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Introduction

Bayesian estimation is regularly suggested as a beneficial method when sample
sizes are small, as pointed out by systematic literature reviews in many fields, such
as: organizational science (Kruschke, 2010), psychometrics (Rupp, Dey &
Zumbo, 2004), health technology (Spiegelhalter, Myles, Jones & Abrams, 2000),
epidemiology (Rietbergen, Debray, Klugkist, Janssen & Moons, 2017), education
(König & Van de Schoot, 2017), medicine (Ashby, 2006) and psychology (Van de
Schoot, Winter, Ryan, Zondervan-Zwijnenburg & Depaoli, 2017). Similarly,
many simulation studies have shown the advantages of applying Bayesian estima-
tion to address small sample size issues for structural equation models (SEMs),
instead of using frequentist methods (see, for example, Depaoli, 2013;
B. O. Muthén & Asparouhov, 2012; Stegmueller, 2013; Van de Schoot, Broere,
Perryck, Zondervan-Zwijnenburg & Van Loey, 2015; Van Erp, Mulder &
Oberski, 2018). However, as discussed in McNeish (2016) and echoed in the sys-
tematic literature review of Smid, McNeish, Miočević and Van de Schoot (2019),
the use of Bayesian estimation with only diffuse default priors can cause extremely
biased estimates when samples are small. The specification of informative priors is
therefore required when Bayesian estimation is used with small samples.
Besides using Bayesian estimation with informative priors, there are also options

for analyzing SEMs with small samples within the frequentist framework. Many
studies have shown that the use of maximum likelihood (ML) estimation with small



samples can result in convergence problems, inadmissible parameter solutions and
biased estimates (see, for example, Boomsma, 1985; Nevitt & Hancock, 2004).
Two newly introduced and promising frequentist methods to analyze SEMs with
small samples are two-step modeling (two-step) and factor score regression (FSR).
A recent development is the implementation of two-step and FSR in the accessible
software lavaan (Rosseel, 2012), as discussed in Chapter 16 (Rosseel). In two-
step, the measurement models for the latent variables are estimated separately as
a first step. As a second step, the remaining parameters are estimated while the
parameters of the measurement models are kept fixed to their estimated values.
Two-step originates from work of Burt (1976) and Anderson and Gerbing (1988),
and more recent work can be found in the latent class literature (e.g., Bakk,
Oberski, & Vermunt, 2014). In FSR, each latent variable in the model is replaced
by factor scores and subsequently path analysis or regression analysis is run using
those factor scores. Recent developments in FSR can be found in studies of Croon
(2002); Devlieger, Mayer and Rosseel (2016); Devlieger and Rosseel (2017), Hos-
hino and Bentler (2013), and Takane and Hwang (2018).
No simulation studies were found in which two-step and FSR are compared

to Bayesian estimation. Therefore, the goal of this chapter is to examine the per-
formance of the following estimation methods under varying sample sizes: two-
step, FSR, ML estimation and Bayesian estimation with three variations in the
specification of prior distributions. The remainder of the chapter is organized as
follows: next, the statistical model will be discussed, as well as software details,
the simulation conditions, and evaluation criteria. Then, results of the simulation
study will be described. We end the chapter with a summary of the results, and
recommendations on when to use which estimation method in practice.

Simulation design

Statistical model

The model of interest in this simulation study is an SEM in which latent variable
X is predicting latent variable Y ; see Figure 17.1. Both latent variables are meas-
ured by three continuous indicators. The model and population values are simi-
lar to the model discussed in Rosseel and Devlieger (2018). The parameter of
interest in the current chapter is the regression coefficient β. The standardized
regression coefficient, βZ ; is 0.243, which can be considered a small effect
according to Cohen (1988).

Software details

Data sets were generated and analyzed in R version 3.4.4. (R Core Team, 2013),
using packages lavaan version 0.6–1 (Rosseel, 2012) for the analyses of two-step,
FSR and ML; and blavaan version 0.3–2 (Merkle & Rosseel, 2018) for the ana-
lyses of the Bayesian conditions. Example code of the analyses using the six
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estimation methods can be found in supplemental file S1. All simulation code and
supplemental files are available online (osf.io/bam2v/).
Six levels of sample size were examined, and for each sample size 1,000 data

sets were generated according to the model and population values shown in
Figure 17.1. Each generated data set was analyzed using six estimation methods.
Accordingly, a total of 6 (sample size) * 6 (estimation methods) = 36 cells were
investigated in the simulation design.

Simulation conditions

Six levels of sample size are studied: 10, 20, 50, 100, 250 and 500 to investigate
how sample size influences the performance of the varying estimation methods.
For the current model, sample sizes of 10 and 20 are extremely small. A sample
size of 50 is considered small, and sample sizes of 100 and 250 are considered
medium. The sample size of 500 is considered large and included as a benchmark.
Six estimation methods are considered in the current study: three frequentist esti-

mation methods – two-step, FSR and ML – and Bayesian estimation with three types
of prior specifications. For the three frequentist methods, all default settings of the
lavaan package were used. For the default settings, see the help page for lavOp-
tions() in the lavaan package. For the Bayesian methods, we used four chains
instead of the two default chains. In terms of convergence, we used the Potential
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FIGURE 17.1 The model and unstandardized population values used in the simulation
study. For scaling, the first factor loading for each factor is fixed to 1 (denoted by 1* in the
figure), and the means of the latent variables are fixed to zero (not shown in the figure)
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Scale Reduction (PSR) factor, set it to a stricter criterion of 1.01, and used the follow-
ing minimum number of iterations: a fixed burn-in period of 10,000 iterations (speci-
fied in blavaan by adapt = 2,000, burnin = 8,000), and for the sampling
period 20,000 iterations (specified in blavaan by sample = 20.000)1. As an
additional check, we visually assess convergence for two randomly selected data sets
for each of the sample sizes and the Bayesian conditions (2 data sets * 6 sample sizes *
3 Bayesian conditions = 36 cases), by inspecting the traceplots for all parameters.
Three variants of prior specifications were examined, and all priors were specified

for unstandardized parameters: BayesDefault, BayesInfoI, and BayesInfoII; see Table
17.1. The BayesDefault condition refers to a naïve use of Bayesian estimation, where
only blavaan default priors are used. The BayesInfoI and BayesInfoII conditions
refer to research situations where weakly prior information is available. In BayesInfoI,
weakly informative priors are specified for the factor loadings, and blavaan default
priors are specified for the remaining parameters. In BayesInfoII, weakly informative
priors are used for both the factor loadings and regression coefficient β, in combin-
ation with blavaan default priors for the remaining parameters. Weakly informative
priors were specified as follows: we set the mean hyperparameter of the normal distri-
bution equal to the population value, and the precision hyperparameter equal to 1.

Evaluation criteria

For each of the estimation methods and sample sizes, the occurrence of conver-
gence problems and warnings will be assessed. For the parameter of interest,
regression coefficient β, the following evaluation criteria will be used to evaluate
the performance under the varying estimation methods and sample sizes: relative
mean bias, relative median bias, mean squared error (MSE), coverage and
power. All evaluation criteria will be computed across completed replications2.
Relative mean bias shows the difference between the average estimate across

completed replications and the population value, relative to the population
value. Relative median bias shows the relative difference between the median

TABLE 17.1 Specified prior distributions for the three Bayesian conditions

Parameter BayesDefault BayesInfoI BayesInfoII

Factor loadings N (0, 0.01) N (pop, 1) N (pop, 1)
Regression coefficient β N (0, 0.01) N (0, 0.01) N (pop, 1)
Variances latent variables* G(1, 0.5) Gð1, 0.5) G(1, 0.5)
Intercepts observed variables N (0, 0.01) N (0, 0.01) N (0, 0.01)
Residual variances observed variables* G(1, 0.5) G(1, 0.5) G(1, 0.5)

Note. The column BayesDefault shows the blavaan default priors (Merkle & Rosseel, 2018).
* Note that in blavaan the default priors are placed on precisions, which is the inverse of the variances.
Abbreviations: N = Normal distribution with mean μ and precision τ; G = Gamma distribution
with shape α and rate β parameters on the precision (which equals an Inverse Gamma prior with
shape α and rate β parameters on the variance); pop = population value used in data generation.
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across completed replications and the population value. The relative mean and
median bias are computed by:

Relative mean bias ¼ �θ � θ
� �

=θ
	 
� 100;

Relative median bias ¼ ~θ � θ
� �

=θ
	 
� 100;

where �θ denotes the mean across completed replications, θ is the population
value used for data generation, and ~θ denotes the median across completed repli-
cations. Values of relative mean and median bias below -10% or above +10%
represent problematic levels of bias (Hoogland & Boomsma, 1998).
MSE is a combination of variability and bias across completed replications, where

lower values indicate more stable and less biased estimates across replications. The
MSE is computed by: MSE ¼ σð Þ2 þ �θ � θ

� �2
; where σ is the standard deviation

across completed replications, �θ denotes the average estimate across completed rep-
lications and θ is the population value (Casella & Berger, 2002). A narrower distri-
bution of estimates across replications (i.e., less-variable estimates) leads to a smaller
standard deviation across completed replications. Besides, the closer the estimated
values are to the population value across completed replications, the smaller the
amount of bias. MSE will be lower (and thus preferable) when the standard devi-
ation and amount of bias across completed replications are small.
Coverage shows the proportion of completed replications for which the sym-

metric 95% confidence (for frequentist methods) or credibility (for Bayesian
methods) interval contains the specified population value. Coverage values can
range between 0 and 100, and values within the [92.5; 97.5] interval are con-
sidered to represent good parameter coverage (Bradley, 1978).
Finally, statistical power is expressed as the proportion of estimates for which the

95% confidence (for frequentist methods) or credibility (for Bayesian methods)
interval did not contain zero, across completed replications. Power values can range
from 0 to 100, where values above 80 are preferred (Casella & Berger, 2002).

Results

Convergence

With small samples, we encountered severe convergence problems when frequen-
tist methods were used; see Table 17.2. Differences between the three frequentist
methods were especially visible when n5 100. With n5 100, two-step resulted
in most non-converged cases, followed by ML, and finally followed by FSR.
The three Bayesian conditions produced results in all 1,000 requested replications

under all sample sizes3. However, when visually examining trace plots (for 2 ran-
domly selected data sets � 6 sample sizes � 3 Bayesian conditions = 36 cases), severe
convergence problems were detected for the smaller sample sizes, such as mode-
switching; see Figure 17.2A. Mode-switching is defined as a chain that moves back
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and forth between different modes (Erosheva & Curtis, 2011; Loken, 2005), such as
the chains in Figure 17.2A which move back and forth between values 5 and -5.
To further examine the extent of Bayesian convergence problems, we assessed

trace plots for another 25 randomly selected data sets (resulting in 25 data sets *
6 sample sizes * 3 Bayesian conditions = 450 cases). In the assessment of these
25 selected data sets, mode-switching only occurred when BayesDefault was
used when n ¼ 10 or 20. Mode-switching disappeared when weakly informative
priors were specified; see Figures 17.2B and 17.2C. Besides mode-switching,
mild spikes were also detected when n5 100; see Figure 17.2D. Spikes are
extreme values that are sampled during Markov Chain Monte Carlo iterations,
and could be seen as severe outliers. The appearance of spikes was reduced by
the specification of weakly informative priors; see Figures 17.2E and 17.2F.
From n ¼ 100 onward, no convergence problems were detected when default
priors were used. For more details on the convergence checks and more
examples of trace plots, see supplemental file S2 (osf.io/bam2v/).

Warnings

For all small sample sizes, the three frequentist methods lead to a high percentage of
warnings within the number of completed replications; see Table 17.2. All warnings
were about negative variance parameters4. Differences between the three methods
were especially present when n5 100. For these sample sizes, ML led to the highest
percentage of warnings, followed by FSR, and followed by two-step. As can be seen
in Table 17.2, the number of warnings decreased when sample size increased. The
number of completed replications without warnings about negative variance estimates
is higher for two-step and FSR compared to ML, especially when n5 100.
For BayesDefault, three warnings about a small effective sample size occurred

for n ¼ 10, and two for n ¼ 205. No warnings occurred in the BayesInfoI and
BayesInfoII conditions.

Results for regression coefficient β

In Figure 17.3, the relative mean bias (top) and relative median bias (bottom)
are presented for the varying sample sizes and estimation methods. Because of
the large discrepancy between the mean relative bias and median relative bias for
sample sizes below 100, we plotted the complete distribution of parameter esti-
mates for β across replications; see Figure 17.4. For all estimation methods, an
increase in sample size led to: a decrease in the number of outliers; a narrower
distribution of estimates (i.e., estimates are more stable across replications); and
estimates closer to the population value. With samples as small as 10 and 20, the
distributions of estimates are wider and a lot of outliers are present, which are
signs of unstable estimates across replications. ML produced the most extreme
outliers (up to 37.57 when n ¼ 10). FSR and two-step show the narrowest dis-
tribution of estimates, indicating relatively stable behavior across replications.
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FIGURE 17.3 Relative Mean Bias (top) and Relative Median Bias (bottom) for param-
eter β, under varying sample sizes and estimation methods. The static black horizontal
lines represent the desired ±10% interval



Overall, BayesInfoII offers the best compromise between bias and stability:
a narrow distribution of estimates, a mean and median close to the population
value, and the smallest number of outliers. When n ¼ 100, the differences
between estimation methods become smaller; and the estimates become more
stable across replications. For sample sizes of 250 and 500, differences between
estimation methods are negligible and all estimation methods led to unbiased
relative means and medians.
MSE for the regression coefficient β can be found in Figure 17.5A. Results

are comparable to those shown in Figures 17.3 and 17.4. Differences between
methods are especially visible when sample sizes are below 100. From n ¼ 100
onward, MSE values are all close to zero. ML shows the highest MSE values
forn ¼ 10 and 20. BayesInfoI shows higher MSE than BayesDefault for n ¼ 10,
which was also visible in Figure 17.4 from the wider distribution of BayesInfoI
relative to the distribution of BayesDefault for n ¼ 10. The lowest MSE values
are reported for BayesInfoII, followed by FSR, two-step, BayesDefault and
BayesInfoI at n ¼ 10. MSE values for FSR, two-step, BayesDefault and BayesIn-
foI are similar at n ¼ 20, while BayesInfoII keeps the lowest MSE value. When

FIGURE 17.4 Distribution of the estimates for parameter β across completed replica-
tions, per estimation method and sample size. The static black horizontal line denotes
the true population value of 0.25 for β. Outliers are displayed as black circles, and out-
liers outside the interval [-6; 6] are denoted as follows: a denotes 11.39, 11.46, 14.87,
37.57 for ML when n ¼ 10; b denotes 6.49, 8.89, 9.12 for ML when n ¼ 20; c denotes
6.86, 6.89 for two-step when n ¼ 20; d denotes 6.86, 6.89 for FSR when n ¼ 20; and
e denotes -17.76 for ML when n ¼ 20
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n ¼ 50 MSE values are comparable between methods, and from n ¼ 100
onward the differences in MSE between methods are negligible.
Coverage results for regression coefficient β can be found in Figure 17.5B. All

estimation methods show adequate coverage levels from n ¼ 100 onward. For
n5100, the three Bayesian conditions show excessive coverage (> 97.50),
although this slightly improved under BayesInfoI and BayesInfoII. Within the
three frequentist methods, two-step and FSR resulted in higher coverage levels
than ML. When n5 100, ML shows undercoverage (< 92.50), while FSR only
shows slight undercoverage when n ¼ 10, and two-step when n ¼ 10 and 20.

FIGURE 17.5 Mean Squared Error (A), Coverage (B), and Power (C) for parameter β,
under varying sample sizes and estimation methods. The static black horizontal lines in
subfigure B represent the [92.5; 97.5] coverage interval, and the black horizontal line
in subfigure C represents the desired 80% power level
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Results in terms of power can be found in Figure 17.5C. For all estimation
methods, power is extremely low when the sample size is small, and only
reached the desirable power level when n ¼ 500. Across all sample sizes, the
highest power levels are found for ML, followed by BayesInfoII, BayesInfoI,
and two-step. The lowest power levels are found for FSR and BayesDefault.

Results for remaining parameters

Besides regression coefficient β, 12 remaining parameters are estimated in the
model: two variances for latent variables, four factor loadings and six residual
variances6. In supplemental file S3 (osf.io/bam2v/), the distributions of param-
eter estimates across replications are displayed for the remaining parameters.
Estimates for these 12 parameters seem similar across estimation methods and have

good statistical properties when n ¼ 250 and 500. However, with sample sizes of
100 and below, frequentist methods show many (extreme) outliers and wide distri-
butions, indicating unstable results across replications. Bayesian methods show not-
ably fewer outliers and in general narrower distributions than the frequentist
methods, especially under BayesInfoI and BayesInfoII conditions, although the
medians of the distributions still deviate from the population values when n5100.

Conclusion

In this chapter, we assessed – under varying sample sizes – the performance of three
frequentist methods: two-step, FSR and ML estimation; and Bayesian estimation
with three variations in prior specification. With sample sizes of 250 and 500, differ-
ences between estimation methods are negligible, and all methods led to stable and
unbiased estimates. Consistent with existing simulation literature (e.g., Depaoli &
Clifton, 2015; Hox & Maas, 2001; Van de Schoot et al., 2015) we found that ML
led to severe convergence problems and a large amount of negative variance param-
eters when sample sizes are small. Compared to ML, both two-step and FSR led to
better convergence rates without negative variances. Also, with small samples, two-
step and FSR resulted in more stable results across replications and less extreme par-
ameter estimates than ML. When Bayesian estimation was used with default priors,
problematic mode-switching behavior of the chains did occur under small samples
(n ¼ 10; 20), even though the PSR values indicated that the overall model had
converged. The presence of mode-switching can be a sign that the model is too
complex for the data (Erosheva & Curtis, 2011).
Power is low for all estimation methods and only with a sample size of 500 was

the desired level of 80 reached. The use of weakly informative priors (i.e., BayesInfoI
and BayesInfoII conditions), as well as the specification of blavaan default priors
for the remaining parameters, could explain why ML led to slightly higher power
levels than Bayesian estimation in the current chapter (as opposed to previous stud-
ies; for example, Miočević, MacKinnon & Levy, 2017; Van de Schoot et al., 2015).
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Also, the differences in power between default and informative prior condi-
tions were smaller in the current chapter than expected. In previous studies
(e.g., Van de Schoot et al., 2015; Zondervan-Zwijnenburg, Depaoli, Peeters
& Van de Schoot, 2019), priors with varying precision hyperparameters (e.g.,
10 and 1) were compared to Mplus default priors with a precision hyper-
parameter of 10–10 (L. K. Muthén & Muthén, 1998–2017). In the current
chapter, the difference in precision hyperparameters between the informative
(precision = 1) and default (precision = 0.01) conditions is noticeably smaller.
This could explain why the increase in power with informative priors is
lower in the current chapter than expected based on previous studies. Note
that the level of informativeness of a prior distribution can only be interpreted
relative to the observed data characteristics, and is therefore not generalizable
to other studies (i.e., a weakly informative prior in one study can act as
a highly informative prior in another study that uses different measurement
instruments).
In summary, with extremely small sample sizes, all frequentist estimation

methods showed signs of breaking down (in terms of non-convergence, negative
variances, and extreme parameter estimates), as well as the Bayesian condition
with default priors (in terms of mode-switching behavior). When increasing the
sample size is not an option, we recommend using Bayesian estimation with
informative priors. However, note that the influence of the prior on the poster-
ior is extremely large with relatively small samples. Even with thoughtful choices
of prior distributions, results should be interpreted with caution (see also Chap-
ter 4 by Veen and Egberts) and a sensitivity analysis should be performed; see
Depaoli and Van de Schoot (2017) and Van Erp et al. (2018) on how to per-
form a sensitivity analysis. When no prior information is available or researchers
prefer not to use Bayesian methods, two-step and FSR are a safer choice
than ML, although they can still result in non-convergence, negative variances,
and biased estimates.
However, note that by adjusting the implementation of two-step and FSR,

non-convergence problems could be circumvented by using an alternative non-
iterative estimation method (instead of ML) to estimate the measurement and
structural models (see Takane & Hwang, 2018); and as discussed in Chapter 16.
In addition, negative variances could be avoided by restricting the parameter
space to only allow positive values for variance parameters. Therefore, the pre-
ferred approach to implement two-step and FSR in small sample contexts
should be further examined. We hope the current chapter is a starting point for
future research in those directions.
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Notes

1 When the PSR criterion is not reached after the specified minimum number of iter-
ations, the number of iterations is automatically increased until the PSR criterion is
met. We adjusted the blavaan default for the maximum time that the software uses to
increase the amount of iterations to “24 hours” instead of the default “5 minutes”.

2 We defined completed replications as replications for which (1) the model did con-
verge according to the optimizer and (2) for which for all parameters standard errors
could be computed. If the model did not converge or standard errors were not com-
puted for one or more parameters, we defined the replication as incomplete and
excluded the replication from the aggregation of the results. All simulation code can
be found in supplemental file S4 (osf.io/bam2v/).

3 Note that the number of iterations in the Bayesian analyses was automatically increased
until the PSR criterion of 1.01 was reached.

4 The warning message that occurred for two-step, FSR and ML was: “some estimated
ov [observed variables] variances are negative”. For two-step and ML, a second mes-
sage also occurred: “some estimated lv [latent variables] variances are negative”.

5 The warning message for BayesDefault: “Small effective sample sizes (< 100) for some
parameters”. The effective sample size expresses the amount of information in a chain
while taking autocorrelation into account; see Chapter 4.

6 Note that when FSR is used, only three parameters are estimated: regression coeffi-
cient β, the variance of latent variable X and the variance of latent variable Y .
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