the values of the two physical indices representing the same qudit
are always equal. We impose the convention that for every closed loop with label µ on
the virtual level, a factor dµ is implied. This convention automatically takes care of the
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factors dµi appearing in Eq. (6.2), which can then be represented as

. (6.5)

To simplify the notation, we will follow the convention that a pair of legs crossing
through a tensor represents a Kronecker delta between the indices on these legs, indicat-
ing that the tensor is diagonal in this pair of indices.

The tensor network state constructed above corresponds specifically to the ground
state Eq. (6.1). It can, however, be modified to represent any string-net ground state. To
do this, first note that we can obtain any ground state by acting with the total projector
B =

∏
pBp on some state |φ〉 ∈ Hs.n. corresponding to a configurations of strings on

the lattice. The tensor network state for B |φ〉, can then be obtained by modifying our
original construction, to account for additional strings running between the vacuum loops
in Eq. (6.2). Locally, such a string-configuration can take two forms: a single string, or
two strings fusing to a third one.

The first configuration looks as follows:

∑
{µ}

dµ1dµ2dµ3dµ4

µ1 µ2

µ3 µ4

s

=
∑
{µ}

∑
µ′1,µ

′
2,µ
′
4

dµ3

vµ1vµ′1
vs

vµ2vµ′2
vs

vµ4vµ′4
vs

µ1 µ2

µ3 µ4

s

µ′1 µ′2

µ′4

s

s

s
, (6.6)

where we have pulled the string s into the different loops along its path using Eq. (2.33).
Using F -moves, we can again pull ribbons from neighboring plaquettes into each edges:

µ′

νν ′

µ

s =
∑
k

Fµµ
′s

ν′νk

µ

ν

µ′

ν ′
k

=
∑
k

√
vsvµvµ′

√
vk
vµvν

√
vk

vµ′vν′

√
vsvνvν′G

µµ′s
ν′νk

µ

ν

µ′

ν ′
k . (6.7)
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The first two factors on the right hand side can be recognized as the symmetrized contri-
bution to each vertex from Eq. (6.3). The first factor on the right hand side of Eq. (6.7)
will therefore contribute to the vertex to the left of the edge, while the second factor will
contribute to the right vertex, ensuring that we can use the PEPS tensor Eq. (6.4) on both
vertices. The third and fourth factors on the right hand side will contribute to the upper
and lower plaquette of the edge in Eq. (6.7), respectively. When combined with the factors
in Eq. (6.6), these contributions result in a total factor of the form vµvµ′

vs
·vsvµvµ′ = dµdµ′ for

each plaquette separately [instead of a single quantum dimension factor like in Eq. (6.2)].
If we now place the crossing tensor

s

k

ν

µ′ µ

ν ′

= Gµµ
′s

ν′νk , (6.8)

in the PEPS at every crossing of the ribbon with label s with a lattice edge, this gives the
correct superposition of qudit states. Note that the quantum dimension factors in each
plaquette are again taken care of by the convention for closed loops at the virtual level.
Eq. (6.6) can then be represented with the following tensor network state:

s

, (6.9)

where the additional loops in the plaquette correspond to the second summation on the
right hand side of Eq. (6.6). Note that in the tensor network representation above, one
should ensure that the string-label is fixed to the correct string-label s. In case one were
to use the tensors above to represent a closed string, an additional Kronecker-delta tensor
must be included to avoid summing over all string-labels.

The tensor network representation of a ground state obtained from a string-configuration
containing fusing strings, is derived in a similar fashion. We again start by pulling the
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strings onto the various loops using Eqs. (2.33) and (2.52):

∑
{µ}

dµ1dµ2

µ1

µ2

s

t u

=
∑

µ′1,µ
′
2,µ
′′
2

vµ1vµ′1
vs

vµ′2vµ′′2
vtvu

µ1

µ′2

s

t u

s u
t

µ′1

µ′′2
µ2

µ2

=
∑

µ′1,µ
′
2,µ
′′
2

vµ1vµ′1
vs

vµ2vµ′2vµ′′2G
sµ′′2µ

′
2

µ2ut

µ1

µ′2

s

t u

s

µ′1

µ2

µ′′2
. (6.10)

The edge crossings can again be resolved as in Eq. (6.7), giving exactly the same situation
as before for the upper plaquette. For the lower plaquette, the combined contribution
from of the last factor in Eq. (6.7) for the three edge crossings combines with the right
hand side of Eq. (6.10) to a total factor of the form

√
vsvµ′vµ′′

√
vtvµvµ′′

√
vuvµvµ′vµvµ′vµ′′G

sµ′′µ′

µut = dµdµ′dµ′′
√
vsvtvuG

sµ′′µ′

µut . (6.11)

We can now define the tensor

µ

µ′′

s

t u

µ′

=
√
vsvtvuG

sµ′′µ′

µut

=
√
vsvtvuG

stu
µµ′′µ′ , (6.12)

to represent the fusion of strings on the virtual level. This tensor, along with the closed
loop convention at the virtual level, takes care of all remaining factors in Eq. (6.11), and
gives the correct superposition of qudit states. A ground state obtained from a initial
configuration containing fusing strings can then be represented as:

s

t

u

, (6.13)

where one must again be cautious to fix the string-labels to the correct values when “closing
off” this tensor network on the virtual level.
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The tensors in Eqs. (6.4), (6.8) and (6.12) can be used to construct the tensor network
representation of any ground state of the Levin-Wen model. Ground states of the extend
Levin-Wen model can be constructed by adding the following tensor on ever vertical edge:

x
νµ

y

x′

y′
t = δxx′δyy′δx′y′δt1 . (6.14)

This tensor simply includes a trivial tail qudit and replaces the qudit on the vertical
edge by two identical ones. Since its action is trivial, we deem it unnecessary to draw it
explicitly. In the tensor network diagrams below, its pretense is implied in any plaquette
where the tail qudit is not specified explicitly.

6.2 Tensor network representations for anyonic fusion basis
states

The construction above can be extended to a tensor network representation of any any-
onic fusion basis state. An important ingredient that is missing is the tensor network
representation of the following ribbon configuration:

∑
µ

dµ

µ

k

α

β
` =

∑
µ

∑
µ′

vµvµ′

vk

µ′

k

α

β
`k

µ
. (6.15)

We again follow the same approach and pull the ribbons onto the physical lattice, which
now has a non-trivial tail edge:

µ α

αµ′

k β
` =

∑
x,y

√
vy
vµvα

√
vx

vµ′vα

√
vkvµvµ′

√
vkvxvyvαvβG

µβx
αµ′kG

αyµ
xβ`

µ′ α

µ α

x

y
` , (6.16)

where the steps in the reduction are completely analogous to those in Eq. (6.7). The
first two factors on the right hand side will contribute to the bottom and top vertices,
respectively, ensuring that we can use the vertex tensor Eq. (6.5) at both vertices. The
third factor can be recognized from Eq. (6.7) as the factor contributing to the left plaquette.
We then absorb the remaining factors into the definition of the string-end tensor

x

αβk `

µ′
α′

µ

k′

y

x′

y′
`′ = δxx′δyy′δkk′δ``′δαα′

√
vkvxvy

vβ
vα
Gµβxαµ′kG

αyµ
xβ` . (6.17)

This definition differs from the remaining factors on the right hand side of Eq. (6.16) by
1
dα
, in order to counter the factor dα that arises from the closed loop convention on the
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virtual level. This tensor has three physical indices, x′, y′ and `′, representing the physical
state of the two qudits on the vertical edge and the connected tail qudit. The dotted leg
with index αβk` is included to avoid summing over different values of the string labels, as
we are representing a state in which the labels α, β k and ` are fixed.

We now have all the ingredients we need to construct a PEPS realization of an ar-
bitrary anyonic fusion basis state on the tailed lattice. All that remains is to construct
PEPS tensors representing the doubled leaf and pants segments appearing in Eq. (2.55) by
combining the string end and fusion tensors with the decompositions of the doubled rib-
bons to two-dimensional ribbon configurations. The factors vk

vavb
in Eq. (2.55) that result

from the reduction of the doubled ribbons in the interior branches of the fusion basis state
are split evenly into both sides of the resulting single ribbon. Each doubled leaf segment
therefore receives an extra factor

√
vk
vavb

, which, when combined with the factors on the
right hand side of Eq. (2.51) yields the definition of the excitation tensor for a doubled
anyon with a leaf label a = ab̄`:

x

µ′
α′

µ

k′

y

x′

y′
`′a =

√
vavb
D

∑
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√
vkvαvβ

∑
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(6.18)
or, equivalently,
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α
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∑
γ,δ

dγdδR
aα
γ Rαbδ G
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µβx
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(6.19)
For the tensor representing the root of the fusion tree, a factor

(
Rb5a5
`5

)∗
must be included ,

in accordance with Eq. (2.55). We will not include it implicitly, but it is implied whenever
a tensor is the root of the fusion tree.

In a similar way, the doubled pants segment on the left hand side of Eq. (2.56) gets
an additional factor

√
vivjvk

vavbvcvdvevf
which, when combined with the reduction on the right

hand side, leads to a doubled fusion tensor for three doubled Fibonacci anyons a = ab̄,
b = cd̄ and c = ef̄ of the form

i

j kµ

µ′′µ′

abc = √vivjvkvavbvcvdvevf
∑
γ,δ

dγdδR
ad
γ G

kbδ
defG

cδγ
daeG

jδa
γdcG

ijk
δba

i

j kµ

µ′′µ′

.

(6.20)
A PEPS representation of an arbitrary anyonic fusion basis state of the form (3.31)
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can then be constructed by applying the following correspondence rules:

a →

x

µ′
α

µ

k

y

x′

y′
`′a ,

a

b

c

→
µ

µ′′

i

j

k

µ′

abc .

(6.21)

For example, consider the anyonic fusion state

a2

a4b1 a3

a5

a1

b2

. (6.22)

For this state, the rules in Eq. (6.21), result in the PEPS depicted in Fig. 6.1.

a1 a2

a3 a4

a5

a4a
3 b

1 b
2

a
2 a

1 b
1

a
4 b

2 a
5

Figure 6.1: PEPS representation of the anyonic fusion basis state in Eq. (6.22).

The PEPS representation for anyonic fusion basis states we have just derived provides a
powerful tool for numerical calculations with the relevant states in the physical subspace.
It was obtained here through the explicit reduction of the anyonic fusion basis states
defined in Sec. 3.5. Even though the graphical calculus on these three-dimensional ribbon
configurations shows that they indeed behave as fusion states of doubled Fibonacci anyons
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under twists and braiding, it is not intuitively clear how this behavior translates once such
a configuration has been reduced to a superposition of qudit states. It is therefore useful
to explicitly verify that our PEPS ansatz itself has the desired behavior under relevant
operations. We perform such checks explicitly in Appendix A.

6.3 Square PEPS tensors
In practice, it is often much more convenient to work with a square geometry for the
PEPS. This can be achieved by contracting the tensors within each segment. In order to
simplify the resulting square tensors, we combine each group of triple indices to a single
index. Note that, since the definition of the tensor (6.4) requires that each set of tripled
indices satisfies the Fibonacci fusion rules in order to yield a nonzero value, these regrouped
virtual indices only need to have dimension 5, corresponding to the 5 combinations abc
satisfying δabc = 1: {111, 1ττ, τ1τ, ττ1, τττ}. A similar trick can be used when grouping
the physical indices, since these come in three sets of 3 labels that must satisfy the fusion
condition in each vertex (furthermore, these sets share indices that where doubled by the
tensor network construction). The resulting square tensors will be colored gray and red for
segments of which the tails end inside plaquettes containing trivial and nontrivial DFIB
charges, respectively:

≡ , a ≡ a . (6.23)

With this simplified notation, the fusion state depicted in Fig. 6.1 can be written as
. . .

. . .

. . . . . .

a1

a2

a3

a4

b1 b2

a5
, (6.24)

where we rotated the lattice counterclockwise by 60◦ before obtaining the squared lattice.
In this simplified notation, we assume that the crossing tensors defined in Eq. (6.8) are
inserted at every edge crossing of a virtual string, and assume that the strings are fused
using the appropriate doubled fusion tensors Eq. (6.20). Note that when using the simpli-
fied tensors (without the triple indices), one must be careful to correctly enforce the closed
loop convention adopted when defining the PEPS tensors on the honeycomb lattice.
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7 | Classical simulation of the ex-
tended string-net code

Besides formulating an error correction scheme for the extended Fibonacci string-net code,
the main achievement of this work consists of obtaining error correction thresholds for this
code with a microscopic noise model. This was achieved through Monte Carlo simulations,
in which the quantum state of the system is updated to reflect the application of noise,
measurement, and recovery operations until either the initial state is recovered success-
fully or a logical error occurs. Due to the complicated nature of the extended string-net
code, and the fact that our simulations require the ability to simulate the dynamics of
non-Abelian anyons, this is a very nontrivial task. Below we discuss the various techni-
cal details of these simulations. Note that the numerical simulations presented here are
independent of the specific circuits used to realize the projective measurements and uni-
tary transformations that are required during the error correction process (assuming these
circuits can be carried out perfectly).

The structure of this chapter is as follows: We start by going over some comments on
the classical simulation of non-Abelian QEC, made in Refs. [51, 52, 55] in Sects. 7.1 and
7.2. We then introduce a microscopic noise model of Pauli errors in Sec. 7.3, and study
the effect of individual qubit errors on anyonic fusion states in Secs. 7.4 and 7.5. Sec. 7.6
describes the framework of curve diagrams [80], which is used to efficiently characterize
anyonic fusion basis bases during the simulation. Finally, in Sec. 7.7 we provide a detailed
outline of all steps performed for a single Monte Carlo sample.
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7.1 Simulating non-Abelian quantum error correction
The defining difference between Abelian and non-Abelian anyon models is the fact that
the fusion outcome of a pair of anyons is no longer uniquely determined for non-Abelian
models. This fact makes simulating noise, syndrome measurement and error correction
processes for a system exhibiting non-Abelian anyonic excitations considerably more com-
plicated than for Abelian models such as the surface code.

After anyonic excitations have been created through the application of noise, their
locations and anyon labels can be determined through a syndrome measurement. If we
think of the state in terms of fusion trees of anyons, the syndrome measurement only
projects onto fixed values for the leaf labels. For non-Abelian anyons, the internal (branch)
labels of the fusion tree may still be in a superposition of different configurations. One
of the implications is that braiding processes occurring during the recovery phase do not
necessarily result in a global phase. Hence, different paths used to physically approach a
pair of anyons in order to fuse them might give rise to different fusion outcomes (more
precisely, to different probability distributions for the measurement outcome of the total
charge of the pair). When simulating the error-correction process, we must therefore be
very careful in specifying and keeping track of the precise paths followed by the various
anyons.

Another implication is that, for non-Abelian models, the decoding process must happen
in an iterative fashion. Based on the initial positions and charges of the anyons, a recovery
step that consists of a number of fusion processes is suggested. As the result of this recovery
cannot be predicted, all fusion processes must be performed in the given order, after which
the fusion outcomes must be measured. These measured outcomes then give a new error
syndrome that serves as the basis for suggesting a next recovery step, consisting of a new
series of fusion processes. This cycle continues until all anyons are fused away and decoding
is successful, or until some anyon is wound along a nontrivial cycle during a recovery
step resulting in a decoding failure. Error correction thus proceeds as a dialogue between
syndrome extraction and decoder, where the new syndrome resulting from a given recovery
step is used to determine the next recovery step. This is in stark contrast to Abelian
models, where a single syndrome measurement provides all the necessary information to
determine all fusion processes that must be caried out in order to return the system to
the code space.

7.2 Classical simulability
The ability to reliably simulate the general dynamics of Fibonacci anyons implies the
ability to simulate (and hence perform) universal quantum computation. It is therefore
highly unlikely that such simulations are feasible on a classical computer. However, typical
noise and recovery processes such as those that we will simulate in the remainder of this
work exhibit structure that can be exploited to classically simulate them in regimes where
we expect successful error correction to be possible.

Individual local error operations either create a distinct connected group of anyons with
vacuum total charge, or extend such an existing group (see Sec. 7.4). These groups can
be understood as anyons that have interacted at some point during their lifetime. Since
each disconnected group has a trivial total charge, braiding between separate groups is
trivial. Hence, the total fusion space factorizes into a tensor product of fusion spaces of
individual connected groups, and we are only required to simulate anyon dynamics within
each of these groups separately.
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With regards to the creation of connected groups of anyons, the noise process behaves
as a kind of percolation process. Hence, below the percolation threshold, one expects that
the size of the largest connected group scales as O(log(L)) [with variance O(1)], where L
is the linear system size [81]. As this is a probabilistic statement, there will be instances
where the largest connected group has a size larger than O(log(L), but the probability of
such events is suppressed exponentially with the system size L. This logarithmic scaling
of the largest cluster size s = O(log(L)) counters the exponential scaling of the dimension
of the fusion space d = O(exp(s)) for individual connected groups. Therefore, the fusion
spaces of individual connect groups will have dimension dim = O(poly(L)), meaning that
the dynamics within connected groups can be simulated efficiently.

These arguments on the classical simulability of topological quantum error correction
with a universal anyon model where first made in Ref. [55]. The behavior of connected
clusters of anyons created in the phenomenological model studied there corresponds ex-
actly to the bond percolation model for which the logarithmic scaling mentioned above
was verified numerically [81]. To ensure that this still holds for the microscopic model
studied here, we explicitly verified the logarithmic scaling of the average size of the largest
connected group of anyons after subjecting all qubits to a depolarizing noise model, using
Monte Carlo simulations. The results of these simulations are presented and discussed in
Appendix B.

During the iterative decoding procedure, anyons are fused over increasing length scales,
thereby potentially joining together connected groups of anyons through this interaction.
As long as large connected groups are sparsely distributed (which is the case on average
below the percolation threshold) this should not pose a problem, as the dimension of the
fusion space is automatically reduced once the fusion process is actually performed, since
this then reduces the number of anyons that must be simulated. We can conclude that
we expect efficient simulation of the dynamics relevant to error correction to be possible
in the regime where the combined action of noise and recovery does not percolate.

If noise is strong enough, connected groups of anyons will percolate and the fusion space
will no longer factorize into small disconnected parts. In this case classical simulation of
braiding and fusion will become intractable. However, this is precisely the regime where
we expect regular transport of anyons along nontrivial cycles during recovery, leading to
failed error correction. Therefore, the error correction threshold itself will lie below this
regime and estimating its value through classical simulations should be possible.

7.3 Noise model
Our goal is to stimulate the dynamics of a quantum-computing architecture of qubits,
which directly implements our error-correcting code. We model noise in this system as
individual (either depolarizing or dephasing) Pauli errors acting on random qubits, while
the system is constantly being monitored1. We treat the occurrence of Pauli errors on
individual qubits as independent Poisson processes with a fixed rate p, which characterizes
the noise strength. The total number of qubit errors, denoted by T , then follows a Poisson
distribution with mean T0 = |E|p, where |E| is the total number of edges. (For a tailed
honeycomb lattice with periodic boundary conditions and a total of L2 plaquettes, the total
number of edges (and hence qubits) is |E| = 5L2, resulting in T0 = 5L2p.) This fixed-rate
sampling noise model is similar to those used for the simulation of non-Abelian quantum

1Note that under these assumptions, it is not appropriate to characterize the noise in terms of an
i.i.d. noise strength per qubit, since the non-Abelian nature of our code implies that the combined action
of individual error and measurement operators do not commute for consecutive errors. We discuss the
relation with i.i.d. noise in Appendix C
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error correction with phenomenological models such as in Refs. [51, 55]. For simplicity,
we assume that all measurements are perfect and are carried out on timescales which are
negligible compared to the average time between individual qubit errors [∼ 1/(|E|p)].

We simulate the dynamics of the system for T time steps, each of which corresponds
to the occurrence of a single Pauli qubit error, and where T is drawn from a Poisson
distribution with mean T0. Each individual time step consists of the following:

1. An edge e of the lattice is chosen at random and a Pauli operator σi is picked
according to relative probabilities {γx, γy, γz}. We specifically use depolarizing noise
(γx = γy = γz = 1/3), dephasing noise (γz = 1), and bit-flip noise (γx = 1). The
operator σi is then applied on the qubit corresponding to edge e.

2. All vertex stabilizers Qv, and tail qubits are measured (in the Z-basis).

3. The appropriate unitary operator UV , conditioned on the measurement outcome V
from the measurements above, is applied to fix any violated vertices.

4. The anyon charge in each plaquette is measured.

The unitary operators used to locally correct violated vertices were introduced in Chap-
ter 4, their purpose is to move the system back to the string-net subspace Hs.n.. Inside this
subspace states can be described in terms of anyonic fusion states, and plaquette anyon
charges are well defined. Note that the measurement at the end of each time step means
that we will never encounter any superpositions of different anyonic charges in individual
plaquettes. (In terms of fusion states, this fixes all leaf labels.)

After the T error operations have been applied, and if no logical error was induced
by the noise process, the syndrome is fed to an iterative (classical) decoding algorithm,
which returns a list of anyons to be fused and paths to be followed when doing so. We
assume that all recovery operations and additional syndrome measurements are perfect
and instantaneous, meaning no additional errors happen during the recovery process.

While the connection between percolation and logical errors in topological codes is not
exact [82] (i.e., not all percolation events cause logical errors), all logical errors are the
result of events where a pair of anyons are fused along a non-contractible loop. Our Monte
Carlo simulations (detailed below in Sec. 7.7) classify all such percolation events as failures,
and therefore slightly overestimate the logical failure rates. This provides a heuristic
argument for the validity of our noise model. The immediate collapse of superpositions in
the anyon charge of individual plaquettes does not inhibit the occurrence of percolation
processes. We therefore do not expect our assumption of constant syndrome measurement
to significantly affect the obtained decoder failure rates. Furthermore, in the low noise
strength limit, our noise model approximates an i.i.d. noise model, as the random qubits
affected by Pauli errors are unlikely to be in each others vicinity. The existence of an
error correction threshold for our fixed-rate sampling noise model therefore implies the
existence of a threshold for an i.i.d. noise model as well.

7.4 Pauli-noise in the anyonic fusion basis
We will now investigate the effect of the application of noise and subsequent measurement
and vertex recovery operations performed in each of the T time steps of the simulation
as described above. Because of the syndrome measurement performed at the end of every
time step, the quantum state of the system between these steps can always be decomposed
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as a superposition of anyonic fusion basis states, which all share the same set of leaf labels.
It is therefore sufficient to understand the action of these different operations on an initial
state

|Ψ0〉 =
∑
t

αt |ψt〉 , (7.1)

where the |ψt〉 represent anyonic fusion basis states Eq. (3.37), and the states {|ψt〉 |αt 6= 0}
all share the same set of leaf labels.

7.4.1 Pauli-Z errors

We begin our analysis by studying the case where we act with a σz operator on the qubit
residing at edge e. One can easily see that for any edge e, σez commutes with all vertex
operators Qv defined in Eq. (3.9), since both operators are diagonal in the same basis.
Hence, a σz error does not take the system out of the string-net subspace Hs.n., and the
resulting state can again be decomposed in the anyonic fusion basis:

|Ψ1〉 = σez |Ψ0〉 =
∑
t

αtσ
e
z |ψt〉 (7.2)

=
∑
t′

|ψt′〉
(∑

t

αt 〈ψt′ |σez|ψt〉
)
, (7.3)

where we have used that
∑
t′ |ψt′〉 〈ψt′ | acts as the resolution of the identity within Hs.n..

In particular, if we start from a superposition of basis states |ψt〉 that all have the same
specific handle label (see Sec. 3.5), the states |ψt′〉 in the resulting superposition will also
have that same label, unless a logical error has occurred through the interaction of the
thermal anyons due to the noise operator. Since the simulation of error correction is
immediately aborted in the event of such a logical error, it is sufficient to only consider
basis states that all have the same handle label as the initial state.

When the edge e is a tail edge, acting with σez results in a global (±1) factor, which
has no physical consequences. On a general edge e different from a tail edge, the action
of σez commutes with the irreducible idempotents of the tube algebra [Eqs. (3.23) (3.24),
(3.25), (3.27) and (3.28)] acting on any plaquette, except for the two that contain the edge
e. This means that a σez error on a general edge can modify the anyon charge of at most
two plaquettes. Furthermore, the total charge of these two plaquettes cannot be changed
by the action of σez, since this is a collective property of the pair that is insensitive to the
local operator σze .

With these insights in mind, we pick an anyonic fusion basis of the following form:

|ψ~ab,~c〉 =

a1 a2

bcj cj+1 , (7.4)

where a1 and a2 are the charges of the two affected plaquettes, b denotes their total
charge, and ~c collectively denotes all other leaf, branch and handle labels. We can then
rewrite the initial state Eq. (7.1) as

|Ψ0〉 =
∑
b,~c

αb,~c |ψ~ab,~c〉 . (7.5)

Note that we dropped the summation over ~a, which is allowed because the initial state
contains no superposition in plaquette charges. Since the labels b and ~c are unaffected by
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σez, the matrix elements appearing on the right hand side of Eq. (7.2) are block diagonal
in these labels, and the expression for the state |Ψ1〉 = σz |Ψ0〉 can be reduced to

|Ψ1〉 =
∑
b,~c

∑
~a′

|ψ~a′b,~c〉
(
αb,~c 〈ψ~a

′

b,~c|σez|ψ
~a
b,~c〉
)
. (7.6)

The probability of finding outcome ~a′ = (a′1,a′2) when performing a syndrome measure-
ment in the two affected plaquettes is then given by

p(~a′) =
∑
b,~c

∣∣∣αb,~c 〈ψ~a
′

b,~c|σez|ψ
~a
b,~c〉
∣∣∣2 . (7.7)

After performing this measurement, the state of the system collapses to

|Ψ2〉 = 1√
p(~a′)

∑
b,~c

|ψ~a′b,~c〉
(
αb,~c 〈ψ~a

′

b,~c|σez|ψ
~a
b,~c〉
)
, (7.8)

which is again a superposition of basis states with fixed leaf labels. Note that the matrix
elements on the right hand side of Eqs. (7.7) and (7.8) are independent of the unaffected
labels ~c. Hence, we may replace then with matrix elements of the form 〈ψ~a′b |σez|ψ~ab 〉, where
|ψ~ab 〉 are states that only contain nontrivial anyon labels for the two affected plaquettes
and for their total charge. Also note that since the total charge of the affected plaquettes
is a collective property, the precise location of the third plaquette which contains this total
charge does not affect the value of the matrix elements, and furthermore, the tail label of
that plaquette does not affect the matrix elements.

When calculating the matrix elements, we must pick some convention for the basis
elements |ψ~ab 〉 [i.e., for the embedding of the fusion tree in Eq. (7.4) in the lattice], for
each of the possible orientations of e. Since σez has no physical effect when e is a tail edge,
we only need to consider four orientations for e. Our choice of basis convention for the σze
matrix elements is given in Fig. 7.1.

σz

b

a1

a2

(a)

σz

b

a1

a2

(b)

σz

b

a1 a2

(c)

σz

b

a1a2

(d)

Figure 7.1: Basis convention for the affected plaquette charges for all nontrivial orienta-
tions of the edge e (highlighted in blue) in the case of a σz error.

7.4.2 Pauli-X and Y errors

The case of a σex error is similar, but comes with some additional complications. Since
a σex operator does not commute with the vertex operators Qv associated to the vertices
bounding e, the state

|Ψ1〉 =
∑
t

αtσ
e
x |ψt〉 (7.9)
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does not necessarily belong to the sting-net subspace Hs.n. and hence cannot be expressed
as a superposition of anyonic fusion basis states. In particular, upon measuring the vertex
stabilizers for the vertices that bound e, one might find that the ribbon graph branching
rules are violated in either of these vertices. Each violated vertex will belong to a set of 7
connected qubits on the lattice that we will call a segment:

a

d

e

c

b

f
g

The three vertices in each segment will be denoted as t, m and b, corresponding to the top,
middle and bottom vertex, respectively. For each segment with some violated vertices, we
also measure the label of the tail qubit (corresponding to edge g in the diagram above).
Depending on these measurement outcomes V , a unitary operator UV is applied to the
segment in order to take it back to the +1 eigenstate of the three vertex operators Qt, Qm
and Qb associated to the segment. The definitions and corresponding circuits for these
unitaries (conditioned on all possible measurement outcomes) are given in Sec. 4.1.

The probability p(V ) of a combined outcome V for the vertex and tail qubit measure-
ments in the relevant segments is given by

p(V ) = 〈Ψ1|PV |Ψ1〉

=
∑
t′,t

ᾱt′αt 〈ψt′ |σexPV σex|ψt〉 , (7.10)

where PV is the projector onto the total measurement outcome V . For example, for the
case of a σex acting on the edge e bounded by vertices v1 and v2 where only v1 is violated
and the tail qubit q1 of the segment containing v1 has label τ , the associated projector PV
is given by

PV = (1−Qv1)(Qv2)(|τ〉q1
〈τ |q1

) . (7.11)

After performing the vertex and tail qubit measurements with outcome V and applying
the appropriate unitary operator UV to bring the system back to the string-net subspace,
the state is given by

|Ψ2〉 = 1√
p(V )

∑
t

αtUV PV σ
e
x |ψt〉

= 1√
p(V )

∑
t′

|ψt′〉
(∑

t

αt 〈ψt′ |UV PV σex|ψt〉
)
, (7.12)

where we have again inserted the resolution of the identity
∑
t′ |ψt′〉 〈ψt′ | in Hs.n. on the

right hand side in order to explicitly express the state as a superposition of anyonic fusion
basis states.

As in the case of a σze error, the expressions (7.10) and (7.12) can be simplified by
considering which plaquette charges are actually affected by the combined action of the
operators UV , PV and σex. Since a σx operator acting on an edge e of the tailed lattice
results in at most two violated vertices, the combined action of UV , PV and σex involves at
most two segments. These operators therefore commute with any tube operators acting
on plaquettes that have no edges in common with these segments. This means that only
the charges associated to the plaquettes in the immediate neighborhood of the error can
be affected. The number of affected plaquettes depends on the orientation of the edge e.
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As before, we pick our anyonic fusion basis to reflect this fact. In case of 4 affected
plaquettes, the basis states have the form

|ψ~a, ~db,~c 〉 =

a3

b

d2

d1

a4a1 a2

cj+1cj , (7.13)

where, again, ~a denotes the charges of the affected plaquettes, b denotes their total charge,
and ~c collectively denotes all other unaffected leaf, branch and handle labels. Note that
we now need additional labels ~d to denote the affected internal branch labels. With this
choice of basis, the sum over t in Eq. (7.1) is split into a sum over the unaffected labels ~c,
the total charge b, and the branch labels ~d of the affected part:

|Ψ0〉 =
∑
b,~c, ~d

α
~d
b,~c |ψ

~a, ~d
b,~c 〉 . (7.14)

As all matrix elements are block diagonal in the unaffected labels, the expression for
the vertex measurement outcome probability Eq. (7.10) reduces to

p(V ) =
∑
b,~c, ~d

∑
~d′

ᾱ
~d′

b,~c α
~d
b,~c 〈ψ

~a, ~d′

b,~c |σ
e
xPV σ

e
x|ψ

~a, ~d
b,~c 〉 . (7.15)

The sum over t′ in Eq. (7.12) can again be split into a sum over the unaffected labels
~c′, the affected leaf labels ~a′ and the branch labels ~d′ of the affected part, reducing the
expression to

|Ψ2〉 = 1√
p(V )

∑
~a′, ~d′

∑
b,~c

|ψ~a
′, ~d′

b,~c 〉

∑
~d

α
~d
b,~c 〈ψ

~a′, ~d′

b,~c |UV PV σ
e
x|ψ

~a, ~d
b,~c 〉

 . (7.16)

Measurement of the affected plaquette charges will then yield charges ~a′ with a probability
p(~a′) given by

p(~a′) = 1
p(V )

∑
~d′

∑
b,~c

∣∣∣∣∣∣
∑
~d

α
~d
b,~c 〈ψ

~a′, ~d′

b,~c |UV PV σ
e
x|ψ

~a, ~d
b,~c 〉

∣∣∣∣∣∣
2

. (7.17)

The resulting state after this charge measurement is

|Ψ3〉 = 1√
p(~a′)p(V )

∑
~d′

∑
b,~c

|ψ~a
′, ~d′

b,~c 〉

∑
~d

α
~d
b,~c 〈ψ

~a′, ~d′

b,~c |UV PV σ
e
x|ψ

~a, ~d
b,~c 〉

 . (7.18)

Once again, the matrix elements on the right hand side of Eqs. (7.15), (7.17) and (7.18)
are independent of the unaffected labels ~c, so we only require matrix elements of the form
〈ψ~a

′, ~d′

b |O|ψ~a, ~d~b
〉 for fusion basis states involving up to four plaquettes and their total charge.

Our choice of basis convention for the charges of the affected plaquettes for all possible
orientations of e is given in Fig. 7.2. In the case of a σx error all five possible orientations
of e are nontrivial. By considering the potentially violated vertices and the definition of
the associated unitaries given in Sec. 4.1 for each orientation, it can easily be verified that
the depicted plaquettes are indeed the only affected ones and the combined action of the
error, measurements and unitaries commutes with all other tube operators.
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The case of a σy error is entirely analogous to that of a σx. The same operators PV
and UV appear, and we use the same basis convention as the one depicted in Fig. 7.2.

In summary, all that is required to capture the effect of Pauli-noise on the state of the
system are the following matrix elements:

〈ψ~a, ~d
′

b |σexPV σex|ψ
~a, ~d
b 〉 , (7.19)

〈ψ~a
′, ~d′

b |UV PV σex|ψ
~a, ~d
b 〉 , (7.20)

〈ψ~a, ~d
′

b |σeyPV σey|ψ
~a, ~d
b 〉 , (7.21)

〈ψ~a
′, ~d′

b |UV PV σey|ψ
~a, ~d
b 〉 , (7.22)

〈ψ~a′b |σez|ψ~ab 〉 . (7.23)

These matrix elements must be calculated for all possible orientations of the edge e in
Figs. 7.1 and 7.2, and for all possible combined outcomes V of the vertex and tail qubit
measurements in the case of a σx or σy error.

σx

a1 a2

a4a3d1

b

d2

(a)

σxd1

b

d2

a1a2

a4 a3

(b)

σx

d

b

a1

a2 a3

(c)

σx

d

b

a1a2

a3

(d)

σx

b

a1 a2

(e)

Figure 7.2: Basis convention for the affected plaquette charges for the different orientations
of e (highlighted in blue) in the case of a σx or a σy error.

7.5 Computing the relevant matrix elements

At first sight, calculating the matrix elements listed in Eqs. (7.19)-(7.23) seems like an
intractable job, due to the highly entangled nature of the anyonic fusion basis states on the
tailed lattice. Fortunately, as detailed in Chapter 6, this complex entanglement structure
can be captured using tensor network representations for anyonic fusion basis states. By
using some key insights together with tensor network techniques, we can harness the
computational power of tensor networks to compute said matrix elements. Below, we will
illustrate this procedure for the matrix element Eq. (7.19), where e is an edge with the
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orientation depicted in Fig. 7.2(a). All other matrix elements can be computed in an
analogous manner.

For simplicity, we will work with square PEPS tensors (see Sec. 6.3), which each
correspond to one segment of the lattice as shown in the following diagram:

where we have rotated the lattice by 60◦ counterclockwise. The PEPS tensors will be
colored gray and red for segments of which the tails end inside plaquettes containing
trivial and nontrivial DFIB charges, respectively. With this notation (and after a coun-
terclockwise rotation by 60◦), the anyonic fusion state represented in Fig. 7.2(a) looks as
follows:

|ψ~a, ~db 〉 =

. . .

. . .

. . . . . .

a1

a2

a3

a4

d1 d2

b

. (7.24)

The crossings and branchings in this diagram imply the presence of certain crossing and
fusion tensors. Details of these are given in Chapter 6. The total charge b of the four leaf
charges in Fig. 7.2(a) was assigned to a neighboring segment. As was mentioned before,
since the total charge of the group of anyons is a collective property, the precise location
of the excitation tensor encoding this total charge does not affect the computation of
the matrix elements itself. Hence, we choose to place it next to the other charges for
convenience.

The matrix elements can then be computed by applying the appropriate operators
on the physical indices, and then contracting the result with the conjugate PEPS corre-
sponding to the bra vector 〈ψ~a

′, ~d′

~b
|. In this specific case, the operator PV that projects out

the combined vertex and tail qubit measurement outcome V can be decomposed into two
operators PA and PB that act on the segments of leaf charges a2 and a4, and project out
the measurement outcomes for the vertices and tail edge in these segments, respectively.
The matrix element is then given by the contraction

〈ψ~a
′, ~d′

b |σexPV σex|ψ
~a, ~d
b 〉 =

. . .

. . .

. . . . . . , (7.25)
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where

=
σex

σex
PA

a2 and =
σex

σex
PB

a4 . (7.26)

In order to avoid too much clutter, we have omitted the different labels in the graphical
notation. The labels ~a′, b, ~d′ and ~a, b, ~d are always implied for the top and bottom layer,
respectively. Note that the σex operator was applied on two different tensors. This is
nothing more than a side-effect of the fact that the physical degrees of freedom are doubled
in the PEPS representation.

The result of the tensor contraction in Eq. (7.25) should be independent of the size
of the system, and must be entirely determined by the nontrivial anyonic charges of the
colored segment tensors. We may therefore assume the system to be infinite, where all
tensors except the colored ones depicted in Eq. (7.25) correspond to segments with a trivial
charge. This infinite contraction can then be simplified by determining the top fixed point
MPS of the double layer transfer matrix [83]:

. . . . . . =
. . .. . .

. (7.27)

After finding a similar bottom fixed point MPS, Eq. (7.25) can be reduced to

〈ψ~a
′, ~d′

b |σexPV σex|ψ
~a, ~d
b 〉 = . . . . . . . (7.28)

In the same way, left and right fixed points can be determined for this expression:

= , (7.29)

and similarly for the right fixed point. This finally results in the finite contraction

〈ψ~a
′, ~d′

b |σexPV σex|ψ
~a, ~d
b 〉 = , (7.30)

which can be computed in the regular way. In Eqs. (7.27) and (7.29) we have implicitly
assumed that the PEPS tensors were rescaled such that the leading eigenvalue of the
relevant transfer matrices in these expressions is equal to 1. Because of these rescalings
the PEPS for the fusion basis states will not have a unit norm, and the final expression

Eq. (7.30) should therefore be divided by
√
〈ψ~a, ~db |ψ

~a, ~d
~b
〉 〈ψ~a

′, ~d′

~b
|ψ~a

′, ~d′

b 〉 in order to obtain a
matrix element that is properly normalized.
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7.6 Storing and manipulating anyonic fusion basis states
As explained in Sec. 3.5, states in Hs.n. can be expressed as linear combinations of any-
onic fusion basis states. The anyonic fusion basis itself is determined by picking a pants
decomposition of the surface and choosing a basis for each handle if the genus is nonzero.
To keep track of the quantum state |Ψ〉 of the system, one could in principle pick a basis
{|ψi〉} for the entire string-net subspace and then update all coefficients 〈ψi|Ψ〉 throughout
the different steps in the simulation. Such a naive approach is doomed to fail however as
implementing F -moves and braiding in the exponentially large Hilbert space Hs.n. quickly
becomes intractable as the system-size grows. Instead, we need to select a basis that
reflects the factorization of the fusion space discussed in Sec. 7.2. Hence, we require
the ability to dynamically introduce a basis for each of the connected groups of anyons
separately, in a way that takes into account the specific structure of the relevant noise
processes.

For each connected group of anyons, we can pick out a linear ordering by drawing a di-
rected curve connecting all the anyons (which we locate at the center of their corresponding
plaquette) within the group. Directed curves, corresponding to the same linear ordering
and only differing by continuous deformations that keep the anyon positions fixed, form a
set of equivalence classes that we shall call curves or curve diagrams. Each configuration
of (non-intersecting) curves on the surface corresponds to an equivalence class of anyonic
fusion bases that are related up to local Dehn twists in individual plaquettes.

A rigorous definition of curve diagrams, using the language of modular functors, can
be found in Ref. [80]. For our purposes however, the following simplified construction will
suffice. For a given curve containing n anyons, the corresponding fusion basis (up to local
Dehn twists) is found as follows: start by drawing a fusion tree connecting only the first
and last anyons, in a way that is homologically equivalent to the curve. Next, following
the orientation provided by the curve, add anyons 2, 3, . . . , n − 1 to this fusion tree one
by one, by adding a leaf to the tree on the left hand side. This is best illustrated with an
example:

a5

a1 a2

a4a3

b1

b2
↔ b1

a5
b2

a1 a2

a4a3
. (7.31)

A different basis for the same fusion space corresponding to a different curve diagram
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would be given by

a5

a1 a2

a4a3

b2

b1
↔ b1

a5

b2a1 a2

a4a3
. (7.32)

Note that the way in which the leaf ribbons wrap around the plaquettes containing
anyons is not uniquely determined by this construction. It is precisely this freedom that
translates to local Dehn twists in individual plaquettes. While the construction could be
modified in order to remove this freedom, there is no need for us to bother with such
details. Our simulations are set up such that we never need to store any superposition in
the anyon labels of individual plaquettes. As such, local Dehn twists give rise to global
phases, which have no physical relevance.

The relation between curve diagrams and anyonic fusion bases detailed above, does
not specify the handle labels. However, the nature of the simulation does not require the
ability to store these values. The handle label (or superposition of such labels), can only
be modified by processes in which a pair of anyons on the same curve interact along a path
that is not homologically equivalent to the piece of curve between them. Since such events
are precisely those for which the simulation declares a failure, we do not need the ability
to update the handle label. Futhermore, since the total charge of all created excitations
is trivial, the value of the handle label has no influence on the outcome of any physical
process. Hence, all we need to store is the fusion state of anyonic excitations created on
top of some initial ground state.

7.6.1 Data-structure

In order to simulate the noise and error correction processes, one needs to be able to
efficiently store and update the basis in which the quantum state of the system is expressed.
The curve diagrams, as defined above, provide a convenient way of doing so. An efficient
method for storing the curve diagrams describing the current basis was introduced in
Ref. [55]. We slightly modify this construction in order for it to be better suited for the
system at hand.

We will store the configuration of curves by storing the shape of the curves running
through each individual plaquette separately. Since the presence of the tail edges is irrele-
vant in this context, we will represent the curve diagram layout on hexagonal tiles (each of
which corresponds to a plaquette). The total configuration of the curves can be obtained
by piecing all tiles together. In order to represent the curves of the connected groups
of anyons on the lattice, we assign to each connected curve a unique integer label. An
example of three connected curves on a 4× 4 lattice is depicted in Fig. 7.3(a). Since they
represent the layout of the curve diagrams on the lattice, each tile may contain at most
one anyon, and we require that the different curves intersect the edges of tiles transversely.

In order to save the configuration of curves inside a tile we first assign a unique integer
label to each piece of curve inside the tile. By a piece of curve, we mean a segment of a
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Figure 7.3: (a): Example of a configuration of three connected curves on a 4× 4 periodic
hexagonal lattice. Each curve is assigned a unique integer label, depicted here in the
square boxes at the start of each curve. (b): Result of a merge procedure in the case the
two anyons in the dashed ellipse interact. (c): Result of repeated use of refactoring moves
to make the the anyons in the dashed ellipse appear sequentially in the same curve.

curve diagram connecting either two edges of the tile, or an edge and an anyon. Note that
every piece of curve has an orientation. The edges of a tile are numbered clockwise from
1 to 6 as depicted in Fig. 7.4(a). For each edge, we record the label and orientation (+1
for an incoming line, -1 for an outgoing line) of each piece of curve intersecting it, in the
order in which they are encountered when going clockwise around the tile. In addition,
when an anyon is present inside the tile, we also store which pieces of curve are connected
to it. Finally, for every piece of curve inside the tile, we store the curve label, along with
its position inside that curve. If a piece of curve is positioned between the nth and n+1th
anyons on a curve (following the orientation of the curve), its position label is n. An
example of such a tile is depicted in Fig. 7.4(b). The configuration inside this tile would
be stored as follows:

[ ] [
1 +1

] [ ] [ ] [1 −1
2 +1

] [
3 −1

] [2
3

]1 3 2
2 3 3
3 3 4

 . (7.33)

Here, the first six arrays correspond to the labels and orientations of lines crossing each
of the six tile edges, respectively. The next to last array indicates that lines 2 and 3 are
connected to the anyon in the tile. The last array indicates the curve and position along
the curve of each piece of curve. In this case, all lines belong to curve 3, and the lines
with labels 1, 2, 3 appear in the curve after the second, third and fourth anyon along the
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Figure 7.4: (a) Labeling of the edges of a hexagonal tile in a clockwise direction. (b)
Example of a configuration of lines running through tile 10 in Fig. 7.3(a) (when counting
from left to right and from top to bottom). Each line segment is assigned a unique integer
label.

curve, respectively.

7.6.2 Merge

If neighboring anyons on the lattice that lie on different connected curves interact at some
point, their corresponding curves must be merged in order to compute the effect of the
interaction. In terms of fusion trees, one must think of this procedure as connecting two
separate fusion diagrams with a line carrying the trivial label.

The curves are merged by connecting the end of one curve to the start of the other,
with the condition that the combined path of the resulting curve and the interaction2 does
not contain any homologically nontrivial loop. Other than this requirement, the way in
which the curves are merged is arbitrary, one simply has to connect the end of one curve
to the start of the other in some suitable way.

In our framework merging is implemented by extending the end of one curve parallel
along the curve in its reverse direction until it reaches the tile of one of the interacting
anyons. The extended curve is then crossed over to the tile of the other anyon, after which
it follows the other curve in its reversed direction and is attached to the start of the latter.
An example of this merging procedure is depicted in Fig. 7.3(b).

Updating the state superposition in the case of a merge operation is trivial, as it simply
amounts to taking the tensor product of the state superpositions associated to each curve.

7.6.3 Passive exchange

Calculating the outcome of both individual Pauli errors and fusion operations, requires
expressing the state in the appropriate anyonic fusion basis. Basis transformations con-
cerning individual curves are performed using passive exchanges or swaps, which are rep-
resented as follows for the clockwise and the counterclockwise case, respectively:

Sab :
a

b 7→
a

b
, (7.34)

(
Sab

)−1
: a

b
7→ a

b
. (7.35)

2By the path of an interaction we mean the shortest path connecting any pair of plaquettes affected by
it that initially belong to two different curves.
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It is important to stress that this does not represent an active braid move in which two
anyons are exchanged. This is a basis transformation: the quantum state of the system
remains unchanged, and the coefficients of the state superposition must be updated to
express this state in a new basis.

The right transformation on the state vector components is found by considering the
relation between the anyonic fusion bases corresponding to the left and right hand side of
these equations. For a clockwise swap, represented in Eq. (7.34), this relation is

aj

b3b2b1

aj+1

=
∑
b′2

B
b1ajb2
aj+1b3b′2

aj

b3b′2b1

aj+1

, (7.36)

where
B

b1ajb2
aj+1b3b′2

=
∑
c

F
ajaj+1c
b3b1b′2

R
ajaj+1
c F

b1ajb2
aj+1b3c

. (7.37)

Analogously, for the counter clockwise case, one finds

aj

b3b2b1

aj+1

=
∑
b′2

(
B

b1ajb2
aj+1b3b′2

)∗ aj

b3b′2b1

aj+1

. (7.38)

7.6.4 The paperclip algorithm

In order to determine the outcome of an interaction on a set of anyons, be it some local
noise operator or the fusion of a pair, we must always transform to a basis where these
anyons appear sequentially in the linear ordering determined by their curve diagram.
Below, we outline how such a basis transformation can be performed using a sequence of
swaps for the case where only 2 anyons are involved. The general case for n anyons can
then be deduced iteratively.

In general, any two curve diagrams f and f ′, containing the same anyons, and such
that the combined path of f and f ′ does not contain any homologically nontrivial loop,
can be related to each other by a sequence of swaps. The algorithm for determining
this sequence, was introduced in Ref. [80] and dubbed the refactoring algorithm. We
will describe a different but entirely equivalent formulation of this algorithm, called the
paperclip algorithm which is more convenient for our purpose. This alternative formulation
was introduced in Ref. [55], and determines the sequence of swaps corresponding to a basis
transformation where we “move” an anyon (or rather, its position on the curve) to the
next piece of curve encountered when moving along the boundary of its tile in a clockwise
fashion, as shown in the following diagram:

7→ . (7.39)

We will call such transformations refactoring moves. Schematically, their action on the
curve diagram can be represented as

7→ . (7.40)
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The initial position and destination of a refactoring move divide a curve into three
disjoint segments which we name tail (T ), body (B) and head (H), respectively (following
the orientation of the curve). Their content is defined as follows:

HBT

where the dotted line represents the refactoring move. Note that we do not include the
anyon which is being moved (indicated in dark above) in any of these segments.

As interacting anyons are always neighbors on the lattice, repeated use of such moves
can be used to obtaining a curve diagram where these anyons appear subsequently on the
same curve. For example (assuming all encountered lines belong to the same curve):

7→ 7→ .

If any lines lie between the two interacting anyons but do not belong to either of their
curves, one of the following two actions must be performed: In case the interacting anyons
do not belong to the same curve initially, one can attempt to pull such lines through one
of these curves to get it out of the way. Since each curve corresponds to a connected
group of anyons with trivial total charge, such a deformation does not affect the state
vector and is therefore permitted. Whenever this is not possible (i.e., when that does not
“remove” the obstructing line), the corresponding curve diagram is essentially trapped
between the others, and one is forced to merge it with those containing the interacting
anyons, before proceeding with the clockwise “moves”. The latter is of course not desirable,
since it increases the size of the associated fusion space, but there are situations where
this is unavoidable. Of course, in case the pair of anyons are members of different curves
initially, these must be merged in the process.

The sequence of swaps corresponding to the refactoring moves described above can
be determined with the corresponding turn number. This number is found by counting
the number of right hand 60◦ turns made by the curve between the initial position of
the anyon and its destination (that is, the next piece of curve that intersects the tile
boundary). Starting at the anyon’s initial position, every 60◦ right hand turn contributes
+1, while every left hand turn contributes3 −1. In order to ensure that the turn number
is independent of where the “destination piece of curve” enters the tile, the total value
must then be decreased by 1 for every additional edge of the tile boundary we have to
move to (in a clockwise fashion) before encountering it (0 if it appears directly after the
initial line, −1 if it appears on the next edge, ...).

Depending on whether the refactoring move is with or against the orientation of the
curve, and depending on whether the piece of curve associated with the initial position
of the refactoring move has an incoming or outgoing orientation, it is always isotopic to
one of 4 different “paperclips”, each of which is associated to a specific turn number. For

3Note that we always count the number of right hand turns while following the curve from the start
towards the destination of the refactoring move, independently of whether or not the refactoring is along
or against the orientation of the curve itself
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example, when the anyon is transported along the curve, and the initial piece of curve has
an incoming orientation, the possible turn numbers and corresponding “paperclips” are

−3 →

−6 →

+6 →

+9 →

The appropriate sequences of swaps for these four different situations are

− 3 : S−1[B] ,
− 6 : S−1[B]S−1[H]S−1[Hr] ,
+ 6 : S[T r]S[T ]S[B] ,
+ 9 : S[T r]S[T ]S[B]S[H]S[Hr] ,

where the notation S[H] stands for sequentially swapping the anyon with all entries in H
in a clockwise fashion. Hr indicates the sequence of anyons in H, in reversed order. The
paperclip configurations for the other cases are similar. All of them are listed together
with the corresponding sequences of swaps in Appendix D.

7.6.5 Fusion

The fundamental operation during recovery is a pairwise fusion process, where one excita-
tion is moved along a specific path until it neighbors another anyon, followed by the fusion
of the pair. The physical implementation of these operations is discussed in Sec. 4.3. Here
we discuss how they are implemented on the level of curve diagrams during the simulation.

Before fusing neighboring anyons, one must ensure that they appear sequentially on
the same curve diagram, which is by achieved using the paperclip algorithm described
above. To simulate the fusion process, we must first isolate the two anyons from the rest
of the fusion tree, which is done using an F -move:

aj

b3b2b1

aj+1

=
∑
c

F
b1ajb2
aj+1b3c

aj

b3b1

aj+1

c . (7.41)
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The result of the fusion of anyons aj and aj+1 is then picked from the possible values
of their total charge c using the probability distribution dictated by the coefficients of
the state superposition and the state vector is then projected to the selected outcome.
Note that this probability distribution only concerns the resulting anyon charge of the
plaquette. In case the outcome c = ττ was selected, the tail label is picked from the
probability distribution {p(1) = 1

φ2 , p(τ) = 1
φ}, which follows from Eq. (4.19).

On the level of the curve diagrams, we must then remove one of the anyons as depicted
below:

7→ .

Note that we are required to choose a “target plaquette” in which the fusion outcome is
placed.

7.6.6 Move and exchange

The moving procedure required to bring a pair of anyons to neighboring tiles can be
broken down into a sequence of basic steps where an anyon is moved to a neighboring
plaquette. If the neighboring plaquette does not contain an anyon, the curve is updated
by moving the excitation to the neighboring tile while continuously deforming the curves
in the corresponding tiles:

7→ . (7.42)

If the neighboring plaquette contains an anyon, the two anyons are exchanged in a clock-
wise fashion while deforming the curves in the corresponding tiles accordingly:

7→ . (7.43)

Note that the choice for a clockwise exchange over a counterclockwise one is arbitrary.
A different choice would result in different probabilities for the fusion outcomes after the
moving procedure, as remarked in Sec. 7.1.

Both operations do not affect the coefficients appearing in the state vector. How-
ever, they do modify the state by changing the corresponding basis elements. Such a
transformation can be expressed as

|Ψ〉 =
∑
i

αi |ψi〉 7→ |Ψ′〉 =
∑
i

αi |ψ′i〉 , (7.44)

where the basis state |ψ′i〉 is obtained from the state |ψi〉 by changing the embedding of
the corresponding fusion tree on the surface as dictated by Eq. (7.42) or Eq. (7.43).
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7.7 Outline of the simulation
With all the groundwork completed, we are now ready to sketch the outline of the entire
error correction threshold simulation, performed with the Fibonacci input category on
a tailed hexagonal lattice with periodic boundary conditions in both directions (giving
the lattice the topology of a torus). The simulation consists of a fixed number of Monte
Carlo samples, each of which simulates the application of noise and recovery processes
to an initial ground state. The quantum state of the system is tracked throughout these
processes until either a topologically nontrivial process occurs, in which case failure is
declared, or all anyonic excitations have been removed (without any logical errors), in
which case success is declared.

For a given a system size and noise strength, the logical failure rate PL is then found
by the ratio of failures compared to the total number of Monte Carlo steps. Below, we
describe in detail all the important aspects of a single Monte Carlo step, with system size
L× L and a noise strength characterized by p.

7.7.1 Cutoff parameters

In addition to logical errors, failure is also declared whenever any of two cutoff parameters
are exceeded. The first of these is the maximal allowed tree size Nmax. As discussed
in Sec. 7.2, the size of connected groups of anyons can grow very large in some rare
occasions. Since the size of the associated fusion space grows exponentially, such situations
are extremely costly, both in terms of memory usage and in computation time. Hence we
fix some cutoff size Nmax, and the simulation is aborted, and a failure is declared, whenever
the number of anyons on an individual curve exceeds this value. Note that a similar cutoff
was used in Ref. [55].

The second cutoff parameter that we introduce is Vmax, which is the maximal number
of nonzero coefficients we allow in the vector associated to any individual curve. The
motivation behind this cutoff rule is as follows. Since the state vectors appearing during
the simulation are generally very sparse, these are stored as sparse arrays. This enables us
the keep the value of Nmax higher than one would naively expect (as no memory is allocated
to all zero entries, which form the vast majority of the exponentially large state vector). To
avoid the extreme time and memory cost of the rare cases where any state vector contains
a very large number of nonzero entries, such cases are aborted and a failure is declared.

One must choose these cutoff parameters to be as high as possible, in order to minimize
the amount of triggered cutoffs, while still keeping the memory and time cost of the
simulations reasonable. Of course, any finite values of these parameters will negatively
affect the observed logical failure rates, once we leave the regime in which events with very
large connected groups are sufficiently rare. However we argue that their influence can
only lower the obtained threshold, meaning our results will provide a valid lower bound
on the actual error correction threshold, independent of the values of Nmax and Vmax. For a
fixed value of p, larger system sizes (on average) result in higher values for the size of the
largest connected group of anyons (see Appendix B). Hence, it is clear that the cutoffs will
be triggered more often for larger system sizes. Likewise, for a fixed system size L, larger
values of p will also result in more triggered cutoffs. When displaying the logical failure
rate as a function of p, the intersection of the curves corresponding to different system sizes,
will be shifted left compared to its true value (had the cutoff parameters been infinite),
meaning that our obtained error correction threshold is indeed a valid lower bound to its
unknown true value.
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Figure 7.5: An illegal refactoring move on a torus, which will cause the simulation to
declare failure and abort.

7.7.2 Noise phase

The system is initialized in a ground state of the code Hamiltonian Eq. (3.8), corresponding
to the anyonic vacuum with some specific handle labels. However, as explained in Sec. 7.6,
there is no need to store these handle labels, since they do not affect any relevant processes.
Processes in which the handle labels do affect the outcome are precisely those that result
in a logical error. Because the Monte Carlo simulation will automatically declare a failure
in those cases, such processes must never be simulated on the level of state-evolution.

The first half of the simulation consists of sequentially applying T noise processes,
described in Sec. 7.3, to this initial ground state, where T is drawn from a Poisson distri-
bution with mean p 5L2. For each of these T steps, an edge e is chosen at random, and
a Pauli operator σi is selected according to the relative probabilities {γx, γy, γz}. Before
the matrix elements computed in Sec. 7.5 can be used to determine the state after the
application of error σei , one must first rewrite the state vector in the appropriate basis.

Given the orientation of e and the type of error σi, the affected plaquettes can be read
off from Figs. 7.1 or 7.2. If none of them contain a nontrivial charge initially, we simply
create a new curve diagram with the appropriate shape and with a corresponding trivial
fusion state (containing only vacuum charges). If only some of these plaquettes contain a
nontrivial charge, we can add vacuum charges to the fusion state of one of the nontrivial
charges and modify (“grow”) the curve accordingly such that all affected plaquettes are
included in the same cure.

The desired basis is the one where the affected anyons appear sequentially along the
same curve, in the order depicted in Figs. 7.1 or 7.2. This is obtained by applying a
series of refactoring moves as described in Sec. 7.6.4, and performing the corresponding
sequences of swaps and merge operations on the affected state vectors. If any of the
required refactoring moves is topologically impossible, for instance the one depicted in
Fig. 7.5, this indicates that a logical error would be caused, as the joint path of the curve
diagram and the interaction path form a non-contractible loop. Whenever this happens
the simulation declares failure and aborts the current Monte Carlo step.

If all refactoring moves above were legal, a sequence of F -moves is performed to isolate
the affected anyons from the rest of the fusion tree. This transforms the standard fusion
tree shape to the one in Eq. (7.4), Eq. (7.13), or a similar shape in the case of three
affected plaquettes. In terms of ribbons in the fattened lattice, the basis then locally looks
like the ones depicted in Fig. 7.1 or Fig. 7.2, depending on the type of error. Note that
such a basis can no longer be represented using curve diagrams. This is not an issue, since
we will return to a standard basis before the full machinery of curve diagrams is required
again.

For the case of a σz error, the coefficients in the state vector and the matrix elements
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Eq. (7.23) are used to calculate the probabilities Eq. (7.7) of the different possible charge
measurement outcomes. A result is picked according to this probability distribution, after
which the state vector is updated using Eq. (7.8).

In the case of a σx error, the matrix elements (7.19) are used together with the coef-
ficients in the state vector to compute the probabilities Eq. (7.15) for the outcome of the
vertex and tail measurements. A result is then sampled from this distribution. Next, the
matrix elements Eq. (7.20) are used to compute the probabilities Eq. (7.17) for the vari-
ous outcomes of the charge measurement (that is performed after the appropriate unitary
vertex correction was applied). We again pick a result according these probabilities, and
update the state vector using Eq. (7.18). In case of a σy error, we proceed analogously to
the σx case, using the matrix elements Eq. (7.21) or Eq. (7.22).

After the state vector has been updated to reflect the collective effect of the noise
and the measurements (with the specific outcomes that we picked at random above), we
conclude the current “noise step” by transforming the fusion basis back to the one that
corresponds to the curve diagram we ended up with earlier (where all affected anyons ap-
pear sequentially). This is done by a sequence of F -moves that reverts the transformation
performed by the first series of F -moves.

7.7.3 Recovery phase

After completing the process above T times, the error syndrome is given by the locations
and charges of all thermal anyons on the lattice. The decoding algorithm is then used to
determine an appropriate recovery step. Such a recovery step can be broken down into
a sequence of pairwise fusion processes of anyonic excitations. In each such a pairwise
fusion process, one member of the pair is moved along a specific path on the lattice until
it neighbors the other. The moving procedure consists of basic operations where the anyon
is moved to a neighboring tile and the curves are continuously deformed accordingly, as
described in Sec. 7.6.6. This basic moving step is repeated until the two anyons reside
in neighboring tiles. A sequence of refactoring moves (and possibly merges) is then per-
formed to obtain a basis in which they are direct neighbors on the same curve, and the
corresponding sequences of swap and merge operations are applied to the affected state
vectors. As during the noise process, any illegal refactoring moves cause the simulation to
abort the current Monte Carlo step and report a decoding failure. Note that this happens
precisely when the intended fusion would create a non-contractible loop in terms of the
curve diagrams, which in turn corresponds to a logical error.

If necessary, an F -move is applied to transform to a fusion tree shape where the anyons
are fused directly. Their resulting charge is then projected according to the probabilities
dictated by the coefficients in the state superposition, and it is placed in one of the
two neighboring plaquettes while the state vector and the curve diagram are updated
accordingly.

This basic pairwise fusion process is repeated until the current recovery step is com-
pleted, at which point the resulting error syndrome is used to determine the next recovery
step. This dialogue is iterated until either all anyonic excitations fused away and decoding
is successful, or a logical error occurs during some fusion process and a decoding failure is
declared.

Note that throughout the entire Monte Carlo step, the system is constantly monitored
for violations of the cutoff parameters. If at any point an individual curve contains more
than Nmax anyons, or a state vector contains more than Vmax nonzero elements, the current
Monte Carlo step is automatically reported as a failure.
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The Monte Carlo simulations described in Chapter 7 were performed for the three differ-
ent decoders described in Chapter 5. Individual Pauli errors were picked using relative
probabilities corresponding to the following noise models:

• depolarizing noise: γx = γy = γz = 1
3 ,

• dephasing noise: γx = γy = 0 , γz = 1 ,

• bit-flip noise: γx = 1 , γy = γz = 0 .

Simulations were performed for a wide range of physical error rates. For depolarizing
noise and pure bit-flip noise, we considered the linear system sizes L = 10, 12, 14, 16, 18.
For dephasing noise the values L = 12, 14, 16, 18, 20, 22 were used.

The logical failure rate for each (p, L)-pair was computed by averaging over 105 Monte
Carlo samples. For the lowest error rates p = 0.01 (or p = 0.02 in case of dephasing noise),
106 Monte Carlo samples were used in order to improve the accuracy of our results. As
visible in the results below, this is ample to guarantee sufficiently small (95%) confidence
intervals for the average logical failure rates.

All simulations were done with the following values for the cutoff parameters:

Nmax = 27 ,
Vmax = 2.5 · 107 .

For depolarizing noise and bit-flip noise with L = 18 the ratios of aborted Monte Carlo
samples near the observed thresholds are shown in the table below. The corresponding
ratios of aborted failures are indicated between parentheses.

Clustering Fusion-aware MWPM Blind MWPM
Depolarizing noise 6.1% (17.4%) 0.6% (2.1%) 0.8% (2.9%)

Bit-flip noise 4.6% (15.1%) 0.3% (1.3%) 0.4% (1.7%)

We found that the ratio of aborted Monte Carlo samples drops rapidly below the thresh-
old. For instance, at p = 0.04 less than 1.1% of Monte Carlo samples (7.4% of reported
failures) were aborted for depolarizing noise with L = 18. For dephasing noise, the ratio
of aborted iterations is negligible for all system sizes and noise strengths we studied.

Determining the threshold

The error correction threshold is given by the critical value pc below which the logical
failure rate PL is exponentially suppressed in terms of the system size L. For large system
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sizes, the threshold manifests itself as the physical error rate for which the logical failure
rates of all system sizes coincide. Hence, a rough estimate of the threshold can be obtained
by plotting PL in function of p for different system sizes and finding the error rate at which
the various curves intersect.

A more accurate estimate for the error correction threshold can be obtained using the
critical exponent method of Ref. [58]. This method was introduced in the context of the
toric code, where an exact mapping to a statistical model is known [27, 58]. This model,
the 2-dimensional random-bond Ising model (RBIM), undergoes a phase transition from
an ordered to a disordered phase as the parameter corresponding to the physical error rate
increases. This implies a phase transition in the logical failure rate of the toric code. Wang
et al. demonstrated that in the regime L � |p − pc|−ν , where ν is the critical exponent
for the correlation length in the RBIM, the logical failure rate PL depends only on the
dimensionless ratio L(p− pc)ν .

While the statistical model corresponding to the Fibonacci Turaev-Viro code is not
known, it is expected that a similar scale invariant behavior occurs near the threshold here
as well. Specifically, for sufficiently large system sizes, we define the rescaled variable

x = (p− pc)L1/ν , (8.1)

where ν is some critical exponent, such that the logical failure rate PL as a function of
x is explicitly scale invariant. We can find the correct values for pc and ν by fitting the
values of PL to the quadratic ansatz

PL(x) = A+Bx+ Cx2 , (8.2)

originating from a truncated Taylor expansion in the neighborhood of x = 0 (p = pc).
We perform this fit explicitly with the data obtained for the clustering decoder with
depolarizing noise and dephasing noise.

8.1 Clustering decoder
The logical failure rate PL of the clustering decoder in function of the noise strength p, are
shown in Fig. 8.1(a), Fig. 8.1(b) and Fig. 8.1(c) for depolarizing, dephasing noise and bit-
flip noise, respectively. These results clearly manifest threshold behavior. For pure bit-flip
noise, the threshold can be estimated from the corresponding plot as pc ≈ 0.0375±0.0025.
A more precise estimation, based on the finite-size ansatz discussed above, was made for
depolarizing noise and dephasing noise.

For depolarizing noise the finite-size scaling ansatz Eq. (8.2) was fitted to the logical
failure rates for p ranging from 0.045 to 0.05 in increments of 0.00125. The following values
were found using a non-linear least squares fit:

pc = 0.0470± 0.0011 ,
ν = 1.62± 0.33 .

For dephasing noise, the ansatz was fitted to the logical failure rates obtained for p ranging
from 0.07 to 0.075 in increments of 0.00125. With this data, we found

pc = 0.0732± 0.0006 , (8.3)
ν = 1.17± 0.08 . (8.4)

The confidence intervals were estimated using the jackknife resampling method. In both
cases the obtained threshold is compatible with the rough estimate based on the crossing
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of the curves in Fig. 8.1. The logical failure rates in terms of rescaled error rate x defined
in Eq. (8.1) are shown in Figs. 8.2(a) and 8.2(b) for depolarizing noise and dephasing
noise, respectively. One can see that the obtained parameters do indeed result in a clear
“collapse” of the data, as predicted by the finite-size scaling hypothesis.

(a)

(b) (c)

Figure 8.1: Logical failure rate PL as a function of the physical error rate p for the
clustering decoder with (a) depolarizing noise, (b) pure dephasing noise, and (c) pure
bit-flip noise.

It is no surprise that the highest threshold is found for dephasing noise: no more
than two anyonic excitations can be created by a single σz error, while up to four anyons
can be created by a single σx or σy error. Hence, the average number of new anyonic
excitations created in each time step is the lowest for dephasing noise and the highest for
pure bit-flip noise, with the value for depolarizing noise lying somewhere in between these
two extremes. The discrepancy between the thresholds for dephasing and bit-flip noise
indicates that for biased noise, there is a preferred choice for the computational basis of
the physical qubits.
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(a) (b)

Figure 8.2: Logical failure rate PL as a function of the rescaled error rate x = (p−pc)L(1/ν)

for (a) depolarizing noise and (b) dephasing noise. The solid line represents the best fit of
the model PL = A+Bx+ Cx2.

8.2 Iterative matching decoders
We consider two types of iterative MWPM decoders: a fusion-aware one and a blind one
(see Chapter 5). The performance of these decoders under both types of noise are shown
in Fig. 8.4.

Note that the threshold obtained with these two types of decoders are very close.
Under depolarizing noise, both decoders exhibit a threshold around pc ≈ 0.0300± 0.0025.
Under dephasing noise and bit-flip noise, respectively, we find pc ≈ 0.0600 ± 0.0025 and
pc ≈ 0.0250± 0.0025 for both decoders. However, when closely comparing the results, as
in Fig. 8.3, one finds a slight overall advantage for the fusion-aware decoder in the sense
that its failure rates are lower than those obtained with the blind decoder.

On the other hand, we see that both matching decoders have worse performance and
lower thresholds compared to the clustering decoder which has not used the detailed
syndrome information of anyon types. This is related to the fact that clustering decoder
seems to be more natural for the Fibonacci code than the matching decoder. It remains
an open question whether the optimal decoder for the Fibonacci Turaev-Viro code is
fusion-aware.

8.3 Discussion
The results above are expressed in terms of the average qubit error rate p in the fixed-rate
sampling noise model described in Sec. 7.3. It is therefore not straightforward to compare
these results to those of Abelian models such as the surface code, which are typically
expressed in terms of an independent and identically distributed binomial noise strength
pi.i.d.. However, for Abelian codes, both noise models are equally valid and their respective
noise strengths can be compared using the relation between the i.i.d. noise strength pi.i.d.
and the error rate p of a fixed-rate sampling noise model derived in App. C.

Using this relation, one finds that the thresholds obtained for the clustering decoder
under depolarizing (pc ≈ 0.047) and dephasing (pc ≈ 0.073) noise correspond to i.i.d noise
strengths of 4.6% and 7.0%, respectively. Remarkably, despite the complexity of the
extended string-net code and the fact that it is not known whether or not the clustering
decoder is optimal for this this code, these values compare very favorably with the optimal
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Figure 8.3: Comparison between the logical failure rates for the fusion-aware and the blind
iterative MWPM decoders under depolarizing noise.

thresholds for the surface code1 (under the assumption of perfect measurements), which
are 18.9% for depolarizing noise [85] and around 10% for dephasing noise [27, 58].

1The results mentioned here were in fact obtained for the toric code (i.e., with periodic boundary
conditions). It is likely that the true thresholds for surface codes are slightly lower [84].
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(a) (b)

(c) (d)

(e) (f)

Figure 8.4: (a,c,e) Logical failure rate PL as a function of the physical error rate p for
the fusion-aware iterative MWPM decoder with (a) depolarizing noise, (c) pure dephasing
noise, and (e) pure bit-flip noise.
(b,d,e) Logical failure rate PL as a function of the physical error rate p for the blind
iterative MWPM decoder with (b) depolarizing noise, (d) pure dephasing noise, and (e)
pure bit-flip noise.
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9 | Conclusion and outlook

In order to estimate the non-Abelian error threshold, we have combined concepts and tech-
niques from three seemingly distant fields: quantum error correction, topological quantum
field theory, and tensor networks. In particular, we have developed a complete error correc-
tion scheme and decoding protocols for the Fibonacci Turaev-Viro code, which supports a
universal logical gate set via braiding or Dehn twists. Making use of the framework of ten-
sor networks and tube algebra, we were able to estimate the code-capacity error correction
threshold using a clustering decoder and a fusion-aware iterative matching decoder. The
threshold of 4.7% obtained for the clustering decoder is comparable to the code-capacity
error threshold of the Abelian surface code, which is around 10% [27, 58, 60].

The main conceptual difference of our work and previous works which simulate the
third spatial dimension of a 3D color code or 3D surface codes with the time dimension
using a just-in-time decoder in a 2D measurement-based quantum architecture [44, 45]
is that the computational power in our case comes from the 2D code space instead of
the 3D code space, and no additional code switching or gauge fixing procedure is needed.
Practically, the logical gates in our case can be implemented by braiding via continuous
code deformation, therefore the error threshold and logical error rate for fault-tolerant
logical gates is expected to be the same as the fault-tolerant threshold for memory storage.
Therefore, no extra decrease of the error threshold (compared to the storage threshold)
due to the implementation of non-Clifford transversal gates, code switching or gauge fixing
with 3D surface codes or color codes [Browneaay4929, 42, 43, 44], as well as the just-in-
time decoding is present in our case. Another both fundamental and practical difference
is that our scheme can also be implemented in a hybrid approach of active and passive
topological protection, where the majority of noise source are passively protected by a
2D Hamiltonian while only the thermal noise will need to be corrected via active error
correction [86]. This hybrid approach may greatly reduce the overhead of active error
correction.

A natural future extension of the work presented here will be the adaptation of our
error correction protocols to take into account measurement errors, and to determine
the error threshold of the code in the presence of both measurement and circuit-level
noise. In this setting of full fault-tolerant error correction, our measurement scheme which
allows to distinguish the charges of different anyonic excitations may prove useful, since
this information could help in identifying measurement errors when performing repeated
syndrome measurements through a consistency check. Thus, while it is still an open
question what the optimal decoder for the Fibonacci Turaev-Viro code is and whether it
would make use of the detailed charge information in the error syndrome, it is likely that
this charge information would yield a notable advantage in the presence of measurement
errors. More generally, the tensor-network representation used in the current work can
also be further used to simulate coherent noise in these non-Abelian codes as well as in
the usual surface code.

Another direction to explore is the application of our techniques to different models.
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A first interesting route would be to investigate other types of Turaev-Viro codes, such
as the Ising Turaev-Viro code, which has doubled Ising anyons as excitations. While not
universal for quantum computation by itself, this code would have a simpler non-cyclic
fusion rule structure which could lead to a higher threshold, especially in the presence
of measurement noise. In this context, our measurement scheme to extract the specific
anyon charges would be particularly useful, since it was shown in Ref. [51] that fusion-
aware decoders can yield a significant advantage for Ising-type anyons. A second important
direction here will be to investigate non-Abelian codes with a simpler structure, such as
lower-weight syndrome operator and lower-depth measurement circuits. The Levin-Wen
string-net models are sophisticated in the sense that their plaquette syndrome operator
has weight 16. On other hand, Kitaev’s non-Abelian quantum double models [25] can have
a weight-4 syndrome operator, and could possibly be analyzed using an adaptation of the
techniques presented in this work. It would therefore be interesting to further explore the
error threshold of these alternative models which could be more practical in terms of an
experimental implementation.

A different avenue of further research would be the investigation of planar string-
net codes with suitable gapped boundary conditions, where information is then encoded
in the fusion state of a number of well separated anyons rather than in the ground state
degeneracy associated to a closed manifold with a nontrivial topology (high-genus surface).
Alternatively, the logical information can also be encoded in the boundary degeneracy
of an open manifold corresponding to a planar geometry in analogy with the Abelian
surface code with e and m boundaries. This matter is of significant interest, since a
planar geometry is highly attractive regarding experimental realization. The classification
of these gapped boundaries has been performed in the language of (bi)module category
theory [87], and recent progress has been made in capturing this formalism in terms of
tensor network representations [88]. This latter strategy is not applicable to the Fibonacci
Turaev-Viro code, since this model only admits a single type of gapped boundary [89, 90].
Nevertheless, the investigation of these concepts in the context of error correction using
different models would be of great interest.

Besides the study of the quantum memory property of the non-Abelian codes, an
important direction is to study and simulate the detailed implementation of a universal
set of logical gates in these codes. Besides the approach of doing braiding and Dehn
twists [26, 56, 70, 71], one can also perform transversal gates on a folded non-Abelian
code equivalent to elements in the mapping class group [91]. An additional advantage of
non-Abelian codes appears when they are placed on a hyperbolic surface, which admits
both constant-rate encoding (O(1) space overhead) and parallel universal logical gates via
constant-depth circuits [72]. A promising direction is to explore non-Abelian codes in
higher spatial dimension or on an expander graph. Along this direction, the ultimate goal
is to explore and achieve the fundamental limit of space-time overhead. This is because in
higher dimension such as 4D, one can obtain a self-correcting quantum memory. In that
case, local errors created when implementing a logical gate with a constant depth circuit
[70, 71, 72] can be corrected locally in O(1) time. Eventually, this direction could evolve
into a flourishing interface between quantum information and quantum topology.

An important aspect in terms of experimental implementation of the Fibonacci Turaev-
Viro code is the realization of multi-controlled-Z (multi-qubit Toffoli) gates. Therefore, it
would be interesting to further explore hardware-efficient implementations of multi-qubit
gates, instead of always decomposing these into a longer sequence of two-qubit gates. Such
multi-qubit gates are widely studied in Rydberg-atom and ion-trap systems, and it would
be useful to further develop these gates in superconducting qubit systems as well.

Finally, besides the application to quantum error correction, the scheme developed in
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this dissertation also paves the way for quantum simulation of topological quantum field
theory on a near-term quantum computer. In particular, the measurement and correction
schemes will be a crucial ingredient for the state preparation of the TQFT wave functions.
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A | Consistency of the tensor net-
work representation

From the PMPO description of topological order [69] it is known that an anyon ansatz
in PEPS must satisfy certain consistency conditions. It was shown through numerical
calculations that our PEPS representation of the anyonic fusion basis states indeed satisfies
all properties required of a tensor network description of anyonic excitations, providing
an important consistency check for our framework. In particular, the braiding and fusion
behavior of the DFIB excitation tensors was explicitly verified. Below we showcase some
of these consistency checks, which were performed numerically with the Fibonacci input
category, but should hold in general for any modular ribbon category satisfying Eqs. (2.26),
(2.27) and (2.28). It is worth noting that these consistency conditions are in fact implied
by the construction of the tensors. The numerical checks merely confirm that no mistakes
where made in the derivation.

We start by noting that the representation of ribbons on the virtual level as depicted
in Eq. (6.9), can be understood as a MPO operator acting on the virtual level of a PEPS.
The MPO tensor itself is given by what we have previously called the crossing tenor,

s

k

ν

µ′

µ

ν ′

= Gµ
′ν′k
νµ s , (A.1)

where we have rotated the definition Eq. (6.8) over 90 degrees and we now denote the
index that encodes the ribbon label s in blue. We refer to this label as the block label of
the MPO tensor. For notational convenience we will often assume that the tripled lines
are grouped (as done in Sec. 6.3), in which case we only explicitly write the block label
for the grouped index. It should be emphasized however that we still maintain the closed
loop convention introduced before, even when we depict indices as being grouped.

From the pentagon equation for the input category it follows that the MPOs can be
moved freely through the groundstate PEPS vertex tensors, which is referred to as the
pulling through property. This corresponds to the freedom to continuously deform the
ribbons is Sec. 2.2, and the fact that the string-net ground state inherits this property.
Adding the single block MPOs with a weight ws = ds/D2 for each block s and closing the
resulting operator into a loop results in a projector MPO (PMPO) that acts trivially on
any region of the PEPS with vacuum total charge. This PMPO can be thought of as the
virtual representation of a vacuum loop (divided by the total quantum dimension).

The fusion tensors Eq. (6.12) that represent ribbon fusion on the virtual level can be
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interpreted as tensors that represent the fusion of MPOs of different blocks:

u

s

t

. (A.2)

Using these fusion tensors we can build a virtual representation of the tube algebra intro-
duced in Sec. 2.5, which is then generated by elements of the form

k

β

l

α
. (A.3)

It was shown in Ref. [69] that these objects form a C∗-algebra whose central idempotents
correspond to the topological superselection sectors of the theory, which corresponds to
the results presented in Sec. 2.5 that were we was obtained using the graphical calculus
of the ribbon graph Hilbert space. In particular, we can derive the expression for the
idempotents and nilpotents of the C∗-algebra by simply realizing Eq. (2.69) on the virtual
level. The operators of interest are the tube operators of the form Pab̄kl , that represent
both the simple idempotents and nilpotents of the tube algebra. Just as in Sec. 2.5 these
can be decomposed into a superposition of the basis elements Eq. (2.66) as

Pab̄kl =
∑
αβ

P
(abl)
αβk Oklαβ , (A.4)

where the coefficients P (abl)
αβk are given by

P
(abl)
αβk = 1

D2
dadb
vk

vαvβ
∑
γ,δ

dγdδR
aα
γ Rαbδ G

kδγ
αabG

βaδ
bαl G

kβα
aγδ . (A.5)

On the virtual level, these operators can be represented by the tensor

k′

κ

ν µ

λ

l′

α α′k(ab̄)l = δkk′δll′δαα′
∑
β

P
(abl)
αβk

ν

µ

λ

l′

κ

β

α

k′

κ

α′

ν

, (A.6)
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giving rise to an MPO of the form

k

l

k(ab̄)l

. (A.7)

As the central idempotents Pab̄ of the tube algebra can be constructed as Pab̄ =
∑
l Pab̄ll ,

the tensors Eq. (A.6) can be combined to give the square tensors representing the central
idempotents of the C∗-algebra:

ab̄ =
∑
l

l(ab̄)l , (A.8)

giving a representation for the central idempotents on the virtual level.
Using these explicit expressions for the Pab̄kl on the virtual level, all properties required

of the anyon ansatz in our model can be explicitly verified. As a first check, the stacking
behavior of the idempotents and nilpotents on the virtual level was verified by explicitly
computing Pab̄kl Pa

′b̄′
k′l′ , giving the expected results:

l′

k′(a′b̄′)l′

k

k(ab̄)l

= δaa′δbb′δlk′
l′

k(ab̄)l′

k

, (A.9)

This identity can be seen as the virtual representation of Eq. (2.68). Next it was explicitly
verified that the excitation tensors defined in Eq. (6.18) behave correctly under the virtual
action of the tube algebra idempotent and nilpotent MPO operators Eq. (A.6):

a′b̄′

ab̄` = δaa′δbb′ ab̄` , (A.10)
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l(ab̄)l

k

k(ab̄)l

ab̄` ∝ ab̄`

k

k(ab̄)k

. (A.11)

In these expressions the excitation tensors (6.18) were rotated by 90 degrees counter-
clockwise. For the specific case of DFIB excitations, (A.11) shows that the τ τ̄1 and τ τ̄τ
excitations have virtual support in both the Pτ τ̄11 and Pτ τ̄ττ simple idempotents. It should
be stressed that, even though we represent the diagrams in single line notation, the closed
loop convention for the PEPS representation of string-net states must be used in the actual
computations of all contractions.

We conclude this section with the topological properties (fusion rules, braiding proper-
ties and topological spin) of our anyon ansatz. To simplify the expressions we again denote
a DFIB charge and FIB tail label with a single bold label, a = a+a−`, or a = a+a− depend-
ing on the context. It was verified that fusion of two excitations tensors using the doubled
fusion tensor (6.20) only has virtual support in the correct MPO central idempotent,

a

b

abcc′
= δcc′

a

b

abc

. (A.12)

The braiding properties of the doubled anyons, can be translated to the following relation
on the virtual level:

a

b

bac
= Rab

c
a

b

abc

. (A.13)

As for all other relations in this section, this was explicitly verified for the Fibonacci input
category. This confirms that our ansatz does indeed possess the correct DFIB braiding
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behavior. Finally, the topological spin of anyonic excitations, emerges on the virtual level
as follows

a = θa a , (A.14)

where θa = θa+(θa−)∗ according to Eq. (2.41). Alternatively, this can be expressed on the
level of the central idempotents as

a

= θa

a

. (A.15)

Both relations where verified for the Fibonacci input category, which ensures that the
PEPS ansatz was indeed derived correctly.
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B | Scaling of largest connected group
of anyons

Below, we present the results concerning the scaling of the average size of the largest
group of connected anyons created by the application of depolarizing noise. These result
represent a “worst case scenario” for the noise model (see Sec. 7.3) used in our threshold
simulations, in the sense that they correspond to the improbable case where charge mea-
surements of the plaquettes affected by noise operators always yield a nontrivial outcome.

The average size S of the largest connected group of anyons after noise application
as a function of the linear system size L, was determined by simulating the (fixed-rate
sampling) noise process for a total of 104 Monte Carlo samples with depolarizing noise.
The results for a range of noise strengths p are shown in Fig. B.1.

As expected, we find that S scales logarithmically with the system size L. This confirms
that classical simulation of the system subjected to depolarizing noise, is indeed possible
for noise strengths up to at least p = 0.05.

Figure B.1: The worst case scenario scaling of the average size S of the largest connected
group of anyons with linear system size L, for the depolarizing noise model.
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C | Relating fixed-rate sampling
and i.i.d. noise

The results above were presented in terms of the average number of errors per qubit p,
which is the parameter characterizing the noise strength in our fixed-rate sampling noise
model. This is a natural measure in the context of this work, as the non-Abelian nature
of our quantum memory and the fact that it undergoes constant syndrome measurements
mean that noise processes cannot be formulated in terms of an independent and identically
distributed noise model. However, in order to compare our results to known error threshold
results for Abelian codes, we require a way of relating p to the i.i.d. noise strength pi.i.d.
used in such models. To this end, we illustrate the relation between the Poisson and i.i.d.
binomial noise models in Abelian stabilizer codes, for which both these noise models are
equally valid, following the reasoning presented in [51].

We again consider our Poisson noise model in which a total of T error operations are
executed, where T is drawn from a Poisson distribution with mean T0 = |E|p and |E|
is the total number of edges, but now apply it in the context of an Abelian stabilizer
code. For each individual error process, an edge e of the lattice is chosen at random and
a Pauli operator σi is applied according to relative probabilities {γx, γy, γz}. If we think
of the global fixed-rate sampling noise model as arising from a superposition of fixed-rate
sampling noise processes on each edge of the lattice individually, then we may assume that
the latter can be approximately characterized as Poisson distributed events themselves.
According to this reasoning, the noise model would then be captured by a superposition
of three different Poisson distributions at the level of each individual edge, with means
γxp, γyp and γzp for σx, σy and σz errors, respectively.

Since all Pauli errors acting on a given edge either commute or anticommute, we can
compute the i.i.d probability for a net σx error on an individual edge, pxi.i.d., by adding
the probabilities of all Poisson error processes where the number of σx errors acting on
the edge is odd and the number of σy and σz errors acting on the edge are both even, or
where the number of σx errors acting on the edge is even and the number of σy and σz
errors acting on the edge are both odd. We therefore get:

pxi.i.d. =
(+∞∑
k=0

e−γxp (γxp)(2k+1)

(2k + 1)!

)(+∞∑
k=0

e−γyp (γyp)(2k)

(2k)!

)(+∞∑
k=0

e−γzp (γzp)(2k)

(2k)!

)

+
(+∞∑
k=0

e−γxp (γxp)(2k)

(2k)!

)(+∞∑
k=0

e−γyp (γyp)(2k+1)

(2k + 1)!

)(+∞∑
k=0

e−γzp (γzp)(2k+1)

(2k + 1)!

)

= e−p

4
(
ep + e(γx−γy−γz)p − e(−γx+γy−γz)p − e(−γx−γy+γz)p

)
.

(C.1)

Similar expressions can be derived in an analogous fashion for pyi.i.d., pzi.i.d. and pnone
i.i.d. , which

denote the i.i.d. error probability for a net σy error, net σz error or no net error at all on
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an individual edge, respectively:

pyi.i.d. = e−p

4
(
ep + e(−γx+γy−γz)p − e(γx−γy−γz)p − e(−γx−γy+γz)p

)
(C.2)

pzi.i.d. = e−p

4
(
ep + e(−γx−γy+γz)p − e(γx−γy−γz)p − e(−γx+γy−γz)p

)
(C.3)

pnone
i.i.d. = e−p

4
(
ep + e(γx−γy−γz)p + e(−γx+γy−γz)p + e(−γx−γy+γz)p

)
. (C.4)

Hence, for p� 1 we have pxi.i.d. ≈ γxp, p
y
i.i.d. ≈ γyp, pzi.i.d. ≈ γzp and pnone

i.i.d. ≈ 1− p.
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D | Paperclip configurations

The paperclip algorithm (see Sec. 7.6.4) works by exploiting the fact that refactoring moves
along the boundary of an individual tile, can be classified into 16 different paperclip
configurations, and that these entirely determine the corresponding sequence of swaps.
These 16 configurations can be split into two groups corresponding to refactoring moves
along or against the orientation of the curve diagram. Each of these groups can itself
be split into two groups, depending on whether the initial piece of curve containing the
anyon has an incoming or outgoing orientation. Within each of these groups, the different
configurations can be distinguished using their respective turn numbers, as defined in
Sec. 7.6.4

Below, we list all possible paperclip configurations, and the corresponding sequence of
swaps for each of them. The sequences are expressed in terms of the head (H), body (B)
and tail(T) portions of a cruve diagram. For a refactoring move indicated by the dotted
arrow, these are defined as follows:

HBT

We use the following notation to indicate the sequences: S[H] stands for sequentially
swapping the anyon with all entries in H in a clockwise fashion, and S−1[H] stands for an
analogous sequence with counterclockwise swaps. Hr indicates the sequence of anyons in
H, in reversed order.
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D.1 Refactoring along the curve

−3 → : S−1[B]

−6 → : S−1[B]S−1[H]S−1[Hr]

+6 → : S[T r]S[T ]S[B]

+9 → : S[T r]S[T ]S[B]S[H]S[Hr]

+3 → : S[B]

+6 → : S[B]S[H]S[Hr]

−6 → : S−1[T r]S−1[T ]S−1[B]

−9 → : S−1[T r]S−1[T ]S−1[B]S−1[H]

126



APPENDIX D. PAPERCLIP CONFIGURATIONS

D.2 Refactoring against the curve

+3 → : S[Br]

+6 → : S−1[H]S−1[Hr]S−1[B]

−6 → : S[B]S[T r]S[T ]

−9 → : S−1[H]S−1[Hr]S−1[Br]S−1[T r]S−1[T ]

−3 → : S−1[Br]

−6 → : S[H]S[Hr]S[B]

+6 → : S−1[B]S−1[T r]S−1[T ]

+9 → : S[H]S[Hr]S[Br]S[T r]S[T ]
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E | Phase transitions in string-net
models

In this dissertation, we have considered string-net models as error correcting codes which
can be realized by actively measuring the projectors in the Hamiltonian and correcting
any excitations. However, the Levin-Wen model was originally conceived to study topolog-
cal order, since they are conjectured to realize all non-chiral doubled topological phases.
Hence, this model is particularly interesting for the study of topological phase transitions.
Since such phase transitions are not descibed by Landau’s theory of symmetry breaking,
alternative methods had to be developed to study them. A promising appoach is to use a
novel class of variational tensor network states.

Below, we include a paper in which non-Abelian topological phase transitions are stud-
ied for a Fibonacci string-net Hamiltonian to which a string-tension term is added. The
phase transitions were found by using a variational PEPS ansatz, obtainded by modifying
the tensor network representation of string-net ground states constructed in Sec. 6.1.
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We use a recently proposed class of tensor-network states to study phase transitions in string-net models.
These states encode the genuine features of the string-net condensate such as, e.g., a nontrivial perimeter law
for Wilson loops expectation values, and a natural order parameter detecting the breakdown of the topological
phase. In the presence of a string tension, a quantum phase transition occurs between the topological phase and a
trivial phase. We benchmark our approach for Z2 string nets and capture the second-order phase transition which
is well known from the exact mapping onto the transverse-field Ising model. More interestingly, for Fibonacci
string nets, we obtain first-order transitions in contrast with previous studies but in qualitative agreement with
mean-field results.
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I. INTRODUCTION

Since its discovery in the late 1980s, topological order
aroused much interest in physics. The long-range entangle-
ment structure as well as the exotic quasiparticle excitations
associated with this order may prove essential in attempts to
achieve scalable fault-tolerant quantum computers or quantum
memories [1]. As such, it is of paramount importance to
understand how perturbations generate dynamics and interac-
tions between the anyonic excitations and induce a breakdown
of topological phases.

One of the most famous models hosting topological order
was proposed by Levin and Wen in 2005 [2]. The string-net
Hamiltonian allows to describe all doubled achiral topological
phases. Thus, it has been the starting point for many studies
concerning phase transitions [3–14]. Nevertheless, in the ab-
sence of local order parameter, the nature of these transitions
remains an open question in many cases since one cannot use
Landau’s theory of symmetry breaking.

Among all alternative methods developed to study these
topological phase transitions, a particularly versatile frame-
work for constructing variational states is provided by tensor
networks. In two dimensions, the projected entangled-pair
states (PEPSs) [15] are known to describe the string-net
ground states [16,17] and directly encode the topological
properties in the virtual symmetries of the local PEPS tensor
[18–20]. This feature has been exploited to detect possible
topological phase transitions and to identify the associated
anyon-condensation mechanism [13] in Abelian [21–24] and
non-Abelian [25,26] cases at the level of wave functions.

*alexis.schotte@ugent.be
†vidal@lptmc.jussieu.fr

However, variational PEPS calculations for concrete models
have so far been restricted to ZN toric codes [27–29] whose
excitations are Abelian anyons. Recently, a family of PEPS
based on perturbative expansions has been introduced to
describe different ground states across a phase transition [30].

For a given Hamiltonian that exhibits a phase transition,
the procedure to build these “perturbative PEPSs” can be
summarized as follows: (i) we start from a wave function
that describes the phase transition at the mean-field level;
(ii) we apply tensor-network operators which implement the
perturbative expansions in an extensive way to wave functions
on both sides of the transition; (iii) we promote the ad hoc
coefficients of these expansions to variational parameters. In
two dimensions, these perturbatively exact variational states
are still PEPSs and the tensor-network machinery [31,32] can
be used to perform an efficient variational optimization. In
Ref. [30], this method has been notably applied to the Z2

toric code perturbed with a string tension [33,34] for which
the virtual symmetry of the local PEPS tensor emerges as an
order parameter.

In this work, we go one step beyond and implement a
variational PEPS to study phase transitions in both Abelian
(Z2) and non-Abelian (Fibonacci) string-net models on the the
honeycomb lattice. For the Z2 case, we capture the second-
order quantum phase transition known from the mapping onto
the transverse-field Ising model on the triangular lattice [6]. In
the Fibonacci case, we only find first-order phase transitions,
in contrast to Ref. [7] but in agreement with the mean-field
results [35].

II. STRING-NET MODELS

We consider the two-dimensional string-net model intro-
duced by Levin and Wen [2] in the presence of a tension
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term. For simplicity, we focus on the simplest case where
the microscopic degrees of freedom, defined on the links of
a honeycomb lattice, can only be in two different states, 0 and
1 (when possible, we omit the ket notation to describe states).
The Hilbert space H is defined as the set of configurations
obeying the branching rules that stem from the fusion rules of
the theory considered [2].

In the present work, we discuss two different theories, Z2

and Fibonacci, whose fusion rules are given by

Z2 : 0 × a = a × 0 = a, 1 × 1 = 0, (1)

Fibonacci : 0 × a = a × 0 = a, 1 × 1 = 0 + 1, (2)

for a = 0, 1. As underlined in Ref. [2], there are actually
two different theories obeying Z2 fusion rules that give rise
to either a doubled Z2 (DZ2) or a doubled semion (Dsem)
topological phase. For the string tension considered thereafter,
phase diagrams are the same for both theories.

At each vertex of the honeycomb lattice, the fusion rules
must be satisfied [2], i.e., if two links are in states a and b the
third link must be in a state c ∈ a × b. Following Ref. [36],
one can compute the dimension of the Hilbert space. For any
trivalent graph with Nv vertices, one then gets

Z2 : dim H = 2Nv/2+1, (3)

Fibonacci : dim H = (1 + ϕ2)Nv/2 + (1 + ϕ−2)Nv/2, (4)

where ϕ = 1+√
5

2 is the golden ratio.
In order to analyze the breakdown of the topological phase

originating from the string-net model, we consider the follow-
ing Hamiltonian:

H = −Jp

∑
p

Bp − Jl

∑
l

Ll . (5)

The first term corresponds to the usual string-net Hamiltonian
introduced by Levin and Wen in Ref. [2]. Operators Bp’s are
mutually commuting projectors that “measure” the flux in the
plaquette p. The action of Bp on a given link configuration
depends on the theory under consideration through its F -
symbols [see Eq. (C1) in Ref. [2] for details]. The operator
Bp only modifies the six inner links of the plaquette p but
its action depends (diagonally) on the six outer links [2]. For
Jp > 0 and Jl = 0, all ground states are flux free and hence
characterized by Bp = 1 for all p, up to a topology-dependent
degeneracy.

The second term is also a sum of mutually commuting
projectors. Operators Ll ’s are diagonal in the canonical (link)
basis and act as Ll |a〉l = δa,0|a〉l , where |a〉l denotes the state
of the link l . For Jl > 0, this second term favors configurations
with links in the state 0 and penalizes strings of links in the
state 1, hence the name string tension.

For Jl > 0 and Jp = 0, the ground state is unique (trivial
phase) and given by the product state |0〉 = ⊗l |0〉l for both
Z2 and Fibonacci fusion rules. For Jl < 0 and Jp = 0, the
ground-state manifold depends on the fusion rules. Indeed,
for Fibonacci fusion rules, the product state |1〉 = ⊗l |1〉l is
allowed and is the unique ground state. By contrast, for Z2

fusion rules, this state is not allowed (since 1 × 1 = 0) and the

ground space is spanned by all allowed states with Nv links in
the state 1 and 1

2 Nv links in the state 0.

III. METHODOLOGY

The goal of this work is to analyze phase transitions from
the topological phase existing for Jp > 0 in the small |Jl/Jp|
limit to the trivial phases found in the large |Jl/Jp| limit. To
this aim, let us set Jp = cos θ and Jl = sin θ and consider
first the region where θ ∈ [0, π/2]. Following the variational
tensor-network approach introduced in Ref. [30], we consider
the state

|α, β〉 = N exp
(
β

∑
l

Ll

) ∏
p

(1 + αZp)|0〉, (6)

where Zp = 2Bp − 1, α and β are variational parameters, and
N is a normalization factor. According to Ref. [30], a better
description of the trivial phase would be obtained by adding
an extra term exp(−γ

∑
p Bp). However, it considerably in-

creases the complexity of the PEPS so that we do not consider
it in the following.

For β = 0, the state |α, 0〉 describes the phase transition
at the mean-field level [35] and the states |1, 0〉 and |0, 0〉
are the exact ground states for θ = 0 and θ = π/2, respec-
tively. Furthermore, the first-order contribution in α to |α, β〉
around (α, β ) = (0, 0) corresponds to the first-order pertur-
bative correction to the exact ground state around θ = π/2.
Likewise, the first-order contribution in β to |α, β〉 around
(α, β ) = (1, 0) corresponds to the first-order perturbative cor-
rection to the exact ground state around θ = 0 [30].

The state |α, β〉 can be interpreted as a PEPS, whose bond
dimension depends on the theory considered. The variational
energy per plaquette

e0(α, β ) = 1

Np

〈α, β|H |α, β〉
〈α, β|α, β〉 , (7)

can be efficiently computed using the VUMPS algorithm [31]
for contracting two-dimensional tensor networks in the ther-
modynamic limit. Note that the previous approach reproduces
the linear perturbative corrections up to second order both
near θ = 0 and θ = π/2. As explained in Ref. [30], additional
tensor-network operators can be added in order to reproduce
higher-order perturbative corrections.

The PEPS framework allows for a natural characterization
of the topological nature of the variational ground state.
Indeed, the topological properties of a PEPS are related to
the virtual symmetries of the local PEPS tensor [18]. In the
Fibonacci theory, this virtual symmetry is described by a
matrix product operator (MPO) [19,20]. Since, as shown in
the Appendix, the state |α, β〉 exhibits such a virtual MPO
symmetry only when α = 1, this parameter can be naturally
interpreted as an order parameter [30] to detect the transition
between the topological phase (α = 1) and the trivial one
(α < 1). Indeed, at α = 1, the expectation value of a Wil-
son loop operator changes from a trivial perimeter law for
β = 0 to a nontrivial perimeter law for β > 0, still indicating
deconfinement of the anyonic excitations, so that the state
remains in the topological phase. For α < 1, the Wilson loop
expectation value satisfies a nontrivial area law, indicating that
anyons are confined and the state is in the trivial phase.
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Yet, even in the presence of the virtual symmetry (α = 1),
the parameter β can drive the state into a trivial phase by a
spontaneous breaking of this symmetry, resulting in an area
law for the Wilson loop. This process was shown to occur at
β = 1

2 ln(1 + √
2) for the Z2 case [37]) and at β � 0.168 for

the Fibonacci case [25]. For the problem at hand, we checked
that there is no spontaneous symmetry breaking so that α can
be used as a bona-fide order parameter.

IV. RESULTS FOR THE Z2 THEORY

Let us first discuss the simplest theory and consider Z2

(Abelian) fusion rules. As discussed in Ref. [6], the Hamil-
tonian (5) for any theory obeying ZN fusion rules can be
exactly mapped onto the N-states Potts model in a magnetic
field on the dual lattice. Thus, for N = 2, H is equivalent to
the transverse-field Ising model on a triangular lattice where
Jp and Jl are the strength of the magnetic field and of the
spin-spin coupling, respectively. As a result, the sign of Jp

is irrelevant for this problem and we assume Jp > 0 in the
following.

In the antiferromagnetic case (Jl < 0), the Ising model
on a triangular lattice is highly frustrated. So, clearly, the
Ansatz |α, β〉 is not adapted to that situation since the ground
space has an extensive degeneracy for Jp = 0. In this region
θ ∈ [−π/2, 0], a critical point in the universality class of
the three-dimensional classical XY model was found for
θ � arctan(−1/65) � −0.545 [38].

Here, we rather aim at benchmarking our Ansatz with the
phase transition in the region θ ∈ [0, π/2] corresponding to
ferromagnetic interactions (Jl > 0). The phase diagram
in this region has been studied by high-order series
expansion and a second-order transition occurs at
θc � arctan(0.2097) � 0.207 [39], the critical point
belonging to the universality class of the three-dimensional
classical Ising model. Our results obtained from the
variational Ansatz (6) are summarized in Fig. 1 (top panel).
As already discussed in Ref. [35], for β = 0 (mean-field
approximation), one obtains a continuous transition at
θ = arctan(1/6) � 0.165 which is qualitatively correct but
about 20% off from θc. Remarkably, by adding β as a second
variational parameter, the transition remains continuous (no
jump of the order parameter α) and shifts to θ � 0.198
which is only 4% off from θc. Given that our variational
Ansatz has only short-ranged correlations [except for α = 1
and β = 1

2 ln(1 + √
2), which is not a variational optimum

for any value of θ ], and that the exact correlations decay
algebraically near θc, these results can be considered as
unexpectedly good. This can also be seen by comparing the
variational ground-state energy with the numerical results
obtained from exact diagonalization on a 25-plaquettes
system with periodic boundary conditions, as shown in Fig. 1
(bottom panel).

Note, finally, that for the Z2 theory, our Ansatz satisfies
|α, β〉 ∼ |α−1, β〉, such that the expansion of the energy
density e0(α, β ) around α = 1 + δα can only contain even
terms in δα. As a consequence, the way α deviates from 1
around the transition point is as |δα| = (θ − θc)1/2, both for
the mean-field Ansatz (with fixed β = 0) and for the Ansatz
where β is also optimized.

FIG. 1. Variational results for the Z2 theory obtained for β = 0
(red) and β 	= 0 (green). Top: order parameter α indicating a contin-
uous transition from a topological phase (α = 1) to a trivial phase
(α < 1). Bottom: ground-state energy per plaquette e0 compared
with exact diagonalization data (blue crosses) (see inset for a broader
range). Dashed lines give the position of the transition point obtained
from series expansions [39] (blue) and from the order parameter
behavior [red [35] and green (this work)].

V. RESULTS FOR THE FIBONACCI THEORY

The phase diagram of the Hamiltonian (5) for the Fibonacci
theory has already been computed by combining exact diag-
onalization results with high-order series expansions for the
ground-state and gap energies [7]. The doubled Fibonacci
(DFib) topological phase has been found to extend from
θ2 � −0.63 to θ1 � 0.255 identifying θ1 and θ2 as critical
points. Our variational results in this case are displayed in
Figs. 2 and 3 for θ ∈ [0, π/2] and θ ∈ [0,−π/2], respec-
tively.

In the region θ ∈ [0, π/2], the mean-field approach [35]
corresponding to β = 0 indicates a first-order transition for
θ = arctan ( 1+ϕ

6+3ϕ
) � 0.237. This result is qualitatively differ-

ent from the one proposed in Ref. [7] although the position
of the transition point is only 7% off from θ1. Since (i) there
is no prior reason to believe that the mean-field result is
exact [35] and (ii) higher-order series expansions need to be
extrapolated to provide reliable information about the nature
of the transition, it is interesting to see what the Ansatz (6) can
bring to the understanding of the transition. As can be seen in
Fig. 2, by adding β as variational parameter, one still obtains
a first-order transition characterized by a jump of the order
parameter, but the transition point is shifted to θ � 0.254,
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FIG. 2. Variational results for the Fibonacci theory (same con-
ventions as in Fig. 1). Blue dashed lines indicate the position of the
transition point computed from series expansions [7].

which is less than 1% off from θ1. This leads us to conclude
that in the region θ ∈ [0, π/2], there is a unique transition
point located near θ � 0.255 (in agreement with Ref. [7])
corresponding to a first-order transition with a small gap at the
transition point (weakly first order). Note that the proximity
of the transition points obtained by the two approaches could
suggest that the flux-flux correlation length is finite, which is a
favorable case for a PEPS description of the ground state and
justifies the relevance of our Ansatz.

In the region θ ∈ [−π/2, 0], we investigate the phase
transition by slightly modifying the Ansatz. Indeed, the state
defined in Eq. (6) is designed for interpolating between |1, 0〉
and |0, 0〉, that are the exact ground states at θ = 0 and
θ = π/2, respectively. However, for θ = −π/2, the ground
state of the Hamiltonian (5) is unique (topologically trivial
phase) and given by |1〉 = ⊗l |1〉l . Consequently, to study
the parameter range θ ∈ [−π/2, 0], we consider a variational
Ansatz

|α, β〉− = N exp
(
β

∑
l

Ll

)∏
p

(1 + αZp)|1〉, (8)

where, for simplicity, we kept the same notations as in Eq. (6).
The PEPS tensor encoding this state is described in the
Appendix. It is important to note that the “reference” states |0〉
and |1〉 are very different. Indeed, for β = 0, a key property
of the Ansatz (6) is the factorization property that reads

〈α, 0|
n∏

p=1

Bp|α, 0〉 = 〈α, 0|Bp|α, 0〉n, (9)

FIG. 3. Variational results for the Fibonacci theory (same con-
ventions as in Fig. 1). Blue dashed lines indicate the position of
the transition point computed from series expansions [7] which
coincides with the one obtained with the Ansatz (8), i.e., θ � −0.630.

for any set of n plaquettes. This identity does not hold for the
state (8) with β = 0, which can no longer be interpreted as
a mean-field Ansatz. Yet, by construction, it is perturbatively
exact near θ = 0 and it also matches the exact ground state at
θ = −π/2. As such, this Ansatz is a good candidate to capture
the transition between the DFib phase and the trivial phase.
As can be seen in Fig. 3, for β = 0, one obtains a continuous
transition at θ � −0.317 which is very far from the value
θ2 � −0.63 obtained in Ref. [7]. Interestingly, when including
β, we obtain a discontinuous transition located at θ � −0.630
which is in agreement with the extrapolated values of Ref. [7].
Thus, we face a situation similar to the previous case, where
the present variational study is in quantitative agreement with
the series expansions studies. We emphasize that the series
expansions in this region have to be resummed so that error
bars on θ2 are larger than for θ1. Regarding the nature of the
transition, the same arguments as before favor the first-order
scenario.

VI. CONCLUSIONS AND OUTLOOK

This work presents the first variational results based on
tensor networks for a topological phase transition out of a non-
Abelian topological phase. We have studied the transitions
between the topological and trivial phases of the Levin-Wen
Hamiltonian with string tension, both for Z2 and Fibonacci
fusion rules, by means of a simple two-parameters variational
Ansatz inspired by Ref. [30]. For the Z2 case, we recover
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the well-known second-order transition as predicted from the
mapping onto the transverse-field Ising model the triangular
lattice. For the Fibonacci case, our results are in quantitative
agreement with series expansions and exact diagonalizations
[7]. However, we only find first-order transitions (as in the
mean-field treatment [35]) whereas series expansions com-
bined with exact diagonalizations rather plead in favor of
second-order transitions [7]. This qualitative discrepancy is
likely due to the extrapolation of the series expansion and
finite-size effects in the exact diagonalizations, but we cannot
exclude that the present variational approach is not sufficient
to properly describe the transitions in this model. Going
beyond would require more sophisticated Ansätze that can
be systematically constructed by using the ideas developed in
Ref. [30]. Using recently developed contraction methods for
three-dimensional tensor networks [40], we stress that such an
approach can also be applied in three-dimensional systems, as
recently illustrated in Ref. [41].
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APPENDIX: CONSTRUCTION OF THE PEPS TENSOR

In the following section, we elaborate on the construction
of the PEPS tensors representing the Ansatz |α, β〉+ = |α, β〉
and |α, β〉−. It is sufficient to construct the PEPS for
the one-parameter Ansätze |α, 0〉±. The PEPS tensor for
|α, β〉± ∝ ∏

l exp (βLl )|α, 0〉± is then readily found by
applying the right operator on the physical level.

For simplicity, we will assume that quantum dimensions
d0 and d1 are non-negative real numbers, and that the F -
symbols are all real. Both models studied in this work satisfy
these assumptions (see Ref. [2] for details about Z2 and
Fibonacci theories). In the general case, where one relaxes
these assumptions, the construction of the PEPS can be done
in a similar fashion.

In order to simplify the calculations in the following sec-
tion, we will work with the states

|γ 〉± = |γ D2/(−2γ + 2 + γ D2), 0〉±. (A1)

To go back to the Ansatz used in the main body of the paper,
one can simply use

|α, 0〉± = |2α/(2α − αD2 + D2)〉±, (A2)

where D =
√

d2
0 + d2

1 is total quantum dimension.

1. Ansatz for θ ∈ [0, π/2]

The one-parameter Ansatz is given by

|γ 〉 = N
∏

p

(
1 + γ d1Op

1

)|0〉, (A3)

where |0〉 = ⊗l |0〉l , and N is a normalization factor. The op-
erator Op

i corresponds to inserting a i loop inside the plaquette
[2], and then resolving it into the lattice using F moves

(A4)

and the rule

(A5)

Contraction of a loop cannot happen across a plaquette; we
treat plaquettes as if they have a puncture in their center.
Applying these rules gives the full form of Op

i :

(A6)
Setting d̃0 = 1 and d̃1 = γ d1 one can write

|γ 〉 = N
∏

p

⎛
⎝∑

μp

d̃μpO
p
μp

⎞
⎠|0〉. (A7)

Using the graphical representation of the operators Op
i , |γ 〉

can be represented as

(A8)

The gray lines above are initially in the |0〉 state. To find the
state from this graphical notation, one has to resolve the loops
appearing in Eq. (A8) into the lattice. This is done in two
steps. First we fuse the neighboring loops along each edge,
using an F move:

(A9)
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The k appearing in the sum will be the physical degree of
freedom in every edge, once we are done resolving everything
into the lattice. The second step consists of using the following
equality in every vertex:

(A10)

where

Gi jk
λμν = 1√

didλ

F ν jλ
kμi = 1√

dνdk

(
F i jk

λμν

)∗
. (A11)

The PEPS tensor is obtained by splitting the factor
√

dk/dμdν

in Eq. (A9) evenly between the two adjacent vertices, while
splitting the factor d̃μp in Eq. (A7) evenly between all six
vertices appearing in plaquette p. The result is

(A12)
where i′, j′, and k′ represent the physical degrees of freedom.
Each virtual index is associated to two physical indices (ap-
pearing in the tensors at the vertices connected by that edge).
The first three δ functions in Eq. (A12) guarantee that these
two physical indices are always equal.

The PEPS tensor for the vertices with the inverse orienta-
tion is obtained by rotating Eq. (A12).

2. Ansatz for θ ∈ [−π/2, 0]

For θ ∈ [−π/2, 0], the Ansatz is defined similarly:

|γ 〉− = N
∏

p

(
1 + γ d1Op

1

)|1〉, (A13)

= N
∏

p

(∑
i

d̃iO
p
i

)
|1〉. (A14)

Note that we are now acting on the |1〉 = ⊗l |1〉l product state,
as opposed to the |0〉 state that we used for θ ∈ [0, π/2]. We

can use the same graphical representation of this state:

(A15)

where the gray lines are now in the |1〉 state initially. As done
for θ ∈ [0, π/2], we first fuse the loops along every edge:

(A16)

The vertices then look like

To finish resolving everything into the lattice, these objects
must be reduced to trivalent vertices. This is done by applying
Eq. (A10) multiple times:

(A17)
and analogously:

(A18)
By splitting the factors appearing in Eq. (A16) equally

between the two adjacent vertices, we obtain the following
PEPS tensors:
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(A19)

(A20)

Note that there is one more virtual leg per side compared
to Eq. (A12). This is due to the extra sum appearing in
Eq. (A16).

Although, for γ = 1, the physical states given in Eqs. (A3)
and (A13) are identical, the PEPS tensors representing these
two states have very different properties. Indeed, the double-
layer transfer matrix with PEPS tensors (A19) and (A20)
appears to be critical with a central charge which is twice that
of the three-state Potts model while the PEPS tensor given
by Eq. (A12) does not share this property. This observation
clearly deserves further investigation.

3. Reducing the bond dimensions

The PEPS tensor defined in Eq. (A12) has a bond dimen-
sion (both physical and virtual) of 23. However, the G-symbol
present in its definition imposes certain rules which need to
be met for the tensor to take a nonzero value. These rules
can be exploited to rewrite this tensor as one with a lower
bond dimension: for the Z2 theory (1), the bond dimension
can be reduced to 4, while for the Fibonacci theory (2) it can
be reduced to 5.

The structure of the PEPS tensor can also be exploited to
reduce the bond dimension of the double-layer transfer matrix
MPO tensors. Using the more efficient encoding of the tensor
we just mentioned, the double-layer bond dimension already
gets reduced from 64 to 16 for Z2 and to 25 for Fibonacci.
The Kronecker delta functions appearing in the right-hand
side of Eq. (A12) allow us to further reduce these to 8 and
13 respectively.

The same tricks can be applied to the tensors (A19) and
(A20) (note that we only use this Ansatz for the Fibonacci
theory). The virtual bond dimension can be reduced from 24

to 8, while the physical bond dimension can be reduced from
23 to 5. The bond dimension of double-layer MPO tensors can
be reduced from 28 to 34.

As mentioned in the main body of this paper, the varia-
tional energy per plaquette (7) is calculated using the VUMPS
algorithm. Due to memory constrains, the bond dimension of
the boundary MPS has to be limited to 100 for the Z2 model,
and for the Fibonacci model with θ ∈ [0, π/2]. Due to the
higher bond dimension of the double-layer MPO obtained
from Ansatz (A19) and (A20), the bond dimension of the
boundary MPS has to be limited to 60 for the Fibonacci model
with θ ∈ [−π/2, 0].
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[19] M. B. Şahinoğlu, D. J. Williamson, N. Bultinck, M. Mariën, J.
Haegeman, N. Schuch, and F. Verstraete, Characterizing topo-
logical order with matrix product operators, arXiv:1409.2150.

[20] N. Bultinck, M. Mariën, D. J. Williamson, M. B. Şahinoğlu,
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