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Abstract

The study of microbiomes has gained in importance over the past few years, and has led to

the emergence of the fields of metagenomics, metatranscriptomics and metaproteomics.

While initially focused on the study of biodiversity within these communities, the emphasis

has increasingly shifted to the study of (changes in) the complete set of functions available in

these communities. A key tool to study this functional complement of a microbiome is Gene

Ontology (GO) term analysis. However, comparing large sets of GO terms is not an easy

task due to the deeply branched nature of GO, which limits the utility of exact term matching.

To solve this problem, we here present MegaGO, a user-friendly tool that relies on semantic

similarity between GO terms to compute functional similarity between multiple data sets.

MegaGO is highly performant: each set can contain thousands of GO terms, and results are

calculated in a matter of seconds. MegaGO is available as a web application at

https://megago.ugent.be and is installable via pip as a standalone command line tool and

reusable software library. All code is open source under the MIT license and is available at

https://github.com/MEGA-GO/.
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Introduction

Microorganisms often live together in a microbial community or microbiome where they

create complex functional networks. These microbiomes are therefore commonly studied to

reveal both their taxonomic composition as well as their functional repertoire. This is typically

achieved by analyzing their gene content using shotgun metagenomics. While this approach

allows a detailed investigation of the genomes that are present in such multi-organism

samples, it only reveals their functional potential rather than their currently active functions1.
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To uncover these active functions within a given sample, the characterization of the protein

content is often essential2.

The growing focus on functional information as a complement to taxonomic information3 is

derived from the observation that two taxonomically similar microbial communities could

have vastly different functional capacities, while taxonomically quite distinct communities

could have remarkably similar functions. While the investigation of the active functions is

thus increasingly seen as vital to a complete understanding of a microbiome, the

identification and comparison of these detected functions remains one of the biggest

challenges in the field4.

Several omics tools exist to describe functions in microbial samples, although these tools

link functionality to different biological entities such as genes, transcripts, proteins, and

peptides5–14. However, most tools are capable of directly or indirectly reporting functional

annotations as a set of Gene Ontology15 (GO) terms, regardless of the biological entity it is

assigned to. In October 2020, there were 44 264 of these terms in the complete GO tree.

GO terms are organized in three independent domains: molecular function, biological

process, and cellular component16. In each domain, terms are linked into a directed acyclic

graph, an excerpt of which is shown in Figure 1. In the GO graph, a parent term can have

one or more children (e.g., the root node “biological process” is the parent of the children

GO:0009987 and GO:0008152), and children can have multiple parents (e.g., the most

specific term “translation” has as parents GO:0043043, GO:0034645 and GO:0044267).
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Figure 1. Excerpt of the biological process domain of the Gene Ontology showing all parent

terms up to the root for “translation” (GO:0006412). The root GO term “biological process“

(GO:0008150) has multiple children. The most specific term “translation”, in contrast, has

multiple parents. When comparing the two terms GO:0044267 and GO:0034645 (portrayed

in light red), we find two different lowest common ancestors: GO:0044249 and GO:1901576

(dark red). Only one of these, however, can be the most informative common ancestor

(MICA), i.e. the common ancestor with the highest information content for the terms in light

red. Since an IC of 1.52 is larger than 1.48, the GO:0044249 is the MICA. The terms

GO:0043604 and GO:0006518 (in light blue) are more similar than the two terms we

described earlier and only have one lowest common ancestor, which is also automatically

the MICA for these terms: GO:0043603 (in dark blue). IC: information content, star: most

informative common ancestor.
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While this highly branched graph structure of GO allows flexible annotation at various levels

of detail, it also creates problems when the results from one data set are compared to

another data set. Indeed, even though two terms may be closely linked in the GO tree and

are therefore highly similar (e.g., as parent and child terms, or as sibling terms), typically

employed exact term matching will treat these terms as wholly unrelated as the actual GO

terms (and their accession numbers) are not identical. This problem is illustrated in a study

by Sajulga et al.17, where a multi-sample data set was analyzed using several

metaproteomics tools. The resulting GO terms were then compared using exact matching.

The overlap between the result sets was quantified using the Jaccard Index and was found

to be low. As explained above, this low similarity is likely the result of the limitations of the

exact term matching approach.

There is thus a clear need for a more sophisticated GO term comparison that takes into

account the existing relationships in the full GO tree. However, most existing tools that

provide such comparison are based on enrichment analyses18–20. In such analyses, a list of

genes is mapped to GO terms, which are then analyzed for enriched biological phenomena.

As a result, to the best of our knowledge no tools allow the direct comparison of large

functional data sets against each other, nor are these able to provide metrics to determine

how functionally similar data sets are.

We therefore present MegaGO, a tool for comparing the functional similarity between large

sets of GO terms. MegaGO calculates a pairwise similarity score between multiple sets of

GO terms for each of the three GO domains, and can do so in seconds, even on platforms

with limited computational capabilities.

Implementation

In order to measure the similarity between sets of GO terms, we first need to measure the

similarity of two individual terms. We compare two terms using the Lin semantic similarity

metric21, which can take on a value between 0 and 1 (Supplementary Formula 1a). The Lin

semantic similarity is based on the ratio of the information content of the most informative

common ancestor (MICA) to the average of the terms’ individual information content.

The information content (Supplementary Formula 1b) is computed by estimating the terms’

probability of occurrence (Supplementary Formula 1c), including that of all of its children.

Term frequencies are estimated based on the manually curated SwissProt database 22. As a

result, a high level GO term such as “biological process” (through its many direct or indirect
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child terms) will be present in all data sets, and thus carries little information. A more specific

term such as “translation” (or any of its potential child terms) will occur less frequently, and

thus be more informative (Figure 1). To finally calculate the similarity of two terms, we

compare their information content with that of their shared ancestor that has the highest

information content, the MICA. If the information content of the MICA is similar to the term’s

individual information content, the terms are deemed to be similar. The dissimilar terms

“peptide biosynthetic process“ and “cellular macromolecule biosynthetic” are situated further

from their MICA “cellular biosynthetic process” than the similar terms “amide biosynthetic

process” and “peptide metabolic process” with their respective MICA “cellular amide

metabolic process” (Figure 1).

MegaGO, however, can not only compare two terms, but also sets of GO terms. More

specifically, two sets of GO terms can be compared via the web application, but an unlimited

number of sets can be compared via the command line tool. Note that in these sets duplicate

GO terms will be removed, so that each GO term will be equally important, regardless of

how often it is provided by the user. To compare the sets of GO terms, pairwise term

similarities are aggregated using the Best Matching Average (BMA, Supplementary

Formula 2)23. For each GO term in the first input data set, BMA finds the GO term with the

highest Lin semantic similarity in the second data set and averages the values of these best

matches. Moreover, MegaGO calculates the similarity for each of the three domains of the

gene ontology (molecular function, biological process, and cellular component), as GO terms

from distinct domains do not share parent terms. The general overview of MegaGO is shown

in Figure 2.
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Figure 2. Overview of MegaGO workflow. Gene Ontology (GO) terms of each sample set

are separated into three GO domains: molecular function, cellular component, and biological

process. Each term of each sample set is compared to every term in the other set that is

from the same domain. The match with highest similarity for each term is then selected and

the average across all these best matches is calculated.

MegaGO is implemented in Python and installable as a Python package from PyPi and can

easily be invoked from the command line. The GOATOOLS24 library is used to read and

process the Gene Ontology and to compute the most informative common ancestor of two

GO terms, which are both required to compute the information content value

(Supplementary Formula 1, p(go)). GO-term counts are recomputed with every update of

SwissProt and a new release is automatically published bi-monthly to PyPi which includes

the new data set. Automated testing via GitHub Actions is in place to ensure correctness and

reproducibility of the code. In addition, we also developed a user-friendly and easily

accessible web application that is available on https://megago.ugent.be. The backend of the

web application is developed with the Flask web framework for Python and the frontend uses

Vue. Our web application has been tested on Chromium-based browsers (Chrome, Edge,

Opera), as well as Mozilla Firefox and Safari. The MegaGO application is also available as a

Docker-container on Docker Hub

(https://hub.docker.com/repository/docker/pverscha/mega-go) and can be started with a

7

https://paperpile.com/c/1gvP5D/dwRF
https://megago.ugent.be
https://hub.docker.com/repository/docker/pverscha/mega-go


single click and without additional configuration requirements. Our Docker container is

automatically updated at every change to the underlying MegaGO code. All code is freely

available under the permissive open source MIT license on https://github.com/MEGA-GO/ .

Documentation for our Python script can be found on our website:

https://megago.ugent.be/help/cli. A guide on how to use the web application is also

available: https://megago.ugent.be/help/web.

MegaGO is cross-platform, and runs on Windows, macOS or Linux systems. Systems

requirements are at least 4GiB of memory and support for either Python 3.6 (or above), or

the Docker runtime.

Validation

To validate MegaGO, we reprocessed the functional data from Easterly et al.25. This data set

consists of 12 paired oral microbiome samples that were cultivated in bioreactors. Each

sample was treated with and without sucrose pulsing, hereafter named ws and ns samples,

respectively. Each sample contains mass spectrometry based proteomics measurements

and all samples were annotated with 1718 GO-terms on average. We calculated the

pairwise similarity for each of the 300 sample combinations, which took less than a minute

for a single sample pair on the web version of MegaGO. This resulted in a MegaGO

similarity score for each of the three GO domains for each sample combination. These

similarities were then hierarchically clustered and visualized in a heatmap. All data and

intermediate steps of our data analysis are available at

https://github.com/MEGA-GO/manuscript-data-analysis/, and can be reproduced with the

command line tool using the --heatmap option.
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Figure 3. Hierarchically clustered heatmap comparing MegaGO similarities for the GO

domain ‘biological process’ for each of the samples from Easterly et al.25. Samples that are

treated with sucrose pulsing are labeled as “ws” and displayed in orange

In the heatmap (Figure 3) we can observe that the two sample groups cluster together,

except for 730ns and 733ns that are clustered in the ws sample group. These two samples

were also identified as outliers in Easterly et al.25, and 733ns was originally also identified as

both a taxonomic and functional outlier in Rudney et al.26 Similar results can be observed for

the GO domain ‘molecular function’ (Supplementary Figure 1). MegaGO similarity-based

clustering of ‘cellular component’ GO terms (Supplementary Figure 2) has two additional

samples clustered outside of their treatment group: 852ws in the ns cluster and 861ns in the
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ws group. Again, these patterns can also be found in previous analyses: 852ws is placed in

direct proximity of the ns samples in the PCA of HOMINGS analysis by Rudney et al., 861ns

is closest to 730 and 733ns in PCA of Rudney et al. 's taxonomic analysis. Interestingly,

subjects 730 and 852 were the only ones without active carious lesions, which could cause

their divergence in the similarity analyses.

Results produced by MegaGO are thus in close agreement with prior analyses of the same

data, showing that MegaGO offers a valid and very fast approach for comparing the

functional composition of samples.

Conclusion

MegaGO enables the comparison of large sets of GO terms, allowing users to efficiently

evaluate multi-omics data sets containing thousands of terms. MegaGO calculates a

similarity for each of the three GO domains separately (biological process, molecular

function, and cellular component). In the current version of MegaGO, quantitative data is not

taken into account, thus giving each GO term identical importance in the data set.

MegaGO is compatible with any upstream tool that can provide GO term lists for a data set.

Moreover, MegaGO allows the comparison of functional annotations derived from DNA,

RNA, or protein based methods as well as combinations thereof.

SUPPORTING INFORMATION
The following supporting information is available free of charge at ACS website
http://pubs.acs.org
Document containing the explanation of MegaGO’s semantic similarity metric (S-1), Best
Matching Average (S-2) and Supplementary Figures 1 (S-3) and 2 (S-4): Hierarchically
clustered heatmap comparing MegaGO similarities for the GO domain (1) ‘molecular
function’ and (2) ‘cellular component’.

Acknowledgements
We would like to acknowledge the European Bioinformatics Community for Mass

Spectrometry (EuBIC-MS): This project found its origin at the EuBIC Developers’ 2020

meeting27 in Nyborg, Denmark. We would like to thank Thilo Muth (Bundesanstalt für

Materialforschung und -prüfung, Berlin, Germany) and Stephan Fuchs (Robert Koch

Institute, Berlin, Germany) for their support. PV, TVDB, LM and BM would like to

10

http://pubs.acs.org
http://pubs.acs.org
https://paperpile.com/c/1gvP5D/GtvA


acknowledge Research Foundation - Flanders (FWO) [grants 1164420N, 1S90918N,

G042518N and 12I5220N]. LM also acknowledges support from the European Union's

Horizon 2020 Programme under Grant Agreement 823839 [H2020-INFRAIA-2018-1]. HS

and BYR acknowledge support by Deutsche Forschungsgemeinschaft (DFG; grant number

RE3474/5-1 and RE3474/2-2) and the BMBF-funded de.NBI Cloud within the German

Network for Bioinformatics Infrastructure

(de.NBI; 031A537B, 031A533A, 031A538A, 031A533B, 031A535A, 031A537C, 031A534A

and 031A532B).

References

(1) Jansson, J. K.; Baker, E. S. A Multi-Omic Future for Microbiome Studies. Nat Microbiol
2016, 1 (5), 507.

(2) Lohmann, P.; Schäpe, S. S.; Haange, S.-B.; Oliphant, K.; Allen-Vercoe, E.; Jehmlich, N.;
Von Bergen, M. Function Is What Counts: How Microbial Community Complexity Affects
Species, Proteome and Pathway Coverage in Metaproteomics. Expert Rev. Proteomics
2020, 17 (2), 163–173.

(3) Louca, S.; Parfrey, L. W.; Doebeli, M. Decoupling Function and Taxonomy in the Global
Ocean Microbiome. Science 2016, 353 (6305), 1272–1277.

(4) Schiebenhoefer, H.; Van Den Bossche, T.; Fuchs, S.; Renard, B. Y.; Muth, T.; Martens,
L. Challenges and Promise at the Interface of Metaproteomics and Genomics: An
Overview of Recent Progress in Metaproteogenomic Data Analysis. Expert Rev.
Proteomics 2019, 16 (5), 375–390.

(5) Muth, T.; Behne, A.; Heyer, R.; Kohrs, F.; Benndorf, D.; Hoffmann, M.; Lehtevä, M.;
Reichl, U.; Martens, L.; Rapp, E. The MetaProteomeAnalyzer: A Powerful Open-Source
Software Suite for Metaproteomics Data Analysis and Interpretation. J. Proteome Res.
2015, 14 (3), 1557–1565.

(6) Muth, T.; Kohrs, F.; Heyer, R.; Benndorf, D.; Rapp, E.; Reichl, U.; Martens, L.; Renard,
B. Y. MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome
Samples on the Go. Anal. Chem. 2018, 90 (1), 685–689.

(7) Van Den Bossche, T.; Verschaffelt, P.; Schallert, K.; Barsnes, H.; Dawyndt, P.; Benndorf,
D.; Renard, B. Y.; Mesuere, B.; Martens, L.; Muth, T. Connecting
MetaProteomeAnalyzer and PeptideShaker to Unipept for Seamless End-to-End
Metaproteomics Data Analysis. J. Proteome Res. 2020, 19 (8), 3562–3566.

(8) Verschaffelt, P.; Van Thienen, P.; Van Den Bossche, T.; Van der Jeugt, F.; De Tender, C.;
Martens, L.; Dawyndt, P.; Mesuere, B. Unipept CLI 2.0: Adding Support for
Visualizations and Functional Annotations. Bioinformatics 2020, 36 (14), 4220–4221.

(9) Gurdeep Singh, R.; Tanca, A.; Palomba, A.; Van der Jeugt, F.; Verschaffelt, P.; Uzzau,
S.; Martens, L.; Dawyndt, P.; Mesuere, B. Unipept 4.0: Functional Analysis of
Metaproteome Data. J. Proteome Res. 2019, 18 (2), 606–615.

(10) Riffle, M.; May, D.; Timmins-Schiffman, E.; Mikan, M.; Jaschob, D.; Noble, W.; Nunn,
B. MetaGOmics: A Web-Based Tool for Peptide-Centric Functional and Taxonomic
Analysis of Metaproteomics Data. Proteomes 2017, 6 (1), 2.

11

http://paperpile.com/b/1gvP5D/R6oT
http://paperpile.com/b/1gvP5D/R6oT
http://paperpile.com/b/1gvP5D/imXP
http://paperpile.com/b/1gvP5D/imXP
http://paperpile.com/b/1gvP5D/imXP
http://paperpile.com/b/1gvP5D/imXP
http://paperpile.com/b/1gvP5D/KXw2
http://paperpile.com/b/1gvP5D/KXw2
http://paperpile.com/b/1gvP5D/wyPw
http://paperpile.com/b/1gvP5D/wyPw
http://paperpile.com/b/1gvP5D/wyPw
http://paperpile.com/b/1gvP5D/wyPw
http://paperpile.com/b/1gvP5D/lilo
http://paperpile.com/b/1gvP5D/lilo
http://paperpile.com/b/1gvP5D/lilo
http://paperpile.com/b/1gvP5D/lilo
http://paperpile.com/b/1gvP5D/NnIa
http://paperpile.com/b/1gvP5D/NnIa
http://paperpile.com/b/1gvP5D/NnIa
http://paperpile.com/b/1gvP5D/pnyZ
http://paperpile.com/b/1gvP5D/pnyZ
http://paperpile.com/b/1gvP5D/pnyZ
http://paperpile.com/b/1gvP5D/pnyZ
http://paperpile.com/b/1gvP5D/oL5k
http://paperpile.com/b/1gvP5D/oL5k
http://paperpile.com/b/1gvP5D/oL5k
http://paperpile.com/b/1gvP5D/kEiQ
http://paperpile.com/b/1gvP5D/kEiQ
http://paperpile.com/b/1gvP5D/kEiQ
http://paperpile.com/b/1gvP5D/Sx0f
http://paperpile.com/b/1gvP5D/Sx0f
http://paperpile.com/b/1gvP5D/Sx0f


(11) Schneider, T.; Schmid, E.; de Castro, J. V., Jr.; Cardinale, M.; Eberl, L.; Grube, M.;
Berg, G.; Riedel, K. Structure and Function of the Symbiosis Partners of the Lung
Lichen (Lobaria Pulmonaria L. Hoffm.) Analyzed by Metaproteomics. Proteomics 2011,
11 (13), 2752–2756.

(12) Schiebenhoefer, H.; Schallert, K.; Renard, B. Y.; Trappe, K.; Schmid, E.; Benndorf,
D.; Riedel, K.; Muth, T.; Fuchs, S. A Complete and Flexible Workflow for
Metaproteomics Data Analysis Based on MetaProteomeAnalyzer and Prophane. Nat.
Protoc. 2020, 15 (10), 3212–3239.

(13) Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S. K.;
Cook, H.; Mende, D. R.; Letunic, I.; Rattei, T.; Jensen, L. J.; von Mering, C.; Bork, P.
eggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology
Resource Based on 5090 Organisms and 2502 Viruses. Nucleic Acids Res. 2019, 47
(D1), D309–D314.

(14) Huson, D. H.; Auch, A. F.; Qi, J.; Schuster, S. C. MEGAN Analysis of Metagenomic
Data. Genome Res. 2007, 17 (3), 377–386.

(15) The Gene Ontology Consortium. The Gene Ontology Resource: 20 Years and Still
GOing Strong. Nucleic Acids Res. 2019, 47 (D1), D330–D338.

(16) Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis,
A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-Tarver, L.;
Kasarskis, A.; Lewis, S.; Matese, J. C.; Richardson, J. E.; Ringwald, M.; Rubin, G. M.;
Sherlock, G. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25
(1), 25–29.

(17) Sajulga, R.; Easterly, C.; Riffle, M.; Mesuere, B.; Muth, T.; Mehta, S.; Kumar, P.;
Johnson, J.; Gruening, B.; Schiebenhoefer, H.; Kolmeder, C. A.; Fuchs, S.; Nunn, B. L.;
Rudney, J.; Griffin, T. J.; Jagtap, P. D. Survey of Metaproteomics Software Tools for
Functional Microbiome Analysis. PLoS ONE.
https://doi.org/10.1371/journal.pone.0241503.

(18) Huang, D. W.; Sherman, B. T.; Lempicki, R. A. Systematic and Integrative Analysis of
Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4 (1),
44–57.

(19) Waardenberg, A. J.; Bassett, S. D.; Bouveret, R.; Harvey, R. P. CompGO: An R
Package for Comparing and Visualizing Gene Ontology Enrichment Differences
between DNA Binding Experiments. BMC Bioinformatics 2015, 16 (1), 25.

(20) Fruzangohar, M.; Ebrahimie, E.; Ogunniyi, A. D.; Mahdi, L. K.; Paton, J. C.; Adelson,
D. L. Comparative GO: A Web Application for Comparative Gene Ontology and Gene
Ontology-Based Gene Selection in Bacteria. PLoS ONE 2013, 8 (3), e58759.

(21) Lin, D. An Information-Theoretic Definition of Similarity. In Proceedings of the 15th
International Conference on Machine Learning; 1998; Vol. 98, pp 296–304.

(22) UniProt Consortium. UniProt: A Worldwide Hub of Protein Knowledge. Nucleic Acids
Res. 2019, 47 (D1), D506–D515.

(23) Schlicker, A.; Domingues, F. S.; Rahnenführer, J.; Lengauer, T. A New Measure for
Functional Similarity of Gene Products Based on Gene Ontology. BMC Bioinformatics
2006, 7 (1), 493.

(24) Klopfenstein, D. V.; Zhang, L.; Pedersen, B. S.; Ramírez, F.; Warwick Vesztrocy, A.;
Naldi, A.; Mungall, C. J.; Yunes, J. M.; Botvinnik, O.; Weigel, M.; Dampier, W.;
Dessimoz, C.; Flick, P.; Tang, H. GOATOOLS: A Python Library for Gene Ontology
Analyses. Sci. Rep. 2018, 8 (1), 10872.

(25) Easterly, C. W.; Sajulga, R.; Mehta, S.; Johnson, J.; Kumar, P.; Hubler, S.; Mesuere,
B.; Rudney, J.; Griffin, T. J.; Jagtap, P. D. metaQuantome: An Integrated, Quantitative
Metaproteomics Approach Reveals Connections Between Taxonomy and Protein
Function in Complex Microbiomes. Mol. Cell. Proteomics 2019, 18 (8 suppl 1),

12

http://paperpile.com/b/1gvP5D/h2fR
http://paperpile.com/b/1gvP5D/h2fR
http://paperpile.com/b/1gvP5D/h2fR
http://paperpile.com/b/1gvP5D/h2fR
http://paperpile.com/b/1gvP5D/mokj
http://paperpile.com/b/1gvP5D/mokj
http://paperpile.com/b/1gvP5D/mokj
http://paperpile.com/b/1gvP5D/mokj
http://paperpile.com/b/1gvP5D/tqZF
http://paperpile.com/b/1gvP5D/tqZF
http://paperpile.com/b/1gvP5D/tqZF
http://paperpile.com/b/1gvP5D/tqZF
http://paperpile.com/b/1gvP5D/tqZF
http://paperpile.com/b/1gvP5D/dBp5
http://paperpile.com/b/1gvP5D/dBp5
http://paperpile.com/b/1gvP5D/TPes
http://paperpile.com/b/1gvP5D/TPes
http://paperpile.com/b/1gvP5D/qowi
http://paperpile.com/b/1gvP5D/qowi
http://paperpile.com/b/1gvP5D/qowi
http://paperpile.com/b/1gvP5D/qowi
http://paperpile.com/b/1gvP5D/qowi
http://paperpile.com/b/1gvP5D/zT8N
http://paperpile.com/b/1gvP5D/zT8N
http://paperpile.com/b/1gvP5D/zT8N
http://paperpile.com/b/1gvP5D/zT8N
http://paperpile.com/b/1gvP5D/zT8N
http://dx.doi.org/10.1371/journal.pone.0241503.
http://paperpile.com/b/1gvP5D/PAws
http://paperpile.com/b/1gvP5D/PAws
http://paperpile.com/b/1gvP5D/PAws
http://paperpile.com/b/1gvP5D/n3s6
http://paperpile.com/b/1gvP5D/n3s6
http://paperpile.com/b/1gvP5D/n3s6
http://paperpile.com/b/1gvP5D/xsfa
http://paperpile.com/b/1gvP5D/xsfa
http://paperpile.com/b/1gvP5D/xsfa
http://paperpile.com/b/1gvP5D/y29j
http://paperpile.com/b/1gvP5D/y29j
http://paperpile.com/b/1gvP5D/MFP1
http://paperpile.com/b/1gvP5D/MFP1
http://paperpile.com/b/1gvP5D/0XDC
http://paperpile.com/b/1gvP5D/0XDC
http://paperpile.com/b/1gvP5D/0XDC
http://paperpile.com/b/1gvP5D/dwRF
http://paperpile.com/b/1gvP5D/dwRF
http://paperpile.com/b/1gvP5D/dwRF
http://paperpile.com/b/1gvP5D/dwRF
http://paperpile.com/b/1gvP5D/H2IC
http://paperpile.com/b/1gvP5D/H2IC
http://paperpile.com/b/1gvP5D/H2IC
http://paperpile.com/b/1gvP5D/H2IC


S82–S91.
(26) Rudney, J. D.; Jagtap, P. D.; Reilly, C. S.; Chen, R.; Markowski, T. W.; Higgins, L.;

Johnson, J. E.; Griffin, T. J. Protein Relative Abundance Patterns Associated with
Sucrose-Induced Dysbiosis Are Conserved across Taxonomically Diverse Oral
Microcosm Biofilm Models of Dental Caries. Microbiome 2015, 3 (1), 89.

(27) Ashwood, C.; Bittremieux, W.; Deutsch, E. W.; Doncheva, N. T.; Dorfer, V.; Gabriels,
R.; Gorshkov, V.; Gupta, S.; Jones, A. R.; Käll, L.; Kopczynski, D.; Lane, L.;
Lautenbacher, L.; Legeay, M.; Locard-Paulet, M.; Mesuere, B.; Perez-Riverol, Y.; Netz,
E.; Pfeuffer, J.; Sachsenberg, T.; Salz, R.; Samaras, P.; Schiebenhoefer, H.; Schmidt, T.;
Schwämmle, V.; Soggiu, A.; Uszkoreit, J.; Van Den Bossche, T.; Van Puyvelde, B.; Van
Strien, J.; Verschaffelt, P.; Webel, H.; Willems, S. Proceedings of the EuBIC-MS 2020
Developers’ Meeting. EuPA Open Proteomics 2020, 24, 1–6.

13

http://paperpile.com/b/1gvP5D/H2IC
http://paperpile.com/b/1gvP5D/S5gJ
http://paperpile.com/b/1gvP5D/S5gJ
http://paperpile.com/b/1gvP5D/S5gJ
http://paperpile.com/b/1gvP5D/S5gJ
http://paperpile.com/b/1gvP5D/GtvA
http://paperpile.com/b/1gvP5D/GtvA
http://paperpile.com/b/1gvP5D/GtvA
http://paperpile.com/b/1gvP5D/GtvA
http://paperpile.com/b/1gvP5D/GtvA
http://paperpile.com/b/1gvP5D/GtvA
http://paperpile.com/b/1gvP5D/GtvA


For Table of Contents Only

14


