
OR I G I N A L A RT I C L E
Jou rna l Se c t i on

IOData: A Python Library for Reading, Writing, andConverting Computational Chemistry File Formatsand Generating Input Files
Toon Verstraelen1* | William Adams2 | Leila Pujal3 |
Alireza Tehrani3 | Braden D. Kelly2 | Luis Macaya5 |
Fanwang Meng2 | Michael Richer2 | Raymundo
Hernández-Esparza2 | Xiaotian Derrick Yang2, 4 |
Matthew Chan2 | Taewon David Kim2 | Maarten
Cools-Ceuppens1 | Valerii Chuiko2,6 | Esteban
Vöhringer-Martinez5* | Paul W. Ayers2* | Farnaz
Heidar-Zadeh1, 3*
1Center for Molecular Modeling (CMM),
Ghent University,
Technologiepark-Zwijnaarde 46, B-9052,
Zwijnaarde, Belgium
2Department of Chemistry and Chemical
Biology, McMaster University, Hamilton,
Ontario, L8S-4L8, Canada
3Department of Chemistry, Queen’s
University, Kingston, Ontario, K7L-3N6,
Canada
4Laboratoire de Chimie Théorique,
Sorbonne Université, Paris, 75052, France
5Departamento de Físico Química, Facultad
de Ciencias Químicas, Universidad de
Concepción, 4070371 Concepción, Chile
6Faculty of Physics; Taras Shevchenko
National University of Kyiv, 01601 Kyiv,
Ukraine
Correspondence
Email: Toon.Verstraelen@ugent.be;
evohringer@udec.cl; ayers@mcmaster.ca;
farnaz.heidarzadeh@queensu.ca
Funding information

IOData is a free and open-source Python library for parsing,
storing, and converting various file formats commonly used
by quantumchemistry, molecular dynamics, and plane-wave
density-functional-theory software programs. In addition,
IOData supports a flexible framework for generating input
files for various software packages. While designed and re-
leased for stand-alone use, its original purpose was to facil-
itate the interoperability of various modules in the HORTON

and ChemTools software packageswith external (third-party)
molecular quantumchemistry and solid-state density-functional-
theory packages. IOData is designed to be easy to use,
maintain, and extend; this iswhywewrote IOData in Python
and adopted many principles of modern software develop-
ment, including comprehensive documentation, extensive

*Corresponding authors.

1

2
testing, continuous integration/delivery protocols, and pack-
age management. This article is the official release note of
the IOData library.
K E YWORD S
quantum chemistry, molecular mechanics, computational
chemistry, file format conversion, data parsing, basis set
conversion, input file generation, JSON schema, chemistry
software development, theoretical chemistry Python library

1 | WHAT IS IODATA?
IOData is a free and open-source Python 3 library for reading and writing formatted (non-binary) files generated
by a broad array of molecular quantum chemistry, molecular dynamics, and plane-wave density-functional-theory
programs. IOData is primarily intended as a utility for (a) parsing molecular/periodic geometry, wavefunction, and
trajectory data from various file formats, (b) storing this data in a user-friendly object, so that it can be used in external
Python modules, (c) dumping geometry, wavefunction, and trajectory data in a variety of standard file formats, hence
(d) converting one standard file format to another, and (e) generating input files for various computational chemistry
software packages. Section 5 details the file formats and input file generation currently supported by IOData; however,
we designed the IOData framework to be not only easy to use but also easy to extend to new data formats and
software.

2 | HISTORY
During the course of our scientific research, and especially our development of the HORTON[1] and ChemTools[2]
software packages, we needed a utility that allowed us to parse the output files of various electronic structure theory
programs and dump data from our software packages using standard file formats. Some of this functionality existed
in HORTON 2.x [1], but in the process of writing HORTON 3, we decided to split IOData (as well as much of the other
functionality of HORTON) into stand-alone libraries to better support modularity, maintenance, and ease of use.

3 | ABOUT IODATA

IOData is, and always will be, a free and open-source library distributed under the GNU General Public License. The
IOData source code is maintained on the GitHub platform; see https://github.com/theochem/iodata, and its docu-
mentation is hosted on Read the Docs; see https://iodata.readthedocs.io/en/latest/index.html. We strive to ensure
that the IOData source code and website itself is comprehensively documented, including useful tests, scripts, and
examples. As that documentation is maintained with the software, providing detailed (and eventually outdated) re-
lease notes here seems unwise. Instead, we will briefly list the distinguishing features and key capabilities of IOData
in section 5 and demonstrate them in section 6.

https://github.com/theochem/iodata
https://iodata.readthedocs.io/en/latest/index.html

3
4 | WHY IODATA?
Before starting towork on IOData, we considered using other free and open-source utilities for parsing and converting
file formats like OpenBabel[3] (mostly geared toward chemoinformatics), RDKit[4] (limited wavefunction capabilities),
cclib[5] (limited capabilities for dumping output files), ASE[6] (limited features for molecular systems), MultiWFN[7]
(difficult-to-extend Fortran 90 source code), MDTraj[8] and MDAnalysis[9, 10] (both geared towards trajectory formats
and analysis). However, none of these achieved our criteria of being easy to use and modify, readable, stand-alone,
modular, and written in Python. Most critically, most other software packages are limited in their ability to parse
molecular wavefunction information and extremely limited in their ability to write popular quantum chemistry output
file formats.

Anticipating that other researchers may have similar needs that can bemet by directly using IOData or by building
on top of it, we decided to release IOData as a free and open-source library. Nonetheless, we wish to acknowledge
the utility of these other programs, which we also use in our research. OpenBabel[3] is extremely useful for chemin-
formatics tasks; RDKit is an excellent tool for generating molecular structures and conformations; cclib has refined
capabilities for parsing an abundance of information from quantum chemistry output/log file formats; ASE supports
an abundance of solid-state electronic structure programs; MDTraj and MDAnalysis support an impressive number of
trajectory formats; MultiWFN has comprehensive post-processing capabilities and supports many of the most impor-
tant formats supported by IOData, but does not produce an internal data structure (e.g., a dictionary or a class) that is
easily used in other programs. While IOData overlaps with these tools in some respects, its emphasis on reading and
writing molecular quantum chemistry data file formats, generating input files, and usability as a library within other
programs is unique.

In our view, the distinguishing characteristics of IOData are its modularity, its flexibility, and its ease of use. We
achieve this by designing a unifying framework in which data from various file formats can be loaded, stored in a ver-
satile container class, and dumped in a desired file format. We provide comprehensive documentation and rigorously
adhere to high coding standards, including comprehensive testing of code correctness, quality, and readability. While
IOData is primarily intended to be used as a Python library and its API was designed to facilitate interoperability with
other Python packages, many operations can be performed through its command line tools.

5 | FEATURES OF IODATA

We display various features of IOData by first discussing file formats that it can currently analyze. Specifically,
• The file formats (and their commonly used extensions) that can be both loaded and dumped by IOData include:

basic XYZ Cartesian coordinate files (*.xyz), extended XYZ files containing additional atomic properties (*.extxyz),
Gaussian[11] formatted checkpoint files (*.fchk), wavefunction files (*.wfn), extended wavefunction files (*.wfx),
MultiWFN files (*.mwfn), Molden[12] files (*.molden), Molekel files (*.mkl), Mol2 files (*.mol2), Molpro[13] 2012
FCIDUMP integral files (*.molpro), spatial data files (*.sdf), protein data bank files (*.pdb), QCSchema[14] files
(*.json), and cube files (*.cube). Most often, these file formats each contain information on a single chemical
compound, and are commonly used in exchanging information between various software packages (e.g. for post-
processing). Several of these file formats are often used to store information onmultiple compounds in a single file
(e.g. concatenation of a collection of molecules/frames in a single file with a single format). In this regard, IOData
also supports load and dump functionality for concatenated *.xyz, *.extxyz, *.fchk, *.mol2, *.sdf, and *.pdb file
formats.

4

F IGURE 1 Schematic representation of IOData library.

• The file formats (and their commonly used extension) that can be only loaded by IOData include certain files
from plane-wave density-functional theory codes including VASP (*.chgcar, *.locpot, *.poscar), molecular dynam-
ics packages like Gromacs (*.gro) and CHARMM (*.crd) coordinate files, and GAMESS[15] punch files (*.dat). IOData
can also partially parse and store data from log files of several quantum chemistry software packages including
Gaussian[11] log files (*.log), ORCA[16] log files (*.out), Q-Chem[17] log files (*.qchemlog), and atomic CP2K[18] log
files (*.cp2k.out). If the user is interested in a specific information printed in these log file that is not currently
loaded by IOData, the existing parser can be easily extended.

• To support a broad range of external software, IOData supports, and interconverts between, arbitrary basis-set
conventions, including basis-function order, sign (of the spherical harmonics), and normalization (L1-normalized,
L2-normalized, and unnormalized). IOData also supports basis set conversion (e.g. Cartesian to/from spherical,
primitive to/from contracted).

• IOData can be used to generate input files for various quantum chemistry and molecular dynamics software
packages, including Gaussian[11] and ORCA[16]. Users have the option of providing an input template for specific
use cases or using pre-defined basic templates. The input file writer can be easily extended for use with other
software packages.
Considering the large number of file formats commonly used in computational chemistry, the IOData library is

particularly useful as it provides a user-friendly platform to load the information contained in various file formats into
an easy-to-use object and to convert one file format to the other. IOData’s file-conversion capability is especially
useful because software packages usually work with specific file formats. Obviously, the XYZ and cube file formats
cannot be used to generate file formats containing wavefunction information, however, any of the above mentioned
formats can be loaded by IOData (like fchk) and converted to any other format (like XYZ, wfn, molden, etc.).

As depicted in Figure 1, the IOData library stores the loaded data as attributes of the IOData class. These are
mostly numerical data, arrays, or strings; if available, the information related to molecular basis set and orbitals are

5
stored as the ‘obasis‘ and ‘mo‘ attributes, which are instances of the MolecularBasis class and MolecularOrbitals

class, respectively. Occasionally, file formats include information on 1- and 2-electron integrals, reduced density
matrices, multipole moments, atomic charges, and/or force field parameters; these are each stored as dictionaries.
Any other additional information that does not fit into a pre-existing field is stored in the ‘extra‘ dictionary attribute
of the IOData class; items in ‘extra‘ may become standard attributes in future releases.

We aim to ensure that these input files can be parsed robustly, so that even when popular software packages
fail to follow the technical specifications of a file format (usually because the file format was not strictly or publicly
defined) the error is automatically diagnosed and corrected if possible. For example, many programs read and generate
*.wfn files that do not follow the original format statements from Richard Bader’s AIMPAC program, and no formal
file format specifications for *.wfn seems ever to have been published. To remedy this, we looked at four *.wfn
formats from various open-source projects and wrote a *.wfn format specification that was as flexible as possible, yet
still supported all four versions. The file format specification is provided as part of the IOData documentation, and
hopefully will prevent rogue *.wfn file formats in the future. Another example is that different programs (PSI4[19],
ORCA[16], Turbomole[20], Molden[12], Molekel, Q-Chem[17], etc.) generate *.molden files with different basis-set
normalization, sign, and ordering conventions. We automatically detect these conventions by evaluating the atomic-
orbital overlap matrix, and then store the basis set in a flexible and universal way. When writing a *.molden file, we
always use the same normalization convention that the Molden program itself uses.

Among the recently proposed file formats, IOData supports loading and dumping QCSchema[14], a program-
agnostic JSON schema that serves as both an input and output file format. Unfortunately, the implementation of
the QCSchema in MolSSI projects such as QCElemental[21] has diverged from the original QCSchema specification[14].
The version implemented in QCElemental has transformed from a single, extended schema to four different sub-
schema components: Molecule, Input, Output, and Basis. This reinvention of QCSchema is reasonable, but only exists
as a Python-based partial implementation in QCElemental, not a true JSON schema specification usable by other
potential adopters. IOData implements a backward-compatible and complete version of QCSchema by adopting many
of the changes found in QCElemental and the development branch of QCSchemawhile also providing a genuine JSON
schema and extensive documentation specifying each of the four sub-schema.

IOData uses an extensive automatic-testing framework to verify that the code behaves correctly, both when
introducing code changes and when making new installations on various operating systems. Currently, IOData uses
pytest framework and the unit test coverage feature of codecov.io to ensure a significant portion of our code is well
tested; At present, 96% of the code base is tested. In addition, IOData uses an extensive set of quality-assurance tools
(pylint, autopep8, pycodestyle, pydocstyle, etc.) to ensure that the code quality is not degraded by new contributions
and the code remains readable and well-documented. The testing and quality-assurance workflows are automatically
run by our continuous integration system every time a code change is proposed to our GitHub repository. Currently,
we use travis.io for continuous integration, delivery, and deployment. If travis.io reports that the unit tests or
quality-assurance tools is failed, the proposed changes are automatically rejected. When our code is ready for release,
we Git tag a commit with a special keyword and travis.io builds and tests a release with the Conda and Pip package
managers. This allows users to simply install IOData and all its binary dependencies in one command. Developers can
also publish new releases to users in one command thanks to the automation provided by this workflow.

6
6 | EXAMPLES
For the most updated documentation and examples on how to use IOData, please refer to the IOData website. Here,
we showcase several ways IOData can be used and incorporated into various workflows. Please note that these
examples are based on version 1.0 of IOData, and the user might need to modify them if using future major releases
of the IOData library. Within minor and bug-fix releases, backward compatibility is guaranteed.

6.1 | Using IOData as a Python library
Loading File Formats: The primary use case for IOData is to parse files of various formats and make the loaded data
easily accessible to the user. This is mainly facilitated through the load_one and load_many functions, which return
an IOData instance and a list of IOData instances, respectively, in which the loaded data is stored. For example,

1 # Loading Gaussian formatted checkpoint (fchk) file format

2 from iodata import load_one

3

4 data = load_one("water.fchk") # instance of IOData class

5

6 # Examples of information that can be retrieved from the IOData instance

7 print(data.atnums) # atomic numbers

8 print(data.atcoords) # atomic coordinates

9 print(data.nelec) # number of electrons

10 print(data.charge) # charge of molecule

11 print(data.obasis) # instance of MolecularBasis class

12 print(data.obasis.nbasis) # number of basis functions

13 print(data.mo) # instance of MolecularOrbitals class

14 print(data.mo.energies) # molecular orbital energies

15 print(data.atcharges["mulliken"]) # Mulliken atomic charges

The format of the file specified on line 4 is derived from the file extension, however, the user can override the de-
fault file format detected using the optional fmt argument. The above example displays only a few IOData attributes;
the data available from each file format is clearly tabulated on the IOData website. It is important to note that the
wavefunction information is stored in an IOData instance in a manner designed to simplify calculations. For example,
one can simply compute the spin-summed density matrix, for both restricted and unrestricted Slater determinants,
using,

1 # Computing density matrix in the molecular orbital basis in 2 different ways

2 import numpy as np

3

4 dm = np.dot(data.mo.coeffs * data.mo.occs, data.mo.coeffs.T) # using dot product

7
5 dm = np.einsum("ij,i,ij", data.mo.coeffs, data.mo.occs, data.mo.coeffs) # using einsum

Similarly, the load_many function can be used to load concatenated file formats like databases (*.sdf, *.mol2, *.xyz,
or *.extxyz) or successive conformations of molecules from molecular dynamics trajectories or reaction paths (*.pdb,
*.fchk, *.xyz, or *.extxyz), stored in a single file. For example,

1 # Loading multiple molecules/frames contained in one XYZ file

2 from iodata import load_many

3

4 data = load_many("database.xyz") # list of instances of IOData class

5

6 # Examples of information that can be retrieved

7 print(len(data)) # number of molecules/frames in the database

8 print(data[0]) # IOData instance of first molecule/frame

9 print(data[0].atcoords) # atomic coordinates of first molecule/frame

10 print(data[-1].atnums) # atomic numbers of last molecule/frame

Because many file formats are not strictly defined, the IOData library must be extremely flexible. For example, for
the XYZ file format, IOData accepts atomic numbers, atomic symbols, or mixtures of both as atom specifications in the
first column of the Coordinates section. IOData also allows the user to provide their own format specifications. For
example, the many versions of the extended XYZ file format store various atomic properties by appending columns
to the basic XYZ format. IOData can be instructed to load this additional data through the optional atom_columns
argument of the load_one or load_many functions.
Writing File Formats: The information loaded from one file format can be used to write output in a different file
format, if the required data is available. This is made possible through the dump_one and dump_many functions, which
take an IOData instance and sequence of IOData instances, respectively, and write out the specified file format. For
example,

1 # Converting Gaussian formatted checkpoint (fchk) file format to Molden and XYZ file formats

2 from iodata import load_one, dump_one

3

4 data = load_one("water.fchk") # instance of IOData class

5 dump_one(data, "water.molden") # write out a Molden file

6 dump_one(data, "water.xyz", fmt="xyz") # write out an XYZ file

As mentioned previously, the format of a dumped file is derived from the filename extension; however, the user
can override this default by specifying the optional fmt argument. Similarly, having a sequence of IOData instances,
the dump_many function can be used to generate a single file containing the molecules/frames in the user-specified
file format. Similarly, to generate an extended XYZ file, additional columns can be specified through the optional
atom_columns argument of the dump_one or dump_many functions.

8
Storing Data: An instance of the IOData class can be constructed by the user, for example, in the process of per-
forming a quantum chemistry calculation. This is helpful for both using the stored information internally (e.g. when
using the HORTON 3 and ChemTools[2] software packages) or writing it out in a specific file format. For example,

1 # Storing information in IOData and dump file formats

2 import numpy as np

3 from iodata import IOData, dump_one

4

5 # Make an instance of IOData class with atomic numbers and coordinates (in Borh)

6 data = IOData(title="water")

7 data.atnums = np.array([8, 1, 1])

8 data.coordinates = np.array([[1.48123726, -0.93019123, 0.0], [0.0, 0.11720081, 0.0],

9 [-1.48123726, -0.93019123, 0.0]])

10

11 # Write out an XYZ file (with atomic coordinates in Angstrom)

12 dump_one(data, "water.xyz")

Writing Input Files: Input files for common software packages can be generated using either built-in or user-defined
templates. The basic input writing functionality requires only an IOData instance with sufficient data for the input file
(i.e. level of theory, basis set name, etc.). For example,

1 # Writing Gaussian input files from IOData instance

2 import numpy as np

3 from iodata import IOData, write_input

4

5 # Get an instance of IOData class by loading an XYZ file

6 data = load_one("water.xyz")

7 # Change the template's default level of theory (HF) & basis set (STO-3G)

8 data.lot = "B3LYP"

9 data.obasis_name = "cc-pVTZ"

10

11 # Generate Gaussian & ORCA input files using the default template, charge (0), & multiplicity (1)

12 write_input(data, "water.com", fmt="gaussian")

13 write_input(data, "water.in", fmt="orca", template=None)

The write_input function accepts a user-defined input template through template argument which is a text
file containing Python string substitution markers and IOData attribute names, like ${lot} for level of theory, ${oba-
sis_name} for basis set name, etc..

9
6.2 | Using IOData as a command-line tool
iodata-convert is the command-line file-convesion interface accessible upon installing the IOData library. For exam-
ple,

1 # Convert Gaussian formatted checkpoint to a Molden file

2 iodata-convert water.fchk water.molden

The input and output file formats are derived from the file extensions, however, they can be specified through
optional command-line arguments. To obtain more information on how to customize this utility, please refer to its
help message,

1 iodata-convert --help

7 | FREQUENTLY ASKED QUESTIONS
Who is IOData for? We intend IOData to be primarily used by computational chemists and researchers developing
quantum chemistry software, especially post-processing and visualization tools. Our goal is for IOData to be easy
to use for novice programmers and computational chemists, yet capable of supporting advanced quantum chemistry
workflows. Achieving these goals requires adherence to software design best practices, so extending or contributing
to IOData requires intermediate-level programming ability (i.e. knowledge of decorators, type hints, automatic testing,
GitHub, continuous integration and automatic release, etc.). The command-line tools in IOData can be used by anyone
who has passing familiarity with Linux shell commands.

What is the mission of IOData? We wish to serve the community of quantum chemistry users and developers by
removing the barrier imposed by the plethora of (sometimes obscurely defined and/or documented) file formats. This
is clearly a Sisyphean task, but we sincerely hope that others in the community will join our efforts and, if possible,
eventually agree on a universal file format.

What does IOData do? As elaborated in sections 5 and 6, IOData currently parses various file formats from third-
party software packages and makes the data available to Python programs or writes out the data into a different
format, and thus supports file format conversion. The latter can also be achieved through command-line functionality
of IOData. In addition, IOData generates input files for various quantum chemistry or molecular dynamics software
packages using basic or user-defined input file templates.

What is the future direction of IOData? We aim to support parsing and writing additional file formats, and also to
extend our support for writing input files and enable direct integration with QCEngine[21]. Our current to-do list for
IOData can be found on its GitHub’s issue page, and we anticipate that most items will be resolved by the end of
2020. Within our software development efforts, the IOData will eventually serve as the input/output module of the
HORTON3 and ChemTools[2] software packages.

10
Howdo I install IOData? The IOData library can be installed from its source code available on GitHub or through pip
and conda package-management systems. Maintaining the source code on GitHub allows users to access our latest
development, even before it is officially released. For the most updated instructions on how to install IOData, please
refer to the IOData website.

Can I contribute to IOData? Yes! We welcome and support new contributions in accordance with our Code of
Conduct and Contributing Guidelines. For the most up-to-date instructions on how to contribute, please refer to the
IOData website.

8 | SUMMARY
The purpose of this brief paper is to present the IOData module of HORTON 3, which parses, stores, and dumps a
variety of file formats. The most unique capabilities of IOData are its robustness (e.g., its ability to read *.molden files
with nonstandard basis-set conventions; its ability to read *.wfn files with strange fixed-formatting issues; the ability
to read QCSchema with incompatible formats), its utilities to read and parse files for single and multiple structures
(e.g. trajectories, reaction pathways, potential energy surface scans), its scope (including file formats typically used
in Gaussian-basis-set-based molecular chemistry software, plane-wave density-functional-theory codes, and molec-
ular dynamics calculations), its ability to output a variety of useful file formats, its meticulous documentation and
testing protocols, its ease-of-use and extensibility, and its command-line tools. While we will continually improve
IOData, we believe its present functionality already has significant benefits to the broader community of theoretical
and computational chemists and welcome their comments and contributions.

9 | RESEARCH DATA STATEMENT
IOData is free and open-source software; the examples used herein (or embellishments thereof) are disseminated
with the package, which is available on GitHub; https://github.com/theochem/iodata.

Acknowledgements
We wish to acknowledge various refinements to the IOData library from Steven Vandenbrande, Jennifer Garner,
Thomas Pigeon, Stijn Fias, Ali Malek, and the HORTON development team. T.V. acknowledges the Foundation of Scien-
tific Research-Flanders (FWO) and the Research Board of Ghent University (BOF) for their financial support. L.M.Z.
and E.V.M. acknowledge financial support by CONICYT/FONDECYT/REGULAR/FOLIO 1200369, PCI CONICYT IN-
STITUTOMAX PLANCK FOR TERRESTRIALMICROBIOLOGYMARBURGMPG190003 and the Max-Planck Society.
P.W.A. acknowledges Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Research
Chairs, Compute Canada, and CANARIE for financial and computational support. F.H.Z. acknowledges financial sup-
port from FWO, NSERC and Queen’s University Research Initiation Grant.

Conflict of Interest
There is no conflict of interest.

11
references
[1] Verstraelen T, Tecmer P, Heidar-Zadeh F, González-Espinoza CE, Chan M, Kim TD, et al., HORTON 2.1.1; 2017. https:

//theochem.github.com/horton/.
[2] Heidar-Zadeh F, Richer M, Fias S, Miranda-Quintana RA, Chan M, Franco-Perez M, et al. An explicit approach to con-

ceptual density functional theory descriptors of arbitrary order. Chemical Physics Letters 2016;660:307–312.
[3] O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox.

Journal of Cheminformatics 2011;3(1):33.
[4] Landrum G, RDKit: Open-source cheminformatics;. https://www.rdkit.org/.
[5] O’boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms.

Journal of Computational Chemistry 2008;29(5):839–845. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20823.
[6] Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, et al. The atomic simulation environment—a

Python library for working with atoms. Journal of Physics: Condensed Matter 2017;29(27):273002. http://stacks.iop.
org/0953-8984/29/i=27/a=273002.

[7] Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry 2012;33(5):580–
592. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.22885.

[8] McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, et al. MDTraj: A Modern Open Library
for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal 2015;109(8):1528 – 1532.

[9] Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics
simulations. J Comput Chem 2011;32(10):2319–2327.

[10] Richard J Gowers, Max Linke, Jonathan Barnoud, Tyler J E Reddy, Manuel N Melo, Sean L Seyler, et al. MDAnalysis:
A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In: Sebastian Benthall, Scott Rostrup,
editors. Proceedings of the 15th Python in Science Conference; 2016. p. 98 – 105.

[11] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al., Gaussian~16 Revision C.01; 2016.
Gaussian Inc. Wallingford CT.

[12] Schaftenaar G, Vlieg E, Vriend G. Molden 2.0: quantum chemistry meets proteins. Journal of Computer-AidedMolecular
Design 2017;31(9):789–800. https://doi.org/10.1007/s10822-017-0042-5.

[13] Werner HJ, Knowles PJ, Knizia G,Manby FR, SchützM. Molpro: a general-purpose quantum chemistry program package.
WIREs Comput Mol Sci 2012;2:242–253.

[14] To learn about QCSchema, please refer to its website;. https://molssi-qc-schema.readthedocs.io/en/latest/index.html.
[15] Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, et al. Recent developments in the general atomic

and molecular electronic structure system. The Journal of Chemical Physics 2020;152(15):154102. https://doi.org/10.
1063/5.0005188.

[16] Neese F. Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science
2018;8(1):e1327.

[17] Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, et al. Advances in molecular quantum chemistry
contained in the Q-Chem 4 program package. Mol Phys 2015;113:184–215.

[18] Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, et al. CP2K: An electronic structure and molecular
dynamics software package -Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical
Physics 2020;152(19):194103. https://doi.org/10.1063/5.0007045.

https://theochem.github.com/horton/
https://theochem.github.com/horton/
https://www.rdkit.org/
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20823
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.22885
https://doi.org/10.1007/s10822-017-0042-5
https://molssi-qc-schema.readthedocs.io/en/latest/index.html
https://doi.org/10.1063/5.0005188
https://doi.org/10.1063/5.0005188
https://doi.org/10.1063/5.0007045

12
[19] Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, et al. Psi4 1.1: An Open-Source

Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. Journal of Chemical
Theory and Computation 2017;13(7):3185–3197. https://doi.org/10.1021/acs.jctc.7b00174.

[20] TURBOMOLE V7.4 2019, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-
2007, TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com.;.

[21] Smith DGA, Altarawy D, Burns LA, Welborn M, Naden LN, Ward L, et al. The MolSSI QCArchive project: An open-
source platform to compute, organize, and share quantum chemistry data. WIREs Computational Molecular Sci-
ence;n/a(n/a):e1491. https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1491.

GRAPHICAL ABSTRACT

https://doi.org/10.1021/acs.jctc.7b00174
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1491

	What is IOData?
	History
	About IOData
	Why IOData?
	Features of IOData
	Examples
	Using IOData as a Python library
	Using IOData as a command-line tool

	Frequently Asked Questions
	Summary
	Research Data Statement
	graphical abstract

