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Abstract

DLBCL and to discuss their future potential.

Diffuse large B-cell ymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas
(NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics

and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard
immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis.
This patient group represents an important unmet need in lymphoma treatment. In recent years, improved under-
standing of the underlying molecular pathogenesis had led to new classification and prognostication tools, includ-
ing the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on

the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and
non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (IncRNA) and circular
RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed
a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment
response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The
aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in
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Introduction

A lymphoma is a hematopoietic malignancy that devel-
ops in the lymphoid tissue. The diffuse large-cell B-cell
lymphoma (DLBCL) is the most common histological
subtype of non-Hodgkin’s lymphomas (NHL), represent-
ing approximately 25% of new diagnoses. It can occur de
novo or as a result of transformation from different types
of low-grade B-cell lymphomas such as chronic lymphatic
leukemia (CLL), lymphoplasmocytic lymphoma, folli-
cular lymphoma and (splenic) marginal zone lymphoma.
With the standard treatment of R-CHOP immunochem-
otherapy (rituximab, cyclophosphamide, vincristine,
doxorubicin and prednisone), sustained remission can
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be obtained in approximately 60-70% of patients [1].
However, patients with refractory or relapsed disease
after first-line treatment have a reserved prognosis with
a 5-year survival rate of only 20%, despite second-line
treatments [2, 3]. This subgroup represents an important
unmet need in lymphoma treatment. The prognostic dif-
ferences in terms of response and survival reflect the het-
erogeneity of different subgroups of DLBCL with respect
to morphology, genetics and biological behavior.

A liquid biopsy is the process of investigating tumor-
derived cells or biomaterials like cell-free nucleic acids,
metabolites, proteins or extracellular vesicles through
biofluid sampling such as peripheral blood, urine, saliva,
and cerebral spinal fluid, without the need of a tissue
biopsy. In recent years, there has been a major inter-
est and advance in the use of liquid biopsy in lymphoma
management due to its non-invasive nature, its ability to
reflect spatial inter- and intra-tumor heterogeneity, and
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the possibility of repeated measurements through longi-
tudinal profiling [4].

The vast majority of studies have focused on the use
of circulating cell-free DNA fragments (cfDNA), a pro-
portion of which is derived from lymphoma cells (cir-
culating tumor DNA; ctDNA). Studies have shown
that ¢fDNA plasma concentration is associated with
lymphoma aggressiveness, tumor volume and disease
stage, may predict therapy response, and has prognos-
tic value in assessing progressive, relapsing or minimal
residual disease. Moreover, cfDNA is able to represent
the clonality and mutational burden of DLBCL and can
discriminate between different cell-of-origin (COO) sub-
groups: germinal center B-cell-like (GCB) and activated
B-cell-like (ABC) [4—6]. The COO classification is origi-
nally based on gene expression profiling and is routinely
implemented through the use of surrogate immunohis-
tochemical techniques, such as the Hans algorithm [7,
8]. Scherer et al. showed a 80% concordance rate with
the Hans algorithm using the identification of mutations
obtained through liquid biopsies [5]. Several studies have
formulated other DLBCL classifications with prognostic
implications, based on different mutations and structural
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variations found in tissue biopsies, one of which could
already be reproduced using ctDNA with high concord-
ance [9-15]. These classifications may complement con-
ventional prognostic scores, such as the international
prognostic index (IPI), in identifying high-risk subsets of
patients [16]. The importance of understanding the het-
erogeneity in DLBCL was illustrated by several studies
that identified subgroups of high-risk patients that could
benefit from associating targeted therapy to standard
treatment, emphasizing the significance of a personalized
medicine approach [17-19].

In recent years, there has been an increased interest in
other circulating biomarkers, such as circulating tumor
cells (CTC) and different forms of circulating-free and
extracellular vesicle/platelet-encapsulated coding and
non-coding RNA, including messenger RNA (mRNA),
microRNA (miRNA), long non-coding RNA (IncRNA),
and circular RNA (circRNA) (Fig. 1). Although CTC
may provide tumor-specific genomic, transcriptomic,
and proteomic information, their analysis is less attrac-
tive since DLBCL do not typically present with circulat-
ing lymphoma cells (in contrast to mantle cell lymphoma,
follicular lymphoma (FL), marginal zone lymphoma,

-
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Fig. 1 Circulating biomarkers in DBLCL. A schematic representation of circulating biomarkers obtained through blood draw, such as circulating
tumor cells (CTC), tumor-educated platelets (TEPs), cell-free DNA(cfDNA) and cell-free RNA (cfRNA). a Extracellular vesicles include exosomes,
microvesicles and apoptotic bodies. Their cargo reflects the cell of origin and contains proteins, peptides, lipids, cfDNA and cfRNA.b CfRNA
comprises both coding and non-coding types, including mRNA, miRNA, IncRNA and circRNA. ¢ Figure produced using Servier Medical Art
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small lymphocytic lymphoma, and a subset of Burkitt
lymphoma) [20]. Also, CTC analysis requires a large vol-
ume of fresh blood, and is laborious and expensive. The
use of cell-free RNA (cfRNA), however, has shown prom-
ise as a precision medicine biomarker. Here, we provide
a systematic overview of cell-free RNA biomarkers in
DLBCL and their future potential in the diagnosis, clas-
sification, real-time measurement of response to therapy,
and prognosis.

Materials and methods

A systematic search in PubMed was performed to iden-
tify articles published between January 01, 1970 and
October 31, 2020 using the following strategy (Fig. 2):
[(DLBCL OR “Diffuse Large B-Cell Lymphoma”) AND
(“liquid biopsy”) OR (DLBCL OR “Diftuse Large B-Cell
Lymphoma”) AND (exosome OR “extracellular vesicles”
OR secretome) OR (DLBCL OR “Diffuse Large B-Cell
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Lymphoma”) AND ((“messenger RNA” OR mRNA) OR
(microRNA OR miRNA or miR) OR (“long non-coding
RNA” OR IncRNA) OR (“circular RNA” OR circRNA))
AND (circulating OR “peripheral blood” OR “cell-free”
OR free OR plasma OR serum) OR (DLBCL OR “Dif-
fuse Large B-Cell Lymphoma”) AND ((circulating OR
“peripheral blood”) AND RNA)]. Articles were included
if they presented independent original studies in a human
adult DLBCL population. Reviews and meta-analyses,
case reports, letters, comments, and articles not pub-
lished in English were excluded. We also excluded studies
on animals, DLBCL cell lines/xenografts, as well as stud-
ies that did not analyze RNA or did not focus on primary
DLBCL. After full text assessment, articles investigat-
ing patients with additional pathologies or not analyz-
ing circulating RNAs as biomarker in diagnosis, subtype
classification, treatment response, or prognosis, were

(DLBCL OR "Diffuse Large
B-Cell Lymphoma") AND

(DLBCL OR "Diffuse Large
B-Cell Lymphoma") AND

(DLBCL OR "Diffuse Large B-Cell Lymphoma”) AND
((“messenger RNA” OR mRNA) OR (microRNA OR miRNA or

("liquid biopsy") (exosome OR miR) OR (“long non-coding RNA” OR IncRNA) OR (“circular ((circulating OR
"extracellular vesicles" RNA” OR circRNA)) AND (circulating OR “peripheral blood” “peripheral blood”) AND
OR secretome) OR “cell-free” OR free OR plasma OR serum) RNA)

(n=27) (n=25) (n=235) (n=73)

(DLBCL OR "Diffuse Large
B-Cell Lymphoma") AND

records excluded (n=189):

review/meta-analysis (n=23)

case report (n=3)
letter/comment (n=2)
article not in English (n=14)

non-human study/cell line (n=40)
no RNA study (n=53)
non primary DLBCL (n=54)

articles added after checking references (n=3)

records (n=360)

P Duplicates removed (n=70)
records (n=290)
full text articles assessed for eligibility (n=101)

p| full text articles excluded (n=69):

A 4

in EBV+/HIV+ patients (n=5)
no circulating RNA study (n=64)

selected articles (n=35)

mRNA
(n=4)

miRNA
(n=21)

EV
(n=8)

IncRNA
(n=1)

circRNA
(n=1)

TEP
(n=0)

Fig. 2 Flowchart of study selection
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excluded. All references within the selected studies were
reviewed in order to identify additional matches.

Each eligible manuscript was assessed independently
by two researchers. Disagreements were resolved by con-
sensus. Data extracted from each study included: publica-
tion year, technical methodology and type of blood-based
fluid analyzed, method of EV purification, number of
DLBCL cases and controls, the investigated RNAs as
potential biomarkers, and their association with an out-
come. In order to define associations between the abun-
dance of the RNAs and the phenotypes, a p-value <0.05
was considered statistically significant.

Results

A total of 360 records were initially identified and 290
remained after removing duplicates. Among these, 189
were excluded after abstract revision because they did not
meet the inclusion criteria. Based on the full text of 101
articles, 69 articles were excluded because they focused
on tissue-derived RNA or on specific patient groups with
additional pathologies. After reviewing the references
of the identified articles, three additional studies were
included. Finally, a total of 35 articles were included and
classified into the following groups, depending on the
type of circulating RNA studied: mRNA, miRNA, EV,
IncRNA, circRNA, and tumor-educated platelets (TEPs)
(Fig. 2).

Cell-free RNA

Although 80% of the human genome is transcribed into
RNA, it has been estimated that protein-coding mRNA
only accounts for 1.5% of this output with the remain-
der being termed non-coding RNA (ncRNA) [21]. As the
functions of most ncRNA remain largely unknown, cur-
rent classifications are based primarily on size and differ-
entiate between short ncRNAs (less than 200 nucleotides,
including miRNAs) and large ncRNAs (larger than 200
bases, generally termed IncRNAs, but also including
circRNAs) [22].

Circulating-free RNAs are unstable molecules that
are quickly degraded by ribonucleases. This was dem-
onstrated in a lability experiment, in which 99% of
added naked RNA was degraded after a 15 s incubation
time [23]. It is clear that endogenous circulating RNAs
are protected by several mechanisms, such as encap-
sulation within extracellular vesicles (EVs) or they form
ribonucleoprotein complexes with RNA-binding pro-
teins such as nucleophosmin, high-density lipoprotein
or Argonaute 1 and 2 that protect them from nuclease
activity. Although the source and function of circulating
RNAs are largely unclarified, RNAs seem to be selectively
packaged according to the viability and origin of the cells.
While living cells actively release RNA encapsulated
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in large lipoprotein complexes, such as exosomes or
microvesicles (MVs), RNA from dead or dying cells found
in blood is associated with apoptotic bodies (ABs) or pro-
tein complexes [24-26]. Lastly, circulating RNA can be
encapsulated by platelets that, when exposed to tumor
cells, can be ‘educated’ by changing their RNA profile,
mainly by altering splicing patterns and to lesser extent
by ingestion of tumor-derived circulating RNA and EVs.
These platelets are referred to as tumor-educated plate-
lets (TEPs) [27-31].

Higher circulating RNA levels have been found in
patients with solid and hematological malignancies, com-
pared to patients without tumor. It is believed that can-
cer cells communicate with surrounding stromal and
immune cells via extracellular RNAs, which may con-
tribute to increased proliferation, malignant transfor-
mation of surrounding cells, angiogenesis, escape from
the immune response, and priming of future metastatic
niches [25, 26, 32]. Although being technically more chal-
lenging than cfDNA, the analysis of cfRNA may therefore
have certain advantages as biomarker. Since these mol-
ecules mediate or influence intercellular communica-
tion, they may lead to an improved understanding of key
pathways involved in normal differentiation, as well as in
lymphoma initiation and transformation. Moreover, dif-
ferences in cfRNA patterns may reflect functional, longi-
tudinal changes in both the tumor and the non-malignant
compartment during disease course or treatment. This
specific and dynamic characterization, which incorpo-
rates the crosstalk between tumor and environment, may
guide the development of individualized diagnostic and
therapeutic options, especially in genetically heterogene-
ous diseases such as DLBCL.

Up to this date, we found 35 studies that have examined
the serum/plasma levels of RNA and its association with
clinical and pathological characteristics of DLBCL, sug-
gesting that cell-free RNA may provide biomarkers for
the diagnosis, classification, measurement of response to
therapy, and prognosis.

Messenger RNA

Messenger RNA (mRNA) is the result of DNA transcrip-
tion and possesses a critical intermediary role in intracel-
lular protein translation, reflecting both the genomic and
the homeostatic state of the cell. These properties make
mRNA a potentially interesting target for liquid biopsy.
In 1991, Smith et al. used PCR analysis on tyrosinase
mRNA, a tissue-specific gene in melanocytes, to detect
the presence of circulating melanoma cells [33]. This was
followed by the identification of tyrosinase mRNA in the
serum of melanoma patients [34]. Over the years, cir-
culating tumor mRNAs haven been described in many
different tumors and their levels were associated with
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cancer aggressiveness, disease prognosis and response
to chemoradiotherapy [35-39]. Moreover, they have
shown potential to guide individualized therapy choice,
as was illustrated by the detection of different ALK fusion
mRNAs with high sensitivity and specificity in patients
with non-small cell lung cancer [40].

Four studies have investigated cell-free mRNAs in
DLBCL (Table 1). Garcia et al. showed that G1/S-spe-
cific cyclin-D2 (CCND2), MYC proto-oncogene protein
(MYC), B-cell lymphoma 2 (BCL2), and LIM domain
only 2 (LMO2) mRNAs were significantly higher in
DLBCL plasma samples. The presence of circulating
MYC or CCND2 mRNA was associated with worse over-
all survival (OS), especially in low-risk IPI group, and the
presence of CCND2, BCL2 or MYC mRNA in patients
with complete response (CR) was associated with worse
progression-free survival (PFS) [41]. These genes are
known to play important roles in lymphomagenesis.
CCND2 is a key player in cell division and proliferation,
regulated by the phosphatidylinositol 3/kinase-protein
kinase B/mammalian target of rapamycin (PI3K/AKT/
mTOR) pathway. The MYC gene encodes for a transcrip-
tion factor that controls numerous biological functions,
including proliferation, cell growth, telomerase activ-
ity, energy metabolism, differentiation, and apoptosis,

Table 1 Cell-free mRNA in DLBCL
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as well as DNA replication. BCL2 is a key anti-apoptotic
molecule expressed in most tissues but absent in the ger-
minal center, and LMO2 is expressed in all tissues with
the exception of mature T-cells and is implicated in angi-
ogenesis, hematopoiesis, and hematopoietic stem cell
maintenance [42, 43]. Zhao et al. demonstrated a higher
abundance of CREBBP mRNA in DLBCL blood sam-
ples as compared with controls. However, no differences
were found in OS and PFS. CREBBP is one of the most
frequently mutated genes in DLBCL and acts as a tumor
suppressor of germinal center-derived lymphomagenesis
by promoting transcription, counteracting the inhibition
of B-cell lymphoma 6 (BCL6) [44]. Attia et al. showed that
a higher abundance of suppressor of cytokine signaling
3 (SOCS-3) mRNA in plasma samples of NHL patients
correlates with advanced disease and poor response to
treatment. However, no separate analysis of the DLBCL
patient subgroup has been performed, limiting its inter-
pretation. SOCS3, among other functions, inhibits the
Janus kinase (JAK)-signal transducer and activator of
transcription (STAT) signaling, known to be involved in
DLBLC [18, 45, 46]. Lastly, Ujj et al. showed that higher
levels of the Wilms tumor 1 (WT1) mRNA were asso-
ciated with worse disease-free survival (DFS) and OS.
WT1 is a DNA-binding protein with a complex function

References Method Sample mRNA Level Result
Diagnosis
Garcia etal. [41] RT-gPCR plasma 42 DLBCL CCND2, BCL2, MYC, LMO2 Up Higher level in DLBCL
50 controls BCL6, FN1 NS No difference
Zhaoetal[44]  RT-gPCR peripheral blood 63 DLBCL CREBBP Up Higher level in DLBCL
32 controls
Response to therapy
Garciaetal. [41] RT-qPCR plasma 42 DLBCL MYC Up Higher level of MYC was associated
50 controls CCND2, BCL2, LMO2, BCL6,FNT NS with PR in patients with low-risk
IPI
No significant association with
response to R-CHOP
Attia et al. [45]  RT-gPCR plasma 30 NHL (15 DLBCL) SOCS-3 Up Higher level was associated with
20 controls poor response to treatment (NR/
PR versus CR) in NHL
Prognosis
Garciaetal. [41] RT-qPCR plasma 42 DLBCL MYC, CCND2 Up Higher level of MYC or CCND2
50 controls CCND2, BCL2, MYC Up was associated with worse OS,
with the latter only in low-risk IPI
group
Higher level of CCND2, BCL2 or
MYC in patients with CR was
associated with worse PFS
Ujj et al. [47] RT-gPCR PAXgene blood RNA 25 DLBCL WT1 Up Higher level in pre-, intra- or post-
tube 35 controls treatment samples was associ-

ated with worse DFS and OS

CR complete response, DFS disease-free survival, IPl international prognostic index, mRNA messenger RNA, NHL non-Hodgkin's lymphoma, NR no response, NS not
significant, OS overall survival, PFS progression-free survival, PR partial response, RT-gPCR reverse-transcription quantitative polymerase chain reaction
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due to its many isoforms. Although WT1 is known to act
as a tumor suppressor in Wilms tumor, it seems to be an
oncogene in other neoplasms [47].

The number of studies that have investigated cell-free
mRNA is limited and the sample sizes are small. More-
over, none of the mRNAs have been studied by two or
more different studies. Therefore, no well-founded con-
clusion can be made of their potential use and more
studies are needed to validate these results. Compared
to other types of RNA, research of circulating mRNA is
challenging due to its relatively low abundance, as well as
intracellular mRNA contamination and susceptibility to
degradation [23, 48]. Despite these challenges, cell-free
mRNAs may provide valuable insight in critical intracel-
lular processes, both in tumor cells and in the cancer-
associated microenvironment, as they possess a critical
role in protein translation.

MicroRNA

MicroRNAs (miRNAs) are short non-coding RNAs of
~ 22 nucleotides, which are found in all eukaryotic cells.
MiRNAs play pivotal roles in almost all biological path-
ways, regulating gene expression by targeting mRNA at
the 3’-untranslated region [49, 50]. Since miRNAs can
target up to several hundred mRNAs, aberrant expres-
sion can influence a multitude of cell signaling pathways,
including cancer onset and progression. Contrary to
mRNAs, miRNAs are resistant to ribonuclease digestion
due to their small size and remain stable after being sub-
jected to harsh conditions under which most other RNA
would degrade [51]. Furthermore, studies have revealed
genetic exchange between cells using miRNA in extracel-
lular vesicles, such as exomes [26, 52]. MiRNAs are the
most widely investigated subgroup of non-coding RNA in
DLBCL. The first study investigating circulating miRNA
in DLBCL was reported in 2008 by Lawrie et al., who
demonstrated that serum levels of miR-21 were higher
in DLBCL and were associated with relapse-free survival
(RES) [53]. Since then, several cell-free miRNA have been
proposed as biomarker [53] (Table 2).

As diagnostic biomarkers in DLBCL, a total of eight
different miRNAs (miR-15a, miR-21, miR-29¢, miR-34a,
miR-145, miR-155, miR-210, and miR-375) were found
to be significantly dysregulated in at least two differ-
ent studies. The studies concerning miR-145, miR-375,
miR-15a, miR-21 and miR-155 presented the most con-
cordant results, the first two miRNAs being lower and
the following three being higher in DLBCL [53, 55-65].
MiR-145 and miR-375 were lower in two studies and are
considered tumor suppressors in different cancer types.
MiR-145 targets among others the oncogenes MYC and
protein C-ets-1 (ETS1), and miR-375 targets the astro-
cyte elevated gene 1 (AEG-1), yes-associated protein 1
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(YAP1), insulin like growth factor 1 (IGF1R) and pyru-
vate dehydrogenase kinase isoenzyme 1 (PDK1) [58,
63, 66—68]. MiR-15a was higher in three different stud-
ies [55, 64, 69]. Although being described as a tumor
suppressor in CLL by targeting BCL-2, miR-15a has
also been shown to target p53 in a miRNA/p53 feed-
back circuitry. Its higher abundance and role in DLBCL,
however, remain unclear [70-72]. MiR-21 was higher in
eight out of nine studies and one study showed no sig-
nificant change. MiR-21 is considered to be an oncomiR
that can be transcriptionally activated by nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-
kB) and downregulates different phosphatases, such as
programmed cell death protein 4 (PDCD4) and phos-
phatase and tensin homolog (PTEN), which are major
players in crucial signaling pathways such as PI3K/AKT
and mitogen-activated protein kinase (MAPK) [53, 55,
57-59, 61, 64-66]. Although its physiological function
during normal B-cell development remains unclear, miR-
21 is upregulated in GC and memory B cells compared
to naive B cells and downregulated in plasma cells, which
suggests a functional significance during differentiation.
The decreased expression in plasma cells correlates with
increasing B lymphocyte-induced maturation protein-1
(BLIMP-1) expression, the regulator of plasma cell dif-
ferentiation [73, 74]. A mouse model demonstrated that
miR-21 overexpression led to a pre-B malignant lym-
phoid-like phenotype and impacted the different stages
of tumor development in vivo. Subsequent inactivation
led to complete tumor regression mediated by increased
apoptosis and proliferative arrest. This dependence may
suggest an ‘oncogene addiction’ and therefore therapeu-
tic potential of miR-21 inhibition [75]. Moreover, a posi-
tive feedback loop of sustained miR-21 upregulation and
NEF-«B activation has been demonstrated in non-DLBCL
cancer cell lines, triggered by an inflammatory response
and supporting oncogenic transformation [76]. These
results warrant further exploration of miR-21 in DLBCL.
MiR-155 was higher in six out of ten studies and four
studies showed no significant change. MiR-155 is gen-
erally known as an oncomiR in many different tumors,
targeting genes that play a central role in lymphomagen-
esis, such as suppressor of cytokine signaling (SOCS),
phosphatidylinositol 3-kinase regulatory subunit alpha
(PIK3R1) and src homology 2-domain-containing ino-
sitol 5'-phosphatase 1 (SHIP1) [53, 55, 58, 60, 64—66,
69, 77-79]. Lastly, Beheshti et al. combined five miR-
NAs in a signature that was able to differentiate DLBCL
patients from healthy controls with a classification rate
of 91% [69]. To this date, miR-155 and especially miR-
21 seem to show the most promising potential as diag-
nostic biomarker. These findings are in line with a recent
systematic review regarding miRNA analysis on tissue
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specimens [77]. Interestingly, dysregulation of cell-free
miRNAs may precede the diagnosis up to 2 years, high-
lighting their potential as early biomarkers, before the
onset of clinical symptoms [66].

For DLBCL subclassification, no miRNA was found
to be significantly dysregulated in at least two differ-
ent studies. MiR-21 and miR-155 expression levels were
higher in the ABC subgroup in two smaller studies [59,
79]. Since these observations have not been validated,
their use as biomarker remains uncertain. On tissue
specimens, the most consistent results were obtained for
miR-155-5p and miR-221-3p, which were upregulated in
the ABC subgroup. These miRNAs may function through
repression of PIK3R1, activating the PI3K/AKT signaling
pathway [77].

In predicting response to R-CHOP treatment, miR-21
and miR-520 were found to be significantly dysregulated
in at least two different studies. MiR-21 was investigated
by four different studies. Higher levels during treatment
were associated with inferior response in one study [80],
decreasing posttreatment levels compared to pretreat-
ment levels with superior response in another study [65]
and no association was found in two other studies [58,
81]. In the study of Cui et al, although pretreatment
levels were not associated with interim PET-CT status,
the individual kinetics of mir-21 were associated with
therapy response with decreasing values in patients that
obtain interim PET-CT negativity in comparison to sta-
ble values in patients that remain PET-CT positive [65].
Two studies developed a 5- and 15-miR signature respec-
tively, associated with response to R-CHOP therapy.
Although miR-520 was higher in both signatures, it was
associated with response in one study and non-response
in the other [81, 82]. A meta-analysis conducted on tissue
samples demonstrated a significant association between
aberrant expression of miR-155, miR-17/92 clusters,
miR-21, miR-224 and miR-146b-5p and poor treatment
outcomes [83]. None of these have been significantly
associated with treatment response in two or more stud-
ies as circulating biomarker.

Concerning prognosis in DLBCL, only cell-free miR-
21 and miR-155 have been studied in more than one
study. The studies concerning miR-21 presented conflict-
ing results, with two studies showing higher levels as an
independent poor prognostic factor [57, 84], two stud-
ies demonstrating higher levels as a favorable prognos-
tic factor [53, 59], and two studies finding no significant
association [80, 81]. In the studies with a favorable prog-
nosis, however, no multivariate analysis was performed
and there was no association between miRNA levels and
clinicopathological features. As a result, the significance
of miR-21 in the prognosis of DLBCL remains uncertain.
Of the five studies concerning miR-155, four showed an
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significant association with inferior prognosis [60, 78,
79, 84] and one study could not demonstrate a signifi-
cant association [53]. MiR-155 has also been proposed
as prognostic biomarker by several studies on DLBCL
tissue samples, although no clear conclusion could be
retained [77]. Zheng et al. showed that a higher level of
miR-155 may be associated with lymphoma progression
through modulating PD-1/PD-L1-mediated interaction
with CD8+ T-cells of tumor microenvironment, indicat-
ing sensitivity to PD-L1 blockade [60]. Lastly, two studies
have proposed a signature of different miRNAs as prog-
nostic predictor, independent of IPI score. Song et al.
developed a 5-miRNA signature, associated with median
remission time and probability of remission [81]. Another
4-miRNA prognostic model was significantly associated
with relapse, as well as with worse PFS and OS [84].

Although there are some conflicting data, circulating
miR-155 and especially miR-21 seem to hold the greatest
potential as biomarkers for the diagnosis and subclassi-
fication of DLBCL. Regarding the prediction of therapy
response, there is currently insufficient evidence for each
of the proposed miRNA candidates. Concerning predic-
tion of prognosis, miR-155 has been associated with infe-
rior prognosis in several independent studies, although
validation is needed. Lastly, several signatures that com-
bine multiple miRNAs show promising results in the
diagnosis, prediction of therapy response and prognosis
in DLBCL. Their potential should be further investigated
in future studies with large sample sizes.

Extracellular vesicles

Extracellular vesicles (EVs) are a heterogeneous group of
membrane-bounded vesicles that play an important role
in intercellular communications. EVs are secreted by pre-
sumably all cell types and transfer a wide range of mole-
cules in their cargo including proteins, lipids, and nucleic
acids, mirroring their cell of origin. Since their discovery
by Wolf et al. in 1967, their roles in normal physiology
and in various pathologies such as cancer have been the
subject of intensive research [85-87]. Accumulating evi-
dence shows that a heterogeneous population of cells
may communicate via EVs, hereby mediating processes
involved in tumorigenesis. EVs are mostly classified as
exosomes, microvesicles (MV) or apoptotic bodies (AB)
on the basis of their size, origin, and characteristics [88].
Exosomes are vesicles of endosomal origin with a size
ranging between 40 and 150 nm. Their formation consists
of several steps, starting with endocytic vesicle invagina-
tion on the plasma membrane, followed by the creation
of multiple intraluminal vesicles within the endosome
via the folding of its phospholipid bilayer, and eventually
the fusion of this multi-vesicular body with the plasma
membrane to release exosomes [89, 90]. MVs are larger



Decruyenaere et al. Exp Hematol Oncol (2021) 10:13

and more heterogeneous in size, ranging from 100 nm
to several microns, are produced as a result of bulging of
the plasma membrane, and are shed from the cell surface
as these blebs undergo fission upon stimulation. ABs are
the largest particles, ranging in size from 800 to 5000 nm,
which are produced during cellular blebbing and released
by cells undergoing programmed cell death [91].

Exosomes are the best characterized EVs and are found
in most biofluids, such as blood, serum, urine, cerebral
spinal fluid, and even breast milk [90, 92]. An abundant
number of exosomes is released by tumor cells in com-
parison with non-tumorigenic cells [93]. They function as
mediators of intercellular communication by transferring
their content into other recipient cells utilizing various
mechanisms, such as macropinocytosis, receptor or lipid
raft mediated endocytosis, phagocytosis, or direct fusion
with the recipient cell membrane. Exosomes have been
shown to play a pivotal role in normal physiology and
disease, including maintenance of cellular homeostasis,
regulation of gene transcription, activation and modula-
tion of immune response and cancer progression [90, 92,
94] Several studies have examined exosome-derived RNA
as potential biomarker in DLBCL (Table 3).

Concerning diagnosis and classification, only exoso-
mal miR-451 was significantly dysregulated in at least
two different studies [95, 96]. MiR-451 is considered
a tumor suppressor in different cancers. Although its
role in DLBCL remains unclear, targets include c-MYC
and the PI3K/AKT pathway [97, 98]. Di et al. identified
an exosome-derived 5-miRNA signature that could dif-
ferentiate DLBCL patients from healthy controls, which
included lower levels of miR-451 [96]. Using DLBCL cell
lines, Rutherford et al. showed that nearly one third of
mutations in DLBCL are detectable in the EVs and that
exosomal RNA may to reflect the cell of origin [99, 100].
However, to this date, there are no studies that could dis-
tinguish ABC and GCB subtypes using exosome-derived
RNA in DLBCL patients.

Regarding therapy response, none of the biomarkers
were examined in two different studies. Exosome-derived
miR-99a-5p, miR-125b-5p, miR-155 and miR-451a were
associated with therapy response in single studies [95,
101, 102]. Provencio et al. showed that increase of BCL-6
mRNA in posttreatment samples compared to pretreat-
ment samples was associated with non-response to ther-
apy in a mixed population of DBLCL and FL patients.
Furthermore, lower abundance of PTEN at time of
diagnosis was associated with PD/R in the DLBCL sub-
group [103]. Interestingly, using DLBCL cell lines, Koch
et al. demonstrated a mechanism of exosome-mediated
removal of the anthracycline doxorubicin and the anthra-
cenedione pixantrone from the cell nucleus, associated
with decreased therapy efficiency. They showed that
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inhibition of ATP-transporter A3 (ABCA3), a protein
involved in exosomal transport, resulted in higher sensi-
tivity to these drugs [104]. The inhibition of ABCA3 has
also been shown to play a role in creating decreased sen-
sitivity to anti-CD20 immunotherapy through the upreg-
ulation of exosomal CD20 [105].

Concerning prognosis, higher levels of exosomal miR-
99a-5p and miR-125b-5p have been associated with infe-
rior PES in a single studie [102]. Provencio et al. showed
that pretreatment presence of exosome-derived AKT and
C-MYC/BCL-6 was respectively associated with worse
PFS and worse OS in a mixed population of responsive
DBLCL/FL patients [103]. Since none of the biomarkers
were examined in two different studies, no well-grounded
conclusions can be made concerning their potential use
in prediction of prognosis.

Exosomes have been shown to interact with the
immune system. In vitro uptake of DBLCL cell line-
derived exosomes in B-cells and monocytes has been
demonstrated, while T-cells and NK cells displayed sig-
nificantly lower uptake [106]. Exosomes contain tumor
antigens, as well as MHC class I/Il molecules, thus
allowing direct activation of and cross-presentation to
T-cells [107]. Zare et al. demonstrated adverse effect of
plasma-derived exosomes of DLBCL patients on several
functions of NK cells [108]. Furthermore, tumor-derived
exosomes play a role in immune invasion by secretion
of PD-L1, thereby suppressing T-cell activation. Pog-
gio et al. showed that local blockade of exosomal PD-L1
inhibited both local and distant tumoral growth, even in
models resistant to anti-PD-L1 antibodies [109]. Simi-
larly, Chen et al. showed that exosomes act as immuno-
suppressive mediators, evidenced by an upregulation
of PD-1 and induction of apoptosis in T-cells. Further-
more, the exosomes enhanced cell proliferation, invasion,
migration, and angiogenesis, promoting tumor growth
in vivo [110]. Koch et al. demonstrated the presence of
“side population cells” in DLBCL, which have stemness
properties and are capable of propagating tumor growth.
These cells are in equilibrium with their environment,
regulated through exosome-mediated Wingless-related
integration site (Wnt) signaling [111].

There are several important pitfalls in the analysis of
tumor-derived exosomes. EVs are usually classified on
the basis of their origin. However, this classification and
current techniques are insufficient to clearly distinguish
each type separately. There are major differences between
used protocols with the accuracy and the purity of prepa-
rations being highly dependent on the isolation method
used by different laboratories, leading to discrepancies in
the EV subpopulation obtained [112-114]. There is need
for a standardized approach, such as proposed by the
Minimal Information for Studies of Extracellular Vesicles
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(“MISEV”) guidelines, which provide protocols and
procedures to minimize interlaboratory variation [88].
Another challenge is the need to enrich for tumor-spe-
cific exosomes in order to reduce background noise from
non-neoplastic-derived exosomes. Furthermore, studies
in DLBCL show conflicting data whether tumor-derived
RNA is enriched in exosomes compared to serum/
plasma [63-65, 96, 101]. In other cancers, antibodies to
specific surface proteins have been used to isolate the
tumor-derived exosomes [115]. Alternatively, bioinfor-
matic deconvolution techniques can be used to differen-
tiate tumor-derived signals from normal and neoplastic
tissue. The use of disease-specific EV-derived markers in
DLBCL has promising potential, but further research is
needed in a more standardized way to allow direct com-
parison of studies.

Long non-coding RNA

Approximately 80% of the human genome is non-coding,
but functional. Long non-coding RNA (IncRNA) com-
prises a large and heterogeneous class of transcripts,
arbitrarily defined as being more than 200 nucleotides in
length [116]. They are located within intergenic, intronic,
or antisense stretches or they overlap with protein-
coding genes [117]. LncRNAs are expressed in differ-
ent human biofluids and are resistant to degradation by
ribonucleases, being encapsulated inside EVs or in asso-
ciation with proteins [118]. They are involved in essential
processes, such as chromatin remodeling, transcriptional
regulation, and posttranscriptional modification [119].
LncRNA expression profiling during B-cell develop-
ment has been performed in several studies that report
cell type-specific expression patterns at various stages of
B-cell development [120—-122]. It has also been suggested
that IncRNAs may play a role in the chromosome breaks
involved in typical gene rearrangements in hematologic
malignancies, such as BCL-6 translocation [123].

The vast majority of studies concerning dysregula-
tion of IncRNA in DLBCL have been performed on tis-
sue samples. Verma et al. examined large RNA-seq data
sets from 116 DLBCL tissue samples and identified 2632
novel IncRNAs, most of which were only expressed
in malignant cells. Interestingly, more than one third
of these IncRNAs were differently expressed between
the GCB and ABC subtypes [124]. Sun et al. analyzed
IncRNA expression profiles in three cohorts of 1043
DLBCL patients using microarray data from the Gene
Expression Omnibus (GEO) database. They identified
and validated a 6-IncRNA signature that was significantly
associated with OS, independent of conventional clini-
cal factors [125]. Zhou et al. reanalyzed the data sets and
reported a 17-IncRNA signature, that was significantly
associated with OS and PFS, but that was also able to

Page 14 of 22

distinguish between COO subtypes with over 90% accu-
racy [126]. Gao et al. developed a 5-IncRNA signature
that was differentially expressed between GCB-DLBCL
tissue samples compared to reactive lymph nodes [127].
Lastly, an in silico analysis analyzed 189 IncRNAs,
extracted from the HUGO Gene Nomenclature Com-
mittee (HGNC), and demonstrated that 83% of DLBCL
patients showed dysregulation for the studied IncRNAs.
Growth arrest-specific 5 (GAS5), highly up-regulated
in liver cancer (HULC), miR-17-92a-1 cluster host gene
(MIR17HG), and prostate cancer antigen 3 (PCA3) were
the transcripts with the highest dysregulation score [128].
The potential of IncRNA expression profiling as bio-
marker in DLBCL was underlined by a meta-analysis
conducted by Xu et al. [129].

The biological relevance of circulating ncRNAs is
becoming increasingly clear, as their diagnostic and prog-
nostic value has been shown in several solid tumors,
such as bladder, colorectal, esophageal, prostate, hepa-
tocellular, cervical, breast, gastric and non-small-cell
lung cancer [130]. The group of Isin et al. were the first
to investigate circulating IncRNA in B-cell malignancies,
more specifically in CLL and multiple myeloma. They
showed a dysregulation of plasma lincRNA-p21 levels
in CLL patients and taurine upregulated gene 1 (TUG1),
metastasis associated lung adenocarcinoma transcript 1
(MALAT1), HOX transcript antisense RNA (HOTAIR)
and GAS5 in multiple myeloma patients [131]. Wang
et al. are the only group to investigate circulating IncR-
NAs in DLBCL, demonstrating lower levels of p21 asso-
ciated ncRNA DNA damage activated (PANDA) and
higher abundance of TUG1 in DLBCL patients, com-
pared to healthy controls (Table 4). Moreover, lower
levels of PANDA were associated with inferior RFS and
OS, independent of disease stage. They showed that
PANDA was induced by p53 and can suppress cell pro-
liferation through inactivation of MAPK signaling path-
way. The same group analyzed the expression of IncRNAs
in DLBCL tissue samples and found an upregulation
of TUG1, HULC, HOTAIR, and a downregulation of
PANDA, lincRNA-p21 and FLJ46300 in DLBCL, with tis-
sue-derived PANDA also being associated with OS [132].

Several individual IncRNA genes have been associ-
ated with DLBCL in tissue-derived specimens and
could therefore be promising circulating biomarkers.
LincRNA-p21 and NONHSAGO026900 are shown to be
downregulated in DLBCL tissue and are associated with
favorable OS, as both IncRNA possibly act as tumor
suppressors [133, 134]. Moreover, NONHSAG026900
was elevated in the GCB subtype compared to the
non-GCB subtype [134]. Leukemia-associated non-
coding IGF1R activator RNA 1 (LUNAR1), functional
intergenic repeating RNA element (FIRRE), olfactory
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Table 4 Cell-free IncRNA in DLBCL
References Method Sample IncRNA Level Result
Diagnosis
Wang et al. [132] RT-gPCR serum 68 DLBCL PANDA Down Lower level in DLBCL

68 controls TUGT Up Higher level in DLBCL

HOTAIR, HULC, FLJ46300, NS No difference
liINCRNA-p21

Prognosis
Wang et al. [132] RT-gPCR serum 68 DLBCL PANDA Down Lower level was associated with worse

68 controls RFS and OS, independent of disease

stage

DLBCL diffuse large B-cell lymphoma, IncRNA long non-coding RNA, NS not significant, OS overall survival, RFS relapse-free survival, RT-gPCR reverse-transcription

quantitative polymerase chain reaction

receptor family 3 subfamily A member 4 (OR3A4) and
retrotransposon-derived protein PEG10 (PEG10) are
upregulated in DLBCL tissue samples and associated
with inferior OS, acting as oncogenes [135-138]. Peng
et al. demonstrated an increased HULC expression in
DLBCL samples and higher levels were independently
associated with inferior OS/PFS [139]. MALATI,
a IncRNA that is upregulated in different solid and
hematological tumors and that has been associated
with cancer metastasis and recurrence [131, 140, 141],
seems to be involved in chemotherapy sensitivity in
DLBCL cell lines by enhancing autophagy-related pro-
teins [142]. HOTAIR is a well-known contributor to
tumorigenesis [143]. Two studies reported conflicting
results regarding HOTAIR expression and prognosis in
DLBCL [144, 145]. The IncRNA nuclear para-speckle
assembly transcript 1 (NEAT1) has also been associated
with poor prognosis and may act as a competing endog-
enous RNA (ceRNA), regulating the miR-34b-5p-GLI1
axis, stimulating the proliferation of DLBCL [146, 147].
Lastly, several studies have shown aberrant expres-
sion patterns of the IncRNAs small nucleolar RNA
host gene 12 (SNHG12), SNHG14, SNHG16, TUGI,
MALATI1 and SMAD5 antisense RNA 1 (SMAD5-AS1)
in DLBCL samples and cell lines, indicating their use as
potential biomarkers, although further investigation is
warranted [148-153]. Huang et al. recently reviewed
functional studies of IncRNAs in DLBCL and their
respective role in tumor cell biology [154].

Since several promising biomarkers have been pro-
posed based on tissue samples, future research should
focus on analyzing their expression in serum or plasma.
Furthermore, since many IncRNAs have only been
reported in a single study, there is a need for systematic
validation studies that investigate multiple IncRNAs
with well-characterized and diverse patient samples.

Circular RNA

Circular RNAs (circRNAs) are a recently discovered sub-
class of large ncRNA, widely expressed in mammalian
cells. They originate from a host gene and are formed
through a backsplicing event, linking the 3’ end of an
exon to the 5" end of the same or an upstream exon [155].
CircRNAs may function as direct or indirect regulators
of host gene expression at the transcriptional level, as
protein scaffolds, as sponges of miRNAs, as regulators of
protein translation, or under certain circumstances even
as templates for translation [156, 157]. Many circRNAs
are highly evolutionary conserved, resistant to exonu-
cleases due to their closed structure, and thus more sta-
ble than linear non-coding RNAs such as miRNA and
IncRNA, which highlights their potential to serve as cell-
free biomarkers [158, 159].

No studies have yet examined their role during normal
B-cell development and differentiation. However, specific
circRNA signatures seem to be characteristic for B-cells
compared to T-cells and progenitors [160]. Furthermore,
circRNAs have been shown to play a role in the patho-
genesis of cancer and circRNA expression profiles can
differentiate between different B-cell malignancies [161,
162]. Several circRNAs are rich in miRNA-binding sites
and can act as highly efficient ceRNA in cells by com-
peting in binding to miRNAs, facilitating tumorigenesis.
Using DLBCL cell lines, Chen et al. showed that circ-
CFL1 targets the miR-107 target gene HMGBI, resulting
in an increased expression of HMGBI, thereby upregu-
lating the phosphorylation levels of p-AKT, p-ERK, and
p-STATS3, which are involved in signaling pathways that
control cell proliferation and migration [163]. Research
in Burkitt lymphoma demonstrated a MYC-miR-150-
ZDHHC11/B-MYB network, in which high levels of
MYC repress miR-150, which leads to derepression of
MYB, ZDHHC11 and ZDHHC11B, and promotes pro-
liferation. Moreover, upregulation of the circRNAs
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ZDHHC11 and ZDHHC11B increases expression of the
MYC target MYB proto-oncogene through a mechanism
in which they could act as ceRNAs for miR-150 [164].
Yang et al. showed that circRNA circAmotll promotes
nuclear translocation of MYC, as well as upregulation
of MYC targets and, therefore, plays a possible role in
lymphomagenesis [165]. Since MYC upregulation is fre-
quently observed in DLBCL, these circRNAs may be of
importance in further research. Interestingly, chromo-
somal translocations have been described producing
fusion-circRNAs [166].

A recent study by Hu et al. is the first to explore the
potential of circRNA as biomarker in DLBCL. They dem-
onstrated that circAPC was significantly downregulated
in DLBCL tissues and associated with aggressive clini-
cal features and poor prognosis. CircAPC elevates the
expression of the host gene adenomatous polyposis coli
(APC), thereby inactivating canonical Wnt/B-catenin
signaling and restraining DLBCL growth. Moreover,
circAPC levels in plasma sample were also significantly
lower in DLBCL patients and could serve as a potential
diagnostic noninvasive marker [167] (Table 5). These
results have to be confirmed in future studies.

Although circRNAs are increasingly being investigated
in cancer research, there are several challenges. Firstly,
there is a need for a common standard in reporting and
naming circRNAs. Secondly, circRNAs lack poly(A) tails,
which are often relied on for the purification step in order
to remove ribosomal RNA during sequencing. Substan-
tial methodological difficulties like template switching
and rolling circle amplification during reverse transcrip-
tion, as well as amplification bias during PCR have been
formulated as well [161, 168]. Moreover, results depend
highly on the strategy of library preparation and choice
of one of the many available bioinformatic algorithms.
Some of these challenges are, however, increasingly being
encountered using newer techniques, such as the Nanop-
ore RNA sequencing or the nCounter platform, showing
promising potential to further explore the use of circR-
NAs as biomarkers in malignant diseases [161, 162].

Tumor-educated platelets

Blood platelets are small, circulating cell fragments that
originate from megakaryocytes. They are best known for
their role in hemostasis and initiation of wound healing.

Table 5 Cell-free circRNA in DLBCL
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Platelets as part of the microenvironment, however, are
also increasingly recognized to be involved in tumoral
processes in which they stimulate proliferation, facili-
tate metastasis, and induce phenotypic changes in cancer
cells. Because of their anucleate status, the majority of
transcriptional production of RNA occurs in the mega-
karyocyte. Therefore, the RNA profile in platelets reflects
the transcriptional status of megakaryocytes, as well as
the bone marrow or other local environmental signals
involved at the time of platelet production [29]. Increas-
ing evidence shows that platelets can also be ‘educated’
by tumors (tumor-educated platelets; TEPs) by altering
the platelets RNA profile, mainly through the process of
specific pre-mRNA splicing and to lesser extent by inges-
tion of tumor-derived circulating mRNA [27-31]. These
changes may be induced by cancer cells or by other exter-
nal stimuli from the microenvironment [30]. Through
these mechanisms, platelets have a rich repertoire of
RNAs, including mRNAs, structural and catalytic RNAs
(ribosomal RNA, transfer RNA, and small nucleolar
RNA), and regulatory RNAs (microRNA and long non-
coding RNA) [28, 29, 31, 169].

Best et al. showed that mRNA sequencing of TEPs dis-
criminated metastatic cancer cases from healthy controls
with 96% accuracy and localized primary tumors with
71% accuracy across six different solid tumor types. The
tumor-specific educational programs in TEPs were pre-
dominantly influenced by tumor type, and to a lesser
extent, by tumor progression and metastasis. The sig-
natures showed widespread correlation with cancer tis-
sues and a negative correlation with RNAs implicated in
RNA translation, T-cell immunity, and interleukin sign-
aling, the latter implying an important role in regulating
the immune response in the tumoral microenvironment.
Lastly, they identified several tumor-derived genetic
alterations in TEPs [28]. In a recent study, the spliced
RNA profile of TEPs was able to differentiate glioblas-
toma patients from healthy controls with an accuracy of
95%. Moreover, individual TEP tumor scores represented
tumor behavior and were able to distinguish false posi-
tive progression from true progression with an accuracy
of 85% [170]. These findings suggest that TEPs contain a
unique source of functional and genomic tumoral infor-
mation, obtained by a mechanism distinct from that
which generates circulating-free DNA and RNA, which

References Method Sample circRNA Level Result

Diagnosis

Hu et al. [167] RT-gPCR plasma 27 DLBCL Circ-APC Down Lower level in DLBCL
16 controls

DLBCL diffuse large B-cell lymphoma, circRNA circular RNA, RT-gPCR reverse-transcription quantitative polymerase chain reaction
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may implicate an complementary role in personalized
non-invasive cancer management. At this time, no stud-
ies of TEPs have been performed in DLBCL, although
this could produce a valuable contribution to the research
field of liquid biopsy.

Conclusion and future perspectives

In recent years, major progress has been made in iden-
tifying cell-free RNA biomarkers for the diagnosis, dis-
ease subtype classification, prediction of treatment
response or prognosis in DLBCL. The vast majority of
research has been performed in circulating (vesicle-
encapsulated) miRNA, where some have shown consist-
ent changes in several independent studies and could be
further explored as diagnostic and prognostic biomark-
ers. While promising results were reported for differ-
ent solid tumors, the use of cell-free mRNA, IncRNA,
circRNA, and TEP-derived RNA has only sparsely been
investigated in DLBCL and further studies are needed to
analyze their potential.

There are no studies investigating the mutational pro-
file, editing and alternative splicing of circulating RNA
in DLBCL patients. We believe that further research
should focus on other aspects beyond abundance, as this
can provide valuable information on the cell of origin, as
well as on the function of circulating RNAs. In the same
vein, a promising future perspective is combining cell-
free DNA and RNA, as well as other cellular molecules,
in an multiomics approach. This could have far-reaching
impact and push the field forward in identifying minimal
invasive, disease-specific biomarkers that can be rou-
tinely implemented in clinical practice.

Concerning methodology, the development of unique
circulating signatures in DLBCL with high specificity
and sensitivity requires a standardized and consist-
ent approach that must be applied during the whole
research process, from blood collection to plasma/
serum preparation, handling, and banking to extrac-
tion and quantification. Furthermore, defining and
establishing validated reference sample sets is neces-
sary. In addition, the experimental design of the study
must be clear, including an adequate sample size rela-
tive to the objectives and possible variabilities, as well
as validation of the results in an independent cohort,
which is not included in most studies. Concerning the
use of EV in biomarker development, a standardized
workable isolation method is needed to ensure that the
same term covers the same load in different research.
Future progress in characterizing the content of lipid
vesicles and unraveling the processes involved in their
formation and function will contribute to a better
understanding of their potential use as biomarkers in
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malignant diseases. Lastly, it would be important to see
how cell-free biomarker candidates would perform in
large prospective clinical trials.
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