
16
SMALL SAMPLE SOLUTIONS FOR
STRUCTURAL EQUATION MODELING

Yves Rosseel
DEPARTMENT OF DATA ANALYSIS, GHENT UNIVERSITY, GHENT, BELGIUM

Introduction

Structural equation modeling (SEM) is a statistical modeling procedure that is
used in the social and behavioral sciences to study the relationships among latent
variables (Bollen, 1989). Usually, a structural equation model can be divided into
two parts: The measurement part relates the latent variables to a set of observed
variables or indicators, and the structural part represents the hypothesized relation-
ships among these latent variables. A typical model is presented in Figure 16.1.
SEM has a bad reputation when it comes to sample size requirements,

which is likely due to a combination of factors. First, structural equation
models can become quite large, involving many (observed and latent) vari-
ables. As a result, many parameters must be estimated, and a reasonable
amount of data is needed to obtain good-quality estimates for those
parameters. Second, the statistical machinery behind (traditional) SEM is based
on large sample theory, which implies that good performance (of both point
estimation and inference) is only guaranteed when the sample size is large
enough. Third, some simulation studies in the SEM literature have suggested
that huge sample sizes are needed in order to yield trustworthy results. And
although these findings were only relevant for specific settings (one infamous
example is the so-called “Asymptotically Distribution Free” or ADF estima-
tion method), these studies fueled the now conventional wisdom that SEM
can only be used if the sample size is reasonably large (say, n > 500) or even
very large (n > 2000).
For many reasons, however, small sample sizes are simply a reality. When this

is the case, many applied researchers hesitate to use SEM and instead employ
suboptimal procedures, such as regression or path analysis based on sum scores.
Unfortunately, these procedures often lead to biased results and misinformed



conclusions. Perhaps a better strategy would be to keep the spirit of SEM but to
also look for solutions to handle the small sample problem. In this chapter, I will
describe some of these solutions. For readers seeking guidance on choosing an
appropriate sample size for their study, I suggest reading Muthén and Muthén
(2002) or Wolf, Harrington, Clark, and Miller (2013).
The remainder of this chapter is organized into three sections: First, I discuss

some issues that may arise with small sample sizes in SEM. Next, I present four
alternative estimation approaches that may be used (instead of traditional SEM)
when the sample size is small. Finally, I describe some small sample corrections
for test statistics and standard errors.

Some issues with small samples sizes in SEM

Consider a fairly large model similar to the model in Figure 16.1. If all observed
variables are continuous, the default estimator in most (if not all) SEM software
packages is maximum likelihood. Usually, the maximum likelihood estimator is

FIGURE 16.1 A typical structural equation model with a structural part (within the dashed
box) and multiple measurement models. Age is an observed variable, but X1, X2, X3, M,
and Y are latent variables. Each latent variable is measured by a set of observed indicators.
For example, X1 is measured by a set of r indicators: x11, x12, x13, …, x1r
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a good choice because it features many desirable statistical properties. In add-
ition, the maximum likelihood approach can be adapted to handle missing data
(under the assumption that data are missing at random), and so-called “robust”
standard errors and test statistics have been developed to deal with non-normal
data and mis-specified models.
However, if the sample size is rather small (say, n < 200), then several problems

may arise; this has been well documented in the literature (Bentler & Yuan, 1999;
Boomsma, 1985; Nevitt & Hancock, 2004). First, the model may not converge,
which means that the optimizer (the algorithm trying to find the values for the model
parameters that maximize the likelihood of the data) has failed to find a solution that
satisfies one or more convergence criteria. On rare occasions, the optimizer is simply
mistaken. In this case, changing the convergence criteria, switching to another opti-
mization algorithm, or providing better starting values may solve the problem. But if
the sample size is small, it may very well be that the data set does not contain enough
information to find a unique solution for the model.
A second problem may be that the model converged but resulted in a non-

admissible solution. This means that some parameters are out of range. The
most common example is a negative variance. Another example is a correlation
value that exceeds 1 (in absolute value). It is important to realize that some esti-
mation approaches (both frequentist and Bayesian) may—by design—never pro-
duce out-of-range solutions. Although this may seem like a desirable feature, it
merely masks potential problems with either the model or the data. It is import-
ant that users notice negative variances (or other out-of-range parameters; Sava-
lei & Kolenikov, 2008). Negative variances are often harmless, but they can be
a symptom of structural misspecification. Several ways to test for structural mis-
specification are discussed in Kolenikov and Bollen (2012).
A third problem relates to the fact that maximum likelihood is a large sample

technique. This implies that working with small sample sizes may lead to biased
point estimates, standard errors that are too small, confidence intervals that are
not wide enough, and p-values for hypothesis tests that cannot be trusted.

Possible solutions for point estimation

In this section, I briefly describe four alternative approaches to estimate param-
eters in an SEM framework with small sample sizes. The purpose of this section
is not to give an exhaustive overview of all possible solutions, or to compare
them under different settings, but to briefly introduce these solutions because
they are not widely known among applied users. I limit myself to frequentist
methods and solutions that are available in free and open-source software.

Penalized likelihood estimation

Penalized likelihood methods (or regularization methods) have been devel-
oped in the (statistical) machine-learning literature and are particularly useful
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when the sample size is small—compared to the number of variables in the
model (Hastie, Tibshirani, & Friedman, 2009). Penalized likelihood methods
are similar to ordinary likelihood methods (like maximum likelihood estima-
tion) but include an additional penalty term to control for the complexity of
the model. The penalty term can be formulated to incorporate prior know-
ledge about the parameters or to discourage parameter values that are less
realistic (e.g., far from zero). Two popular penalty terms are the l2 or ridge
penalty, and the l1 or lasso (least absolute shrinkage and selection operator)
penalty (Tibshirani, 1996).
To illustrate how this penalization works, imagine a univariate regression

model with a large number of predictors. Without any penalization, all the
regression coefficients are computed in the usual way. However, the ridge pen-
alty term will shrink (all) the coefficients towards zero, whereas the lasso penalty
will additionally shrink tiny coefficients all the way to zero. In the latter
approach, only “strong” predictors (for which there is strong support in the
data) survive, while “weak” predictors that can hardly be distinguished from
noise are eliminated. In general, adding penalty terms leads to models that are
less complex, and this is particularly beneficial if the sample size is small. Alter-
native penalty terms have been proposed to overcome some of the limitations of
the ridge and lasso penalties. Two recent penalties are smoothly clipped absolute
deviation (SCAD; Fan & Li, 2001) and minimax concave penalty (MCP;
Zhang, 2010). Interestingly, penalized likelihood methods are closely related to
Bayesian estimation methods. In particular, ridge and lasso penalties correspond
to Gaussian and Laplace priors, respectively, whereas both SCAD and MCP cor-
respond to certain improper priors (Huang, Chen, & Weng, 2017).
Although these penalization approaches have been around for a few decades,

they have only recently been applied to SEM (Jacobucci, Grimm, & McArdle,
2016; see also Huang et al., 2017). Fortunately, we now have access to several
free and open-source R packages that have implemented these methods for
SEM. Two examples are the regsem package (Jacobucci, Grimm, Brandmaier,
Serang, & Kievit, 2018) and the lslx package (Huang & Hu, 2018).
A disadvantage of these penalized methods is that the user needs to indicate

which parameters require penalization, and how much. In an exploratory ana-
lysis, it may be useful and even advantageous to penalize parameters towards
zero if little support for them can be found in the data. However, SEM is usu-
ally a confirmatory approach, and the user needs to ensure that all parameters
that are initially postulated in the model are not removed by the penalization.

Model-implied instrumental variables

Bollen (1996) proposed an alternative estimation approach for SEM based on
model-implied instrumental variables in combination with two-stage least squares
(MIIV-2SLS). In this approach, the model is translated to a set of (regression)
equations. Next, each latent variable in these equations is replaced with its marker
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indicator (usually the first indicator, where the factor loading is fixed to unity and
the intercept is fixed to zero) minus its residual error term. The resulting equations
no longer contain any latent variables but have a more complex error structure.
Importantly, ordinary least squares estimation is no longer suitable for solving
these equations because some predictors are now correlated with the error term in
the equation. This is where the instrumental variables (also called instruments)
come into play. For each equation, a set of instrumental variables must be found.
An instrumental variable must be uncorrelated with the error term of the equation
but strongly correlated with the problematic predictor. Usually, instrumental vari-
ables are sought outside the model, but in Bollen’s approach, the instrumental
variables are selected from the observed variables that are part of the model. Sev-
eral (automated) procedures to find these instrumental variables within the model
have been developed. Once the instruments are selected, an estimation procedure
is needed to estimate all the coefficients of the equations. Econometricians devel-
oped a popular method to accomplish this called two-stage least squares (2SLS).
A major motivation for MIIV-2SLS is that it is robust: It does not rely on nor-

mality and is less likely to spread bias (which may arise from structural misspecifi-
cations) in one part of the model to other parts of the model (Bollen, 2018).
Another attractive feature of MIIV-2SLS is that it is noniterative. Meaning, there
cannot be any convergence issues, and MIIV-2SLS may provide a reasonable solu-
tion for models where the maximum likelihood estimator fails to converge.
An important aspect of the model-implied instrumental variables approach is

the (optimal) selection of instruments when there are a large number of instru-
ments to choose from. Bollen, Kirby, Curran, Paxton, and Chen (2007) found
that with small sample sizes (e.g., n < 100) it was best not to use a large number
of instruments because it led to greater bias. More research is needed to evaluate
the performance of this estimator in settings where the sample size is (very)
small. The MIIV-2SLS approach is available in the R package MIIVsem
(Fisher, Bollen, Gates, & Rönkkö, 2017).

Two-step estimation

In the two-step estimation approach, a strict distinction is made between the
measurement part and the structural (regression) part of the model, and estima-
tion proceeds in two steps. In the first step, all the measurement models are
fitted one by one. In the second step, the full model is fitted, including the
structural part, but the parameters of the measurement models are kept fixed to
the values found in the first step. The main motivation for the two-step
approach is to separate the measurement model(s) from the structural part during
estimation so that they cannot influence each other. In the traditional maximum
likelihood framework, all parameters are fitted simultaneously. As a result, mis-
specifications in the structural model may affect the estimated factor loadings of
one or more measurement models, and this may lead to interpretation problems
for the latent variables (Burt, 1976; see also Anderson & Gerbing, 1988).
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The two-step approach received renewed attention in the latent class litera-
ture (Bakk & Kuha, 2018; Bakk, Oberski, & Vermunt, 2014) and was recently
implemented within the R package lavaan (Rosseel, 2012); see also Chapter
17 (Smid & Rosseel). For very large models with many latent variables, it may
be expected that fewer convergence problems arise because the model is esti-
mated in parts. Encountering convergence issues in the first step allows the
researcher to identify the problematic measurement model(s). If convergence
issues only occur in the second step, it becomes clear that the problem lies in
the structural part of the model.

Factor score regression

The simple but powerful idea of factor score regression is to replace all latent
variables with factor scores. Similar to the two-step method, each measurement
model is fitted one at a time. Next, factor scores are computed for all the latent
variables in the usual way. Once the latent variables have been replaced by their
factor scores, all variables are observed. In a final step, the structural part of the
model is estimated. This estimation often consists of a regression analysis or
a path analysis (as in Figure 16.1). The name “factor score regression” refers to
both scenarios.
If used naïvely, factor score regression will likely lead to substantial bias in the

estimated parameters of the structural part, even when the sample size is very
large (Skrondal & Laake, 2001), because the factor scores have been treated as if
they were observed without measurement error. Fortunately, there are various
ways to correct for this bias. For example, Croon (2002) devised a correction
that removes the bias, and several studies have shown that this method works
remarkably well (Devlieger, Mayer, & Rosseel, 2016; Devlieger & Rosseel,
2017). Croon’s method works as follows: First, the variance–covariance matrix
of the factor scores is computed. Based on the information from the measure-
ment models, the elements of the variance–covariance matrix are corrected in
order to approximate the model-implied variances and covariances of the latent
variables. This corrected variance–covariance matrix then forms the input of
a regular regression or path analysis.
Similar to the two-step method, factor score regression (combined with Croon’s

correction) may be a useful alternative for fairly large models (with many measure-
ment models) in combination with a relatively small sample size. In addition, it is
possible to fit the measurement models using a noniterative estimator (for an
example based on instrumental variables, see Hägglund, 1982). For the structural
model, depending on whether it is recursive, a single-stage or a two-stage least
squares estimator can be used. In short, this method can be made fully noniterative,
which would avoid any convergence issues (Takane & Hwang, 2018). Still,
Croon’s correction may produce a variance–covariance matrix (for the variables
belonging to the structural part) that is not positive definite—particularly if the
measurement error is substantial. Therefore, Croon’s correction is not entirely free
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from estimation problems. In this case, the only solution may be to create a sum
score for each latent variable and to estimate a model where each latent variable has
a single indicator (the sum score) with its reliability fixed to a realistic value that is
provided by the user (Savalei, 2018).

Discussion

All the methods I have described in this section have advantages and disadvan-
tages. The penalized likelihood approach is perhaps the only method that was
specifically designed to handle (very) small sample sizes. The other three
methods use a divide-and-conquer approach; they break down the full model
into smaller parts and estimate the parameters of each part in turn. Apart from
reducing the complexity and being less vulnerable to convergence issues, the
latter three methods have the advantage of being good at localizing the prob-
lematic parts within a large model.
At the time of writing, it is not clear which method is universally superior

when the sample size is (very) small. Instead of picking one method, I would rec-
ommend that applied users try all of them. Each method may provide additional
insights. If the final results agree across multiple methods, then your confidence in
your findings will increase. However, if the results diverge, this may indicate that
the sample size is simply too small, given the complexity of the model.

Small sample inference for SEM

In this section, I will assume that a point estimation using maximum likelihood
estimation, for example, was successful and resulted in an admissible solution. The
next step is to note the inference part of the model: the chi-square test statistic
(for overall goodness of fit), the standard errors of the individual model param-
eters, and the corresponding confidence intervals and/or hypothesis tests. Many
authors have documented that when the sample size is small, the chi-square test
leads to inflated Type I errors even under ideal circumstances (i.e., correctly speci-
fied model, normal data; see Nevitt & Hancock, 2004 and references therein).
Similarly, standard errors are often attenuated (too small), and confidence intervals
are not wide enough. In the next two subsections, I will briefly discuss a few
attempts to tackle these small sample inference issues in SEM.

Improving the chi-square test statistic

Several corrections have been suggested to improve the performance of the chi-
square test statistic, such as the Bartlett correction (Bartlett, 1937, 1954). Vari-
ations of this correction exist, but the one most studied (Nevitt & Hancock,
2004; see also Fouladi, 2000; Savalei, 2010) is a simplified correction proposed
by Bartlett (1950) in the context of exploratory factor analysis. A more general
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correction is called the Swain correction (Swain, 1975), and even more correc-
tions were described by Yuan, Tian, and Yanagihara (2015).
Herzog, Boomsma, and Reinecke (2007) and Herzog and Boomsma (2009)

compared these corrections and concluded that the Swain correction worked
best; however, they only looked at complete and normal data. Shi, Lee, and
Terry (2018) also compared the various corrections in more realistic settings and
concluded that the so-called “empirically” corrected test statistic proposed by
Yuan et al. (2015) generally yielded the best performance—particularly when fit-
ting large structural equation models with many observed variables. Still, they
warn that when the number of variables (P) in a model increases, the sample
size (n) also needs to increase in order to control Type I error. They suggest
that, roughly speaking, n should be larger than P2 (Shi et al., 2018, p. 39).
Finally, Jiang and Yuan (2017) proposed four new corrected test statistics aiming
to improve model evaluation in nonnormally distributed data with small sample
sizes. The results were promising, but they conclude:

To our knowledge, there does not exist a test statistic that performs well
universally. As indicated by our results, the overall model evaluation with
small n is rather challenging in SEM. Although the new statistics allow
more reliable model evaluation than existing ones under conditions of
nonnormally distributed data at small n, their performances are still far
from universally optimum.

(Jiang & Yuan, 2017, p. 493)

To evaluate models when the sample size is small, perhaps the chi-square test
should be abandoned altogether and alternatives approaches should be explored.
One approach is to consider confidence intervals and tests of close fit based on
the standardized root mean square residual (SRMR; Maydeu-Olivares, 2017;
Maydeu-Olivares, Shi, & Rosseel, 2018). Although these tests were not con-
structed with small sample sizes in mind, they seem to work well even when n
= 100 (the smallest sample size considered in Maydeu-Olivares et al., 2018) and
the model is not too large. These tests have been implemented as part of the
lavResiduals() function of the lavaan package.
Yet another approach is to consider local fit measures. This can be based on

evaluating just a subpart of the model. For example, one measurement model at
a time, as in the two-step and factor score regression approaches, or one equation at
a time, as is done using the Sargan test in Bollen’s model-implied instrumental vari-
ables approach. A different set of local fit measures is based on graphical criteria
such as d-separation or trek-separation (Thoemmes, Rosseel, & Textor, 2018).

Better standard errors and confidence intervals

Literature on the performance of standard errors in SEM is limited (Yuan & Bentler,
1997; Yuan & Hayashi, 2006) and is mostly concerned with the effect of
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nonnormality or model misspecifications on the quality of the standard errors. Small
sample sizes, indeed, were not the focus of these studies. But in general, it is well
known that if large sample theory is used to construct analytic expressions in order to
compute standard errors, they may perform poorly in small samples.
When assumptions underlying analytic standard errors are not met, it is often

suggested to use a resampling approach instead. One popular method is the
bootstrap (Efron & Tibshirani, 1993): A bootstrap sample is generated (either by
randomly sampling rows from the original data set with replacement or by simu-
lating a new data set under the model), and a new set of parameters is estimated
for this bootstrap sample. This is repeated a large number of times (say, 1,000),
and the standard deviation of a parameter across all replicated bootstrap samples
is used as an estimate of the standard error for that parameter. Unfortunately,
despite many other advantages (Chernick, 2007), the bootstrap does not appear
to be a reliable solution when the sample size is (very) small (Yung & Bentler,
1996). Hence, it may be worthwhile to explore better analytical solutions after
all. Small sample corrections for (robust) standard errors have been developed in
econometrics (MacKinnon & White, 1985) and have recently been adapted to
the SEM context (Dudgeon, Barendse, & Rosseel, 2018). The preliminary
results are encouraging, but this is still a work in progress. At the time of writ-
ing, this technology is not yet available in SEM software.

Conclusion

In this chapter, we discussed several problems in the context of SEM when
the sample size is small and standard (maximum likelihood) estimation
methods are used, such as nonconvergence, non-admissible solutions, bias,
poorly performing test statistics, and inaccurate standard errors and confidence
intervals. As potential solutions to attain better point estimates (or a solution
at all), we briefly discussed four alternative estimation approaches: penalized
likelihood estimation, model-implied instrumental variables, two-step estima-
tion, and factor score regression. Only the first method was specifically
designed to handle small samples. The latter approaches were developed with
other concerns in mind, but they may be viable alternatives for estimation
when the sample size is small.
For the inference part, I discussed various attempts to improve the perform-

ance of the chi-square test statistic for evaluating global fit in the presence of
small samples. For the standard errors, I underlined that bootstrapping may not
be the solution we are looking for. Unfortunately, to attain better standard
errors (and confidence intervals) in the small sample setting, we may need to
wait until new technology is available. Admittedly, my selection of topics in this
chapter is somewhat biased. I certainly did not present all the solutions that have
been proposed in the literature, but interested readers may consult Deng, Yang,
and Marcoulides (2018) for an alternative perspective.
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In this chapter, I focused on frequentist solutions, but a Bayesian approach is
presented in Chapter 17 of this book. A major advantage of the Bayesian
approach is that it does not rely on large sample asymptotics. This implies, for
example, that getting correct standard errors and credible (confidence) intervals
is not an issue in the Bayesian framework. On the other hand, model evaluation
in a Bayesian framework requires a new set of skills; this may be intimidating
for those who are unfamiliar with the Bayesian framework. The same is true for
specifying priors. Choosing adequate priors is an essential ingredient of Bayesian
estimation, and you should be prepared to critically reflect on this before you
proceed. If you are unwilling to specify any priors, and you rely on software
defaults, then you should probably avoid Bayesian SEM altogether (McNeish,
2016). If, on the other hand, you fully endorse the Bayesian approach, and you
have a priori knowledge that can be encoded in informative priors, the Bayesian
approach is an excellent choice.
A last closing comment: If the sample size is (very) small, it may be that the

data simply do not contain enough information to answer the research questions.
In that case, one should not expect miracles from statistical technology. Small
samples sizes have limitations, and we should accept them.
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