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Samenvatting

Voor het MYRRHA project (Engelse afkorting voor Multi-purpose hYbrid Re-
search Reactor for High-tech Applications, oftewel multifunctionele hybride on-
derzoeksreactor voor hoogtechnologische toepassingen) ontwikkelt and ontwerpt
het Belgisch studiecentrum voor de kernenergie SCK CEN een multi-functionele
experimentele bestralingsfaciliteit. Het ontwerp bestaat onder andere uit een com-
pact primair systeem van het pooltype dat gekoeld wordt door middel van ge-
smolten lood-bismut-eutecticum, oftewel een zwaar metaal. Betrouwbare reken-
methoden zijn vereist om het systeemgedrag van de reactor in operationele en
ongevalsomstandigheden nauwkeurig te kwantificeren. Het aantal kernreactorsi-
mulaties in een veiligheidsanalyse ligt in de meeste gevallen echter buiten de mo-
gelijkheden van de huidige hardware wanneer computationele vloeistofdynamica
wordt gebruikt. Dit heeft de ontwikkeling van modelleringstechnieken met een
gereduceerde orde gestimuleerd die het aantal vrijheidsgraden van de zeer nauw-
keurige warmtestromingsmodellen verminderen. Wiskundige technieken worden
gebruikt om de “karakteristieken” van het complexe model te extraheren, om ze
vervolgens te vervangen door een eenvoudiger model. Op die manier wordt de be-
nodigde rekentijd en computergeheugengebruik verminderd. Ondanks de kracht
en de toenemende populariteit van gereduceerde modellen voor allerlei soorten
stromingstoepassingen, hebben ze vaak problemen met de nauwkeurigheid en ver-
tonen ze numerieke instabiliteit. Uitdagingen met betrekking tot de snelheids-
drukkoppeling en het voldoen aan de randvoorwaarden op het lagere orde-niveau
maken het moeilijk om de methoden zodanig te generaliseren dat ze op elk pro-
bleem kunnen worden toegepast.

De complexe vloeistofdynamica problemen worden doorgaans numeriek op-
gelost met behulp van discretisatiemethoden. In dit werk richten we ons op de
discretisatiemethode met eindige volumes voor de numerieke oplossing van on-
samendrukbare stromingen op gecoloceerde roosters. Om een computationeel ef-
ficiënt model van gereduceerde orde te verkrijgen, wordt de procedure idealiter
gesplit in een, zogenaamde, offline fase en een online fase. In de offline fase
worden de oplossingen van het oorspronkelijke nauwkeurige model verzameld op
verschillende tijdstippen en/of voor verschillende parameterwaarden. Ze worden
gebruikt om een gereduceerde basis van een veel kleinere orde te genereren dan het
model van volledige orde. In dit werk worden de gereduceerde basisruimten over-
spannen door basisfuncties, of zogenaamde modi, die worden berekend behulp van
de hoofdcomponentenanalyse (Engels: proper orthogonal decomposition of POD)
die gewoonlijk wordt gebruikt voor onsamendrukbare stromingen. Gereduceerde
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matrices (lineaire termen) en tensoren (niet-lineaire termen) geassocieerd met de
termen van het model van volledige orde worden bepaald tijdens de offline fase,
waarvoor in dit werk twee technieken zijn ontwikkeld en onderzocht. De eerste
techniek is een niet-intrusieve reductiemethode die de systeemmatrix van lineaire
vloeistofdynamica problemen identificeert met een kleinste-kwadratentechniek.
Het belangrijkste voordeel van niet-intrusieve methoden is dat ze geen toegang
nodig hebben tot het discretisatie- en oplossingsalgoritme van de numerieke si-
mulatiecode. De tweede techniek is de intrusieve Galerkin-projectiebenadering
waarbij de vergelijkingen van de volledige orde worden geprojecteerd op de ge-
reduceerde POD-basisruimten. In de online fase wordt het gereduceerde systeem
van vergelijkingen opgelost voor dezelfde of nieuwe waarden van de bepaalde pa-
rameters tegen lagere rekenkosten in vergelijking met het oplossen van het systeem
van volledige orde.

De niet-intrusieve reductiemethode wordt gepresenteerd in het eerste deel van
het proefschrift. De methodologie wordt toegepast op de lineaire scalaire convectie-
diffusievergelijking voor een tweedimensionaal ingesloten vierkante holte met een
verwarmde bovenkant. De (tijdsafhankelijke) randvoorwaarden worden opgelegd
in het model van gereduceerde orde met een penalisatiemethode. De resultaten
worden vergeleken en de nauwkeurigheid van de modellen van gereduceerde orde
wordt beoordeeld aan de hand van de oplossingen van het model van volledige
orde. Er wordt aangetoond dat het gereduceerde-orde-model kan worden gebruikt
voor gevoeligheidsanalyse door de niet-homogene Dirichlet-randvoorwaarden aan
te passen. Voor niet-lineaire problemen moet het vereiste aantal momentopnames
worden geschaald met de derde macht van het aantal modi en zijn er minstens
evenveel gereduceerde matrices als het aantal gebruikte modi nodig. Daarom is
het niet haalbaar om de op POD gebaseerde identificatiemethode te gebruiken voor
niet-lineaire problemen. Voor de simulatie van vloeistofstromingen in industiënle
toepassingen is het echter nodig om gereduceerde-orde-modellen te ontwikkelen
voor niet-lineaire problemen, zoals convectie- en opwaartse stromingen. Daarom
is het grootste deel van het proefschrift gewijd aan de intrusieve POD-gebaseerde
Galerkin-projectiebenadering vanwege zijn toepasbaarheid op niet-lineaire proble-
men.

POD-Galerkin modellen van gereduceerde orde zijn ontwikkeld waarvan de
(tijdsafhankelijke) randvoorwaarden op het lagere orde-niveau worden opgelegd
met behulp van twee verschillende strategieën: de liftfunctie-methode, die het doel
heeft homogene basisfuncties te verkrijgen voor de gereduceerde basisruimten en
de penalisatiemethode waarbij de randvoorwaarden worden opgelegd in het model
van gereduceerde orde met behulp van een penalisatiefactor. De penalisatieme-
thode wordt verbeterd door een iteratieve oplosser te gebruiken voor het bepalen
van de penalisatiefactor in plaats van de factor af te stemmen met een gevoelig-
heidsanalyse of numerieke experimenten. De methoden worden vergeleken en
getest voor twee gevallen: het klassieke benchmarkprobleem van een ingesloten
vierkante holte met een bewegende bovenkant en de stroming door een Y-junctie
met twee inlaatkanalen en één uitlaatkanaal. De resultaten laten zien dat de rand-
voorwaarden van het model van gereduceerde orde kunnen worden gecontroleerd
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met de methodes en dat dezelfde orde van nauwkeurigheid wordt bereikt voor de
snelheids- en drukvelden. Het berekenen van de oplossingen kost echter meer tijd
in het geval van de liftfunctie-methode, aangezien de gereduceerde basisruimten
extra modi bevatten, namelijk de liftfuncties, vergeleken met de penalisatieme-
thode.

Verder wordt een parametrisch model van gereduceerde orde voor convectieve
warmteoverdracht geı̈ntroduceerd. De Boussinesq-benadering wordt gebruikt voor
het modelleren van de aangedreven warmteoverdracht. Daarom bestaat er een
tweerichtingskoppeling tussen de onsamendrukbare Boussinesq-vergelijkingen en
de energievergelijking. Om het gereduceerde-orde-model te verkrijgen, wordt
een Galerkin-projectie van de relevante vergelijkingen op de gereduceerde POD-
basisruimten uitgevoerd. Het model van gereduceerde orde wordt getest op een
tweedimensionaal differentieel verwarmde ingesloten holte waarvan de zijwand-
temperaturen worden geparametriseerd. De parametrisering gebeurt met behulp
van de liftfunctie-methode. De liftfuncties worden verkregen door een Laplace-
functie voor temperatuur op te lossen. Er was slechts één simulatie met het model
van volledige orde nodig voor de creatie van de gereduceerde basis. Het verkregen
model van gereduceerde orde is efficiënt en stabiel voor verschillende parameter-
sets waarbij het temperatuurverschil tussen de wanden kleiner is dan de set die
werd gebruikt voor het creëren van de POD-basis.

Verder wordt de POD-Galerkin-strategie voor Reynoldsgemiddelde Navier-
Stokes simulaties (Engels: Reynolds-Averaged Navier-Stokes of RANS) uitge-
breid voor vloeistofstromingen met een laag Prandtl-getal. Het gereduceerde-
orde-model is gebaseerd op een model van volledige orde waarbij de effecten van
convectieve warmteoverdracht op de stroming worden gekenmerkt door variatie
in het Richardson-getal. De Reynolds-spanningen worden berekend met een li-
neair turbulentie-viscositeitsmodel. Een enkelvoudige gradiëntdiffusiehypothese,
samen met een lokale correlatie voor de evaluatie van het turbulente Prandtl-getal,
wordt gebruikt om de turbulente warmtefluxen te modelleren. De bijdrage van de
turbulente viscositeits- en turbulente thermische diffusiteitsvelden wordt meege-
nomen in het gereduceerde-orde-model door middel van een op interpolatie ge-
baseerde datagestuurde methode. Het model van gereduceerde orde wordt getest
op een door warmteoverdracht aangedreven turbulente vloeibare natriumstroom
over een verticale achterwaarts gerichte trede. Een gelijkmatige warmteflux is
aangebracht op de wand stroomafwaarts van de trede. De wandwarmteflux is op-
genomen met een Neumann-randvoorwaarde in zowel het volledige-orde-model
als het gereduceerde-orde-model. De snelheids- en temperatuurprofielen die met
het gereduceerde model worden voorspeld voor dezelfde en nieuwe Richardson-
getallen binnen het bereik van de parameterwaarden, komen goed overeen met
de RANS-simulaties. Ook worden het lokale Stanton-nummer en de wrijvings-
verdeling op de verwarmde wand kwalitatief goed vastgelegd. Ten slotte zijn de
simulaties met een gereduceerde orde, uitgevoerd op een enkele processor, onge-
veer 105 keer sneller dan de volledige RANS-simulaties die op acht processoren
werden uitgevoerd.

Het laatste deel van het proefschrift is gewijd aan de ontwikkeling van een
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nieuw niet-geparametriseerd model van gereduceerde orde van de onsamendruk-
bare Navier-Stokes-vergelijkingen op gecoloceerde roosters. Het model is ontwik-
keld door een Galerkin-projectie uit te voeren op basis van een volledig (ruimte
en tijd) discrete formulatie van het model van volledige orde. Deze ‘discretiseren-
dan-projecteren’-benadering vereist geen drukstabilisatietechniek (hoewel de druk-
term in het gereduceerde-orde-model aanwezig is) noch een controletechniek om
de randvoorwaarden op het gereduceerde orde-niveau op te leggen. Dit zijn twee
belangrijke voordelen ten opzichte van bestaande en eerder toegepaste benaderin-
gen. Het volledig discrete model van volledige orde wordt verkregen door een ein-
dige volumediscretisatie van de onsamendrukbare Navier-Stokes-vergelijkingen
met een voorwaartse Euler-tijdsdiscretisatie. Twee varianten van de snelheids-
drukkoppeling op het volledig discrete niveau, de inconsistente en consistente flux-
methode, zijn onderzocht. De laatste methode leidt tot divergentie-vrije snelheids-
velden, ook op gereduceerd orde-niveau, terwijl de snelheidsvelden bij de eerste
methode slechts bij benadering divergentie-vrij zijn. Voor beide methoden zijn
stabiele en nauwkeurige resultaten verkregen voor testgevallen met verschillende
soorten randvoorwaarden: een ingesloten vierkante holte met een bewegende bo-
venkant en een open holte met een inlaat en een uitlaat. Het model van geredu-
ceerde orde verkregen met de consistente fluxmethode, met divergentie-vrije snel-
heidsvelden, is iets nauwkeuriger maar ook iets duurder om op te lossen in ver-
gelijking met de inconsistente fluxmethode vanwege een extra vergelijking voor
de flux die moet worden opgelost. De tijdswinst van het gereduceerde-orde-model
ten opzichte van het model van volledige orde is sterk afhankelijk de gebruikte me-
thode, het aantal vrijheidsgraden van het model van volledige orde en het aantal
modi dat wordt gebruikt voor de gereduceerde basisruimten.

Een toepassing met een koppeling tussen een thermische systeemcode en een
gereduceerd model van een computationele vloeistofdynamica code wordt gepre-
senteerd in de bijlage van dit werk. De systeemcode en het model van geredu-
ceerde orde zijn gekoppeld door een algoritme voor de decompositie van de domei-
nen met behulp van een impliciet koppelingsschema. De snelheid die over een kop-
pelingsinterface wordt getransporteerd, wordt in het model van gereduceerde orde
opgelegd met behulp van een penalisatiemethode. De gekoppelde modellen wor-
den beoordeeld op open en gesloten configuraties voor stromingen door buizen. De
resultaten van de gekoppelde simulaties met het model van gereduceerde orde lig-
gen dicht bij die met de computationele vloeistofdynamica code. Ook voor nieuwe
parametersets zijn de gekoppelde modellen met het gereduceerd-orde-model in
staat om de oplossingen van de gekoppelde modellen met het volledig-orde-model
te voorspellen met een goede nauwkeurigheid. De rekentijd van de simulaties met
het model van gereduceerde orde zijn 3-5 keer korter dan die met het model van
volledige orde.



Summary

Within the MYRRHA project, which stands for Multi-purpose hYbrid Research
Reactor for High-tech Applications, the Belgian Nuclear Research Center SCK
CEN is developing and designing a multi-functional experimental fast-spectrum
irradiation facility. The MYRRHA design features a compact pool-type primary
system cooled by molten Lead-Bismuth Eutectic, i.e. a heavy metal. Reliable com-
putational methods are required to accurately quantify the reactor’s primary system
behavior in operational and accidental conditions and to handle complex geome-
tries. However, the number of nuclear reactor simulations in a safety analysis is,
in the majority of cases, beyond the possibilities of present hardware if a computa-
tional fluid dynamics solver is used alone. This has motivated the development of
reduced order modeling techniques that reduce the number of degrees of freedom
of the high fidelity thermofluids models. Mathematical techniques are used to ex-
tract “features” of the complex model in order to replace them by a more simplified
model. In that way, the required computational time and computer memory usage
is reduced. Despite the potential and increasing popularity of reduced order mod-
els for all sorts of flow applications, they tend to have issues with accuracy and
exhibit numerical instabilities. Challenges regarding velocity-pressure coupling
and satisfying the boundary conditions at the reduced order level make it difficult
to generalize the methods such that they can be applied to any problem.

The complex fluid dynamics problems are generally solved numerically using
discretization methods. In this work, we focus on the finite volume discretiza-
tion method for the numerical solution of incompressible fluid flows on collocated
grids. To obtain a computationally efficient reduced order model (ROM), the pro-
cedure is ideally split into a so-called offline stage and an online stage. In the
offline stage, solutions of the high fidelity model are collected at several time in-
stances and/or for different parameter values. They are used to generate a reduced
basis of a much smaller order than the full order model (FOM). In this work, the
reduced basis spaces are spanned by basis functions, or so-called modes, which
are computed using the proper orthogonal decomposition (POD) technique. POD
is commonly used for reduced-order modeling of incompressible flows. Reduced
matrices (linear terms) and tensors (nonlinear terms) of the ROM associated with
the terms of the full order model are determined during the offline stage, for which
two techniques are developed and investigated in this work. The first technique is
a non-intrusive reduction method that identifies the system matrix of linear fluid
dynamical problems with a least-squares technique. The main advantage of non-
intrusive methods is that they do not require access to the solver’s discretization
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and solution algorithm. The second technique is the intrusive Galerkin projection
approach for which the full order equations are projected onto the reduced POD
basis spaces. In the online stage, the reduced system of equations are solved for
the same or new values of the parameters of interest at a lower computational cost
compared to solving the full order systems.

The non-intrusive reduction method that identifies the system matrix of lin-
ear fluid dynamical problems with a least-squares technique is presented in the
first part of the thesis. The methodology is applied to the linear scalar transport
convection-diffusion equation for a two-dimensional square cavity problem with a
heated lid. The (time-dependent) boundary conditions are imposed in the reduced
order model with a penalty method. The results are compared and the accuracy of
the reduced order models is assessed against the full order solutions. It is shown
that the reduced order model can be used for sensitivity analysis by controlling
the non-homogeneous Dirichlet boundary conditions. For nonlinear problems, the
required number of snapshots scales with the cube of the number of POD basis
functions and at least as many reduced matrices are to be identified as the num-
ber of basis functions used. Therefore, it is not feasible to use the POD-based
identification method for nonlinear problems. However, for the simulation of fluid
flows in (nuclear) engineering applications, it is necessary to develop reduced or-
der models for nonlinear problems, such as convective flows and buoyancy-driven
flows. Therefore, the main part of the thesis is dedicated to the intrusive POD-
based Galerkin projection approach due to its applicability to nonlinear problems.

POD-Galerkin reduced order models are developed of which the (time-
dependent) boundary conditions are imposed at reduced order level using two dif-
ferent boundary control strategies: the lifting function method, whose aim is to
obtain homogeneous basis functions for the reduced basis spaces and the penalty
method where the boundary conditions are imposed in the reduced order model us-
ing a penalty factor. The penalty method is improved by using an iterative solver
for the determination of the penalty factor rather than tuning the factor with a sen-
sitivity analysis or numerical experimentation. The boundary control methods are
compared and tested for two cases: the classical lid driven cavity benchmark prob-
lem and a Y-junction flow case with two inlet channels and one outlet channel. The
results show that the boundaries of the reduced order model can be controlled with
the boundary control methods and the same order of accuracy is achieved for the
velocity and pressure fields. However, computing the ROM solutions takes more
time in the case of the lifting function method as the reduced basis spaces contain
additional modes, namely the lifting functions, compared to the penalty method.

Furthermore, a parametric reduced order model for buoyancy-driven flow is
introduced. The Boussinesq approximation is used for modeling the buoyancy.
Therefore, there exists a two-way coupling between the incompressible Boussi-
nesq equations and the energy equation. To obtain the reduced order model, a
Galerkin projection of the governing equations onto the reduced POD bases spaces
is performed. The ROM is tested on a two-dimensional differentially heated cavity
of which the side wall temperatures are parametrized. The parametrization is done
using a lifting function method. The lifting functions are obtained by solving a
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Laplacian function for temperature. Only one unsteady full order simulation was
required for the creation of the reduced bases. The obtained ROM is efficient and
stable for different parameter sets for which the temperature difference between
the walls is smaller than for the set in the FOM used for the POD basis creation.

In addition, the POD-Galerkin reduced order modeling strategy for steady-
state Reynolds averaged Navier–Stokes (RANS) simulation is extended for low-
Prandtl number fluid flow. The reduced order model is based on a full order model
for which the effects of buoyancy on the flow and heat transfer are characterized
by varying the Richardson number. The Reynolds stresses are computed with a
linear eddy viscosity model. A single gradient diffusion hypothesis, together with
a local correlation for the evaluation of the turbulent Prandtl number, is used to
model the turbulent heat fluxes. The contribution of the eddy viscosity and turbu-
lent thermal diffusivity fields are considered in the reduced order model with an
interpolation based data-driven method. The ROM is tested for buoyancy-aided
turbulent liquid sodium flow over a vertical backward-facing step with a uniform
heat flux applied on the wall downstream of the step. The wall heat flux boundary
condition is incorporated in both the full order model and the reduced order model.
The velocity and temperature profiles predicted with the ROM for the same and
new Richardson numbers inside the range of parameter values are in good agree-
ment with the RANS simulations. Also, the local Stanton number and skin friction
distribution at the heated wall are qualitatively well captured. Finally, the reduced
order simulations, performed on a single core, are about 105 times faster than the
full order RANS simulations that are performed on eight cores.

The final part of the thesis is dedicated to the development of a novel non-
parametric reduced order model of the incompressible Navier-Stokes equations on
collocated grids. The reduced order model is developed by performing a Galerkin
projection based on a fully (space and time) discrete full order model formu-
lation. This ‘discretize-then-project’ approach requires no pressure stabilization
technique (even though the pressure term is present in the ROM) nor a boundary
control technique (to impose the boundary conditions at the ROM level). These
are two main advantages compared to existing and previously applied approaches.
The fully discrete FOM is obtained by a finite volume discretization of the in-
compressible Navier-Stokes equations with a forward Euler time discretization.
Two variants of the velocity-pressure coupling at the fully discrete level, the in-
consistent and consistent flux method, have been investigated. The latter leads to
divergence-free velocity fields, also on the ROM level, whereas the velocity fields
are only approximately divergence-free in the former method. For both methods,
stable and accurate results have been obtained for test cases with different types
of boundary conditions: a lid-driven cavity and an open cavity with an inlet and
outlet. The ROM obtained with the consistent flux method, having divergence-free
velocity fields, is slightly more accurate but also slightly more expensive to solve
compared to the inconsistent flux method due to an additional equation for the flux.
The speedup ratio of the ROM and FOM computation times strongly depends on
which method is used, the number of degrees of freedom of the full order model
and the number of modes used for the reduced basis spaces.
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Finally, an application with the coupling between a system thermal hydraulics
code and a reduced order model of a computational fluid dynamics solver is pre-
sented in the appendix of this work. The system code and the ROM are coupled by
a domain decomposition algorithm using an implicit coupling scheme. The veloc-
ity transported over a coupling boundary interface is imposed in the ROM using a
penalty method. The coupled models are evaluated on open and closed pipe flow
configurations. The results of the coupled simulations with the ROM are close to
those with the CFD solver. Also for new parameter sets, the coupled models with
the ROM are capable of predicting the results of the coupled models with the FOM
with good accuracy. The coupled simulations with the ROM are about 3-5 times
faster than those with the FOM.
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1
Introduction

1.1 The MYRRHA project
The global climate warming as a result of human activities requires large re-
ductions in the emissions of carbon dioxide and other greenhouse gases world-
wide [49]. Nuclear energy is an established low-carbon energy source and its
expansion can make an important contribution to the effort of decarbonizing the
energy supply as indicated by several reports [36, 49, 66]. However, current re-
actor designs need to be improved regarding safety, sustainability, efficiency and
cost.

Therefore, new reactor concepts and designs are being researched in the frame
of Generation IV [160, 196, 263]. Generation IV proposals for innovative nuclear
systems represent significant improvements with respect to previous generations,
especially regarding the improvement of safety, the reduction of the radiotoxicity
and the amount of high-level nuclear waste, the optimization of the fuel economy
and the resistance to proliferation [94, 162].

A large number of international projects have been promoted and funded to ad-
vance the studies on these innovative technologies. One of them that has been rec-
ognized as a high priority infrastructure for nuclear research in Europe is MYRRHA,
which stands for Multi-purpose hYbrid Research Reactor for High-tech Applica-
tions [45].
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Within the MYRRHA project, the Belgian Nuclear Research Centre SCK CEN
is developing and designing a multi-functional experimental fast-spectrum irradi-
ation facility. Its main purposes can be summarized as [2]:
• flexible fast-spectrum irradiation facility,
• demonstrator for minor actinides transmutation,
• demonstrator for accelerator-driven systems,
• European Technology Pilot Plant for lead-cooled fast reactors.

1.1.1 The MYRRHA facility

The MYRRHA facility is an accelerator-driven system (ADS) featuring a proton
accelerator and a compact pool-type reactor that contains a core with mixed oxide
fuel which is cooled by lead-bismuth eutectic (LBE), i.e. a heavy metal alloy [1].
The LBE also acts as the spallation target. Figure 1.1 shows a conceptual scheme
of the major components of MYRRHA, i.e. proton accelerator, spallation target
and reactor.

Figure 1.1: Conceptual scheme of the MYRRHA accelerator-driven system. (Figure
adopted from [62, 257].)

MYRRHA will be able to operate in both sub-critical and critical mode. In sub-
critical mode, a 400 m long linear accelerator provides protons at an energy of 600
MeV to the reactor. At the end of the accelerator beam line, the 4 mA proton beam
hits a spallation target, composed by the same LBE acting as primary coolant,
in the center of the reactor core (design revision 1.6) [3, 62]. The interaction of
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the high energetic protons with the heavy metal target atoms generates a flux of
fast neutrons together with other spallation products. This external neutron source
maintains the fission reactions when MYRRHA is operated in sub-critical mode.
The reaction stops automatically when the accelerator is stopped, which represent
a solid safety feature of the MYRRHA reactor. Furthermore, the proton beam can
be used for the Fusion Target Station, which is located just below the spallation
target and designed to enhance research on accumulated irradiation damage and
in-situ testing of materials, especially for fusion applications. Moreover, the ADS
can be used to transmute highly radioactive minor actinides into shorter-lived nu-
clear waste, which lowers the burden on deep geological storage [4, 61, 156]. On
the other hand, if the accelerator is decoupled from the reactor core, MYRRHA
can operate in critical mode. Critical mode operation foresees adequate reactor
shutdown systems to stop the fission chain reaction. The critical mode operation
serves as demonstrator for the Lead-cooled Fast Reactor (one of the Generation
IV reactor concepts) [1]. Moreover, the accelerator can feed protons to the multi-
purpose Proton Target Facility for the production of radioisotopes and related re-
search when it is not coupled to the reactor [4].

The MYRRHA fuel assembly is based on the design of the sodium fast reactor
fuel assemblies [212]. It consists of a bundle of 127 cylindrical fuel pins that
are arranged in a triangular pattern. The pins are separated from each other by
helical wire-spacers which are wrapped around each fuel pin [139]. The cladding
temperature of the fuel pins, which is a key parameter for the safe operation of
the LBE cooled reactor, is subjected to limitations due chemical interaction of the
cladding with the coolant [169]. Moreover, the average coolant bulk velocity is
restricted to limit the erosion effects [51, 225].

On the other hand, using LBE as the primary coolant has several advantages:
no direct chemical interaction with water and air, low neutronic absorption, low
melting point (∼400 K) and high boiling point (∼1925 K) [73]. However, a
drawback of using LBE as the primary coolant is the accumulation of radioac-
tive isotopes, which could pose difficulties in terms of radiological releases during
maintenance or in accidental conditions [261].

MYRRHA’s primary cooling system is entirely contained in the primary ves-
sel. Figure 1.2 shows a sketch of the MYRRHA reactor primary cooling system
in its latest official design revision. The LBE flows from the lower plenum into
the core (∼543 K) to remove the core power (nominal power: 100 MW) and, from
there, into the upper plenum (∼600 K), which are indicated in Figure 1.3. Four
primary heat exchanger units receive the LBE from the upper plenum. The LBE is
then reinserted into the lower plenum via two primary pumps (each pump serving
two heat exchangers). The lower plenum is separated from the upper plenum by a
diaphragm, i.e. an inner vessel structure [45].
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Figure 1.2: Sketch of the MYRRHA reactor design revision 1.6 [76].

Figure 1.3: Schematic cross-section of the primary system of the MYRRHA reactor.
(Figure adopted from [260].)
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With regard to the thermal-hydraulic design and safety assessment of the pri-
mary cooling system, a major challenge is characterizing the complex transport
phenomena in the coolant flow field, e.g. local flow mixing, buoyancy and ther-
mal stratification in the lower and upper plenum of the primary vessel. These
phenomena may impact the system response to operational and accidental tran-
sients, such as loss of forced flow, on the short-term (transition from forced to
natural convection) and the long-term (safe shutdown state). In maintenance and
accidental conditions, decay heat is removed passively via natural convection be-
tween the heat source at the core and the heat sinks at the primary heat exchangers,
which are indicated in Figure 1.3 [62]. This avoids the use of active components
and ensures a high level of intrinsic safety, as foreseen by Generation IV require-
ments. However, the development of the flow, for instance thermal stratification at
low flow conditions, during the transition from forced to natural convection may
have a detrimental effect on the efficiency of the passive residual heat removal.
Therefore, reliable computational methods are required to accurately quantify the
reactor’s primary cooling system behavior in operational and accidental conditions
and to handle complex geometries [260].

1.2 Motivation for reduced order modeling

The work presented in the European Union’s Horizon 2020 research projects
SESAME (started in 2015) on “Thermal-hydraulics Simulations and Experiments
for the Safety Assessment of MEtal cooled reactors” made evident that next gen-
eration reactors, such as MYRRHA, require extensive computational characteriza-
tion [162, 214].

There are two types of numerical codes for thermal-hydraulic analysis that are
frequently used in the nuclear industry. The first type of codes are based one-
dimensional (1D) models of physical transport phenomena, such as system codes
(based mainly on lumped parameter approaches) and sub-channel codes (specifi-
cally used for fuel assembly and reactor core analysis). The second type of codes
are field codes that are based on three-dimensional (3D) computational fluid dy-
namics (CFD) models [184].

Figure 1.4 presents the hierarchy of modeling approaches based on the com-
putational cost and the amounts of resolved versus modeled physics. The system
codes are, in general, based upon the solution of six balance equations for liquid
and vapor. In addition, they use (quasi-steady state) heat transfer correlations to
model the heat transfer between a solid, such as tubes or structures, and its sur-
rounding fluid [27, 192]. The lumped parameter system codes and sub-channel
codes are placed at the bottom of the pyramid due to the large amount of mod-
eled physics. These codes have their limitations regarding the representation of
complex flows due to their low number of degrees of freedom.
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On the other hand, CFD codes are used to numerically simulate transient flows
to accurately quantify the system behavior in accidental conditions and for geomet-
rically complex cases [214, 260]. (Unsteady) Reynolds-averaged Navier Stokes
((U)RANS) simulation, large eddy simulation (LES) and direct numerical simula-
tion are the most common turbulence models in CFD. DNS resolves all scales of
motion, while LES resolves most of the scales and the smallest eddies are mod-
eled. (U)RANS models solve only for the averaged quantities while the entire
breakdown of vortices is modeled. Moreover, both DNS and LES always require
solving in time and in three-dimensional space, while RANS can be used in steady
form and allows solving in one or two-dimensions. The number of degrees of free-
dom required to solve flow problems using a CFD solver increases from RANS to
DNS and, thus, with it the computational cost [107]. Therefore, these CFD meth-
ods are represented at the top part of the pyramid depicted in Figure 1.4.

CFD simulations are not only used in nuclear engineering, but are essential
in many other engineering fields, among which aerospace, automotive, civil and
naval. The CFD solvers are based on discretization methods, such as finite differ-
ence, finite element, finite volume or spectral element methods. The finite volume
(FV) method is commonly used by commercial software and open-source codes.

Figure 1.4: A pyramid representing the hierarchy of modeling approaches based on the
computational cost and the amounts of resolved versus modeled physics. (Figure adopted

from [119, 292].)
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Regardless of the discretization strategy, CFD simulations are highly demand-
ing in terms of CPU time and storage, especially for the simulation of turbulent
flows, complex geometries, multi-physics phenomena and other types of complex
flows. Moreover, the number simulations required for a nuclear reactor safety anal-
ysis is, in the majority of cases, beyond the possibilities of present hardware if a
CFD code is used alone. Within the SESAME project, reduced and low resolution
(coarse grid) CFD approaches were foreseen to lower the computational burden
of full core simulations [199, 200, 275, 276]. Also multi-scale approaches, e.g.
combining sub-channel codes with CFD codes, were foreseen [214]. Other pos-
sible solutions to increase the modeling capabilities are parallelization and High
Performance Computing (HPC) [166] or simplifying the underlying mathematical
models by introducing assumptions in the physics of the problem. However, HPC
is expensive to install and operate. Making physics assumptions or coarse meshing
is not always practical and can introduce sources of errors in the model. Also, the
gain in computational speed of a STH/CFD coupled model is still too limited for
aforementioned purposes [260].

This has motivated the development of reduced order modeling techniques that
reduce the number of degrees of freedom of the high fidelity models. Mathemat-
ical techniques are used to extract “features” of the complex model in order to
replace these by a smaller model. In that way, the required computational time and
computer memory usage is reduced [24, 52, 110, 205]. Figure 1.5 depicts schemat-
ically the overall goal of reduced order modeling, namely to find the desired com-
promise between accuracy and the size of the model (i.e the computational cost),
with respect to CFD simulations and lumped parameter models.

Rather recently, Lorenzi et al. [161] showed the potential of reduced order
models (ROMs) in (nuclear) engineering with their work on performing ROM
simulations with the object-oriented Modelica language [84] in the Dymola sim-
ulation environment [34, 65]. Modelica is specifically designed for the study of
engineering system dynamics, which Lorenzi et al. used for the development of
a plant simulator (the ALFRED reactor) for control purposes. They substituted
a component of the model in Modelica with the ROM without compromising the
rest of the model. Finally, reduced order modeling methods have been applied to
a Rayleigh-Benard convection flow problem and to a pool with volumetric heat
sinks and sources during the latest development of the SESAME project [71, 175].
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Figure 1.5: Schematic representation of the reduced order modeling approach as a
compromise between the level of accuracy and the model size. (Figure adopted

from [161, 231].)

1.3 The objectives and the framework of the Ph.D.

The focus of this Ph.D. thesis is the development of reduced order models in var-
ious engineering and academic settings not limited to nuclear engineering. Only
computational fluid dynamics problems are considered that are based on linear and
nonlinear dynamic models. Moreover, it is important to note that the solutions of
the full order CFD models are considered to be “the true solutions” in this work.
Neither the full order nor the reduced order models have been validated against
experimental results or compared to computations from literature.

1.3.1 The objectives

The overall goal of this research is to develop reduced order models for fluid dy-
namics problems that accurately predict the behavior of the underlying full order
model, but require less computational time. The main objectives of this research,
addressed in this thesis, are to develop:

• a non-intrusive reduced order CFD model that does not require knowledge
of the high fidelity solver’s discretization and solution algorithm,
• reduced order CFD models that are capable to efficiently, yet accurately,

simulate nonlinear fluid flow problems,
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• reduced order CFD models that can be used for parametric boundary condi-
tion problems,

• parametric reduced order CFD models for low Prandtl number fluid flow
problems.

1.3.2 The framework

At the start of this Ph.D. project, SCK CEN had some initial experience with
reduced order models (ROMs). A Ph.D. project on the real-time simulation of
near-range atmospheric dispersion of the radioactive nuclides was carried out by
Ververcken [273] in collaboration with the KU Leuven in Belgium. Only linear
systems where investigated in this research. Also the Flow, Heat and Combustion
Mechanics department (currently the department of Electromechanical, Systems
and Metal Engineering) of Ghent University had worked on reduced order mod-
els, but for fluid and structural problems. Vierendeels et al. [277] had developed
reduced order models to drive a coupling algorithm of partitioned fluid–structure
interaction problems to compute the fully coupled solution of a black box fluid
solver and a black box structural solver each time step. In addition, Degroote
et al. [63], in collaboration with Massachusetts Institute of Technology (USA),
investigated interpolation among reduced order matrices to obtain parameterized
models for design, optimization and probabilistic analysis.

SCK CEN often uses commercial software, such as ANSYS Fluent, for per-
forming CFD simulations [7, 92, 170, 260, 265]. The disadvantage of commercial
software is that the solver’s discretization and solution algorithm are not accessi-
ble. Thus, they can basically be considered as black boxes. Given the previous
experience of UGent with the development of reduced order models for black box
fluid solvers, the first research goal was to develop non-intrusive reduced order
models.

For the safety assessment of nuclear facilities, sensitivity studies are carried
out to determine how plant parameters are influencing the flow and heat transfer in
nuclear reactor components and systems [236]. Boundary conditions are essential
for defining the numerical flow problems. However, boundary condition values
can be uncertain if they come from measurements and/or they depend on the plant
parameters. If so, the sensitivity to the boundary conditions needs to be analyzed.
Developing reduced order CFD models that can be used for parametric boundary
condition problems is therefore one of the main objectives.

Non-intrusive reduced order models for linear problems with parametric bound-
ary conditions were developed successfully during the first year of this project.
However, for the simulation of fluid flows in (nuclear) engineering applications,
it is also necessary to develop reduced order models for low Prandtl fluid flow
(such as liquid metal flows), buoyancy-driven flows and natural convection. These
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phenomena require the developed of nonlinear reduced order models. Therefore,
approaches that can also be used for nonlinear problems needed to be investigated.

In November 2017, SISSA’s mathLab group (Italy) released ITHACA-FV (In
real Time Highly Advanced Computational Applications for Finite Volumes) [240]
as an open source code. A huge advantage of ITHACA-FV, other than that it is
based on existing libraries, is its applicability to nonlinear fluid flow problems
(e.g. the laminar incompressible Navier-Stokes equations). Nowadays, ITHACA-
FV consists of the implementation of several reduced order modeling methods and
algorithms for parametrized fluid dynamics problems [240].

After obtaining the ENEN+ (European Nuclear Education Network) mobility
grant, I got the opportunity to join the mathLab group of Prof. Rozza for a research
stay of six months. I closely worked with Dr. Giovanni Stabile, ITHACA-FV’s
main developer and maintainer and the other researchers working on ITHACA-
FV. During this period, we developed reduced order models of buoyancy-driven
flows. In addition, we improved some boundary control methods (that impose the
boundary conditions in reduced order models).

Sokratia Georgaka, a Ph.D. student from Imperial College London (UK), was
also working on ITHACA-FV in collaboration with the mathLab group. Our
projects were both related to nuclear engineering. Moreover, we had the common
interest of developing reduced order models for turbulent heat transfer problems.
This led to a fruitful collaboration on the development of the mathematical frame-
work of the reduced order models as well as on the numerical implementation of
some parts of the ROM solvers. This collaboration has led to some joined publi-
cations (that are listed in the next section).

After the research stay at SISSA mathLab (April 2019), the collaboration with
SISSA continued remotely. The work got extended to reduced order modeling of
low Prandtl number fluid flows. Furthermore, nuclear engineering master student
Giuseppe Spina from the University of Pisa started his master thesis project under
my supervision at SCK CEN in September 2019. He worked during his six-month
project on reducing the computational cost of a three-dimensional CFD solver cou-
pled with a one-dimensional system thermal-hydraulics code by replacing the CFD
solver with a reduced order model.

Finally, a collaboration with Dr. Benjamin Sanderse from the Scientific Com-
puting group at CWI (The Netherlands) started in March 2020. The three-month
Ph.D. internship at CWI was focused on the ROM challenges related to pressure
stabilization and imposing the boundary conditions at the ROM level. The goal of
the project was to improve the reduced order modeling approach for the incom-
pressible Navier-Stokes equations on collocated grids. The ROMs were developed
in the ITHACA-FV framework and the project was carried out in close collabora-
tion with Dr. Giovanni Stabile from SISSA mathLab.
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1.4 Thesis outline

The state of the art of reduced order modeling methods in computational fluid
dynamics is addressed in Chapter 2. Also a description of the finite volume method
is given. Furthermore, the POD-Galerkin method in the finite volume setting, that
forms the basis of all reduced order methods developed in this work, is presented
and the challenges are discussed.

The subsequent chapters of this dissertation address the aforementioned re-
search goals in Section 1.3.1. These chapters are based on papers published in
peer-reviewed journals and international conference proceedings that are listed in
the next section.

Chapter 3 is devoted to non-intrusive reduced order modeling for linear CFD
problems. A POD-based identification method is proposed, for which the reduced
system matrices are identified using a least-squares technique. The ROM is of
the same form as if the ROM would have been obtained with the intrusive POD-
Galerkin method. Moreover, the penalty method is applied to impose the para-
metric (time-dependent) non-homogeneous Dirichlet boundary conditions in the
ROM. The results of this chapter are published as [245].

Chapter 4 continues on boundary control strategies at the ROM level. The lift-
ing function method is compared with a novel iterative penalty method for (time-
dependent) parametric boundary condition problems. However, from this chapter
on, intrusive reduced order models are developed of nonlinear flow problems, such
as the incompressible Navier-Stokes equations, using the POD-Galerkin projection
approach. The results of this chapter are accepted as [248].

Chapter 5 and 6 are devoted to coupling with heat transfer. Chapter 5 is about
the development of a POD-Galerkin reduced order model of the Boussinesq ap-
proximation for buoyancy driven-enclosed flows. The temperature boundary con-
ditions of the enclosed cavity are parametrized. Chapter 6 is focused on low-
Prandtl number fluid turbulent flows. A reduced order model is developed of a
turbulent convective buoyant flow of sodium over a backward-facing step. The
parametric ROM is used to study solutions for different Richardson numbers, for
which the associated heat flux is considered to be the corresponding varying phys-
ical parameter. The results of Chapter 5 and Chapter 6 are published as [244]
and [249], respectively.

In Chapter 7, a novel reduced order model for incompressible flows is de-
veloped by performing a Galerkin projection based on a fully (space and time)
discrete full order model formulation. This ‘discretize-then-project’ approach re-
quires no pressure stabilization technique (even though the pressure term is present
in the ROM) nor a boundary control technique (which were needed for the reduced
order modeling methods described previously to impose the boundary conditions
at the ROM level). The results of this chapter are under review as [246].
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The last chapter (Chapter 8) contains an overall conclusion and recommenda-
tions for future work.

Finally, an application of reduced order modeling in nuclear engineering is
given in Appendix A. The computational cost of a three-dimensional CFD solver
coupled with a one-dimensional system thermal-hydraulics code is reduced by re-
placing the CFD solver with a reduced order model. Coupled simulations with
the ROM are performed on parametric problems. The results are under review
as [247].

1.5 List of publications underlying this thesis

The results of the publications are presented in this dissertation unless stated dif-
ferently.

1.5.1 Publications in peer-reviewed journals

[245] S.K. Star, F. Belloni, G. Van den Eynde, J. Degroote, “POD-identification
reduced order model of linear transport equations for control purposes”, Interna-
tional Journal for Numerical Methods in Fluids, 90, 375–388 (2019).

[88] S. Georgaka, G. Stabile, K. Star, G. Rozza, MJ. Bluck, “A hybrid reduced or-
der method for modelling turbulent heat transfer problems”, Computers & Fluids,
208, 104615 (2020).
The results of this work are not presented in this dissertation.

[249] S.K. Star, G. Stabile, G. Rozza, J. Degroote, “A POD–Galerkin reduced
order model of a turbulent convective buoyant flow of sodium over a backward-
facing step”, Applied Mathematical Modelling, 89, 486 - 503 (2021).

[248] S.K. Star, G. Stabile, F. Belloni, G. Rozza, J. Degroote, “A novel iterative
penalty method to enforce boundary conditions in Finite Volume POD-Galerkin
reduced order models for fluid dynamics problems”, Communications in Compu-
tational Physics, accepted on September 28, 2020.

[247] S.K. Star, G. Spina, F. Belloni, J. Degroote, “Development of a coupling be-
tween a system thermal-hydraulic code and a reduced order CFD model”, Annals
of Nuclear Energy, 153, 108056 (2021).

[246] S.K. Star, B. Sanderse, G. Stabile, G. Rozza, J. Degroote, “Reduced order
models for the incompressible Navier-Stokes equations on collocated grids using a
‘discretize-then-project’ approach”, International Journal for Numerical Methods
in Fluids, (2020), submitted on October 14, 2020.
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1.5.2 Publications in international conference proceedings

[243] K. Star, J. Degroote, J. Vierendeels, G. Van den Eynde, F. Belloni “Re-
duced order modelling using a POD-based identification method for parameterized
PDEs”, 7th European Conference on Computational Fluid Dynamics (2018).
The results of this work are not presented in this dissertation.

[244] K. Star, G. Stabile, S. Georgaka, F. Belloni, G. Rozza, J. Degroote, “POD-
Galerkin reduced order model of the Boussinesq approximation for buoyancy-
driven enclosed flows”, Building theory and applications: proceedings of M&C
2019, 2452–2461 (2019).





2
Reduced order modeling methods in

computational fluid dynamics

Fluid dynamics problems are generally described by the Navier–Stokes (NS) equa-
tions, which are a set of partial differential equations. The equations express math-
ematically the conservation of mass, the conservation of momentum and the con-
servation of energy. In this work, we focus on incompressible flows, i.e. the den-
sity of the fluid is considered constant in any infinitesimal volume of fluid moving
in the flow [271]. In the first section, we describe the incompressible Navier–
Stokes equations and how they are discretized with the finite volume method,
which is partly published as [246]. In the second section, we give a general
overview of reduced order modeling methods in fluid dynamics. In the subse-
quent sections, we explain the POD–Galerkin approach and challenges of reduced
order modeling in the finite volume setting.

2.1 The incompressible Navier–Stokes equations

The governing equations to describe the fluid dynamics problem on a geometrical
domain Ω, which coincides with the region of flow, are given by the unsteady
incompressible Navier–Stokes equations. For a Newtonian flow with constant fluid
density ρ, kinematic viscosity ν and thermal diffusivity α and without gravity and
body forces, the general equations of mass, momentum and energy conservation
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are given, respectively, by
∇ · u = 0 in Ω, (2.1)

∂u

∂t
= −∇ · (u⊗ u) + ν∇ · (∇u)−∇p in Ω, (2.2)

∂θ

∂t
= −∇ · (uθ) + α∇ · (∇θ) in Ω, (2.3)

where u = u(x, t) represents the vectorial velocity field that is evaluated at x ∈
Ω ⊂ Rd with d = 2 or 3. Furthermore, p = p(x, t) is the normalized scalar
pressure field, which is divided by the constant fluid density ρ, θ = θ(x, t) is the
scalar temperature field and t denotes time. The right hand side of the momentum
equations (Equation 2.2) contains a convection, diffusion and pressure gradient
term, respectively.

Taking the divergence of both sides of Equation 2.2 and applying the continuity
constraint of Equation 2.1 leads to the pressure Poisson equation (PPE):

∇2p = −∇ · (∇ · (u⊗ u)) in Ω. (2.4)

This equation ensures that continuity is satisfied and can therefore be used as an
alternative for the equation of mass conservation (Equation 2.1) by solving for u
and p.

The equations are supplemented with the initial condition for velocity:

u(x, 0) = u0(x) in Ω, (2.5)

which is divergence free, i.e. ∇·u0 = 0, and the initial condition for temperature:

θ(x, 0) = θ0(x) in Ω. (2.6)

Boundary conditions are required to make the above problem well-posed. There
are two main forms of boundary conditions: Dirichlet boundary conditions that
prescribe the value of a variable on the boundary and Neumann boundary condi-
tions that prescribe the gradient of a variable normal to the boundary. Other more
complicated boundary conditions may specify a mixture of the boundary value and
gradient on the boundary [77].

In this work, we consider three types of boundary conditions: wall, inflow and
outflow. Correspondingly, we subdivide the boundary into Γ = Γwall∪Γin∪Γout.

Viscous fluids adjacent to a solid boundary such as a wall satisfy the no-slip
condition, which states that the velocity of the fluid is equal to the velocity of the
boundary:

u = uwall(x, t) on Γwall for t ≥ 0, (2.7)

where uwall is the wall velocity that is assumed to be known. In the case of fixed
walls, uwall = 0.
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The inflow boundary condition is of the same form as the wall boundary con-
dition:

u = uin(x, t) on Γin for t ≥ 0, (2.8)

where uin is the velocity at the inlet boundary Γin that is assumed to be known.
If the problem contains solely wall/inflow velocity boundary conditions, it is

also required that the following compatibility condition, which follows from inte-
grating Equation 2.1 over Ω, is satisfied [97]:∫

Γ

n · ubcdΓ = 0 for t ≥ 0, (2.9)

where ubc is either the wall (Equation 2.7) or inlet velocity (Equation 2.8) and n
denotes the outward pointing normal vector on the boundary Γ. As a consequence,
the pressure can then only be determined up to a constant. This is remedied by
imposing the pressure in a selected point in the domain.

For outflow boundaries, the normal component of the stress tensor is specified:

n · ν∇u− np = 0 on Γout for t ≥ 0. (2.10)

If the PPE (Equation 2.4) is used rather than the equation for mass conserva-
tion (Equation 2.1), the following boundary conditions apply in addition to Equa-
tions 2.7 and 2.8 for the wall and inflow boundary conditions, respectively:

n · ∇p = n · (−∇ · (u⊗ u)) on Γwall,Γin for t ≥ 0. (2.11)

The boundary conditions for the PPE are equal to Equation 2.10 in the case of an
outflow boundary condition.

Similar to Equations 2.7 and 2.8, the wall and inflow boundary conditions for
temperature can be specified, respectively, as:

θ = θwall(x, t) on Γwall for t ≥ 0, (2.12)

and
θ = θin(x, t) on Γin for t ≥ 0, (2.13)

where θwall is the wall temperature and θin is the temperature of the fluid at the
inlet boundary Γin, which are assumed to be known. Furthermore, a constant
heat flux can be prescribed, which is a typical Neumann boundary condition for
temperature:

n · ∇θ = −q
′′
bc

λ
on Γwall,Γout for t ≥ 0, (2.14)

where q′′bc the heat flux on the boundary and λ is the thermal conductivity of the
fluid. If the heat flux is set to zero, the boundary condition is called insulated or
adiabatic.
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2.2 The finite volume discretization of the incompress-
ible Navier-Stokes equations

Finite volume (FV) discretization methods for the incompressible Navier–Stokes
equations are mainly applied on two types of grids: staggered and collocated [77].
FV schemes on staggered grids are known to intrinsically conserve mass, momen-
tum and kinetic energy in space and time on Cartesian grids [108, 266]. Another
favorable property of staggered grids is that the pressure–velocity coupling is in-
herently enforced, i.e. preventing odd-even decoupling of the pressure [77, 186].
On the other hand, the collocated grid arrangement offers significant advantages
over the staggered grid approach. First of all, the code implementation is generally
simpler (easier bookkeeping) [195]. In addition, the collocated grid shortens the
computational time and reduces the required memory storage compared to stag-
gered grids on complex solution domains [190, 298]. Therefore, collocated grids
are widely used by popular commercial codes such as ANSYS Fluent [11] and
STAR-CCM+ [47] and the open source code OpenFOAM [95].

We will solely develop reduced order models for the finite volume discretiza-
tion method on collocated grids, which is shown in Figure 2.1, in this work. In this
section, we describe the spatial and temporal discretization using the finite volume
method on a collocated grid. We only discretize the mass and momentum conser-
vation equations (Equations 2.1 and 2.2), i.e. for isothermal incompressible flow,
to ease the derivations.

Figure 2.1: Two-dimensional collocated grid with the location of the unknowns at the
center of a cell volume P and neighboring cell volume N . ∆x and ∆y the cell lengths and

the arrows indicate the mass fluxes through the cell faces e, w, s and n of cell P .

An integral formulation of the governing equations is imposed to all closed
cell volumes such that the conservation laws are satisfied locally [81, 271]. The
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integral form of the conservation equations (Equations 2.1 and 2.2) for an arbitrary
cell k are given by ∫

∂(Ωh)k

n · udS = 0, (2.15)∫
(Ωh)k

∂u

∂t
dΩ = −

∫
∂(Ωh)k

(n ·u)udS+ν

∫
∂(Ωh)k

n · (∇u) dS−
∫
∂(Ωh)k

npdS,

(2.16)
where (Ωh)k is the volume of cell k and ∂(Ωh)k is its boundary. dΩ is an infinites-
imal volume element and dS is an infinitesimal element of surface area.

2.2.1 Spatial discretization

We detail the spatial discretization of each term of the equations in integral form
(Equations 2.15 and 2.16) for an arbitrary cell k.

The discretization of the continuity equation (Equation 2.15) yields

∫
∂(Ωh)k

n · udS =

Nf∑
i

∫
Sf,i

n · udS ≈
Nf∑
i=1

Sf,i · uf,i =

Nf∑
i=1

φf,i = 0, (2.17)

where Nf is the total number of faces bordering the cell k and Sf = nSf is the
outward-pointing face area vector with Sf the area of the particular face. Hence,
the divergence-free constraint is not applied to the velocity, but to the face flux
φf [161]. uf is the discrete face-centered velocity field.

The discretization of the pressure gradient term of Equations 2.16 yields

∫
∂(Ωh)k

npdS =

Nf∑
i=1

∫
Sf,i

npdS ≈
Nf∑
i=1

Sf,ipf,i, (2.18)

where pf are the discrete face-centered pressure field. pf and uf are calculated for
a cell face i, using appropriate interpolation schemes, as functions of their values
at the center of the cells, in the following way, respectively

pf,i = fxpP + (1− fx)pN , (2.19)

in the case of pressure and

uf,i = fxuP + (1− fx)uN , (2.20)

in the case of velocity, where fx is the interpolation factor. It assumed that the
variables vary linearly between cell centers P and N as is shown in Figure 2.2.
The differencing scheme used is called central differencing that is second order
accurate (even on nonuniform meshes) [77]. Alternative discretization schemes
have been developed such as upwind differencing schemes [264].
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Figure 2.2: Schematic representation of the linear interpolation of velocity and pressure
from the cell center to the face of the cell. d is the distance vector between the cell centers

P and N .

Applying a central discretization stencil to the velocity divergence (Equation
2.17) and the pressure gradient (Equation 2.18) together with collocated grids often
results in spurious pressure oscillations [140]. These oscillations occur because
the compatibility relation between the divergence and gradient operators is not
satisfied (in contrast to a staggered grid) [77, 271]. This so-called checkerboard
problem is caused by a wide stencil in the PPE, which yields a pressure-velocity
decoupling of nearby grid points [60]. The basic solution for this problem is to use
the Rhie–Chow interpolation [208] for the face velocities.

The discretization of the diffusion term of the momentum equations for orthog-
onal meshes yields

∫
∂(Ωh)k

n · ∇u dS =

Nf∑
i=1

∫
Sf,i

n · ∇udS ≈
Nf∑
i=1

|Sf,i|
uN − uP
|d|

, (2.21)

where d is the distance vector between any adjacent cell centers P and N to a
particular face as shown in Figure 2.2.

Finally, the discretization of the convection term, which is nonlinear, yields

∫
∂(Ωh)k

(n · u)udS =

Nf∑
i=1

∫
Sf,i

(n · u)udS

≈
Nf∑
i=1

(Sf,i · uf,i)uf,i =

Nf∑
i=1

φf,iuf,i.

(2.22)

This shows that convection term depends on the face flux φf . In this work, the
nonlinearity of the convection term is quadratic, because face centered velocity is
obtained via linear interpolation of cell centered velocity (Equation 2.20) [129].
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2.2.2 Temporal discretization

While the spatial discretization is performed in the spatial domain, the temporal
discretization involves the evaluation of the integral of the transient term (left hand
side of Equation 2.16). The time integration can be performed using explicit and
implicit schemes. Explicit transient schemes compute the values of the quanti-
ties of interest based on the values from the previous time step. The Forward
Euler method, or simply the Euler method, is a first-order method and the most
basic method for numerical integration. Its implicit analog is the Backward Euler
Method, which is also first order. Implicit schemes are typically solved by using
either direct or iterative methods. Implicit time integration methods are, generally,
more stable than explicit schemes [77, 271].

2.2.3 Velocity-pressure coupling

Common implicit solution algorithms for collocated grids that are frequently used
in engineering applications are pressure-based methods, also known as pressure
correction or segregated methods, such as the SIMPLE and PISO algorithms [77,
271]. PISO stands for Pressure-Implicit with Splitting of Operators [128]. As
the name already reveals, the temporal discretization is treated using an implicit
differencing scheme. The PISO algorithm [128] consists of a predictor step, where
an intermediate velocity field is solved using pressure from the previous time step,
followed by a number of corrector steps (often two) for the intermediate computed
velocity and pressure fields such that (discretely) divergence free velocity fields
are obtained [278].

Another popular algorithm for the velocity-pressure coupling is the PIMPLE
algorithm [77], which is a combination of PISO and SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations [187]). The PIMPLE algorithm has some advan-
tages (over PISO) when dealing with large time steps (i.e. the maximum Courant
number may be above unity) of transient flow simulations or for complex geome-
tries [116].

2.3 General overview of reduced order CFD meth-
ods

There exist many types of reduced order modeling methods that can be categorized
in different ways [28], e.g. a posteriori vs. a priori ROMs [219], intrusive vs. non-
intrusive or physics-based vs. data-driven. Several review papers and books on the
development of reduced order modeling techniques can be found in literature. We
list here a couple of them: Lucia et al. [163] (2004) reviewed methods based on
Volterra series representations, the proper orthogonal decomposition (POD), and
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harmonic balance. Moreover, they discussed their applicability to various prob-
lems in computational physics. Benner et al. [24] (2015) surveyed the state of
the art in projection-based parametric model reduction methods. They highlight
the role of parametric model reduction in design, control, optimization, and un-
certainty quantification. Recently, Rozza et al. [219] (2018) presented advances
in the development of reduced order models with POD, reduced basis (RB) and
dynamic mode decomposition (DMD) methods with the focus on computational
fluid mechanics and related applications.

2.3.1 Projection based reduced order models

In this work, we make a distinction between reduced order modeling methods
that are projection-based and those that are not, such as truncation-based meth-
ods [215, 285], goal–oriented methods [35] and low degree-of-freedom models
that are based on input-output data [207].

The basic principle of the projection-based methods is to retain the essential
physics and dynamics of a high fidelity model by projecting the partial differen-
tial equations (PDEs) describing the fluid problem onto a low dimensional space,
called the reduced basis space [217, 269]. The result is a physics-based model that
is reduced in size [110]. Examples of methods to determine the reduced basis are
greedy algorithms [24, 201], the dynamic mode decomposition [147, 226, 256]
and the popular proper orthogonal decomposition technique [164, 235].

The proper orthogonal decomposition technique was introduced by Lumley [164]
to study the coherent structures in experimental turbulent flows. The technique is
also known as the Karhunen–Loeve expansion, principal component analysis or
empirical orthogonal functions. POD is used to formulate an optimal basis spanned
by modes to represent the most significant features of a dynamical system and is,
therefore, widely used in the development of reduced order models. Moreover,
the POD technique is commonly used for incompressible flows due to its optimal
convergence property and its applicability to nonlinear systems [25, 26].

A classical projection-based method is the POD-Galerkin projection approach
for which the reduced basis space is spanned by POD modes [203]. These modes
are obtained by applying POD on a set of high fidelity solutions (called snap-
shots) [110, 203, 235]. The projection-based methods are mostly used in combi-
nation with a finite element method as high fidelity model [48]. However, POD-
Galerkin methods for finite volume approximations have gained more and more
attention in the past years [43, 105, 149, 161, 241] due to the frequent use of the
FV method in industry as well as in academics [72, 191, 251]. The FV method
owes its popularity to its robustness [72] and its local and global conservation
properties [81, 271].

In the modeling and computation of industrial turbulent flows, RANS simula-



REDUCED ORDER MODELING METHODS IN COMPUTATIONAL FLUID DYNAMICS 23

tion is often preferred due to its relatively lower computational cost in comparison
with the more detailed large eddy simulation and direct numerical simulation. The
POD-Galerkin approach has recently been used by Lorenzi et al. [161] and Hijazi
et al. [111, 112] to reduce the RANS equations in a finite volume framework. Sta-
bile et al. [238] used a different POD-Galerkin based approach for the turbulence
closure, namely the variational multi-scale approach. Other recent efforts that deal
with POD-based ROMs using an LES approach for the turbulence modeling can be
found in [30, 91, 294]. On the other hand, Carlberg et al. [44] and Xiao et al. [288]
presented a Petrov-Galerkin projection approach for the reduced order modeling
of the Navier-Stokes equations.

2.3.2 Non-intrusive reduced order models

The main issue of the POD-Galerkin method is that knowledge of the solver’s
discretization and solution algorithm is required in order to perform the Galerkin
projection. Therefore, the method cannot be used for most (commercial) software.
Instead, non-intrusive ROMs (NIROM) [290] are using, for instance, a sparse grid
collocation approach [286, 289] or interpolation [14, 279, 286, 289, 291] to cal-
culate the POD coefficients. On the other hand, data-driven techniques, such as
system identification (SI), are using the input/output data of a dynamical system to
identify a low-dimensional system that approximately describes the dynamics of a
high-dimensional system [274] with a set of low-order ordinary differential equa-
tions (ODEs). Examples are the dynamic mode decomposition, first introduced by
Schmid [226] as a method for extracting coherent dynamic flow structures from
a set of snapshots, and the Krylov-subspace projection-based methods as shown
by Vervecken et al. [272] for the convection - diffusion equation [283]. A disad-
vantage of SI methods is that consistency issues can occur in the reduced system
for parameterized problems [10]. A non-intrusive reduced order model, based on
the POD-Galerkin projection method, for linear CFD problems is developed in
Chapter 3.

2.4 POD-Galerkin method in the finite volume set-
ting

The reduced order models that are developed in this work are based on the POD-
Galerkin technique, although different variations are applied in the next chapters.
In this section, we apply the POD technique and the Galerkin projection on the
problem described by the governing equations as defined in the previous section
(Equations 2.15 and 2.16) to explain the overall procedure to derive a POD-based
reduced order model.
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First of all, we assume that the full order solutions can be expressed as a lin-
ear combination of orthonormal spatial modes, ϕi, multiplied by time-dependent
coefficients, ai [149, 161, 241]. The velocity fields are approximated by

u(x, t) ≈ ur(x, t) =

Nur∑
i=1

ϕi(x)ai(t), (2.23)

with Nu
r the number of velocity modes. The subscript r denotes quantities associ-

ated to the ROM.
Similarly, the pressure fields are approximated by

p(x, t) ≈ pr(x, t) =

Npr∑
i=1

χi(x)bi(t), (2.24)

where χi are the pressure modes and bi are the corresponding time-dependent
coefficients with Np

r the number of pressure modes.

2.4.1 Proper orthogonal decomposition

The proper orthogonal decomposition method is used to create a reduced set of
basis functions, or so-called modes, governing the essential dynamics of the full
order model (FOM). Full order solutions are collected at certain time instances,
the so-called snapshots. The snapshots can be obtained from detailed numerical
simulations, as in this work, but they can also collected from experimental data [13,
41, 115]. However, the snapshots do not necessarily have to be collected at every
time step for which the full order solution is calculated.

The main assumption of POD is that the system’s dynamics are governed by
a reduced number of dominant modes, Nr, which are orthogonal to each other.
Therefore, the POD basis is optimal when the difference between the snapshots
and the projection of the snapshots on the basis functions is minimal for a certain
norm. The L2 norm is preferred for discrete numerical schemes [241].

The optimal POD basis space for the velocity, EuPOD = span(ϕ1,ϕ2, ...,ϕNur ),
is constructed as

EuPOD = arg min
ϕ1,...,ϕNur

1

Nu
s

Nus∑
n=1

∥∥∥∥∥∥un −
Nur∑
i=1

(un,ϕi)L2(Ω)ϕi

∥∥∥∥∥∥
2

L2(Ω)

, (2.25)

where un = u(tn) with tn the time at the nth time step and (·, ·)L2(Ω) the L2

inner product of the functions over the domain Ω. Nu
s is the number of velocity

snapshots and Nu
r ≤ Nu

s is the number of velocity modes.
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Similarly, the optimal POD basis space for the pressure, EpPOD = span(χ1,χ2,
...,χNpr ), is given by the minimization problem:

EpPOD = arg min
χ1,...,χNpr

1

Np
s

Nps∑
n=1

∥∥∥∥∥∥pn −
Npr∑
i=1

(pn, χi)L2(Ω) χi

∥∥∥∥∥∥
2

L2(Ω)

, (2.26)

where pn = p(tn), Np
s is the number of pressure snapshots and Np

r ≤ Np
s is the

number of pressure modes.
One way to compute the velocity POD modes is by applying the singular value

decomposition (SVD) to the snapshot matrix. However, the SVD approach is of-
ten computationally more expensive than solving an eigenvalue problem on the
snapshots to determine the basis functions, especially when the dimension of the
grid, used to discretize the domain, is increased [239, 241]. Instead, the velocity
POD modes are obtained by solving the following eigenvalue problem on a set of
velocity snapshots:

CuQu = Quλu, (2.27)

with
Cuij =

(
ui,uj

)
L2(Ω)

for i, j = 1, ..., Nu
s , (2.28)

where Cu ∈ RNus ×Nus is the correlation matrix of velocity snapshots, Qu ∈
RNus ×Nus is a square matrix of eigenvectors and λu ∈ RNus ×Nus is a diagonal
matrix containing the eigenvalues which are sorted in descending order [149]. The
velocity POD modes, ϕi, are then constructed as follows

ϕi =
1

Nu
s

√
λui

Nus∑
n=1

unQuin for i = 1, ..., Nu
r . (2.29)

Similarly, the pressure POD modes, χi, are obtained by solving the following
eigenvalue problem on a set of pressure snapshots:

CpQp = Qpλp, (2.30)

where Cp ∈ RNps×Nps is the correlation matrix of pressure snapshots, Qp ∈
RNps×Nps is a square matrix of eigenvectors and λp ∈ RNps×Nps is a diagonal ma-
trix containing the eigenvalues. The pressure POD modes, χi, are then constructed
as follows

χi =
1

Np
s

√
λpi

Nps∑
n=1

pnQpin for i = 1, ..., Np
r . (2.31)

The number of POD modes, Nu
r and Np

r , to span the reduced basis spaces can
be chosen according to the eigenvalue decay of eigenvalues λu and λp [241].
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2.4.2 Galerkin projection

To obtain a reduced order model, the POD is combined with the Galerkin pro-
jection, for which the full order momentum Equations 2.2 are projected onto the
reduced POD basis space of velocity:(

ϕi,
∂u

∂t
+∇ · (u⊗ u)− ν∇ · (∇u) +∇p

)
L2(Ω)

= 0. (2.32)

Solely projecting the momentum equations onto the reduced velocity basis
space does not result in a closed system at reduced order level. Therefore, the
continuity equation (Equation 2.1) is projected on the reduced basis space of pres-
sure:

(χi,∇ · u)L2(Ω) = 0. (2.33)

Substituting the approximations of the velocity and pressure fields (Equations 2.23
and 2.24) into Equations 2.32 and 2.33, the following reduced system of equations,
which consists into a system of ODEs, is obtained:{

Bra = 0,

Mrȧ+Cr(a)a− νDra+Grb = 0,
(2.34)

with

Brij =
(
χi,∇ ·ϕj

)
L2(Ω)

,Mrij =
(
ϕi,ϕj

)
L2(Ω)

,

Drij =
(
ϕi,∇ · (∇ϕj)

)
L2(Ω)

, Grij = (ϕi,∇χj)L2(Ω),
(2.35)

where Br ∈ RNpr×Nur is the reduced matrix associated with the divergence term,
Mr ∈ RNur ×Nur is the reduced matrix associated with the mass term, the ’over-
dot’ indicates the time derivative,Dr ∈ RNur ×Nur is the reduced matrix associated
with the diffusion term and Gr ∈ RNur ×Npr is the reduced matrix associated with
the pressure gradient term. These reduced matrices can be precomputed during an
offline stage except for the nonlinear term, Cr(a), associated with the convection
term. Instead, the third order tensor Cr is stored [204, 239], whose entries are
given by

Crijk =
(
ϕi,∇ · (ϕj ⊗ϕk)

)
L2(Ω)

. (2.36)

The contribution of the reduced convection term,Cr(a)a, to the residual of Equa-
tion 2.34, R, is evaluated at each iteration during the ROM simulations, or so-
called online stage, as

Ri = aTCri••a. (2.37)

The dimension of the tensor Cr (Equation 2.36) is growing with the cube of the
number of modes used for the velocity space and therefore this approach may lead
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in some cases, especially when a large number of basis functions are employed,
to high storage costs. Other approaches, such as EIM-DEIM [23, 287] or Gappy-
POD [44] may be more affordable [241].

However, following the approach described above, often leads unphysical re-
sults. In the next section, we will specify the challenges of reduced order modeling
in the finite volume setting.

2.5 Challenges of reduced order modeling in the fi-
nite volume setting

Despite the potential and the increasing popularity of FV–based POD-Galerkin
reduced order models for all sorts of applications, they tend to have issues with
accuracy and exhibit numerical instabilities [127, 133, 241]. Challenges regarding
velocity-pressure coupling and satisfying the boundary conditions at ROM level
make it difficult to generalize the ROM methods such that they can be applied
to any problem. We list the most common challenges of reduced order modeling
for computational fluid dynamics problems (in the finite volume setting) in this
section. An overview of which challenges are addressed in the next chapters is
provided at the end of this section (Section 2.5.6).

2.5.1 Nonlinear problems

Many of the challenges are related to the nonlinearity of the CFD problems. The
Navier–Stokes equations are, generally, a coupled set of nonlinear partial differen-
tial equations [22]. There are no general analytical methods for solving nonlinear
PDEs. Therefore, each problem must be considered individually. Complex fluid
dynamics problems are generally solved using discretization methods such as finite
difference, finite element, finite volume or spectral element methods.

The nonlinearity of the problems is, actually, two-fold as we can distinguish
between spatial and temporal nonlinearities. The first type of nonlinearity refers to
the nonlinear behavior of a spatial state variable [163]. The main nonlinear term of
the NS equations is the convection term of the momentum equations that describes
the effect of acceleration of a flow with respect to space [115, 180]. Only in some
specific cases, such as Stokes flow or the convection-diffusion transport equation,
the NS equations can be simplified to linear equations. Chapter 3 is devoted to the
linear convection-diffusion equation.

The second type is the nonlinear coupling of the time-varying states in the
NS equations. The mass and momentum equations are coupled via the velocity.
The pressure appears only as a source term in the momentum equation. Therefore,
there is no evolution equation for the pressure. This means that the reduced system
of equations are also coupled and need to be solved iteratively at reduced order
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level. To ensure the consistency between the FOM and the ROM, next to an initial
condition for velocity, often an initial guess for pressure is required for the system
to converge more easily [40]. Then there are highly nonlinear problems, such as
buoyancy driven flow problems that require an additional coupling between the
nonlinear momentum and energy equations. A ROM for buoyancy driven flow is
developed in Chapter 5.

Finally, it is important to note that POD is a linear technique in the sense that
all the solutions of interest can be approximated via a linear combination of a set
of basis functions. Nevertheless, it is possible to capture the nonlinearity of the
system with the POD technique, because it can account for the nonlinear coupling
of terms acting within the linear space defined by the basis functions [163].

2.5.2 Offline–online decomposition

To obtain an efficient ROM, the procedure is ideally split into a so-called offline
phase and an online phase [188, 201].

In the offline stage, solutions of the high fidelity model are obtained, which
are called snapshots. In this work, the numerical solutions are obtained with the
use of the finite volume discretization technique. The solutions are of the order
of Nh number of degrees of freedom. A number of solutions, collected over time
or for different parameter values (which are chosen in an optimal way) are then
stored. Subsequently, they are used to generate a reduced basis of a much smaller
order Nr � Nh. In this work, the reduced basis spaces are generated using POD.
All terms needed for the reduced order model formulation ( 2.34) are determined
during the offline stage. The reduced matrices associated with the linear terms
(Equation 2.35) are precomputed and stored during the offline stage. The nonlinear
terms, such as the convection term (Equation 2.36), are also precomputed during
the offline stage, but are stored as a third order tensor. The construction of the
tensor needs to be done in an efficient manner to keep the offline-online splitting.

In the online stage, the reduced system of equations (Equation 2.34) is solved
for the velocity and pressure coefficients in certain time period or for a certain
parameter value, which we explain further in the next sections.

2.5.3 Stability

Reduced order models often have to deal with numerical instabilities that are usu-
ally in the form of unphysical numerical oscillations [124]. Sometimes the numer-
ical instabilities are so strong that the ROM solutions blow up. There are several
sources of numerical instability of ROMs for fluid flows [41, 120, 241], among
which:
• Spurious pressure modes if the inf-sup condition for the reduced system is

not fulfilled;
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• Conservation law preservation;
• The non-homogeneous boundary conditions that are, generally, not being

satisfied by the ROM;
• The convection-dominated and high Reynolds number regimes;
• Loss of dissipation;
• Transient dynamics;
• The existence of unphysical local phenomena.

We address these sources in the next four subsections. The first subsection is de-
voted to the numerical realization of the pressure-term representation in the ROM,
which is also related to conservation law preservation. The second subsection is
about enforcing the boundary conditions in the ROM. In the third subsection, we
discuss the high Reynolds number regime, i.e. turbulent flows and the issue related
to dissipation. We also explicitly point out the challenges related to low Prandtl
number turbulent flows, as these type of flows are of interest in nuclear facilities
such as the MYRRHA project. In the last subsection, we underline the issues re-
lated to transient dynamics. We do not go deeper into the existence of unphysical
local phenomena, such as steep (temperature) gradients, as the local phenomena
are very problem specific.

2.5.3.1 Pressure stabilization

A ROM that is based on a coupled scheme does not always fulfill the (discrete) inf-
sup condition for the reduced system [241]. In the case of reduced basis methods,
the reduced inf-sup condition is a sufficient condition to have a unique solution that
depends on the velocity and pressure approximations [41, 149]. Thus, the condi-
tion needs to be satisfied to possess the existence and uniqueness of the solution
of the problem [33]. In the POD-ROM framework, the discrete inf-sup condition
cannot, generally, be checked a priori [41].

Several works on POD-Galerkin reduced order models have shown that the
pressure gradient term disappears from the momentum equations when the basis
for the velocity-field is (discretely) divergence-free [115, 165, 224] as pressure
acts as a Lagrange multiplier of the divergence-free constraint [41]. The resulting
‘velocity-only’ models do not require a pressure stabilization technique. This can
avoid the inf-sup stability issues [223]. However, the velocity fields in a collocated
grid setting are typically only approximately divergence free. As a result, (pres-
sure) stabilization techniques are often required. Possible stabilization techniques
found in literature are:
• The supremizer enrichment of the velocity space in order to meet the inf-sup

condition [19];
• Exploitation of a pressure Poisson equation during the projection stage [5,

180];
• A decoupled approach for the reduced velocity-pressure pair [25, 41, 161];
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• Constructing a ROM for the pressure that only uses the velocity POD modes
[180].
• Adding a pressure-stabilizing Petrov–Galerkin term to account for stabiliz-

ing the violated discrete inf-sup condition and to recover the reduced pres-
sure [18, 41, 296];

Two of the pressure stabilization techniques are compared in the work of Sta-
bile et al. [241] in the FV setting: the supremizer enrichment of the velocity space
in order to meet the inf-sup condition (SUP) and the exploitation of a pressure
Poisson equation during the projection stage. The SUP-ROM performed about an
order worse with respect to the PPE-ROM for what concerns the velocity field, but
better for what concerns the pressure field. This difference can be explained by
the fact that within a supremizer stabilization technique, the POD velocity space
is enriched by non-necessary (for the correct reproduction of the velocity field)
supremizer modes.

The reduced order models tested Chapter 4 and Appendix A are developed
using the PPE approach, while the steady-state ROM described in Chapter 6 is
constructed for which the velocity and pressure modes share the same basis.

Moreover, the work of Stabile et al. [241] also shows that even using the
supremizer enrichment technique or exploiting the PPE, the ROM velocity and
pressure fields are about one or two orders less accurate than the fields obtained
by projecting the FOM solutions onto the POD basis spaces. This is even the
case for nonparametric laminar flow cases, such as the lid-driven cavity flow prob-
lem [241]. Therefore, we develop an efficient nonparametric ROM for the in-
compressible NS equations on collocated grids that does not require a pressure
stabilization in Chapter 7. The novel reduced order models are developed by per-
forming a Galerkin projection based on a fully (space and time) discrete full order
model formulation. As as result, the ROM formulations for the incompressible NS
equations, which includes pressure, are fully corresponding with the FOM formu-
lations and no additional pressure stabilization method is needed.

2.5.3.2 Boundary conditions

Boundary conditions (BC) are essential for defining flow problems. The ROM
needs to be able to satisfy the boundary conditions of the underlying FOM. POD-
based reduced order models naturally satisfy the homogeneous BCs as the POD
basis functions, which are defined as linear combination of the snapshots, satisfy
automatically the homogeneous BCs. The same accounts for the ROM. How-
ever, the non-homogeneous BCs are, in general, not satisfied in the ROM as not
all linear combinations of snapshots used for the creation of the POD basis will
satisfy the non-homogeneous BCs of the FOM. Furthermore, the BCs are not ex-
plicitly present in the reduced system and, therefore, they cannot be controlled
directly [161]. Two common approaches for handling the BCs are the lifting func-
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tion method and the penalty method [93]. The aim of the lifting function method
is to have homogeneous POD modes and to enforce the BCs by means of a prop-
erly chosen lifting function in the ROM. On the other hand, the penalty method
enforces the BCs in the ROM with a penalty factor.

An advantage of the lifting function method is that the functions can be de-
termined in the offline phase. Nevertheless, it may be hard to find functions that
will lead to an accurate ROM. The functions are system-specific, need to be phys-
ical and they have to satisfy the divergence free constraint in order to retain the
divergence-free property of the snapshots [239]. Therefore, extensive testing of
ROMs for different functions can be necessary. On the other hand, the penalty
factor cannot be determined a priori [93], which is a disadvantage of the penalty
method. Moreover, the penalty factor needs to be chosen above a certain threshold
to enforce the BCs in the ROM, but can lead to an inaccurate ROM solution if it
is too high [234]. Determining (a range of) suitable penalty factors is usually done
by numerical experimentation [29, 93, 134, 161]. In Chapter 4 the implementa-
tion of an iterative solver to determine the penalty factor to save time compared
to performing numerical experimentation manually is proposed. Also, detailed
descriptions of both the lifting function method and penalty method are given in
Chapter 4.

Furthermore, the boundary control methods can also be applied in the case of
parametric boundary condition problems and in the case of time-dependent bound-
ary conditions. An example of a boundary control application from the nuclear
field is the coupling of a system thermal-hydraulic codes with a three-dimensional
CFD solver [20, 260]. However, the gain in computational time of such a coupled
model is still limited by the CFD part. To overcome this burden, the system code
can be coupled with a reduced order model of the high fidelity CFD solver. For
transient problems, time-dependent boundary conditions of the ROM are then to
be controlled based on the BCs obtained from the systems codes. We will continue
on this in Appendix A.

Finally, a ‘discretize-then-project‘ approach [152], i.e. projecting the fully dis-
crete system, simplifies the treatment of the velocity boundary conditions. A re-
cent study on ROMs on a staggered grid [223] demonstrated that the boundary
conditions of the discrete FOM can be inherited by the ROM via the projection of
the boundary vectors. With this approach, no additional boundary control method,
such as the commonly applied penalty [93, 134, 161, 234] or lifting function meth-
ods [79, 93, 239, 262], is needed to handle the BCs at the ROM level. We will
investigate this approach on collocated grids in Chapter 7.

2.5.3.3 Turbulence

Projection-based ROMs have been mainly developed for laminar flows [219]. A
relatively small number of studies on ROMs for turbulent flows have been reported



32 CHAPTER 2

in the literature among which, but not limited to, [78, 180]. Only a few studies are
based on the finite volume methods [87, 111, 112, 161]. This is in contrast to the
full order level for which a large variety of closure models for turbulent flows have
been developed [219].

The Reynolds number of a flow, which is defined as the ratio of the inertial
forces to the viscous forces within the fluid, indicates whether the flow can be
considered laminar or turbulent. At high Reynolds numbers, the flow is dominated
by the inertial forces and thus turbulent. Turbulent flows are characterized by
three-dimensional eddies at various scales of motion. The large eddies carry most
of the energy and extract the energy from the mean flow. These eddies are unstable
and break up into smaller eddies. Finally, the eddies reach a sufficiently small
length and energy scale that the viscosity can dissipate the kinetic energy into heat.
In this way, the energy is transferred from the large scales to the smaller ones. This
is known as the theory of the Richardson-Kolomogrov cascade or the turbulence
energy cascade [142, 209]. The challenge of developing ROMs for turbulent flows
is mainly about resolving the dissipative regime of the turbulence energy cascade.

Usually, only a few POD modes are sufficient to represent the kinetic energy
of the flow due to the energetic optimality of the POD basis functions. POD trun-
cation is used to reduce the size of the system. Therefore, only a few modes that
contain the largest amount of energy, which are associated to the large eddies of
the flow, are included in the ROM. However, the main amount of viscous dissipa-
tion takes place in the small eddies represented by the higher order modes, which
are the most dissipative. Nevertheless, these higher order modes are left out by
the POD truncation as they are less energetic. Therefore, the amount of dissi-
pation in the ROM may be less than that in the FOM, because the high-energy
modes that contribute to dissipation are truncated in the POD approach [25]. Con-
sequently, the ROM is not able to dissipate enough energy and can blow up [161].
Another issue when applying the Galerkin projection on RANS equations is that
the interaction between the averaged mean flow and the oscillating part of the flow
field represented by the POD modes is neglected. This can lead to an unstable
ROM [149]. Introducing additional dissipation via a closure model [25] by model-
ing the interaction between the calculated modes and the non resolved modes have
been demonstrated to improve ROM stability [120]. Also in the case of developing
an LES-ROM, the derivation of the ROM closure model to improve the accuracy
and instability of the standard POD-Galerkin ROM is challenging [185, 280, 293].
Other solutions are numerical dissipation by introducing a fictitious eddy viscosity
or modeling a stabilizing dissipative term at ROM level [161].

A specific type of turbulent flows are low-Prandtl number fluid turbulent flows.
Especially their associated turbulent heat fluxes are complicated to model numer-
ically as heat conduction through the boundary layer has more dominant effect
with respect to convection. Therefore, the thermal boundary layers become thicker
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when the Prandtl number is decreased. This means that there is a difference in the
range of the spatial (and temporal) scales of temperature and velocity. As a con-
sequence, the conductive heat fluxes near walls become more important. There-
fore, it is problematic to apply the Reynolds analogy, which assumes a constant
turbulent Prandtl number, Prt, close to unity, to calculate the local turbulent heat
fluxes [213]. Furthermore, Pr influences not only the temperature field and the
heat flux modeling, but also the velocity field and the shear modeling in the case
of buoyancy-aided flows [100]. Therefore, heat transfer in liquid metals, compared
to common fluids with a Prandtl number around unity, requires additional or dif-
ferent (physical) modeling. We will develop a ROM for low Prandtl number fluid
flows in Chapter 6.

2.5.3.4 Transient dynamics and long term behavior

In general, it is challenging to develop a ROM for unsteady flows. The transient
behavior, in particular the causality with the evolution over time, should be cap-
tured by the snapshots. The snapshots are typically collected at several instances
in time during a certain time period [104, 149, 206]. The reduced order models can
be used to determine solutions for a time evolution that are different from those of
the original simulation or for long time integration.

To enhance the performance of the ROM one should concentrate the snapshots
in the time span where the system exhibits the most nonlinear behavior [241].
However, it is difficult to determine the optimal distribution of snapshots in a given
time span, which influences the ROM performance. A too low number of snap-
shots and/or the snapshots are not optimally distributed in time could result in a
high (relative) ROM error. We will not research this aspect in this work. Instead,
the snapshots are equally distributed in time in this work. Some techniques to
optimally select the snapshots are described in [146, 193, 281].

Furthermore, it is difficult to accurately predict long-term transient behavior
using reduced order models. The behavior of the flow in the long-term is not al-
ways contained in the snapshots and thus not in the modes [149]. Also for periodic
regime solutions, the reduced order model might not reproduce the periodic cycles
on the long term [239]. The ROM solution can diverge from the periodic solution
over time due to different sources of error, even if the ROM is initialized with the
correct periodic state [5, 234]. For the long time integration of convection domi-
nated flows some type of closure model might be needed [149]. In [46] the ROM
is stabilized by an additional damping term such that the energy transfer between
the ROM modes is taken into account.
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2.5.4 Parametric problems

Parametric reduced order models are being developed to obtain low-cost but ac-
curate solutions of a system for different values of the parameters. Especially
when a large number of different system configurations need to be tested, for in-
stance for control purposes, sensitivity analyses or uncertainty quantification stud-
ies, the parametric ROM reduces the computational time. A comprehensive sur-
veys of projection-based model reduction methods for parametric dynamical sys-
tems is given in [24]. We highlight here three types of parametrization: physical
parametrization, parametric boundary conditions and geometrical parametrization.

Examples of physical parameters are the viscosity or non-dimensional numbers
that are characterizing the flow. For this type of parametric problems, the equations
governing the system behavior depend on a set of parameters. The approximation
properties of the POD bases depend then on the parameter points for which the
snapshots are computed. In general, a POD basis computed at a single parameter
point is not a good approximation for solutions computed at different parameter
points [149]. Therefore, it is required to sample in parameter space. The challenge
is to determine the optimal selection of snapshots in parameter space. Often a
greedy RB method is applied for parametric problems to select locally optimal
sampling points [149, 270] based on the (estimated) error between the FOM and
the ROM.

Also the (time-dependent) boundary conditions can be parametrized by as-
signing a new value to the boundary condition at ROM level. In Chapter 4 it is
explained how to parameterize the BCs using the penalty method and the lifting
function method.

Geometrical parameterizations are especially challenging as they require mod-
ifying the velocity space in order to manage the divergence-free constraint [149].
A common strategy for geometrical parametrization in the context of finite ele-
ment based reduced order models is mapping different geometries from the phys-
ical domain to a common reference domain [242]. This has been widely studied
in [123, 216, 218, 220]. However, even if possible, this approach cannot be easily
transferred to a finite volume setting [219]. As an alternative, immersed methods
can be used in the FV setting. The equations are then written on the same physical
domain for all geometries to be studied and the immersed structure is treated as an
external forcing term [219]. The most recent advances on geometric parametriza-
tion in the finite volume setting can be found in [242]. Despite the numerous of
possible applications, such as shape design optimization, we will not consider ge-
ometrical parametrization in this research.

The parametric ROMs are, generally, only accurate in the range of parameter
values for which the snapshots are collected [109]. If several parameters and/or
a wide range of parameter values need to be tested, multiple local reduced order
models need to be constructed, which is time consuming. Also if a time-dependent
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problem is parametrized, thus a combined time and parameter-dependent problem,
the standard POD method can become too expensive as several sets of snapshots
for different parameter values are required [87, 141, 241]. A solution is the nested
POD method which approximates the global POD space by solving one small
eigenvalue problem for each local parameter space. The local POD bases are then
weighted by the eigenvalues and a global snapshot matrix is created by appending
the local weighted POD basis. A standard POD is then performed on the global
snapshot matrix. The method is more efficient than the standard POD method since
the computational effort of the former scales with the total number of snapshots
while the nested POD method scales with the dimension of the global snapshot
matrix [87].

For all types of parametrization, it is important that the parameter value can be
adjusted in the ROM during the online phase without the need to recalculate the
reduced matrices in order to guarantee the offline-online decomposition. This is
not trivial in the case of nonlinear problems.

2.5.5 Sources of errors

As pointed out in the previous subsections, reduced order models are often devel-
oped for evaluating solutions on new sets of parameter values or for time evolutions
that are different from those of the original simulations [24, 78, 103].

Reduced order models are computationally more efficient than the underlying
high fidelity models as they are reduced in size, i.e. the ROMs contain a lower
number of degrees of freedom compared to the FOMs. Therefore, the ROM has,
generally, a lower accuracy than the FOM [96, 149]. Thus, there is a trade off
between efficiency and accuracy.

It is hard to estimate the ROM errors (e.g. due to spatial and or temporal
discretization [125, 295]) and to provide meaningful error bounds for the ROM
solutions for the (unsteady) Navier-Stokes equations [149]. On top of that, it is
especially hard to determine, both a priori and a posteriori, the errors in the frame-
work of finite volume based reduced order modeling for which velocity and pres-
sure belong to discontinuous spaces [241]. A posteriori error bounds in the finite
element framework are exploited by Veroy et al. [268] for parametrized steady NS
equations. Error estimates for POD Galerkin methods based on the spatial and
temporal discretization errors are provided by Kunisch et al. [145]. In the frame-
work of finite volumes, Haasdonk [105] et al. derived rigorous a posteriori error
estimates in various norms for linear parabolic and hyperbolic evolution equations
in the framework of finite volumes. An a priori error estimate for a ROM for the
linearized compressible Euler equations is derived by Kalashnikova et al. [133].
We will not derive error estimates and error bounds in this work. Instead, we fo-
cus on the error analysis by quantifying the POD truncation error and computing
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the (relative) error of solutions for a specific norm to show the performance of the
ROMs regards to predicting the behavior of the underlying FOM.

2.5.5.1 POD truncation error

Ideally, the reduced basis for the ROM that accurately predicts the provided snap-
shots are identified a priori. However, the high-dimensional, nonlinear, multi-scale
nature of the fluid flow causes the system to be highly sensitive to which (and how
many) modes are included in the reduced basis spaces. Only the most energetic
modes are included in the reduced basis space. The error resulting for leaving out
the higher modes is called the POD truncation error. To estimate which modes to
include in the reduced basis space, the ratio between the sum of the retained POD
modes versus the sum of the whole set of eigenvalues of the correlation matrix
can be used. This ratio is also called the relative information content (RIC) and is
given by

RIC :=

∑Nr
i=1 λi∑Ns
i=1 λi

, (2.38)

where λi is the eigenvalue of a certain mode. The preferred RIC is case dependent.
Moreover, if the square root of a retained eigenvalue associated with a certain
mode is on the order of numerical precision, it will become close to singular. Then
the modes contain mostly numerical noise, which has a detrimental effect on the
accuracy of the ROM [149].

2.5.5.2 Relative error

In a standard finite element framework, the H1 norm is preferred for the velocity
field since its natural functional space is H1 [241]. However, in a finite volume
setting, both velocity and pressure belong to discontinuous spaces. The preferred
error norm for discrete numerical schemes and to measure the accuracy of the
ROM with respect to the FOM is the L2 norm [40, 241] as already defined in
Section 2.4.1. The relative L2 error of the fields can be determined for each time
step or parameter point to show the performance of the proposed methods. We
consider the following three types of fields at a time instance tn: the full order
fields Xn, the projected fields Xn

r , which are obtained by the L2 projection of the
snapshots onto the POD bases and lastly, the predicted fields Xn

ROM obtained by
solving the ROM. The relative basis projection error for every time instance tn

and/or parameter point µk is computed as follows

ε̂L2
(tn, µk) =

‖X(tn, µk)−Xr(t
n, µk)‖L2(Ω)

‖X(tn, µk)‖L2(Ω)
, (2.39)

which is the ‘best possible’ error at every time instance or parameter point. The
time or sample-averaged basis projection error can also give a good indication of
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the induced error by the POD truncation. The prediction error is determined by

εL2
(tn, µk) =

‖X(tn, µk)−XROM (tn, µk)‖L2(Ω)

‖X(tn, µk)‖L2(Ω)
. (2.40)

The relative prediction error is compared with the basis projection error.

2.5.6 Overview

Table 2.1 summarizes the challenges that are addressed in the consecutive chapters.

Table 2.1: Overview of the reduced order modeling challenges per chapter.

Chapter 3 4 5 6 7 A
Non-linearity (spatial) x x x x x
Transient dynamics x x x x x
Pressure term present in ROM x x x
Buoyancy x x
Turbulence closure x x
Non-homogeneous BCs x x x x x x
Time-dependent BCs x x x
Long time behavior x x
Parametric ROM x x x x x x





3
POD-identification reduced order

model of linear transport equations

In this chapter, a non-intrusive reduced order modeling method that identifies the
system matrix of linear fluid dynamical problems with a least-squares technique is
presented. The results of this chapter are published as [245].

3.1 Introduction

As pointed out in Section 2.3.2, the main issue of the POD-Galerkin reduced order
modeling method is that knowledge of the high fidelity solver’s discretization and
solution algorithm is required in order to perform the Galerkin projection. There-
fore, the method cannot be used for most (commercial) software.

In this chapter, a POD-based identification (POD-ID) method is proposed, for
which reduced system matrices of the same form as in the POD-Galerkin method
are identified using a least-squares technique. A set of ordinary differential equa-
tions (ODEs), still describing the physical model, is then obtained. The resulting
ROM can be used for controlling the (time-dependent) non-homogeneous Dirich-
let boundary conditions instead of having to perform a high fidelity simulation for
every BC of interest. The boundary conditions are imposed in the ROM with a
penalty factor [93].

This chapter is organized as follows: In Section 3.2 the scalar transport equa-
tion is introduced for which the full order simulation is performed. The methodol-
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ogy of the POD-based identification method is addressed for parametrized bound-
ary conditions together with the boundary control method in Section 3.3. In Sec-
tion 3.4 the reduced order modeling technique is tested for a numerical experiment
and the results are provided and discussed in Sections 3.5 and 3.6, respectively.
Finally, conclusions are drawn in Section 3.7.

3.2 The convection-diffusion scalar transport equa-
tion

In this work the unsteady convection-diffusion scalar transport equation in incom-
pressible form is considered, given by

∂T
∂t +∇ · (〈u〉T )−∇2(DT ) = 0 in Ω,

T (x, t) = f(t) on Γlid,

T (x, t) = 0 on Γwall,

T (x, 0) = T0 in Ω,

(3.1)

where 〈u〉 is a constant velocity field, T is the transported scalar, T0 is the initial
scalar field, t denotes time and D is the diffusion coefficient divided by the fluid
density and the heat capacity, which are both constant. The boundary of the do-
main, Ω ⊂ R2, is divided in two parts: Γ = Γwall ∪ Γlid, where u = (ulid,0) on
Γlid and u = (0,0) on Γwall. It is important that the given constant background
velocity field, 〈u〉, satisfies the continuity equation ∇ · u = 0 for incompressible
flows. This flow field can be obtained from a standard CFD model and hence its
calculation is not described further. Discretizing the transport equation in space
and rearranging in matrix form leads to the following system of equations:{

Ṫ +CT −DDT = 0,

T (0) = T 0,
(3.2)

where the ‘over-dot’ indicates the time derivative, C and D are the matrices as-
sociated with the convection and diffusion terms, respectively. T 0 is the initial
condition.

3.3 POD-ID reduced order model of the scalar trans-
port equation

In this section, the methodology of the proposed POD-based identification method,
as a non-intrusive reduced order method (NIROM) for linear CFD problems, is
described.
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3.3.1 POD-based identification

Using the POD technique, the scalar function, T , in Equation 3.1 is replaced by
the approximation, Tr, which is given by

T (x, t) ≈ Tr(x, t) =

Nr∑
i=1

φi(x)ai(t), (3.3)

where φi(x) are the POD modes, ai(t) are the time-dependent coefficients and Nr
is the dimension of the reduced basis space [145, 205, 284].

The optimal POD basis space, EPOD, is constructed by minimizing the differ-
ence between the snapshots and their orthogonal projection onto the reduced basis
for the L2 norm:

EPOD = arg min
φ1,...,φNr

1

Ns

Ns∑
n=1

∥∥∥∥∥T (x, tn)−
Nr∑
i=1

(T (x, tn), φi(x))L2
φi(x)

∥∥∥∥∥
2

L2(Ω)

,

(3.4)
whereNs is the number of snapshots. This procedure is according to the methodol-
ogy that is described in the Section 2.4.1. To obtain the POD modes, the following
eigenvalue problem is solved

CcorrQ = Qλ, (3.5)

where Ccorrij =
(
T (x, ti), T (x, tj)

)
L2(Ω)

is the correlation matrix, Q is a square
matrix of eigenvectors and λ is a vector containing the eigenvalues. The POD
modes, φi, can then be constructed as follows

φi(x) =
1

Ns
√
λi

Ns∑
n=1

T (x, tn)Qin for i = 1, ..., Nr. (3.6)

By applying the classical Galerkin projection onto the reduced basis, see also
Section 2.4.2, the following ROM is obtained

ȧ+Cra−DDra = 0, (3.7)

where
Drij = (∇φi,∇φj)L2(Ω), (3.8)

Crij = (φi,∇ · (〈u〉φj))L2(Ω). (3.9)

However, the main issue of this method is that knowledge of the solver’s dis-
cretization and solution algorithm is required in order to perform the Galerkin
projection. Furthermore, the full order matrices, D and C, in Equation 3.2 are
not accessible within most CFD codes, due to restricted access to the source code
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in commercial software or due to the used solution methodology for open-source
codes [272]. Therefore, it is also not an option to apply a Galerkin projection on
the matrices of the full order systems in the following way

Dr = ΦTDΦ, (3.10)

Cr = ΦTCΦ, (3.11)

where Φ = [φ1, φ2, ..., φNr ]. Thence, the POD-based identification method aims at
identifying these reduced matrices using a least-squares technique such as normal
equations, QR-decomposition or SVD by minimizing the residual,R,

R = ȧ+Cra−DDra, (3.12)

in the following way [
D̂r Ĉr

]
= min
Dr, Cr

‖R‖ . (3.13)

In Equation 3.12, the time-dependent coefficients are constructed via a projec-
tion of modes on the full order solution

an = ΦTT n, (3.14)

where T n ≈ T (tn) is the solution at the nth time step.
In addition, when the dynamical system is linear, no sources or sinks are

present and the variables, for instance the diffusion coefficient D , are not a func-
tion of a parameter µ ∈ parameter space P , the ROM can be simplified by the
assumption that the time-dependent coefficients are related via the linear mapping

Ara
n+1 = an for n = 0, ..., Ns − 1, (3.15)

whereAr is an unknown matrix to be identified using a least-squares approach. In
order to do that, two matrices,X0 andX1, are constructed that contain the known
time-dependent coefficients at certain times in the following way

X0 = [a0,a1, ...,aNs−1], (3.16)

X1 = [a1,a2, ...,aNs ], (3.17)

to satisfy Equation 3.15 as good as possible for each time step in which the snap-
shot is collected, by minimizing the difference between ArX1 and X0. There-
fore, the reduced matrix,Ar, is computed by minimizing the norm

Ar = arg min
Âr

∥∥∥ÂrX1 −X0

∥∥∥ , (3.18)
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using a least-squares technique. A similar approach is applied for the dynamic
mode decomposition, where the snapshots are assumed to be related via a lin-
ear mapping and the discrete-time linear system is then fitted on the set of snap-
shots [9]. The POD-ID method differs in the sense that the mapping is done at
the reduced level instead of the high-dimensional level at which the snapshots are
obtained. The maximum number of modes to be considered, Nr, is of the order√
Ns as an overdetermined system is required in order to identify a reduced matrix

Ar of size Nr × Nr.
Finally, three types of scalar fields are considered: the full order fields T , the

projected fields Tr, which are obtained by the projection of the FOM snapshots
onto the POD basis, and the prediction fields TROM . For every time instance, n,
the relative basis projection error, ε̂`2 , is given by

ε̂`2(tn) =
‖T n − T nr‖`2
‖T n‖`2

, (3.19)

with T nr = ΦΦTT n and relative prediction error, ε`2 , is given by

ε`2(tn) =
‖T n − T nROM‖`2

‖T n‖`2
, (3.20)

with T nROM = Φan. For both errors the `2 norm is considered.

3.3.2 Boundary conditions

The non-homogeneous BCs are added as an additional constraint to the transport
equation in order to weakly enforce the boundary condition for the ROM with a
penalty factor [93, 134, 161, 205, 234]. No modification of the snapshots is needed
other than adding the boundary points in case these are not present, otherwise the
ROM could become unstable. The constraint is added to the transport equation in
the following way

∂T

∂t
+∇ · (〈u〉T )−D∇2(T ) + τΛ(T − TBC(t)) = 0, (3.21)

where TBC(t) is the (time-dependent) Dirichlet boundary condition, τ the penalty
factor and Λ is a null function except on the boundary where the condition is
imposed [161]. In order to have an asymptotically stable solution, the penalty
factor τ should be larger than 0. In case τ → ∞ a strong imposition would be
approached and the ROM becomes ill-conditioned. This penalty factor can be
found by numerical experimentation [29, 93, 161].

At reduced order level, after a Galerkin projection, this translates to

ȧ+Cra−DDra+ τ(Ora− Pr(t)) = 0, (3.22)
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where P is the projection of the boundary values on the modes at the boundary
andO the modes projected on the reduced basis at the boundary domain, Γ, given
respectively, by

Pri(t) = (φi, TBC(t))`2(Γ) , (3.23)

Orij = (φi, φj)`2(Γ) . (3.24)

For the POD-ID method, without the parametrization of the diffusion coeffi-
cient, the reduced system is given by

(Ar + τO)an+1 = an + τP (tn), (3.25)

that can be solved for an+1, depending on the boundary, TBC(t), applied. The ini-
tial condition for the ROM is obtained by projecting the full order initial condition
for the parametrized BC onto the POD basis as follows

a0 = ΦTT 0. (3.26)

where T 0 contains the values of the initial parametrized (time-dependent) Dirich-
let boundary condition TBC(t0).

The overall algorithm for the POD-ID method including the penalty method is
given below.
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Algorithm: POD-ID method including penalty method
Create ROM with POD-ID method:
(1) Generate snapshots by solving the linear full order problem of Equa-
tion 3.1;
(2) Perform POD on the snapshots to obtain the POD modes Φ using Equa-
tion 3.6;
(3) Project the snapshots on the modes to obtain the corresponding coeffi-
cients a using Equation 3.14;
(4) Retrieve the matrices X0 and X1 from the coefficients with Equa-
tions 3.16 and 3.17;
(5) Identify the reduced matrix Ar by minimizing the norm∥∥∥ÂrX0 −X1

∥∥∥ with a least-squares technique as in Equation 3.18;
(6) Project the initial field for the parametrized BC onto the POD basis to
get the initial condition a0 for the ROM using Equation 3.26;
Impose BCs with penalty method:
(7) Project the values for the parametrized non-homogeneous Dirichlet
boundary on the modes to determine P using Equation 3.23;
(8) Project the modes on the reduced basis at the same boundary domain of
previous step to determineO using Equation 3.24;
(9) Set a value for the penalty factor τ ;
Solve reduced order model:
(10) Solve the reduced order problem of Equation 3.25 for the time period
[t1, tNs ];
(11) if the boundary is not enforced in ROM solution then

set a new value for τ and go back to step (10).
end if

(12) Reconstruct the full order fields from the obtained coefficients using
Equation 3.3;

3.4 Numerical test case of an enclosed heated cavity

The POD-ID method is tested for the classical numerical two-dimesional lid-driven
cavity benchmark problem [32, 227] with the addition that the moving lid of the
cavity is heated [252]. A sketch of the geometry of the square cavity of length L =
1 m on which a (512× 512) uniform mesh is constructed is depicted in Figure 3.1.
The boundary of the domain is divided in two parts: Γ = Γwall ∪ Γlid, where
u = (1,0) on Γlid and u = (0,0) on Γwall. A homogeneous Neumann boundary
condition for the pressure is applied everywhere on Γ.

The constant background velocity field is precomputed first in the offline phase
for isothermal laminar flow with Re = 1000. The viscosity, ν, is taken at 1 · 10−4

m2/s. The initial condition for the velocity, u0, is set to 0 m/s and the reference
value for the pressure is set to 0 m2/s2 at coordinate (0,0). The calculation of
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the flow field is performed in the OpenFOAM environment [283], a finite volume
open-source code [129, 177, 271], with the icoFoam solver for t = 50 s with time
steps of 0.01 s. The velocity field obtained at final simulation time, t = 50 s, is
taken as the constant background velocity field for the convection-diffusion prob-
lem (Equation 3.1). In fact, any constant flow field could be chosen.

Figure 3.1: A sketch of the geometry of the heated lid-driven cavity problem including
boundary conditions.

The unsteady scalar transport equation (Equation 3.1) is solved for the scalar
quantity T , which is in this case the dimensionless temperature, with the thermal
diffusion constant D equal to 1 · 10−5 m2/s and the constant background flow field
equal to the one previously obtained. A homogeneous Dirichlet BC is applied on
Γwall and a non-homogeneous BC with TFOMlid = 1 on Γlid. The initial condition
is set to T0 = 0. The simulation is performed with the scalarTransportFoam solver
of OpenFOAM with an implicit scheme for the time discretization. A constant
time step of ∆t = 1 · 10−3 s has been applied. Snapshots of the temperature are
collected every 0.1 s, resulting in a total of 1000 snapshots. The POD modes
and ROM are constructed according to Sections 2.4.1 and 3.3.1, respectively. The
time-independent BC for the ROM, TROMlid , could be chosen freely, although it
should be of the same order as TFOMlid for which the POD has been performed
to avoid discrepancies, as the statement “If it is not in the snapshots, it is not in
the ROM” by Quarteroni et al. [205] still applies. The BCs are enforced with the
penalty method according to Section 3.3.2 and the ROM is tested for TROMlid = 0.5,
2 and 10. As the system is linear, parameterizing the time-independent Dirichlet
BC on Γlid is straightforward as the FOM solutions can be scaled according to a
BC of interest and no ROM has to be constructed. Nevertheless, the ROMs are
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constructed in order to demonstrate the capability of the POD-ID method.
Finally, the ROM is tested for a time-dependent boundary condition given by

T (x, 1, t) = Asin(2πft) +B, (3.27)

where f is the frequency of the wave,A the amplitude andB the off-set. Full order
solutions, with this time-dependent BC, are calculated for f = 0.01 s−1, A = 1 and
B = 1, which will be referred to as the base case (set 1 in Table 3.1). The ROM
is tested for five sets of parameters that are defining the Dirichlet BC, summarized
as set 2-5 in Table 3.1. To evaluate the accuracy of the POD-ID method for all
ROMs, the relative prediction error is calculated according to Equation 3.20.

Table 3.1: Parameter sets for time-dependent Dirichlet BCs defined by Equation 3.27

f A B
Set 1 0.01 1 1
Set 2 0.01 2 1
Set 3 0.01 1 3
Set 4 0.01 2 3
Set 5 0.011 1 1
Set 6 0.02 1 1

In the offline phase, the snapshots are created with OpenFOAM, while in the
second part of the offline phase, creating the POD modes and constructing the
reduced system of equations (Equation 3.7), is performed with MATLAB [173].
Also the online phase, solving the reduced order systems for different Dirichlet
boundary conditions is done with MATLAB. The whole offline-online procedure
is carried out with a single core of an Intel Core i5-6300U processor. The ROM’s
online computational time depends on the number of modes and is no longer de-
pendent on the number of degrees of freedom of the FOM.

3.5 Results and analysis
In this section the accuracy of the ROM is tested for both time-independent and
time-dependent Dirichlet BC. Before these tests, the background velocity is pre-
computed. The flow field is shown together with the corresponding pressure field
in Figure 3.2. Then, the full order simulation for the time-independent Dirichlet
BC TFOMlid = 1 is performed until t = 100 s. The evolution of the temperature field
in time is shown in Figure 3.3 for t = 1, 10, 50 and 100 s.
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Figure 3.2: (Left) the background velocity field in m/s and (right) the corresponding pres-
sure field in m2/s2 for the lid-driven cavity simulation at t = 50 s.

Figure 3.3: Evolution of the temperature with TFOMlid = 1 (base case) inside the cavity for
time instances t = 5, 50 and 100 s.

During the offline phase the reduced basis for the temperature was calculated
following the procedure described in Section 3.3. The decay of the normalized
POD eigenvalues is plotted in Figure 3.4 in order to determine the number of basis
functions needed to create the reduced subspace. The figure shows that 18 basis
functions are required to have a truncation error less than 10−6. The cumulative
eigenvalues (CV) can be found in Table 3.2 and 36 modes are sufficient to retain
more than 99.9% of the energy for temperature. However, as pointed out in Sec-
tion 3.3.1, the maximum number of modes to be considered is of the order

√
Ns,

which is 31 modes for a snapshot matrix containing 1000 snapshots. 31 modes
correspond to a truncation error less than 10−7 and more than 99.8% of the energy
for temperature is retained, so this number is used for the reduced basis.
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Figure 3.4: Normalized POD eigenvalues of the base case with time-independent
boundary conditions.

Table 3.2: Cumulative eigenvalues (CV) of the base case for temperature.

# of modes CV of T
1 0.71253
2 0.82443
3 0.87342
4 0.90353
5 0.92473

10 0.97132
20 0.99333
31 0.99806
36 0.99901

One reduced matrix, containing all linear terms, is determined as last in the
offline phase with the least-squares technique (QR-decomposition) in order to de-
scribe the reduced system. The ROM is in the same form as Equation 3.7. In the
online phase the ROM is solved for the same initial and boundary conditions as
for the FOM and a numerical experimentation is performed on the penalty method
on a couple of values for τ , namely 1, 10, 100, 1000 and 10.000. It is found
that a penalty factor of 100 enforces the BCs without afflicting the ROM with ill-
conditioning problems. Also a factor of 1000 and 10.000 did not lead to unstable
solutions. Therefore a penalty factor τ = 1000 is chosen for all ROM simulations.
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3.5.1 Imposing time-independent boundary conditions

The constructed ROM is tested for TROMlid = 0.5, 1, 2 and 10. The ROM simu-
lations are performed until t = 100 s for a constant time step of 0.1 s. Full order
simulations have been performed for comparison. A cross-section of the temper-
ature field for x = 0.5 m at t = 100 s is plotted in Figure 3.5. The accuracy of
the ROM is analyzed by calculating the relative prediction error of the tempera-
ture fields (Equation 3.20) and comparing it with the relative basis projection error
(Equation 3.19) of the FOM snapshots onto the POD basis in Figure 3.6. The
ROM is describing the system almost as accurate as projecting the first 31 modes
for any of the tested BCs.
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Figure 3.5: Cross-section of the temperature field for x = 0.5 m at t = 100 s. TFOMlid = 1 is
the base case and the ROM is tested for TROMlid = 0.5, 1, 2 and 10 with the penalty method.
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Figure 3.6: Time evolution of the basis projection error and the relative error in the ROM
with respect to the FOM for TROMlid = 0.5, 1, 2 and 10.

For the full order simulation a computational time of 165 minutes is required
to collect 1000 snapshots. Generating the POD modes and determining the re-
duced matrix, Ar, by solving the least-squares problem in the offline phase re-
quires about 6 s and 0.6 s, respectively.

3.5.2 Imposing time-dependent boundary conditions

In order to construct a ROM for time-dependent BCs, snapshots have to be com-
puted for a FOM with a similar BC as for which the ROM has to be constructed.
The time-dependent Dirichlet BC of the FOM is therefore given by Equation 3.27
with amplitudeA = 1, frequency f = 0.01 Hz and offsetB = 1. The time-dependent
BC is enforced in the ROM with the penalty method according to the methodology
described in Section 3.3. Snapshots are collected every 0.1 s for the temperature,
resulting in a total number of 1000 snapshots. As done previously, 31 modes are
used for the ROM construction. No other parametrization is considered and thus
only one reduced matrix, containing all linear terms, is determined with the QR-
decomposition technique. ROM simulations are carried out for the parameter set
2, 3 and 4 (listed in Table 3.1). For each of the BCs a full order simulation is
performed to compare the ROM solution. Figure 3.13 shows the comparison of
the temperature fields for t = 100 s for the FOM, the corresponding ROM and the
relative error between the two. Cross-sections of the temperature field at x = 0.5
m and at y = 0.5 m in in for t = 80 s are plotted in Figure 3.7 and Figure 3.8,
respectively.
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Figure 3.7: Cross-section of the temperature field at x = 0.5 m at t = 80 s. The time-
dependent BCs are listed in the legend with f = 0.01 Hz.
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Figure 3.8: Cross-section of the temperature field at y = 0.5 m at t = 80 s. The time-
dependent BCs are listed in the legend with f = 0.01 Hz.
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These figures show that the full order solution cannot simply be scaled as done
previously for the time-independent BCs. Nevertheless, the ROMs are capable
of approximating the FOM solutions. For each ROM the relative prediction error
error is compared with the relative error of the temperature reconstruction from
the time-dependent coefficient given by projection of the snapshots onto the POD
functions in Figure 3.9. The relative errors for the ROMs are of the same order
as the basis projection and decrease, on average, up to about 80 s, meaning that
the reduced model is stable in that time interval. The prediction errors slightly
increase near the end of the ROM simulation, following the trend of the relative
basis projection error. The error can be reduced by adding more modes to the
basis. However, as the POD-ID method requires the system to be overdetermined,
the maximum number of modes that can be used for identifying the ROM is set
by the square root of the number of snapshots, meaning that 31 modes is near the
limit when only 1000 snapshots are used for the POD, instead of only one set as
in this work. In order to add more modes to the POD basis, one needs to increase
the number of snapshots. Each ROM simulation required a computational time of
about 2 s. The speed-up is thus of the order O(10−3) compared with simulation
the FOM.
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Figure 3.9: Time evolution of the basis projection error and the relative error in the ROM
with respect to the FOM. The time-dependent BCs are listed in the legend with f = 0.01 Hz.
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Finally, the frequency of the time-dependent BC is parametrized and ROM
simulations are carried out for the parameter set 5 and 6 (listed in Table 3.1) using
the same basis (set 1 in Table 3.1) as for previous cases. Cross-sections of the
temperature field at x = 0.5 m and y = 0.5 m are plotted in Figure 3.10 and Fig-
ure 3.11, respectively. The relative errors are plotted in Figure 3.12. Even when
the frequency is increased by 10%, the relative error is still of the same order of
the basis projection. However, doubling the frequency results in an increase of the
relative error by one order after about 10 s of simulation time.
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Figure 3.10: Cross-section of the temperature field at x = 0.5 m at t = 80 s. The time-
dependent BCs are listed in the legend with f = 0.01 Hz.
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Figure 3.11: Cross-section of the temperature field at y = 0.5 m at t = 80 s. The time-
dependent BCs are listed in the legend with f = 0.01 Hz.
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Figure 3.12: Time evolution of the basis projection error and the relative error in the ROM
with respect to the FOM for different frequencies.
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Figure 3.13: Comparison of the temperature field for the FOM (left) and ROM solutions
(middle) at t = 100 s for parameter set 1 - 4 (from top to bottom). The absolute difference
between the ROM and corresponding FOM is plotted on the right. All ROMs are obtained
with 31 modes.
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3.6 Discussion

The ROMs constructed with the presented POD-ID method for controlling the
non-homogeneous time-independent Dirichlet BC are capable of approximating
the full order solutions for the linear unsteady convection-diffusion equation as the
relative error of the main variable, namely the temperature, is of the same order as
the projection error of the snapshots onto the POD basis.

In this study, the penalty factor of 1000 was determined via numerical exper-
imentation. The main advantage of the penalty method is that it can be applied
non-intrusively. However, that the factor cannot be determined a priori is a draw-
back of the method [93]. Also, although it has not been observed here, it is possible
that a penalty factor needs to be chosen above a certain threshold to enforce the
BC in the ROM, which then will lead to an unstable ROM solution [234]. The
range of the factor for which the solution is stable can for instance be determined
using Poincaré maps [234]. Also the bounds on the factor that ensure asymptotic
stability of the ROM can be derived [134].

The relative prediction error increases when the frequency of the time-dependent
BC is doubled. There are two ways to increase the number of snapshots in order
to reduce the error and to enhance stability. First of all, more full order sets can
be used for the POD. For example, adding full order snapshots for f = 0.03 Hz
to the snapshot matrix in order to parametrize the frequency in the interval [0.01,
0.03] Hz in the ROM. This can be combined with the second method to increase
the snapshot matrix, namely by sampling the full order solution more frequently.
Then, more modes can be used to identify the reduced matrix with the least-squares
technique as, in order to keep the system overdetermined, the size of the reduced
matrix is limited by the square root of the number of snapshots. Even more snap-
shots would be required in the case of nonlinear systems, because then at least
as many reduced matrices are to be identified as there are modes to be stored in
the offline phase [161, 239, 241]. For example, the nonlinear convective term of
the Navier-Stokes equations can be approximated by aTCra, where Cr is a third
order tensor. Then, the reduced problem grows with the cube of the number of
modes in order to maintain an offline-online decomposition. Consequently, more
snapshots are required to keep the system overdetermined in order to identify all
these matrices. In that case, the required number of snapshots scales with the cube
of the number of modes required. Otherwise, many matrices will be empty in
case the system is not overdetermined and the problem becomes ill-conditioned.
Therefore, it is not fully feasible to use the POD-ID method for fully nonlinear
problems.

In theory, one can solve the ROM for a different time step, ∆t̃, than used in
the FOM, simply rewriting the problem of Equation 3.15 in the following way:
an+1(1 +Ar∆t̃)−1 = an. However, the ROM becomes unstable when approx-
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imating the solution for time instances at which no snapshots are collected for
the POD, because the POD-ID method identifies a reduced matrix with the least-
squares technique that fits the full order snapshot data, like a black-box system,
and is not capable of approximating the solution at intermediate time instances.

Besides, it is redundant to construct a ROM in order to impose the time-
independent BC of the linear problem investigated in this chapter. One can sim-
ply obtain the results for the parametrized BCs at the same time instances for
which snapshots were collected, as parameterizing the Dirichlet BC condition only
changes the solution with respect to a reference point. This does, however, not
apply to the control of time-dependent BCs as then the solutions do not scale lin-
early with respect to a reference point. In that case, when intermediate results
are required, interpolation techniques could be used to approximate the solution
at intermediate times. The same applies also for the long time stability of the
ROM. Furthermore, parameterizing the BCs could be done for any given back-
ground velocity field, including those of turbulent flows. As long as there is no
two-way coupling between the fluid flow and the heat transfer, the problem stays
linear and could be described by a single reduced matrix. Moreover, other types
of parametrization could be applied, for instance, parameterizing the diffusion co-
efficient. However in that case, not just one, but two reduced matrices have to be
identified, one for the diffusion and one for the convection term.

Finally, the speed-up is of the order O(103). Less modes could be used to
speed up the calculation even more, but the error will then increase and the ROM
could become unstable.

3.7 Conclusion

In this chapter, it has been demonstrated that the proposed POD-based identifica-
tion method is capable of constructing a ROM that could be used for controlling
the non-homogeneous time-(in)dependent Dirichlet BCs of the scalar transport
convection-diffusion equations by enforcing the BCs in the ROM with a penalty
method rather than having to perform a high fidelity simulation with the finite
volume approximation for every BC of interest. However, the ROM could only
approximate the solution at the same time instances the snapshots are collected
for determining the POD basis. Nevertheless, the POD-ID method together with
the penalty method could be applied for linear problem that require boundary con-
trol. For instance, determining the heat transport by airflow in a room for transient
thermal analysis for buildings where the temperature at a wall is the parameter of
interest or for pollution dispersion modeling where the concentration is controlled.
However, the main shortcoming of the POD-ID method, at this stage, is that it is
not feasible to use the method for fully nonlinear problems as the required number
of snapshots scales with the cube of the number of modes and at least as many
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reduced matrices are to be identified as the number of modes used. Therefore,
the following chapters are devoted to the POD-Galerkin method, which has better
nonlinear properties than the POD-ID method. Furthermore, in the case of a larger
parameter space to be investigated, one has to perform the POD on snapshots col-
lected for more parameter values and/or one has to sample more frequently in order
to capture the full dynamics of the system.





4
Methods to impose boundary

conditions in POD-Galerkin reduced
order models

Handling the boundary conditions at the reduced order level is one of the chal-
lenges that are highlighted in Section 2.5. In this chapter, POD-Galerkin reduced
order models are developed of which the (time-dependent) boundary conditions
are imposed at the reduced order level using two different strategies: the lifting
function method and the penalty method. Moreover, the penalty method, which
was applied in the previous chapter, is improved by using an iterative solver for
the determination of the penalty factor rather than tuning the factor with a sensitiv-
ity analysis or numerical experimentation. The results of this chapter are accepted
as [248].

4.1 Introduction

Non-homogeneous boundary conditions are, in general, not satisfied at the reduced
order level. Furthermore, the BCs are not explicitly present in the ROM and there-
fore they cannot be controlled directly [161].

In literature [93, 134, 161, 239], different approaches to control the ROM BCs
can be found. Two common approaches are extended and compared in this chapter:
the lifting function method and the penalty method. The aim of the lifting function
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method [93, 239] is to homogenize the BCs of the basis functions contained in the
reduced subspace and to control the boundary condition values at the ROM level
using a suitable control function, while the penalty method [93, 134, 161, 234]
weakly enforces the BCs in the ROM with a penalty factor. A disadvantage of
the penalty method is that it relies on a penalty factor that has to be tuned with
a sensitivity analysis or numerical experimentation [234]. Therefore, an novel
iterative method is presented for tuning the penalty factor in the context of finite
volume based POD-Galerkin reduced order methods. The novelty of this method
is that a error tolerance for the enforced BC has to be set instead of an arbitrary
value for the factor. Also the factor is determined automatically by iterating rather
than manually via numerical experimentation.

The reduced order models investigated in this chapter are constructed with
the POD-based Galerkin projection technique according to Section 2.4 and the
exploitation of a pressure Poisson equation during the projection stage.

This chapter is organized as follows: in Section 4.2 the full order and re-
duced order models are presented together with the exploitation of a pressure Pois-
son equation during the projection stage. In Section 4.3, the two boundary con-
trol methods are presented: the lifting function method and the iterative penalty
method. In Section 4.4, the set-up of two numerical experiments, a lid-driven cav-
ity and a Y-junction test case, are given and the results are provided and discussed
in Section 4.5 and 4.6, respectively. Finally, conclusions are drawn in Section 4.7.

4.2 Exploitation of the pressure Poisson Equation

In this chapter, the POD-Galerkin reduced order models are based on the exploita-
tion of a pressure Poisson equation during the projection stage. At the full or-
der level, the fluid dynamics problem is physically described by the unsteady
incompressible Navier–Stokes equations where the incompressibility constraint
∇ · u = 0 is replaced by a pressure Poisson equation. In an Eulerian frame-
work on a domain Ω ⊂ Rd with d = 2, 3 and boundary Γ = Γwall ∪ Γin ∪ Γout,
the governing system of equations is given by

∂u
∂t +∇ · (u⊗ u)−∇ · (ν∇u) = −∇p+ F in Ω,

∆p = −∇ · (∇ · (u⊗ u)) +∇ · F in Ω,

u(x, 0) = u0(x) in Ω,

u(x, t) = f(x, t) on Γin,

u(x, t) = 0 on Γwall,

n · ν∇u− np = 0 on Γout,

n · ∇p = −n ·
(
ν∇×∇× u+ ∂f

∂t

)
+ n · F on Γ,

(4.1)
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where u = u(x, t) represents the vectorial velocity field that is evaluated at x ∈ Ω

and p = p(x, t) is the normalized scalar pressure field, which is divided by the con-
stant fluid density ρ, ν is the kinematic viscosity andF is a body force term. u0(x)

denotes the initial condition of the velocity at time t = 0 s. The (time-dependent)
non-homogeneous Dirichlet boundary condition of velocity on Γin is represented
by f(x, t) and a no-slip condition is applied on Γwall. Furthermore, a homoge-
neous Neumann boundary condition for velocity and a homogenous Dirichlet BC
for pressure are applied on Γout. n denotes the outward pointing normal vector on
the boundary. The equations are presented here in a general format. The problem-
specific (boundary) conditions are specified in Section 4.4, in which the numerical
experiments are presented. Note that the boundary condition for the pressure dif-
fers from the one in Equation 2.4. Different ways to enforce a boundary condition
for the pressure term are possible as pointed out in [97, 159]. In this chapter, the
same condition as used in the work of Stabile et al. [241] is applied. For more de-
tails on the derivation of the PPE the reader is referred to J.-G Liu et al. [159]. The
full order equations are discretized with the finite volume method and solved using
a PIMPLE [77] algorithm for the pressure-velocity coupling, which is a combina-
tion of SIMPLE [187] and PISO [128].

The reduced order model is obtained following the POD-Galerkin procedure
described in Section 2.4.1. The projection of the governing equations (Equa-
tion 4.1) onto the reduced basis spaces for velocity and pressure results in the
following reduced system of equations{

Mrȧ+ aTCra− νDra+Grb = 0,

Vrb+ aTKra− νNra− Trȧ = 0,
(4.2)

with

Mrij =
(
ϕi,ϕj

)
L2(Ω)

, Drij =
(
ϕi,∇ · (∇ϕj)

)
L2(Ω)

,

Grij = (ϕi,∇χj)L2(Ω), Crijk =
(
ϕi,∇ · (ϕj ⊗ϕk)

)
L2(Ω)

,

Vrij = (∇χi,∇χj)L2(Ω),Krijk =
(
∇χi,∇ · (ϕj ⊗ϕk)

)
L2(Ω)

,

Trij =
(
χi,n ·ϕj

)
L2(Γ)

, Nrij =
(
n×∇χi,∇×ϕj

)
L2(Γ)

,

(4.3)

where the last two terms of the reduced PPE are projected on the boundary Γ.
Equation 4.3 consists only of first order derivatives as integration by parts of the
Laplacian term is used together with exploiting the pressure boundary condition
after the PPE is projected onto the POD space spanned by the pressure modes. In
that way, the numerical differentiation error can be reduced [241]. Following the
same strategy as in Equation 2.37, the nonlinear term in Equation 4.2 is evaluated
by storing the third order tensorKr.

It is important to note that the equations of the reduced system (Equation 4.2)
are coupled. The system of nonlinear equations can be solved using an iterative
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approach. Moreover, the pressure is only defined up to an arbitrary constant, as in
the FOM. Therefore, next to an initial condition for velocity, an initial guess for
pressure is required for the system to converge more easily and to ensure the con-
sistency between the FOM and the ROM [40]. The initial conditions and guesses
for the reduced order model are obtained by performing a Galerkin projection of
the full order initial field onto the POD basis spaces as follows

a0
i = (ϕi,u(x, 0))L2(Ω) , b

0
i = (χi, p(x, 0))L2(Ω) , (4.4)

for velocity and pressure, respectively.

4.3 Boundary control methods at the reduced order
level

The non-homogeneous BCs are, in general, not satisfied in a POD-based ROM as
the basis functions, and in the same way their BCs, are a linear combination of the
snapshots. Furthermore, the BCs are not explicitly present in the reduced system
and therefore they cannot be controlled directly [161]. Two common approaches
are presented in this section for handling the BCs: the lifting function and the
penalty method [93]. The aim of the lifting function method is to have homoge-
neous POD modes and to enforce the BCs by means of a properly chosen lifting
function in the ROM. On the other side, the penalty method enforces the BCs in
the ROM with a penalty factor. In this work only the velocity BCs are controlled
with the two methods.

4.3.1 The lifting function method

The lifting function method for the non-homogeneous boundary conditions is often
used in the continuous Galerkin finite element setting to reformulate a boundary
control problem into a distributed one [31, 54, 64]. The method imposes the non-
homogeneous (Dirichlet) conditions to the problem through lifting. This is done
by subtracting the lifting function from the unknown variable in the original PDE
problem, solving for the modified variable and adding the lifting function to the
solution [262].

In a similar way, this method is used to impose non-homogeneous (Dirich-
let) boundary conditions in reduced order models for which the lifted fields are
projected onto the reduced bases spanned by the POD modes [79].

In this work, the velocity snapshots are made homogeneous by subtracting
suitable lifting functions from all of them on which then the POD is performed.
The result is a set of velocity modes that individually fulfill the homogeneous
BCs as they are linear combinations of the modified velocity snapshots. The lift-
ing functions, which fulfill the original non-homogeneous boundary conditions,
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are then added to a linear combination of POD basis functions. As a result, the
non-homogeneous Dirichlet boundary conditions are included in the reduced basis
space spanned by the POD modes and the lifting functions.

This lifting function method is also known as the “control function method” in
literature [5, 93, 148] for PDE problems whose Dirichlet boundary conditions can
be parametrized with a single time-dependent coefficient [262]. This is the type
of problem that is presented in this work. The method is generalized in [103] for
generic functions with multiple parameters at distinct boundary sections.

The functions to be chosen are system-specific and they have to satisfy the
divergence free constraint in order to retain the divergence-free property of the
snapshots [239].

One way to generate a lifting function, ζ̃(x), is by solving a problem as close
as possible to the full order problem, where the boundary of interest is set to its
value and everywhere else to a homogeneous BC. There are several other ways
to compute the lifting function. For instance, the snapshot average can be used,
although this does not always lead to a discretely divergence-free function. Alter-
natively, the solution of the stationary version of the considered problem can be
computed [37]. Two other common approaches are solving a non-homogeneous
Stokes problem [79, 82, 90] or solving a potential flow problem [69, 113].

As one of the characteristics of the POD modes is that they are orthonormal,
the lifting functions are normalized as follows

ζ(x) =
ζ̃(x)

‖ζ̃(x)‖L2(Ω)

, (4.5)

before subtracting them from all snapshots and applying POD. The snapshots,
u(x, t), are then modified accordingly

u′(x, t) = u(x, t)−
NBC∑
j=1

ζj(x)uBCj (t), (4.6)

where NBC is the number of non-homogeneous BCs, ζ(x) is a normalized lifting
function and uBC is the normalized value of the corresponding Dirichlet boundary
condition.

The POD modes, ϕ′i, that satisfy the homogeneous boundary conditions are
obtained by solving an eigenvalue problem as described in Section 2.4.1 on the
homogenized snapshotsu′(x, t). The lifting functions are then added as additional
modes to the reduced velocity basis space

E′u =
[
ζ1, ..., ζNBC ,ϕ

′
1, ...,ϕ

′
Nur

]
. (4.7)
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Consequently, the velocity field are approximated by

ur(x, t) =

NBC∑
j=1

ζj(x)uBCj (t) +

Nur∑
i=1

ϕ′i(x)ai(t), (4.8)

which satisfies the boundary conditions of the problem and uBC can be time-
dependent. The Dirichlet boundary condition can be parametrized by assigning a
new value to uBC in Equation 4.8. In other words, the lifting functions can be
scaled by a factor.

Finally, the initial condition of velocity for the reduced order model is obtained
by performing a Galerkin projection of the initial full order velocity field with a
new value of uBC imposed onto the reduced basis space of velocity E′u (Equa-
tion 4.7).

For more details on the lifting function the reader is referred to [87, 239]. The
overall algorithm for the lifting function method is given below.
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Algorithm 1: Lifting function method
OFFLINE PHASE
Solve full order model:
(1) Generate snapshots over a time period [0, T ] by solving the full order
problem of Equation 4.1;
Obtain the lifting functions:
(2) Generate the lifting functions by solving a flow problem:

for i = 1 to NBC do
for j = 1 to NBC do

if i = j then
u|Γj = 1

else
u|Γj = 0

end for
Solve a flow problem for ζ̃i

end for;
(3) Normalize the lifting functions to obtain ζ as in Equation 4.5;
(4) Subtract the normalized lifting functions from the velocity snapshots as
in Equation 4.6;
Perform POD:
(5) Obtain the POD modes using the homogenized velocity snapshots and
pressure snapshots according to Section 2.4.1;
(6) Add the normalized lifting functions, ζ, as additional modes to the set
of velocity POD modes ϕ according to Equation 4.7;
Projection:
(7) Project the full order system onto the obtained reduced bases as done in
Section 4.2 and obtain the reduced order model;

ONLINE PHASE
Solve reduced order model:
(8) Project the initial field of velocity for the parametrized BC onto the
POD velocity basis to get the initial condition of velocity for the ROM and
the initial guess for pressure according to Equation 4.4;
(9) Solve the reduced order problem of Equation 4.2 in the time period [t1,
tonline];
(10) Reconstruct the full order velocity fields from the obtained coefficients
using Equation 4.8 and the pressure fields according to Equation 2.24;

4.3.2 The iterative penalty method

The penalty method was originally proposed in the context of finite element meth-
ods [16, 158]. The method transforms a strong non-homogeneous Dirichlet bound-
ary condition into a weak Neumann boundary condition by the means of a small
parameter whose inverse is called the penalty factor [197]. Thus, the method
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uses a penalty parameter to weakly impose the boundary conditions. In the POD-
Galerkin reduced order modeling setting, the penalty method has been first intro-
duced by Sirisup and Karniadakis [234] for the enforcement of boundary condi-
tions. For the penalty method, no modification of the snapshots is needed as the
velocity Dirichlet BCs are directly enforced as constraints in the reduced system
in the following way:

Mrȧ+ aTCra− νDra+Grb+

NBC∑
l=1

τl (Olra− uBCl(t)Plr) = 0, (4.9)

where τ is the penalty factor [234] and the additional terms with respect to Equa-
tion 2.34 are projected on the boundary as follows

Olrij =
(
ϕi,ϕj

)
L2(Γl)

for l = 1, ..., NBC and i, j = 1, ..., Nu
r ,

P lri = (ϕi,Λ)L2(Γl)
for l = 1, ..., NBC and i = 1, ..., Nu

r ,
(4.10)

where Λ is a unit field. This minimization problem is formulated at the reduced
order level and, therefore, the penalty method does not depend on the full order
snapshots.

In order to have an asymptotically stable solution, the penalty factors τ should
be larger than 0. If τ →∞ the solution generally converges to a true optimal solu-
tion of the original unpenalized problem [117]. Nevertheless, a strong imposition
would be approached and the ROM becomes ill-conditioned [70, 161]. Therefore,
the penalty factor needs to be chosen above a threshold value for which the method
is stable and converges [59, 70]. On the other hand, it is important to find a penalty
factor as small as possible to obtain a numerical stable solution. This is usually
done by numerical experimentation [29, 93, 134, 161].

Several techniques exist in literature to optimize the numerical experimenta-
tion. Kelley [138, page 214] used a simple iteration scheme to optimize the trial-
and-error process of the numerical experimentation. With this scheme the penalty
value is adjusted each iteration by using the absolute value of the ratio between the
constraint violation and a preassigned tolerance as a factor to increase or decrease
the values at the end of each iteration. Basically, the idea is that the penalty factor
obtained by the iteration scheme is optimal in the sense that it perturbs the original
problem by a minimum for the given tolerance [122].

In this work the experimentation is optimized using a first-order iterative op-
timization scheme [155] to determine the factors that is based on the iteration
scheme described in the previous paragraph. The penalty factors, τ , are updated
each iteration k, as follows

τk+1
l (tn) = τkl (tn)

∣∣rkl (tn)
∣∣

ε

= τkl (tn)

∣∣ũkBCl(tn)− uBCl(tn)
∣∣

ε
for l = 1, ..., NBC ,

(4.11)
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with rk(tn) the residual between ũkBC , the value of a certain boundary at the kth it-
eration, and uBC , the enforced boundary condition, at an evaluated time tn. ũkBC is
obtained during the online phase by reconstructing the boundary. ε > 0 is the given
error tolerance for the residual which has to be set. There is no single approach
that can be considered the best for choosing ε, as the preferred tolerance depends
on the problem and on both physical and geometrical parameters. The eigenvalue
truncation error of the POD modes gives a good indication for the value of ε. The
penalty method is therefore no longer based on an arbitrary value for the penalty
factor.

As long as
∣∣ũkBCl(tn)− uBCl(tn)

∣∣ > ε the penalty factors grow every update
and converge to the smallest penalty factors that satisfy the required tolerance.
Thus, if the initial guess for the factor is below the minimum value for τ for which
the boundary condition is enforced in the ROM, the factor is approached from be-
low using this method. For a time-dependent problem it is not needed to determine
a penalty factor for all time steps Nt. Often the factor determined after the first
couple of time steps, Nτ , can be used for the whole ROM solution.

The step-by-step demonstration of the iterative function method is given below
by Algorithm 2.
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Algorithm 2: Iterative penalty method
OFFLINE PHASE
Solve full order model:
(1) Generate snapshots over a time period [0, T ] by solving the full order
problem of Equation 4.1;
Perform POD:
(2) Obtain the POD modes using the snapshots according to Section 2.4.1;
Impose BCs with penalty method:
(3) Project the modes on the reduced basis at the boundary of the domain
to determine Olr and Plr for each non-homogeneous Dirichlet boundary
condition as in Equation 4.10;
(4) Solve iteratively for the penalty factor using Equation 4.11:

for i = 1 to Nτ do
while

∣∣ũkBCl(ti)− uBCl(ti)∣∣ > ε do

τk+1
l (ti) = τkl (ti)

|ũkBCl (ti)−uBCl (ti)|
ε

end while
end for;

Projection:
(5) Project the full order system onto the obtained reduced bases and obtain
the reduced order model according to Section 4.2;

ONLINE PHASE
Solve reduced order model:
(6) Project the initial fields for the parametrized BC onto the POD bases to
get the initial condition/guesses for the ROM using Equation 4.4;
(7) Solve the reduced order model in the time period [t1, tonline];
(8) Reconstruct the full order fields from the obtained coefficients using
Equations 2.23 and 2.24 ;

It is important to note that the penalty factor can affect the number of iterations
needed to solve the reduced system and therefore the convergence and cost of the
reduced order model [181].

4.4 Numerical test cases
In this section, the set-up of two cases are described for which the boundary control
methods, the lifting function method and the iterative penalty method, are tested.
The first test case is the classical lid-driven cavity benchmark problem and the
second test case is a Y-junction with two inlets and one outlet channel whose time-
dependent inlet boundary conditions are controlled.
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4.4.1 Lid-driven cavity flow problem

The first test case consists of a lid-driven cavity problem. The simulation is carried
out on a two-dimensional square domain of length L = 0.1 m on which a (200
× 200) structured mesh with quadrilateral cells is constructed. The boundary is
subdivided into two different parts Γ = Γlid ∪ Γwall. The boundary conditions for
velocity and pressure are set according to Figure 4.1. The pressure reference value
is set to 0 m2/s2 at coordinate (0,0). At the top of the cavity a constant uniform
and horizontal velocity equal to u = (ulid,0) = (1,0) m/s is prescribed. A no slip
BC is applied at the walls, Γwall. The kinematic viscosity is equal to ν = 1 · 10−4

m2/s and the corresponding Reynolds number is 1000, meaning that the flow is
considered laminar.

Figure 4.1: Sketch of the geometry of the 2D square cavity with moving top lid including
boundary conditions.

The unsteady full order equations are iteratively solved by the FV method with
the pimpleFoam solver of the open source C++ library OpenFOAM 6 [130]. The
PIMPLE algorithm is used for the pressure-velocity coupling [77]. For the full
order simulations, the spatial discretization of all terms is performed with a central
differencing scheme (linear). The temporal discretization is treated using a second
order backward differencing scheme (BDF2). A constant time step of ∆t = 5 ·
10−4 s has been applied and the total simulation time is 10 s. Snapshots of the
velocity and pressure fields are collected every 0.01 s, resulting in a total of 1001
snapshots (including 1 for the initial condition). The initial condition field with
ulid = 1 m/s is used as a lifting function.

For this test case the same boundary conditions are applied in the ROM as in
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the FOM for which the snapshots are collected. The temporal discretization of the
ROM is performed with a first order Newton’s method.

POD, projection of the full order solution on the reduced subspace and the re-
duced order simulations are all carried out with ITHACA-FV, a C++ library based
on the finite volume solver OpenFOAM. For more details on the ITHACA-FV
code, the reader is referred to [239, 240, 241].

4.4.2 Y-junction flow problem

Junctions are often used for the combination or separation of fluid flows and can be
found in all types of engineering applications from gas transport in pipes till micro
flow reactors. As a second test case a Y-junction with one outlet channel and two
inlet channels is modeled. The angle between each inlet and the horizontal axis is
60 degrees, as shown in Figure 4.2 on the left [250]. The length of the channels is
2 m.

The 2D geometry is split in 6 zones as depicted in Figure 4.2 on the left. On
the three rectangular zones a mesh with quadrilateral cells is constructed. The
remaining three zones are meshed with hexagonal cells. The different meshes are
depicted in Figure 4.2 on the right. The total number of cells is 13046.

The boundary is subdivided into four different parts Γ = Γin1 ∪ Γin2 ∪ Γout ∪
Γwall. The two inlets, Γin1 and Γin2, have a width of 0.5 m, while the outlet, Γout,
has a width of 1 m. The kinematic viscosity is equal to ν = 1 · 10−2 m2/s meaning
that the Reynolds number at the inlet is 50 and the flow is considered laminar. The
uniform inlet velocities are time dependent and the velocity magnitude of the flow
at the inlets is set according to Figure 4.3.

A homogeneous Neumann boundary condition is applied for pressure at the
inlet and wall boundaries. At the outlet, Γout, p = 0 m2/s2 together with a homo-
geneous Neumann BC for velocity. A no slip BC is applied at the walls, Γwall.

As initial conditions the steady state solution, obtained with the simpleFoam
solver, for a velocity magnitude of 1 m/s at both inlets is chosen. The other bound-
ary conditions are the same as for the unsteady simulation described above.

As done previously for the lid-driven cavity case, the unsteady governing equa-
tions are iteratively solved by the FV method with the pimpleFoam solver of
OpenFOAM 6 [130]. For the full order simulations, the discretization in space is
performed with a central differencing scheme for the diffusive term and a combina-
tion of a second order central-differencing and upwind schemes for the convective
term. The temporal discretization is treated using a second order backward differ-
encing scheme (BDF2). A constant time step of ∆t = 5 ·10−4 s has been applied
and the total full order simulation time is 12 s for which snapshots of the velocity
and pressure fields are collected every 0.03 s, resulting in a total of 401 snapshots
(including 1 for the initial condition).
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Figure 4.2: (Left) sketch of the geometry and mesh of the Y-junction test case including
boundary conditions. (Right) close up of the mesh in different zones.

The inlet velocity BCs are time-dependent and the velocity magnitude of, al-
ternately, inlet 1 or 2 is increased or decreased linearly between 1 m/s to 0.5 m/s
as shown in Figure 4.3.
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Figure 4.3: Inlet velocity boundary conditions for the full order model for the Y-junction
test case.
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Figure 4.4: Inlet velocity boundary conditions for the reduced order model for the Y-
junction test case.

In that way, the ROM is trained for all possible combinations of inlet veloci-
ties within the specified range. The inlet boundary conditions of the ROM are then
controlled according to Figure 4.4, where the inlet velocity magnitude is increased
or decreased linearly over time between the maximum of 1 m/s and the minimum
of 0.5 m/s. The magnitude of the inlet velocities of the ROM decreases and in-
creases faster or slower over time compared to the training run. Also the ROM is
tested for a longer time period, 18 s, compared to the full order simulation of 12 s.
In that way the ROM performance can be tested on the long term.

The temporal discretization of the ROM is performed with a first order New-
ton’s method.

Both the iterative penalty method and lifting function method are tested. The
lifting functions are determined by solving for a potential flow field problem given
by 

∇ · u = 0 in Ω,

∇2p = 0 in Ω,

n · ν∇u− np = 0 on Γout,

(∇p(x, t))n = 0 on Γ 63 Γout,

(∇u(x))n = 0 on Γwall,

u(x) = f1(x) on Γin1,

u(x) = f2(x) on Γin2,

(4.12)

with the magnitude of the inlet velocity at inlet 1, Γin1, set to 1 m/s while inlet 2,
Γin2, is kept at 0 m/s as shown in Figure 4.5 for the first lifting function. To obtain
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the second lifting function, ‖u‖ = 0 m/s at Γin1 and 1 m/s at Γin2. Both lifting
functions are shown in Figure 4.5.

Figure 4.5: The lifting functions for velocity for the Y-junction test case.

The test case of a Y-junction is more complicated than the lid-driven cavity
case as not only one, but two boundaries need to be controlled, which are also
time dependent. Furthermore, as the channel inlets are placed under an angle,
one needs to take into account that the inlet velocity can be decomposed in an
x and a y-direction. Therefore, the vectorial lifting functions are split into their
components before normalization. Also in the case of the penalty method, four
penalty factors are determined; one for each inlet and each direction. This will be
further discussed in section 4.6.

4.5 Results and analysis

4.5.1 Lid-driven cavity flow problem

First the full order simulation for the lid-driven cavity test case is performed and
1001 velocity and pressure snapshots are collected, including the initial conditions,
which are then used to create the POD basis functions. Stabile and Rozza [241]
concluded in their research that 10 velocity and pressure modes are enough to re-
tain 99.99% of the energy contained in the snapshots. Therefore, the same number
of modes for the reduced basis creation are used in this work.

Reduced order models are constructed with both the lifting function and penalty
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method and compared with a ROM without boundary enforcement. With the use
of the iterative procedure a penalty factor of 0.058 is determined within 2 itera-
tions by evaluating only the first five time steps with a maximum error tolerance,
ε, of 10−5 for the value of the boundary condition of the ROM and starting from
an initial guess of 10−6. For a similar study of the lid-driven cavity benchmark,
Lorenzi et al. [161] had found a factor between 10−5 and 102 using numerical ex-
perimentation. The value found here using the iterative method is thus within the
same range and near their minimum value. A higher value for the penalty factor
can be used, but it is then more likely that the ROM becomes ill-conditioned.

The obtained ROMs are tested for the same initial and boundary conditions as
the high fidelity simulation. The evolution in time of the relative L2 error between
the reconstructed fields and the full order solutions is plotted in Figures 4.6 and 4.7
together with the basis projection for velocity and pressure, respectively.

In case no boundary enforcement method is used the flow field remains zero
throughout the simulation and therefore the relative error is 1. When either the lift-
ing function or penalty method is used the relative L2 error for both the velocity
and pressure fields are about the order of 10−1 due to the relatively low num-
ber of snapshots acquired during the initial part of the transient. The snapshots are
equally distributed in time, while this time span exhibits the most nonlinear behav-
ior. Therefore one should concentrate the snapshots in this time span to enhance
the performance of the ROM [241]. After about 2 seconds of simulation time,
for both boundary control methods, the relative error drops till about the order of
10−3. At the final time of the simulation the penalty method is performing slightly
better than the lifting function method, but the order is the same.

Contrary to velocity, the relative error for pressure stays about 4·10−1 after 2 s
of simulation time, while the projection error drops till about 10−3. This has been
previously acclaimed by Stabile et al. in [239]. The PPE stabilization method is
less accurate concerning pressure compared to the supremizer enrichment method.
This has also been found by Kean and Schneider [137] in the finite element-based
ROM setting. Furthermore, the absolute error between the FOM and the ROMs is
shown in Figure 4.9 and 4.10 for velocity magnitude and pressure, respectively.

It is observed that both methods lead, for velocity, to an absolute error between
the FOM and the ROM of the order 10−2 at the beginning of the simulation and
about 10−3 once the flow has reached its steady state solution. Furthermore, the
velocity error slightly increases between 5 and 10 s of simulation time. This can
also be observed in the L2 error analysis over time in Figure 4.6. For pressure,
the error is largest near the top corners of the cavity and are of the order 10−3.
Note that the scale does not show the whole range of absolute errors. This is done
to better visualize the error. The maximum error for pressure is about 5·10−2

m2/s2 at the top right corner. As the pressure relative to its reference point at
(0,0) plotted in Figure 4.10 is always less than 1 Pa, the relative error plotted in
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Figure 4.7 is greater than the absolute error plotted in Figure 4.10. Furthermore,
the error distribution, for both the velocity and pressure fields, is similar all over the
domain, meaning the methods are performing the same, as previously confirmed
by the L2 error analysis over time in Figures 4.6 and 4.7.
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Figure 4.6: Time evolution of the basis projection error and the relative L2 error of velocity
between the FOM and ROM with the lifting function and penalty method for the lid-driven
cavity problem.
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Figure 4.7: Time evolution of the basis projection error and the relativeL2 error of pressure
between the FOM and ROM with the lifting function and penalty method for the lid-driven
cavity problem.
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The relative error for the total kinetic energy is determined and plotted in Fig-
ure 4.8. The order is more or less the same for both boundary control methods.
From time to time the penalty method is performing slightly better and the other
way around and the relative velocity error is less than 10−2 for the vast part of the
simulation.
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Figure 4.8: Time evolution of the relative L2 error of kinetic energy between the FOM and
ROM with the lifting function and penalty method for the lid-driven cavity problem.

Finally, the computational times for performing the full order simulation, cal-
culating the POD modes, the reduced matrices and performing the simulation at
the reduced order level are all listed in Table 4.1. Calculating the POD modes,
reduced matrices and the ROM solutions takes more time in the case of the lift-
ing function method as the reduced basis space consists of an additional mode,
namely the normalized lifting function for the boundary with the lid, compared to
the penalty method. Determining the penalty factor with the iterative method takes
only 0.11 s. The speedup ratio between the ROM and the FOM is about 270 times
for the lifting method and 308 times for the penalty method.

Table 4.1: Computational time (clock time) for the FOM simulation, POD, calculat-
ing reduced matrices offline (Matrices), determining penalty factor with iterative method
(Penalty) and ROM simulation.

Method FOM POD Matrices Penalty factor ROM
Lifting 37 min. 50 s 8.2 s - 8.2 s
Penalty 37 min. 45 s 6.8 s 0.11 s 7.2 s
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Figure 4.9: Comparison of the full order velocity magnitude fields (1st column), the ROM
fields obtained with the lifting function method (2nd column) and penalty method (4th col-
umn) and the difference between the FOM and ROM fields obtained with the lifting function
method (3rd column) and penalty method (5th column) at t = 0.2, 1, 5 and 10 s (from top to
bottom) for the lid-driven cavity problem.
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Figure 4.10: Comparison of the full order pressure fields (1st column), the ROM fields
obtained with the lifting function method (2nd column) and penalty method (4th column)
and the difference between the FOM and ROM fields obtained with the lifting function
method (3rd column) and penalty method (5th column) at t = 0.2, 1, 5 and 10 s (from top to
bottom) for the lid-driven cavity problem.
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4.5.2 Y-junction flow problem

A full order simulation is performed for the Y-junction test case with varying inlet
velocities (magnitude) according to Figure 4.3. In total 401 velocity and pressure
snapshots are collected, which are then used to created the POD basis functions. To
determine the number of basis functions necessary for the creation of the reduced
subspace, the cumulative eigenvalues (based on the first 20 most energetic POD
modes) are listed in Table 4.2.

Table 4.2: The cumulative eigenvalues for the Y-junction test case. The second and third
columns report the cumulative eigenvalues (total of the first 20 modes) for the velocity and
pressure fields, respectively.

N modes u p
1 0.976478 0.967073
2 0.998492 0.989840
3 0.999724 0.998781
4 0.999859 0.999741
5 0.999924 0.999933
6 0.999967 0.999975
7 0.999989 0.999995
10 0.999999 0.999999

5 velocity and pressure modes are sufficient to retain 99.99% of the energy
contained in the snapshots. These first five (homogenized) velocity and pressure
modes are plotted in Figure 4.11. The first velocity magnitude modes have a sym-
metric pattern. In the case of the snapshot set with non-homogeneous BCs, the
first mode is similar to the time-averaged solution of velocity snapshots. In the
case of the snapshot set with homogeneous BCs, the first mode looks more like a
fluctuation around the mean. From the third mode and higher, the modes are more
or less alike whether the modes have homogeneous BCs or not.

In Figure 4.12 for each number of modes the time-averaged relative L2 error
between the FOM and the basis projection is plotted, on the left for velocity and
on the right for pressure. For velocity this is repeated with a set of homogenized
snapshots. As there are two inlet boundary conditions, the first two modes are the
normalized lifting functions and all sequential modes are then the homogeneous
basis functions obtained with the POD method. Therefore the average L2 error is
still above the order 10−1 as these modes do not contain any information about
the full order solution. The figure shows that 11 velocity basis functions and 10
pressure basis functions are required to have a truncation error less than 10−3.
Taking also into account previous observation, these number of modes are used
for calculating the ROM matrices.
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Figure 4.11: First 5 POD modes for (top) velocity, (middle) velocity with homogeneous BCs
and (bottom) pressure for the Y-junction flow problem.

After applying the Galerkin projection with the obtained modes, the penalty
factors are determined using the iterative procedure. Starting from an initial guess
of 10−6 the penalty factors found are 5.9·10−8 and 88.3 for inlet 1 and 1.1·10−7

and 125 for inlet 2 in the x-direction and y-direction, respectively. The factors are
determined within 41 iterations for an error tolerance of 10−5 and only the first
five time steps are evaluated. However, it took only 15 iterations to have an error
of 1.00009·10−5 with penalty factors 0.0327, 88.3, 0.048, 124.5. So one could
relax the criteria for the error a bit for a faster convergence.
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Figure 4.12: The time-averaged relative L2 error per number of (left) velocity modes, Nu
r ,

and (right) number of pressure modes, Np
r , for the Y-junction test case.

Thereafter, three ROMs are obtained; one without boundary enforcement method,
one with the lifting function method and one with the penalty method. These
are then consecutively tested for the time-dependent boundary conditions of Fig-
ure 4.5. The evolution in time of the relative L2 error between the reconstructed
fields is plotted in Figures 4.13 and Figures 4.14 for velocity and pressure, respec-
tively.

In the case no boundary enforcement method is used, the relative error for both
velocity and pressure is of the order 1 and larger for the vast part of the simulation.

The relative error is more or less the same for both boundary control methods,
as also was observed previously for the lid-driven cavity test case, except around
9 s of simulation time. Then the difference in relative error for pressure between
the two methods is the largest; the penalty method is about 2 · 10−1 larger than
the error obtained with the lifting function method. However, on the long term the
penalty method performs slightly better. This can also be concluded by having a
look at the kinetic energy relative error in Figure 4.15. Other than that, the relative
velocity error is of the order 10−2 and for pressure 10−1. A possible source for
the larger pressure error is that the PIMPLE algorithm, consisting of predictor
and correction steps for pressure and velocity, is used at full order level, while
the coupled (pressure-velocity) system at the reduced order level is solved with
Newton’s iterative method. This is causing a discrepancy between the full order
and reduced order model formulation. Nevertheless, the difference between the
minimum and maximum relative error for both variables is about one order.

Furthermore, the absolute error between the FOM and the ROMs is shown
in Figures 4.16 and 4.17 for velocity magnitude and pressure, respectively. For
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velocity the absolute error between the FOM and the ROM is of the order 10−2

for all plotted simulation times and the absolute error for pressure is of the order
10−1. For pressure, the error is indeed larger in the case of the penalty method
compared to the lifting function method at 9 s of simulation time, as previously
observed in Figure 4.14, but in general, the error distribution, for both the velocity
and pressure fields, is similarly distributed over the domain, and thus the methods
are performing the same.
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Figure 4.13: Time evolution of the relative L2 error of velocity between the FOM and ROM
with the lifting function and penalty method for the Y-junction flow problem.
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Figure 4.14: Time evolution of the relative L2 error of pressure between the FOM and ROM
with the lifting function and penalty method for the Y-junction flow problem.
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Figure 4.15: Time evolution of the relative L2 error of kinetic energy between the FOM and
ROM with the lifting function and penalty method for the Y-junction flow problem.

Finally, the computational times for performing the full order simulation, cal-
culating the POD modes, the reduced matrices and performing the simulation at
the reduced order level are listed in Table 4.3. Calculating the reduced matrices
and the ROM solutions takes more time in the case of the lifting function method
as the reduced basis space consists of four additional modes, namely the normal-
ized lifting functions, compared to the penalty method. Determining the penalty
factor with the iterative method takes 1.4 s. The speedup ratio between the ROM
and the FOM is about 13 times for the lifting method and 24 times for the iterative
penalty method.

Finally, the computational times for performing the full order simulation, cal-
culating the POD modes, the reduced matrices and performing the simulation at
the reduced order level are listed in Table 4.3.

Table 4.3: Computational time (clock time) for the FOM simulation, POD modes, calcu-
lating reduced matrices offline (Matrices), determining penalty factor with iterative method
(Penalty) and ROM simulation.

Method FOM POD Matrices Penalty ROM
Lifting 13 min. 7.6 s 9.2 s - 59 s
Penalty 13 min. 7.9 s 4.7 s 1.4 s 33 s
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Figure 4.16: Comparison of the full order velocity magnitude fields (1st column), the ROM
fields obtained with the lifting function method (2nd column) and penalty method (4th col-
umn) and the difference between the FOM and ROM fields obtained with the lifting function
method (3rd column) and penalty method (5th column) at t = 3, 9 and 18 s (from top to
bottom) for the Y-junction flow problem.
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Figure 4.17: Comparison of the full order pressure fields (1st column), the ROM fields
obtained with the lifting function method (2nd column) and penalty method (4th column)
and the difference between the FOM and ROM fields obtained with the lifting function
method (3rd column) and penalty method (5th column) at t = 3, 9 and 18 s (from top to
bottom) for the Y-junction flow problem.
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4.6 Discussion

The results have shown that the lifting function method and penalty method per-
form equally and lead to similar results. However, they have their own advantages
and drawbacks. A disadvantage of the penalty methods is that the penalty fac-
tor cannot be determined a priori [93]. The implementation of an iterative solver
to determine the penalty factor does however save time compared to performing
numerical experimentation manually. On the other hand, even though a lifting
function(s) can be determined beforehand, it may be hard to find a function that
will lead to an accurate ROM and therefore extensive testing of ROMs for dif-
ferent functions can be needed. In this work, the lifting functions are obtained
by solving a potential flow problem and are thus physics-based unlike the penalty
factor, which is an arbitrary value. Moreover, this value needs to be chosen above
a certain threshold to enforce the BCs in the ROM, but can lead to an inaccurate
ROM solution if it is too high [234]. In that case, the penalty method fails for that
specific problem.

Finally, an advantage of the penalty method stated in literature [161] is that
long-time integration and initial condition issues are less of a problem compared
to a lifting function method. Here the ROMs have not been tested for long-term
integration, so further research is needed in order to confirm this statement. How-
ever, as tested for the Y-junction test case, the ROM is accurate and does not exhibit
instabilities even outside the time domain in which snapshots were collected.

For both cases tested in this study, only one full order simulation has been
performed for collecting the snapshots. However, snapshots from at least two dif-
ferent full order simulations are required for the penalty method if the BCs of the
Y-junction are not time-dependent. The reason for this is that the boundary con-
ditions are a linear combination of snapshots. Therefore, the boundary conditions
can only be scaled rather than set to any arbitrary value if only snapshots from one
full order simulation with constant BCs are used for the POD. When several sets
of snapshots for different boundary values are required, one can optimize the POD
procedure by using a nested POD approach [87].

It is important to note that the penalty factor is determined during the online
phase and does not depend on high-fidelity data. Therefore, no modification are
needed in the case of parametric problems that, for example, use the viscosity as
the physical parameter.

In the case of the Y-junction test case, the penalty method can be used to adjust
the direction of the inlet flow in the ROM. One penalty factor is enforcing the x-
direction and another the y-direction. Nevertheless, new snapshots for different
inlet angles are required as the current POD bases do not contain this information.
For the lifting function method, it is often problematic to determine suitable lifting
functions that are physical. Ideally, the lifting functions are orthogonal to each
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other as in the work of Hijazi et al. [113] who studied a flow past an airfoil with
parameterized angle of attack and inflow velocity. They used two lifting functions
with orthogonal inflow conditions: ζ1 = (0,1) and ζ2 = (1,0) on Γi, respectively.
These lifting functions are obtained by solving two linear potential flow problems.
In that way, it is possible to adjust the direction of the flow at a inlet by scaling the
associate lifting functions accordingly. However, specifying a purely tangential
velocity at the inlets of the Y-junction would result in unphysical lifting functions.
Thus, this approach is only suitable for a few problems and will not always lead to
physical results.

In the case of non-physical lifting functions, the ROM gets unstable or the
ROM solutions are polluted with noise. This strongly depends on the chosen lifting
functions.

Moreover, both methods can, in theory, also be used for controlling pressure
boundary conditions, but this is not studied in this work.

In this study, the exploitation of a pressure Poisson equation has been incor-
porated in the ROM as a stabilization method. Even though the ROMs are in-
deed stable, the relative error for pressure is about an order higher than for ve-
locity. Alternatively, the supremizer enrichment of the velocity space technique
could be used to stabilize the ROM, which may lead to more accurate pressure
fields [19, 137, 241].

Furthermore, the ROMs can be improved by using a second order backward
method for the time discretization of the ROM as the FOMs are treated using a
second order backward differencing scheme.

Finally, for the Y-junction test case, the full order snapshots and the ROM
solutions all have inlet velocities between an identical maximum and minimum
value. The ROM could become less stable and accurate in case it is tested for
values outside this range. Therefore it is recommended to collect snapshots for the
same range as for which the ROM boundary needs to be controlled.

4.7 Conclusion

Two boundary control methods are tested: the lifting function method and the
iterative penalty method for controlling the velocity boundary conditions of FV-
based POD-Galerkin ROMs. The penalty method has been improved by using
an iterative solver for the determination of the penalty factors, rather than using
numerical experimentation. The factors are determined by the iterative solver in
about a second for both test cases. The results of the reconstructed velocity and
pressure fields show that both methods are performing equally. Moreover, the
reduced order model of which the boundary conditions are controlled with the
iterative penalty method is about two times faster compared to the lifting function
method for the Y-junction flow case.



90 CHAPTER 4

A pressure Poisson equation approach is applied for the reconstruction of the
pressure field and to stabilize the ROM. The accuracy of the reconstructed pressure
fields can be improved by using a supremizer enrichment approach rather than
solving the Pressure Poisson Equation[241].

Finally, a speedup factor, the ratio between the FOM and ROM simulation
time, of 308 is obtained with the iterative penalty method and of 270 with the
lifting function method for the lid-driven cavity test case. The speedup factors are
24 and 13, respectively, for the Y-junction test case.



5
POD-Galerkin reduced order model of

the Boussinesq approximation for
buoyancy-driven enclosed flows

In this chapter, a parametric reduced order model for buoyancy-driven laminar
flows in an enclosed cavity is developed with the POD-Galerkin method. This
work is an extension of the work on the development of a ROM for weakly coupled
Navier-Stokes equations with the heat equation performed in [87]. The results of
this chapter are published as [244].

5.1 Introduction

In nuclear engineering applications, decay heat can be removed passively via nat-
ural circulation in operative and accidental conditions without the use of active
components. However, the development of the flow, for instance thermal stratifi-
cation at low flow conditions, during the transition from forced to natural circu-
lation may have a detrimental effect on the efficiency of the passive residual heat
removal. Therefore, reliable computational methods are required to accurately
quantify naturally circulating flows and the associated transient phenomena [260].

A two-way coupling between momentum and energy is required to model the
complex dynamics of natural circulation. Therefore, the Boussinesq approxima-
tion is often applied to simplify the problem by neglecting the effect of local den-
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sity differences of the fluid, induced by temperature, except for the influence of
the gravitational body force on the flow. This approximation is valid as long as the
difference in density is much smaller than the reference density.

5.2 The Boussinesq approximation for the Navier-
Stokes equations

The mathematical problem on which this work is focused, i.e. buoyancy-driven
enclosed flows, is given by the unsteady incompressible Navier-Stokes equations,
without any turbulence treatment, in the presence of the gravity body force and the
energy equation. The general form of the equations is

∂ρu
∂t +∇ · (ρu⊗ u)−∇ · (µ∇u) = −∇p+ ρg in Ω,
∂θ
∂t + (∇ · u)θ −∇ · (α∇θ) = 0 in Ω,

∇ · u = 0 in Ω,

u(x, t) = 0 on Γ,

θ(x, t) = f(x) on Γ,

u(x, 0) = u0(x) in Ω,

θ(x, 0) = θ0(x) in Ω,

(5.1)

where u is the velocity, p is the pressure, θ is the temperature, ρ is the density, µ is
the dynamic viscosity, α is thermal diffusivity and g the gravitational acceleration.
u0(x) and θ0(x) denote the initial conditions of the velocity and temperature,
respectively, at time t = 0 s. The Boussinesq approximation assumes that ρ is
constant for all terms in Equation. 5.1, except for the gravitational term. To avoid
numerical issues due to large gradients of the buoyancy force, buoyant flow solvers
typically use p′rgh = p − ρg · r, with r the position vector, rather than the static
pressure p. The momentum equations with the Boussinesq approximation are then
given by

∂u

∂t
+∇ · (u⊗ u)−∇ · (ν∇u) = −∇prgh − (g · r)∇ρk, (5.2)

where ν = µ/ρ is the kinematic viscosity, prgh = (p− ρg · r) /ρ0 is referred to
as a pressure shift and ρk = 1−β(θ−θ0) with β the thermal expansion coefficient.
The reference state is taken at p0, ρ0 and θ0.

5.3 POD-Galerkin reduced order model of the Boussi-
nesq approximation

The proper orthogonal decomposition method is used to create a set of basis func-
tions containing the essential dynamics of the previously described full order model
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(Equation 5.1). It is assumed that there exists an approximation of the problem, so
that the FOM can be expressed as a linear combination of orthogonal spatial modes
multiplied by time-dependent coefficients. For the velocity and temperature, the
approximations are given by

u(x, t) ≈ ur(x, t) =

Nur∑
i=1

ϕi(x)ai(t), θ(x, t) ≈ θr(x, t) =

Nθr∑
i=1

ψi(x)bi(t),

(5.3)
where ϕi and ψi are the modes of the velocity and temperature, and respectively
ai and bi the corresponding time-dependent coefficients. Nu

r is the number of ve-
locity modes andNθ

r is the number of temperature modes. The modes are obtained
by solving an eigenvalue problem [239, 241] on snapshots which are generated by
sampling the FOM at several moments in time, as described in Section 2.4.1.

To obtain the reduced order model, the POD is combined with the Galerkin
projection, for which the full order system is projected onto the reduced subspace
of POD modes and the difference between the FOM solution and the approximated
one is minimized [205]. For more details about the Galerkin projection method the
reader is referred to Section 2.4.2.

For the Boussinesq approximation, special attention is paid to the Galerkin
projection of the shifted pressure term, which is given by

(ϕi,∇prgh)L2(Ω) =

∫
Ω

ϕi · ∇prghdΩ

= −
∫

Ω

prgh (∇ ·ϕi) dΩ +

∫
Γ

prgh (ϕi · n) dΓ.

(5.4)

The first term on the right hand side is zero as the POD modes, defined as a lin-
ear combination of snapshots, preserve the divergence free property of the flow
field [205]. Also the second term on the right hand side is zero as the velocity
is zero at the wall in the case of enclosed flow. Therefore, it is not necessary to
include a pressure term in the reduced order model for buoyancy-driven enclosed
flow [149, 161]. The resulting ROM is then given by{

Mrȧ+ aTCra− νDra+Hrb = 0,

Wrḃ− αYrb+ aTQrb = 0,
(5.5)

where

Mrij =
(
ϕi,ϕj

)
L2(Ω)

, Crijk =
(
ϕi,∇ · (ϕj ⊗ϕk)

)
L2(Ω)

,

Drij =
(
ϕi,∇ · (∇ϕj)

)
L2(Ω)

,

Hrij = (ϕi, (g · r)∇(1− β(ψj − θ0)))L2(Ω) ,

Wrij = (ψi, ψj)L2(Ω) , Yrij = (ψi,∇ · (∇ψj))L2(Ω) ,

Qrijk =
(
ψi,∇ · (ϕj , ψk)

)
L2(Ω)

.

(5.6)
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The initial conditions for the ROM are given by

ai(0) = (ϕi,u0(x))L2(Ω) , bi(0) = (ψi, θ0(x))L2(Ω) . (5.7)

5.3.1 Imposing boundary conditions with the lifting function
method

The boundary conditions are not explicitly present in the reduced system and,
therefore, they cannot be parametrized directly as discussed in the previous chap-
ter. Whether the lifting function method or the penalty method is most suitable, is
problem dependent. The advantage of the lifting function method is that the func-
tions can be determined on beforehand. Moreover, the lifting function is, unlike a
penalty factor, physics-based [93, 161]. The lifting function method is an appro-
priate choice for the parametric reduced order model for buoyancy-driven enclosed
flow. The lifting functions can be determined by solving a Laplacian function as no
forced convection is applied to the buoyancy-driven enclosed flow problem, which
is described in detail in Section 5.4.

The boundary conditions are imposed in the reduced order model of Equa-
tion 5.5 using the lifting function method as described in the previous chapter
(Section 4.3). The lifting functions, ζ̃(x), are obtained by solving a system, as
close as possible to the full order system, where the boundary of interest is set to
1 and everywhere else to 0. Then the snapshots are modified as follows

θ′(x, t) = θ(x, t)−
NBC∑
i=1

ζ̃j(x)ΘBCj , (5.8)

where NBC is the number of non-homogeneous BCs and ΘBC is the value of
the boundary condition. POD is then applied to these homogeneous snapshots
to obtain the homogeneous temperature modes, ψ′i, as described in Section 4.3.2.
Finally, the temperature field is approximated with

θr(x, t) =

NBC∑
j=1

ζ̃j(x)ΘBCj +

Nθr∑
i=1

ψ′i(x)bi(t), (5.9)

which satisfies the boundary conditions of the problem. ΘBC can be parametric.
For more details on the lifting function method, the reader may take a look at [87,
239] or Section 4.3.

5.4 Numerical test case of an enclosed cavity
In this study, a simple configuration for natural convection is studied that consists
of a 2D square enclosed cavity with differentially heated walls opposite of each
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other. The simulations are carried out on a square domain of length L = 0.1 m on
which a (100 × 100) uniform mesh is constructed. A sketch of the geometry is
depicted in Figure 5.1.

Figure 5.1: A sketch of the geometry of the 2D square cavity with differentially heated
walls.

The initial temperature, θ0, and initial velocity, u0, are 300 K and (10−4,0)
m/s, respectively. The properties are taken for air with thermal diffusivity, α = ν /
Pr = 1.4·10−5 m2/s, kinematic viscosity ν = 1·10−5 m2/s and Pr = 0.71. Further-
more, the coefficient of thermal expansion, β, is 3·10−3 K−1. The left side of the
cavity is kept at the cold temperature, θc, and the right side at the hot temperature,
θh, with θh > θc. Four parameter sets are considered for the temperature BCs,
which are listed in Table 5.1.

Table 5.1: Parameter sets for the temperature BCs.

Parameter set # θc [K] θh [K]
0 298.5 301.5
1 299.0 301.0
2 298.0 302.0
3 298.7 301.2

The unsteady governing equations are iteratively solved by the FV method
with the buoyantBoussinesqP impleFoam solver of the open source C++ li-
brary OpenFOAM [130]. The PIMPLE algorithm is used for the pressure-velocity
coupling [177]. For both the full and reduced order simulations, the time dis-
cretization is treated using a backward differencing scheme.
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A constant time step of ∆t = 1· 10−3 s is applied and the total simulation time
is 10 s. Snapshots of the velocity and temperature fields are collected every 0.01 s,
resulting in a total of 1000 snapshots for each parameter set. The full order simula-
tions are performed in OpenFOAM 6, while the reduced order model is solved with
ITHACA-FV, a C++ library based on the finite volume solver OpenFOAM. For
more details on the ITHACA-FV code, the reader is referred to [239, 240, 241]. A
lifting function, for each non-homogeneous BC, is determined by solving a steady
state Laplacian function for temperature, ∆θ = 0, according to the methodology
described in Section 5.3.1.

Finally, the relative prediction error between the FOM and ROM velocity and
temperature fields and the basis projection error are determined at each time in-
stance according to Section 2.5.5.2.

5.5 Results and analysis
First, a full order simulation is performed for parameter set 0. In total, 1001 snap-
shots (including 1 for the initial condition) velocity and temperature snapshots are
collected. Furthermore, the lifting functions are obtained by solving the steady
state Laplacian function and are shown in Figure 5.2. These functions are then
used to homogenize the snapshots and to create homogeneous basis functions with
the POD method.

Figure 5.2: The lifting functions for temperature.
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5.5.1 POD modes

To determine the number of basis functions needed for the creation of the reduced
subspace, the cumulative eigenvalues are plotted in Figure 5.3 on the left. The plot
shows that 7 modes are sufficient to retain 99.9% of the energy contained in the
snapshots, for both velocity and temperature.

Furthermore, the full order snapshots are projected onto the POD basis for a
range of modes, from 1 to 15, to obtain time-dependent coefficients that are then
used to reconstruct the fields, called the basis projection. For each number of
modes the time-averaged relative basis projection error is calculated and plotted in
Figure 5.4 for velocity and temperature.
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Figure 5.3: Cumulative eigenvalues for velocity and temperature.

It can be seen that the slope of the decay of the time-averaged relative ba-
sis projection error for the velocity is the same as for the temperature. However,
Figure 5.4 shows that 5 basis functions are required to have a time-averaged trun-
cation error less than 10−4 for temperature, while for velocity, 5 basis functions
are needed to have an error less than 10−1.
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Figure 5.4: The time-averaged relative basis projection error: (left) per number of velocity
modes (Nu

r ); (right) per number of temperature modes (Nθ
r ).

The first five velocity and homogenized temperature modes are plotted in Fig-
ure 5.5. The velocity magnitude modes have a symmetric pattern. Furthermore,
the first velocity mode is close to the steady state solution of the problem, while
the first temperature mode looks like a fluctuation around the mean field due the
homogenization by the lifting functions.

Figure 5.5: First five POD modes for velocity (top) and temperature with homogeneous BCs
(bottom).
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5.5.2 Reduced order simulations for new parameter sets

Taking also into account previous observation based on the cumulative energy of
the eigenvalues, 7 velocity and 7 homogeneous temperature modes are used for the
reduced basis creation. Then, the ROM matrices are calculated and the obtained
ROM is tested for all parameter sets. The evolution in time of the relative L2 error
between the reconstructed fields and the full order solutions is plotted in Figure 5.6
for velocity and temperature.
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Figure 5.6: Time evolution of the relative error between the FOM and ROM with the lifting
function for all parameter sets and the basis projection error.
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For parameter set 0, the prediction errors are of the same order as its basis
projection error using 7 modes for both velocity and temperature. The velocity
error is more than 1 at the beginning of the ROM simulation, as the flow starts
at rest and therefore a small deviation of the initial velocity field leads to a high
relative error as the error is magnified by a small velocity magnitude [161]. After
about 1 second of simulation time the relative error of the velocity is less than
10−1 and for temperature below 10−4. As expected, the performance of the ROM
velocity is best when tested for the same parameter set on which the POD has
been performed, but increases for each of the following sets. For parameter set
1 and 3, after 2 seconds of simulation time, the error remains of the same order.
However, the error of parameter set 3 keeps increasing over time, meaning that the
ROM is less stable for those values. The same applies to the relative error of the
temperature fields, however at some moments in time the ROM performs better
for parameter set 1, where the temperature difference between the walls is smaller
compared to set 0, than the basis projection. Then for parameter set 3, where an
asymmetric temperature difference is applied on the walls, the ROM is stable, but
performs worse than parameter set 1 due to the strong nonlinearity of the flow with
respect to the BCs. As no snapshots are collected for a similar case, part of the flow
pattern is not contained in the snapshots and therefore also not in the ROM. The
full order and reconstructed velocity and temperature fields for parameter set 3 are
shown in Figure 5.7 at t = 1 s, t = 5 s and the final simulation time t = 10 s. The
absolute error between the FOM and the ROMs is shown in the same figure, which
is of the order 10−3 m/s for velocity and 10−2 K for temperature.

Finally, the computation times on a single Intel Premium CPU G2130 @ 3.20
GHz processor for calculating the FOM, POD modes, the reduced matrices and
for the ROM are 563, 15, 0.5 and 27 seconds, respectively. Therefore, the ROM is
about 20 times faster than the FOM.
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Figure 5.7: Comparison of the full order (FOM) velocity magnitude (1st column) and tem-
perature (4th column) fields with the reduced order (ROM) fields (2nd and 5th column) and
the difference between the FOM and ROM fields (3rd and 6th column) for parameter set 3
at t = 1 s (top), 5 s (middle) and 10 s (bottom).

5.6 Discussion

Only one full order solution for parameter set 0 was required to perform a ROM
with the lifting function method for parameter set 1 and 3. However, the ROM
is unstable for parameter set 2, even though the temperature BCs were only de-
viating by 0.5 K from those of set 0 (like parameter set 1), for which snapshots
are collected. However, the temperature difference between the walls is larger for
set 2 than the other sets for which the ROM is stable. As for larger temperature
differences, part of the flow pattern is not contained in the snapshots, the ROM is
not capable of reconstructing those fields. As a solution, when a larger range of
parameter values needs to be tested, one can use snapshots from several FOMs to
generate the POD modes. Since the POD modes are based on a linear combination
of snapshots, while buoyancy-driven flows are highly nonlinear due to the cou-
pling between the nonlinear momentum and energy equations, adding snapshots
from different FOMs can make the ROM applicable for a larger range of parameter
values.
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The relative prediction error for velocity during the first second of the ROM
simulation is about one order higher compared to the rest of the simulation. Espe-
cially for velocity, the error is more than 1 at the beginning of the ROM simulation.
A small deviation of the homogeneous initial field, even for the basis projection
using a reduced number of modes, leads to a high relative error compared with
the full order solution. The absolute error is of a smaller order, as shown by the
absolute difference plot between the FOM and ROM fields at different time in-
stances, and so, depending on the application, the error can be acceptable. Adding
more modes to the reduced basis will reduce the error, but then the ROM will be-
come slower. Therefore, there is a trade-off between the accuracy and the gain in
computational time.

In this study, the recovery of the pressure has not been incorporated in the
ROM. A supremizer enrichment of the velocity space technique or exploitation
of a pressure Poisson equation (as presented in Chapter 4) can, for instance, be
incorporated in the Galerkin projection to include the pressure in the ROM [241].

Finally, simulations have only been performed for air flow, as special attention
is required to low Prandtl number thermal-hydraulics when modeling liquid metal
flows.

5.7 Conclusion
In this chapter, a FV-based POD-Galerkin ROM with Boussinesq approximation
is presented. The ROM is constructed such that it is consistent with the FOM
and both velocity and temperature fields are considered. The reconstruction of the
pressure field is, however, not considered as only enclosed flows are investigated
in this study. An additional buoyancy term in the ROM induces a two-way cou-
pling between momentum and energy, that is required for buoyancy modeling for
nuclear thermal-hydraulic studies and other related industrial problems. A ROM
is constructed of which the temperature BCs are parametrized using a lifting func-
tion method. The results of the ROMs for a simple 2D differentially heated cavity
show that the relative error of temperature is of the order O(10−4) and of velocity
O(10−1) for the vast part of the simulations. The ROMs are stable, except when
the temperature difference between the walls is larger than the case for which the
snapshots, for the reduced basis construction, are collected. The accuracy can
be improved by adding more modes to the reduced basis obtained with the POD
method. Finally, the ROM is about 20 times faster than the FOM run on a single
processor.

In the next chapter, the pressure will be included in the ROM and the model
will be extended for turbulent buoyant flows, which will be essential to simulate
buoyancy in nuclear reactors.



6
POD-Galerkin reduced order model of
a turbulent convective buoyant flow of

sodium over a backward-facing step

In this chapter, the POD-Galerkin reduced order modeling strategy for buoyancy-
driven flows of Chapter 5 is extended for steady-state Reynolds-averaged Navier-
Stokes simulations of turbulent convective buoyant flows of a low-Prandtl number
fluid. The results of this chapter are published as [249].

6.1 Introduction

Heat transfer in liquid metals is of interest, for instance, in nuclear facilities that
use high-temperature heat transfer media as a coolant. This type of heat transfer
fluids is typically characterized by a low-Prandtl (Pr) number, where Pr is the
ratio of diffusivity of momentum to diffusivity of heat. Due to the high thermal
diffusivity of low-Pr fluids, the influence of buoyancy on the flowfield is present
at much higher Reynolds numbers compared to air or water [253]. Therefore, the
flow regime between forced and natural convection, where driven flow interacts
with buoyancy effects, needs to be studied in many heat transfer applications [179].

Low-Prandtl number fluid turbulent flows, and especially their associated tur-
bulent heat fluxes, are complicated to model numerically as heat conduction through
the boundary layer has more dominant effect with respect to convection. There-
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fore, the thermal boundary layers become thicker when the Prandtl number is de-
creased. This means that there is a difference in the range of the spatial (and tem-
poral) scales of temperature and velocity. As a consequence, the conductive heat
fluxes near walls become more important. Therefore, it is problematic to apply the
Reynolds analogy, which assumes a constant turbulent Prandtl number, Prt, close
to unity, to calculate the local turbulent heat fluxes [213]. Furthermore, Pr influ-
ences not only the temperature field and the heat flux modeling, but also the veloc-
ity field and the shear modeling in the case of buoyancy-aided flows [100]. There-
fore, heat transfer in liquid metals, compared to common fluids with a Prandtl
number around unity, requires additional or different (physical) modeling.

Only a few numerical studies on incompressible turbulent convective buoyant
flows for low-Prandtl number fluid flows can be found in literature. Three studies
are highlighted here: Cotton and Jackson [56] performed numerical calculations
for a buoyancy-aided mixed convective turbulent flow in a vertical pipe for liquid
sodium (Pr = 0.005-0.01). Niemann and Frohlich [179] investigated a turbulent
flow of liquid sodium over a backward-facing step at forced and buoyancy-aided
mixed convection using direct numerical simulation. And most recently, Oder et
al. presented direct numerical simulation of low-Prandtl fluid flow over a confined
backward-facing step [183].

Schumm et al. [229, 230] compared steady-state Reynolds-averaged Navier-
Stokes simulations with the direct numerical simulations performed by Niemann
and Frohlich [179] and concluded that the predicted velocity, turbulence kinetic
energy and Reynolds shear stress profiles are in good agreement with the DNS
data. They based the choice of the turbulence model for the Reynolds stresses,
namely the Ince and Launder’s model [126], on the study of Cotton and Jack-
son [56]. This turbulence model is basically the model of Launder and Sharma
[150] including the near-wall length-scale correction term from Yap [297] in the
equation of the dissipation rate of turbulence kinetic energy. The model is widely
used due to its algorithmic simplicity and relatively good performance [118, 213]
compared to the more advanced model of Hanjalić et al. [106] and second-moment
closure models (e.g. Craft et al. [58], Dol et al. [67] and Manceau et al. [168]).
Moreover, Schumm et al. modeled the turbulent heat flux with a simple gradi-
ent diffusion hypothesis (SGDH). In addition, they evaluated the turbulent Prandtl
number locally with the correlation of Kays [135].

In the modeling and computation of industrial turbulent flows, RANS simula-
tion is often preferred due to its relatively lower computational cost in compari-
son with the more detailed large eddy simulation and direct numerical simulation.
However, even RANS simulation is unfeasible for applications that require (al-
most) in real time modeling or testing of a large number of different system con-
figurations, for instance for control purposes, sensitivity analyses or uncertainty
quantification studies. This has motivated the development of reduced order mod-
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eling techniques.
The POD-Galerkin approach has recently been used by Lorenzi et al. [161] and

Hijazi et al. [111, 112] to reduce the RANS equations in a finite volume frame-
work. Stabile et al. [238] used a different POD-Galerkin based approach for the
turbulence closure, namely the variational multi-scale approach. Other recent ef-
forts that deal with POD-based ROMs using a LES approach for the turbulence
modeling can be found in [30, 91, 294]. On the other hand, Carlberg et al. [44] and
Xiao et al. [288] presented a Petrov-Galerkin projection approach for the reduced
order modeling of the Navier-Stokes equations.

Moreover, Georgaka et al. [87] developed a POD-Galerkin reduced order model
of weakly coupled parametric Navier-Stokes and energy equations. They also in-
cluded turbulence modeling in their model [88]. On the other hand, Vergari et
al. [267] and also the author of this work [244] developed a reduced order model
of buoyancy-driven flow with the employment of the Boussinesq approximation
(as described in Chapter 5).

In this Chapter, a reduced order model is developed of which the underlying
full order model is corresponding to the model of Schumm et al. [229, 230] for
steady-state RANS simulations for a turbulent convective buoyant flow of sodium
over a backward-facing step.

6.2 Full order turbulence model
The steady-state governing equations for an incompressible Newtonian fluid, based
on the low-Reynolds Launder-Sharma k-ε model [150], for turbulent buoyancy-
driven flows in the mixed convection regime are

∇ ·U = 0, (6.1)

∇·(U ⊗U) = −∇P+∇·
[
ν
(
∇U +

(
∇UT

))
− u′u′

]
−gβ(θ−θref ), (6.2)

∇ · (Uθ) = ∇ ·
(
α∇θ − u′θ′

)
, (6.3)

∇ · (Uk) = ∇
[(
ν +

νt
σk

)
∇k
]

+ Pk −D − ε, (6.4)

∇ · (Uε) = ∇
[(
ν +

νt
σε

)
∇ε
]

+
ε

k
[Cε1f1Pk − Cε2f2ε] + E, (6.5)

where U , P , and θ are the ensemble averaged fields for velocity, kinematic pres-
sure, which is pressure divided by the fluid density ρ, and temperature, respec-
tively. u′ and θ′ are the turbulent fluctuating components for velocity and tem-
perature, respectively. Equations 6.1, 6.2 and 6.3 are the continuity, momentum
and energy equations, respectively. Equation 6.4 is the transport equation for tur-
bulence kinetic energy k and Equation 6.5 is the transport equation for the rate of
dissipation of turbulence kinetic energy ε. Furthermore, ν is the kinematic vis-
cosity, νt is the eddy viscosity and α is the thermal diffusivity. The buoyancy is
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considered by the employment of the Boussinesq approximation in the last term
of Equation 6.2, where θref is a reference temperature, g the gravitational accel-
eration and β the thermal expansion coefficient. To avoid numerical issues, due
to large gradients of the buoyancy force, buoyant flow solvers typically use the
shifted kinematic pressure Prgh = P −g ·r, with r the position vector, rather than
the static kinematic pressure P . The production term of k in Equations 6.4 and 6.5
is given by

Pk = −u′u′∇U . (6.6)

Note that with this model the effect of buoyancy is not modeled in the turbulence
transport equations (Equations 6.4 and 6.5) [167, 172, 210], which is in accordance
with the model of Schumm et al. [230]. The values of the constants σk, σε, Cε1,
Cε2 listed in Table 6.1 and the damping functions f1 and f2 are listed in Table 6.2.

As low-Reynolds turbulence models are based on damping functions and the
extra source termsD andE (listed in Tables 6.1 and 6.2), which enable the integra-
tion of the turbulence transport equations up to the wall, the use of turbulence wall
functions is avoided. However, two equation-based turbulence models tend to over
predict the turbulence length scale in flows at adverse pressure gradients [211] such
as those found in detachment, reattachment and impinging regions. Accordingly,
Schumm et al. [230] concluded in their study on turbulent flow over a backward-
facing step that the turbulence near-wall length scale correction of Yap [297] needs
to be added as an additional source term to the right hand side of the transport
equation of ε (Equation 6.5). This correction has the form

Sε = 0.83
ε2

k

(
k1.5

εle
− 1

)(
k1.5

εle

)2

, (6.7)

where the turbulence length scale, le, is given by

le = C−0.75
µ κy+, (6.8)

where κ is the von Karman constant, Cµ a model constant, both listed in Table 6.1,
and y+ is the dimensionless wall distance.

Furthermore, the unclosed terms that contain products of fluctuating values,
namely the Reynolds stress term u′u′, and the turbulence heat transfer tensor u′θ′,
need to be modeled. The Reynolds stress term is defined as

− (u′u′) = 2νtS −
2

3
kI, (6.9)

where S is the Reynolds-averaged strain rate tensor and I is the identity tensor.
The eddy viscosity, νt, is computed by

νt = Cµfµ
k2

ε
(6.10)
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with fµ listed in Table 6.2.
The turbulence heat flux tensor is modeled with the single gradient diffusion

hypothesis given by the turbulence thermal diffusivity, αt, and the mean tempera-
ture gradient as follows

u′θ′ = −αt∇θ. (6.11)

The SGDH expresses the turbulence thermal diffusivity as the ratio between the
eddy viscosity, νt, and the turbulent Prandtl number, Prt, as

αt =
νt
Prt

. (6.12)

Typically, Prt is around 0.9 for wall-bounded flows. Here, the local correlation of
Kays [135] is applied to have a good fit to DNS of both turbulent flow in ducts and
the turbulent external boundary layer of fluids with 0.025 ≤ Pr ≤ 0.1 [230]. Prt is
defined as

Prt = 0.85 +
0.7

Pet
, (6.13)

where Pet is the turbulent Peclet number, as function of the Prandtl number and
the eddy viscosity divided by the viscosity [282], given by

Pet =
νt
ν

Pr. (6.14)

Table 6.1: Low-Reynolds Launder-Sharma k-ε model constants and source terms.

Cµ σk σε Cε1 Cε2 D E κ

0.09 1 1.3 1.44 1.92 2ν
(
∂
√
k

∂xi

)2

2ννt
(

∂2U
∂xi∂xi

)2

0.41

Table 6.2: Damping coefficients with Ret = k2

νε
.

fµ f1 f2

1-0.3e−Re
2
t 1 e

−3.4

(1+Ret/50)
2

6.2.1 Flow characteristics by non-dimensional numbers

The flow characteristics of a fluid can be expressed by non-dimensional numbers.
The most relevant ones for turbulent convective buoyant flow are given and ex-
plained here.

The ratio of the inertial forces to the viscous forces within the fluid is defined
as the Reynolds number (Re)

Re =
Ubh

ν
, (6.15)
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where Ub is the bulk velocity of the fluid and h is the characteristic dimension,
which is taken to be the step height. At high Reynolds numbers, the flow is domi-
nated by the inertial forces and is therefore considered turbulent, which is typically
for Re > 4000 in channel flows.

The Richardson number (Ri) represents the importance of natural convection
to the forced convection and is used to determine whether the flow is in the forced,
mixed or natural convection regime. In this context, Ri is defined as

Ri =
Gr

Re2 =
gβh2q′′

λU2
b

, (6.16)

with Gr the Grashof number defined as

Gr =
gβh4q′′

ν2λ
, (6.17)

where g is the acceleration due to gravity, q′′ the applied wall heat flux and λ is the
thermal conductivity of the fluid. Typically, the flow is in the forced convection
regime when Ri < 0.1, in the natural convection regime when Ri > 10, and in the
mixed regime when 0.1 < Ri < 10 [85].

The Stanton number (St) is given by the ratio of the heat transferred into the
fluid to the thermal capacity of the fluid itself. Here the Stanton number, as func-
tion of the heat flux, is defined as

St =
q′′

ρUbcp∆θ
=

q′′ν

ρUbλPr∆θ
, (6.18)

where ∆θ is the characteristic temperature difference and cp the specific heat of
the fluid.

The skin friction coefficient (cf ) is a function of the shearing stress exerted by
the fluid on the wall surface over which it flows

cf =
τw

0.5ρU2
b

, (6.19)

where τw is the wall shear stress. There is a relationship between skin friction
and heat transfer for steady flows, which is known in the context of Reynolds
analogy [86].

6.3 POD-Galerkin reduced order model for turbu-
lent convective buoyant flows

The proper orthogonal decomposition method is used to create a reduced basis
space that is spanned by a number of basis functions, or so-called modes, which
capture the essential dynamics of the system [53, 110, 203, 217]. The RB method
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assumes that the full order steady-state solutions, the so-called snapshots, of the
discretized RANS equations for different parameter values, µ, can be expressed
as a linear combination of orthonormal spatial modes multiplied by parameter-
dependent coefficients. For velocity, shifted kinematic pressure and temperature
the approximations are given by

U(x, µ) ≈ U r =

Nr∑
i=1

ϕi(x)ai(µ), (6.20)

Prgh(x, µ) ≈ Prghr =

Nr∑
i=1

χi(x)ai(µ), (6.21)

θ(x, µ) ≈ θr =

Nθr∑
i=1

ψi(x)bi(µ), (6.22)

where ϕi, χi and ψi are respectively the velocity, shifted kinematic pressure and
temperature modes. It is assumed that velocity and pressure share the same coeffi-
cients ai(µ), while bi(µ) are the corresponding coefficients for temperature [161,
41]. This eases the development of the reduced order model since it is not needed
to project a pressure Poisson equation onto the reduced basis space of pressure
as done in Chapter 4. Therefore, only two sets of variables are necessary [267].
Nr is the number of velocity and shifted kinematic pressure modes and Nθ

r is the
number of temperature modes.

The above assumptions can be extended to the eddy viscosity fields, νt, and
the turbulence thermal diffusivity fields, αt, in the following way

νt(x, µ) ≈ νtr =

Nνtr∑
i=1

ηi(x)ci(µ), (6.23)

αt(x, µ) ≈ αtr =

Nαtr∑
i=1

ξi(x)di(µ), (6.24)

with Nνt
r the number of eddy viscosity modes and Nαt

r the number of turbulence
thermal diffusivity modes, respectively. ηi(x) and ξi(x) are the eddy viscosity
and the turbulence thermal diffusivity modes, respectively, and ci(µ) and di(µ)

the corresponding coefficients.
The optimal POD basis space for velocity, EUPOD = span(ϕ1,ϕ2, ..., ϕNr ), is

constructed by minimizing the difference between the snapshots and their orthog-
onal projection onto the reduced basis [205] as follows

EUPOD = arg min
ϕ1,...,ϕNr

1

Ns

Ns∑
n=1

∥∥∥∥∥Un(x)−
Nr∑
i=1

(Un(x),ϕi(x))L2(Ω)ϕi(x)

∥∥∥∥∥
2

L2(Ω)

,

(6.25)
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where Ns is the number of collected snapshots and Ns > Nr. The same ap-
proach can be followed for the shifted kinematic pressure to determined the sub-
space E

Prgh
POD = span(χ1,χ2, ..., χNr ). The L2 norm is preferred for discrete

numerical schemes [40, 241] with (·, ·)L2(Ω) the L2 inner product of the fields
over the domain Ω. Furthermore, as the modes are orthonormal to each other,(
ϕi,ϕj

)
L2(Ω)

= δij holds, where δ is the Kronecker delta.

For temperature, the subspace EθPOD = span(ψ1,ψ2, ..., ψNθr ) is obtained by
solving a minimization problem similar to Equation 6.25. The same procedure also
applies for the subspaces EνtPOD = span(η1,η2, ... ,ηNνtr ) and EαtPOD = span(ξ1,ξ2,
..., ξNαtr ).

The velocity POD modes are obtained by solving Equation 6.25 using the fol-
lowing eigenvalue problem on the correlation matrix CU of the velocity snap-
shots [235, 239, 241]

CUQU = QUλU , (6.26)

where CUij =
(
U i,U j

)
L2(Ω)

for i,j = 1, ..., Ns is the velocity correlation matrix,

QU is a square matrix of eigenvectors and λU is a diagonal matrix containing the
eigenvalues. The velocity POD modes are then constructed in the following way

ϕi(x) =
1

Ns
√
λUi

Ns∑
n=1

Un(x)QUin for i = 1, ..., Nr. (6.27)

As the same basis for velocity and shifted kinematic pressure are used, no addi-
tional stabilization, as the supremizer or Pressure Poisson Equation approach [239,
241], is needed. For the same reason, the shifted kinematic pressure modes are
constructed using the previously obtained matrix of eigenvectorsQU

χi(x) =
1

Ns
√
λUi

Ns∑
n=1

Pnrgh(x)QUin for i = 1, ..., Nr, (6.28)

where Ns is the number of collected shifted kinematic pressure snapshots. The
temperature, eddy viscosity and turbulence thermal diffusivity POD modes are
determined by solving a similar eigenvalue problem as Equation 6.26. For more
details on obtaining the POD modes, the reader is referred to [241, 267].

To obtain a reduced order model the POD is combined with the Galerkin pro-
jection. The momentum equations (Equation 6.2) with substitution according to
Equations 6.20, 6.21, 6.22 and 6.23 are projected onto the POD basis space of
velocity, ϕi(x). The energy equation (Equation 6.3) with substitution according
to Equations 6.20, 6.22 and 6.24 is projected onto the temperature spatial basis,
ψi(x). This results in the following reduced system of ordinary differential equa-
tions

aTCra = −Gra+ ν(Dr +DTr)a+ cT (Er +ETr)a−Hrb, (6.29)
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aTQrb = αY 1rb+ dTY 2rb, (6.30)

where
Drij =

(
ϕi,∇ · ∇ϕj

)
L2(Ω)

, (6.31)

DTrij =
(
ϕi,∇ ·

(
∇ϕTj

))
L2(Ω)

, (6.32)

Crijk =
(
ϕi,∇ · (ϕj ⊗ϕk)

)
L2(Ω)

, (6.33)

Erijk = (ϕi,∇ · ηj∇ϕk)L2(Ω), (6.34)

ETrijk =
(
ϕi,∇ · ηj

(
∇ϕTk

))
L2(Ω)

, (6.35)

Grij = (ϕi,∇χj)L2(Ω), (6.36)

Hrij = (ϕi, (g · r)∇(−β(ψj − θref )))L2(Ω), (6.37)

Y 1rij = (ψi,∇ · ∇ψj)L2(Ω), (6.38)

Y 2rijk = (ψi,∇ · (ξj∇ψk))L2(Ω), (6.39)

Qrijk =
(
ψi,∇ · (ϕj ⊗ ψk)

)
L2(Ω)

. (6.40)

The reduced matrices associated with the linear terms and the third order tensors
associated with the nonlinear terms of the governing equation are stored before
constructing the reduced order model during a, so called, offline stage. More de-
tails on the treatment of the nonlinear terms can be found in [241].

Note that the system of ODEs has Nr + Nθ
r + Nνt

r +Nαt
r unknowns, but only

Nr + Nθ
r equations to solve. Therefore, the coefficients ci(µ∗) and di(µ∗) for any

new value of an input parameter µ∗ are computed with a non-intrusive interpo-
lation procedure using radial basis functions (RBF), as described in [151]. Here
the procedure is described for obtaining the eddy viscosity coefficients ci(µ∗); the
procedure can applied in a similar fashion to the turbulence thermal diffusivity
coefficients di(µ∗).

The RBF approach assumes that the coefficients ci(µ∗) can be approximated
for any new value of input parameter µ∗ as a linear combination of Nνt

r chosen
RBF kernels Θi [279] as follows

ci(µ
∗) =

Nνts∑
j=1

wijΘi (‖µ∗ − µj‖L2
) for i = 1, 2, ...Nνt

r , (6.41)

where Nνt
s is the number of eddy viscosity snapshots, µj are the sampling points

corresponding to the eddy viscosity snapshots νtj and wij are the weights that
need to be determined. These weights are calculated by solving the following
linear system

Nνts∑
j=1

wijΘi (‖µk − µj‖L2) = cik for i = 1, 2, ...Nνt
r and k = 1, 2, ...Nνt

s ,

(6.42)



112 CHAPTER 6

where the output cik is a set of known eddy viscosity coefficients that are calcu-
lated by projecting the eddy viscosity snapshots νtk obtained for the parameter
inputs µk for k = 1, 2, ..., Nνt

s onto the obtained spatial eddy viscosity modes ηi
(Equation 6.23) in the following way

cik = (νtk , ηi)L2(Ω) for i = 1, 2, ...Nνt
r and k = 1, 2, ...Nνt

s . (6.43)

Various kernels, Θi, can be used for the RBFs. In this work, Gaussian kernels
are considered, which have a local response, meaning that their best response is in
the area near the center, in contrast to multi-quadratic RBFs which have a global
response. The Gaussian kernels are defined as

Θi (‖µ− µj‖L2) = e(−γ‖µ−µj‖
2
L2

) for i = 1, 2, ...Nνt
r and j = 1, 2, ...Nνt

s ,

(6.44)
where γ is the parameter that determines the radius of the kernel. The RBF de-
creases monotonically away from the center.

Once the coefficients ci and di for new input parameters µ∗ are obtained, the
set of ODEs, Equation 6.29 and 6.30, can be solved to obtain the coefficients
a(µ∗) and b(µ∗). For more details about using RBF in this type of reduced order
modeling setting the reader is referred to [111].

The advantage of determining the coefficients with RBFs is that it is not needed
to project the turbulence modeling equations (Equations 6.4 and 6.5) onto the re-
duced basis spanned by the eddy viscosity modes. These equations are often,
even when using open source codes like OpenFOAM [130], challenging to access.
Also the turbulence thermal diffusivity coefficients are determined with RBFs as
αt is not directly proportional to νt due to the use of the local correlation by Kays
(Equation 6.13) for the calculation of Prt in the SGDH.

Good initial guesses for the reduced system of ODEs (Equations 6.29 and 6.30)
are obtained by projecting, respectively, the velocity and temperature snapshots for
a certain parameter value µ that is close to the value of a new input parameter µ∗

onto the POD basis spaces as follows

ai(µ
∗) = (ϕi(x),U(x, µ))L2(Ω) , (6.45)

bi(µ
∗) = (ψi(x), θ(x, µ))L2(Ω) . (6.46)

6.3.1 Imposing boundary conditions with the penalty method

The POD basis functions are a linear combination of the snapshots and so are their
values at the boundaries [149]. Therefore, when using a POD-based reduced order
modeling technique, the non-homogeneous boundary conditions are, in general,
not satisfied by the ROM [29]. Furthermore, the BCs are not explicitly present in
the reduced system and therefore they cannot be controlled directly [161].
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In this chapter, a reduced order model is developed for turbulent convective
buoyant flows that are characterized by the Richardson number. The Richardson
number depends on the wall heat flux (Equation 6.16), which is a Neumann type
of boundary condition. Recently, Vergari et al. [267] extended the penalty method
for imposing boundary conditions at the reduced order level, which is described in
Section 4.3.2, for Neumann boundary conditions.

The penalty method enforces explicitly the BCs in the ROM with a penalty fac-
tor [93]. A penalty method was originally proposed by Lions and Magènes [158]
in the context of finite element methods. They introduced a penalty parameter
to weakly impose the boundary conditions. In the POD-Galerkin reduced order
modeling setting, the penalty method has been first introduced by Sirisup and Kar-
niadakis [234] for the enforcement of boundary conditions.

The value of the penalty factor τ is generally chosen arbitrary [29]. Never-
theless, if the penalty factor tends to infinity a strong imposition of the boundary
conditions would be approached and the ROM becomes ill-conditioned [161]. On
the other hand, small values of the factor result in a weak imposition [234] and
the method becomes numerically unstable [70]. Moreover, the penalty factors τ
should be larger than 0 in order to have an asymptotically stable solution [161].
Therefore, the penalty factor needs to be chosen above a threshold value for which
the method is stable and converges [70]. For these reasons, the (suitable range for
the) penalty factor is often determined via a sensitivity study [93, 134, 161].

The value of the velocity Dirichlet BC, UBC , is imposed the reduced momen-
tum equation as follows

aTCra+Gra− ν(Dr +DTr)a− cT (Er +ETr)a+Hrb

+τU (O1ra− UBCP1r) = 0,
(6.47)

where the new terms related to boundary Γ1 are given by

O1rij =
(
ϕi,ϕj

)
L2(Γ1)

, (6.48)

P1ri = (ϕi,Λ)L2(Γ1), (6.49)

and Λ is a unit vector field.
In this work, the Neumann boundary condition is only applied for temperature

on a boundary Γ2. The BC is related to the heat flux on the boundary, q′′BC , in the
following way

n · ∇θ|Γ2
= −q

′′
BC

λ
. (6.50)

The Neumann temperature BC together with a Dirichlet temperature BC, θBC ,
are enforced in the energy equation at the reduced order level (Equation 6.30) on,
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respectively, boundary Γ2 and Γ3 as follows

aTQrb− αY 1rb− dTY 2rb+ τ∇θ

(
O2rb+

q′′BC
λ
P2r

)
+τθ (O3rb− θBCP3r) = 0,

(6.51)

where the new terms related to boundaries Γ2 and Γ3 are

O2rij = (ψi,n · ∇ψj)L2(Γ2), (6.52)

P2ri = (ψi,Λ)L2(Γ2), (6.53)

O3rij = (ψi, ψj)L2(Γ3). (6.54)

P3ri = (ψi,Λ)L2(Γ3), (6.55)

where Λ is a unit scalar field.

6.4 Numerical set-up for sodium flow over a back-
ward facing step

In this section the numerical set-up for a backward-facing step is described. Fig-
ure 6.1 depicts a sketch of the geometry. The height of the step is h and the channel
height is H , which equals 2h. Consequently, the Expansion Ratio (ER) between
inlet and outlet is ER = H/(H-h) = 2. The inlet is located Lu = 4h upstream of
the step. A constant heat flux is applied on the bottom wall directly downstream
of the step over a length Lh = 20h and is referred to as ”the heater”. This wall is
followed by an adiabatic wall of length La = 20h.

A mesh is constructed in the three-dimensional domain, but can be considered
to be two-dimensional as it contains only one layer of cells in the z-direction. The
distribution of the cells are described in Figure 6.2 and in Table 6.3. These dis-
tributions are taken from the finest mesh of the grid refinement study performed
by [230]. Similar to their work, the cells are clustered towards the walls and in
stream-wise direction towards the end of the heater where steep changes in the
velocity gradients are expected. The cell expansion ratio is 5 in the direction per-
pendicular to the solid walls and 10 in the direction perpendicular to the inlet and
outlet boundaries of the domain. The mesh contains a total number of 585450
hexahedral cells.
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Figure 6.1: A sketch of the geometry of the backward-facing step and the precursor
domain.

Figure 6.2: A 2D sketch of the geometry of the backward-facing step divided into several
zones and including boundaries.

Table 6.3: The number of cells, N , along the horizontal (x1, x2 and x3) and vertical sides
(y1, y2) of each zone depicted in Figure 6.2.

Ny1 Ny2 Nx1 Nx2 Nx3

Number of cells 225 225 126 900 338

The characteristic dimension of the domain is the step height h = 0.05 m. A
hydrodynamic fully developed channel flow profile is applied at the inlet bound-
ary Γin. This inlet velocity profile is generated via a separate simulation of an
isothermal channel flow of height h and length 10h with the inlet bulk veloc-
ity Ub = 0.1192 m/s. The flow, characterized by the Reynolds number Re = 104

(Equation 6.15), is considered to be fully turbulent. The hyperbolic stream-wise
velocity profile at the outlet of the channel is set as the inlet velocity profile of
the backward-facing step as depicted in Figure 6.1. At the outlet, Γout, a homo-
geneous Neumann boundary condition is set for all variables except for pressure.
Only the relative pressure is calculated and therefore it is set to 0 m2/s2 at the out-
let. At all solid walls a no-slip condition is applied and the turbulence quantities,
k and ε, are set to zero. All walls except for the heated one, Γ∇θ, are adiabatic.
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The fluid properties are taken for liquid sodium at a constant inlet temperature
θin = 423.15 K = 150◦C with the kinematic viscosity ν = 5.96·10−7 m2/s and
thermal diffusivity α = 6.8 ·10−5 m2/s, meaning that the Prandtl number, Pr, is
equal to 0.0088.

RANS simulations are performed for Richardson numbers (Equation 6.16) in
a range of Ri = [0.0, 0.5] with steps of 0.05, covering partly the forced- and mixed
convection regime. To calculate these Richardson numbers, the thermal expansion
coefficient, β is considered to be equal to 2.5644 · 10−4 K−1 [179]. Similar to the
numerical experiments done by [230], the backward-facing step is placed vertically
by having the gravitational acceleration in the downward direction with g = (-9.81,
0, 0) m/s2.

The steady-state RANS equations (Equations 6.1-6.5) are discretized by the
Finite Volume method with the open source C++ library OpenFOAM 6 [130].
The simulations are run in parallel on 8 Intel R© Xeon R© E5-2680 v3 @ 2.50GHz
cores. The SIMPLE algorithm for the pressure-velocity coupling is used [77] and
blended schemes with an order of accuracy between one and two have been used
for the spatial discretization. A solution is assumed to be converged when the
scaled residuals of all variables are below 10−5.

The y+ values at the heater for Ri = 0.0, 0.2 and 0.4 are compared with the
values obtained by Schumm et al. [230] for the same distribution of the cells in
Table 6.4 and similar values are observed.

Table 6.4: y+ values at the heater compared with the results of [230].

Ri y+
min y+

min [230] y+
max y+

max [230] y+
avg y+

avg [230]
0.0 5.9e−5 2.5e−3 3.1e−1 5.6e−1 1.7e−1 3.3e−1

0.2 4.2e−3 1.2e−3 4.4e−1 0.9e−1 3.3e−1 7.1e−2

0.4 7.5e−3 1.9e−3 6.2e−1 1.1e−1 4.7e−1 9.1e−2

The calculation of the POD modes, the Galerkin projection of the RANS so-
lutions on the reduced subspace and the ROM simulations are carried out with
ITHACA-FV [240] on a single Intel R© Xeon R© core. ITHACA-FV is a C++ library
based on the Finite Volume solver OpenFOAM [130]. For more details on the
ITHACA-FV code, the reader is referred to [239, 240, 241].

The ROM is tested for four Richardson numbers Ri = 0.12, 0.24, 0.36 and
0.48 that are all within the aforementioned range. The ROM solutions are com-
pared with the RANS solutions for these Richardson numbers, which are not used
in the creation of the ROM basis, to check the consistency of the method. The
relative L2 error between the FOM and ROM velocity and temperature fields and
the basis projection error are determined at each parameter value, µ, according to
Section 2.5.5.2.
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6.5 Results and analysis
Firstly, 10 steady-state RANS simulations are performed for the vertical backward-
facing step case for Richardson numbers in the range [0.05, 0.5] with steps of 0.05.
The associated heat flux (Equation 6.50) in the range [112.5, 1125] W/m2 is con-
sidered to be the corresponding varying physical parameter. The converged solu-
tions are taken as snapshots, which are then used to create the POD basis functions.
Figure 6.3 shows the velocity magnitude, shifted kinematic pressure, and temper-
ature fields for Ri = 0.2 (left) and Ri = 0.4 (right).

Figure 6.3: Velocity magnitude (top), shifted kinematic pressure (middle) and temperature
fields obtained with the RANS simulations for Ri = 0.2 (left) and Ri = 0.4 (right), respec-
tively.

The same figure shows that the effect of buoyancy on the flow field and heat
transfer is larger for higher Richardson numbers. For instance, it can be clearly
seen that increasing the heat flux results in a decrease of the recirculation zone
directly downstream of the step. This is also reported in [178] and [230].

Figure 6.4 shows the projection errors for velocity and temperature up to the
first eight modes. The figure shows that for a certain parameter value the error
monotonically decreases when the number of modes is increased. These errors act
as a lower error bound for the reduced order model. In practice, the prediction
error εL2

for the fields obtained by solving the ROM is larger than the projection
error ε̂L2 .
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Figure 6.4: Relative basis projection error of all snapshots for different number of modes:
(left) velocity relative error; (right) temperature relative error.

In order to retain 99.99% of the energy contained in the snapshots for all phys-
ical variables 4 velocity modes, 4 shifted kinematic pressure modes, 1 temper-
ature mode, 6 eddy viscosity modes and 6 turbulence thermal diffusivity modes
are needed. Adding more modes can improve the accuracy of the ROM, but this
has a detrimental effect on the computational time. Therefore, there is a trade-off
between the two options. Based on Figure 6.4, 5 velocity modes, 5 shifted kine-
matic pressure modes and 5 or 8 temperature modes are used for the construction
of the ROM. The projection error is about O(10−2) and O(10−4) for velocity and
temperature, respectively. Furthermore, 8 eddy viscosity and turbulent thermal
diffusivity modes are used to accurately determine the corresponding coefficients
with the RBF approach.

6.5.1 Determining the penalty factors

The penalty factors are determined via a sensitivity study by performing multiple
ROM simulations for different values of the factors. To show the effect of the
penalty factors, the relative prediction errors for velocity and temperature with Nθ

r

= 5 are shown in Figure 6.5 for the following two cases

A) τU = 1, τ∇θ = 1, τθ = 1,

B) τU = 106, τ∇θ = 106, τθ = 106.

This figure shows that the relative prediction error for both velocity and tempera-
ture improves when the penalty factors are larger. The results for other combina-
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tions of factors are not shown here as they do not lead to an overall improvement
of the prediction error compared to case B.
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Figure 6.5: Relative prediction error for two sets of penalty factors and different Richardson
numbers and Nθ

r = 5. Case A: τU = 1, τ∇θ = 1, τθ = 1. Case B: τU = 106, τ∇θ =
106, τθ = 106. (Left) Velocity relative error; (right) temperature relative error.

6.5.2 Comparison of the ROM and RANS solutions

Reduced order simulations are performed for the same parameter values µ for
which the snapshots are collected. The results of the ROM simulations are com-
pared with the results of the RANS simulations for the cases of Ri = 0.2 and
0.4. The stream-wise velocity, the wall normal velocity and the non-dimensional
temperature profiles are shown in Figure 6.6, 6.7 and 6.8, respectively. Location
x/h = 0 is at the step as indicated in Figure 6.2. Only the results with Nθ

r = 5 are
shown. Good agreement with the RANS data is found for these cases. As also ob-
served by Schumm et al. [230] the recirculation zone is reduced in its stream-wise
extent (Figure 6.6) with increasing buoyancy. Also, the velocity profiles have their
peak forming above the heater.

Furthermore, the wall normal velocity component, shown in Figure 6.7, is in
agreement with the results found in [230]. As a positive wall normal velocity
component transports momentum from the heater towards the upper wall, the tem-
perature at the heater is lower for Ri = 0.4 compared to Ri = 0.2, as can be seen in
Figure 6.8. Even though the velocity profiles are in good agreement with literature,
the flow near the upper wall starts heating up further downstream at around x/h =
27 compared to the cases studied by Schumm et al. [230] where this phenomenon
was already present at around x/h = 15. This means that less mixing takes place
in the thermal field of this study compared to their study, which can be caused by
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a lower shear stress.
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Figure 6.6: Profiles of the normalized stream-wise velocity component at several locations
downstream of the step for Ri = 0.2 and Ri = 0.4, respectively, obtained by performing
RANS and ROM simulations. The legend depicts the number of temperature modes, Nθ

r ,
used for the ROM.
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Figure 6.7: Profiles of the normalized wall normal velocity component at several locations
downstream of the step for Ri = 0.2 and Ri = 0.4, respectively, obtained by performing
RANS and ROM simulations. The legend depicts the number of temperature modes, Nθ

r ,
used for the ROM.
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Figure 6.8: Normalized temperature profiles at several locations downstream of the step for
Ri = 0.2 and Ri = 0.4, respectively, obtained by performing RANS and ROM simulations.
The legend depicts the number of temperature modes, Nθ

r , used for the ROM.
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The local Stanton number profiles, depending on the applied heat flux, along
the heater are shown in Figure 6.9 for Ri = 0.1, 0.2, 0.3, 0.4 and 0.5. Figure 6.10
shows the skin friction distribution, depending on the wall shear stress, at the heater
and further downstream up to x/h = 30 for the same Richardson numbers on the
right. Not all cases are shown for the sake of clarity. The distributions obtained
by the RANS simulations are in good agreement with the literature. Furthermore,
the results, and especially those of the skin friction distribution downstream of
the heater, show that buoyancy has a large influence on the flow and heat transfer.
Moreover, heat conduction through the boundary layer has more dominant effect
with respect to convection as the Prandtl number is below unity. Even though
the behavior is nonlinear, the reduced order model is capable of reproducing the
RANS results with a good accuracy.
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Figure 6.9: Local Stanton number at the heater determined by the RANS and ROM simula-
tions for several Richardson numbers.
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Figure 6.10: Skin friction distribution downstream of the backward-facing step determined
by the RANS and ROM simulations for several Richardson numbers.

6.5.3 Reduced order simulations for new parameter values

Besides the parameter for which snapshots are collected, the ROM is tested on four
additional Richardson numbers, namely Ri = 0.12, 0.24, 0.36 and 0.48. Figure 6.11
shows the prediction error for these cases with five and eight temperature modes.
The figure shows that especially for Ri = 0.48 both the velocity and temperature
relative error is reduced when the number of temperature modes is increased from
five to eight. However, the opposite is true for Ri = 0.24. In that case, increasing
the number of temperature modes has a detrimental effect on the prediction error
of temperature. Therefore, five temperature modes are used further for Ri = 0.12
and 0.24, while eight temperature modes are used for Ri = 0.36 and 0.48.

Figures 6.12 and 6.13 show the local Stanton number and the skin friction
distribution downstream of the step respectively. The ROM results for Ri = 0.24
and 0.48 are overlapping with the distributions obtained by the RANS simulations.
For Ri = 0.36 the ROM solution is accurate looking at the local Stanton number.
However, the solutions for the skin friction deviates from the RANS solutions
downstream of the heater. For Ri = 0.12 the ROM over-predicts the local Stanton
number and under-predicts the skin friction. An attempt is made to reduce the
error for this case by increasing/decreasing the number of modes of all variables
and increasing/decreasing the penalty factors. However, all solutions are deviating
from the ROM solution by a few percent, while for all other parameter values the
deviation is less than 0.1% in case of the local Stanton number.
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Figure 6.11: Relative prediction error for all Richardson numbers with Nθ
r = 5 and Nθ

r

= 8 temperature modes, respectively, used for the construction of the ROM: (left) velocity
relative error; (right) temperature relative error.
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Figure 6.12: Local Stanton number at the heater determined by the ROM compared with
those determined by RANS simulations for several Richardson numbers.
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Figure 6.13: Skin friction distribution downstream of the backward-facing step determined
by the ROM compared with those determined by RANS simulations for several Richardson
numbers.

To see whether this affects the velocity and temperature distribution, the pro-
files downstream of the step are plotted in Figures 6.14, 6.15 and 6.16. Only the
profiles of the wall normal velocity component at x/h = 3 show a small deviation
between the RANS and ROM solution for Ri = 0.12. For all other profiles, the
ROM solutions are fully overlapping with the RANS solutions.
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Figure 6.14: Profiles of the normalized stream-wise velocity component at several locations
downstream of the step for Ri = 0.12 and Ri = 0.36, respectively, obtained by performing
RANS and ROM simulations. The legend depicts the number of temperature modes, Nθ

r ,
used for the ROM.
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Figure 6.15: Profiles of the normalized wall normal velocity component at several locations
downstream of the step for Ri = 0.12 and Ri = 0.36, respectively, obtained by performing
RANS and ROM simulations. The legend depicts the number of temperature modes, Nθ

r ,
used for the ROM.
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Figure 6.16: Normalized temperature profiles at several locations downstream of the step
for Ri = 0.12 and Ri = 0.36, respectively, obtained by performing RANS and ROM simula-
tions. The legend depicts the number of temperature modes, Nθ

r , used for the ROM.

The performance of the radial basis function interpolation is checked by com-
paring the ratio of the eddy viscosity to kinematic viscosity at several locations
downstream of the step determined by the RANS and ROM simulations for Ri
= 0.12 and Ri = 0.36, as shown in Figure 6.17. Also for these fields, the ROM
solutions are fully overlapping with the RANS solutions.

Finally, one RANS simulation takes on average 17 hours to converge on 8
Intel R© Xeon R© cores to reach a steady state solution. On the other hand, one ROM
simulation takes about 1.5 seconds to converge on a single core. Therefore, the
speed-up is about the order O

(
105
)
. The computational cost of the construction

of the ROM is not taken into account in the calculation of the speed-up offered
by the ROM itself. The whole construction of the ROM, including the collection
of snapshots, calculating the POD modes and the reduced matrices, can be done
in an offline phase on a high performance computing environment. For this case,
the entire offline phase, which is dominated by the time it takes for the RANS
simulations to converge, can be done in about 17 hours using parallel calculations
on 10 (the number of snapshots) × 8 cores.
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Figure 6.17: Comparison of the ratio of eddy viscosity to kinematic viscosity at several lo-
cations downstream of the step determined by the RANS and ROM simulations for different
Richardson numbers. The legend depicts the number of temperature modes, Nθ

r , used for
the ROM.

6.6 Discussion

The results for certain Richardson numbers show that increasing the number of
modes for the construction of the reduced basis space does not necessary result in
a more accurate reduced order model. For instance, the relative prediction error of
temperature is an order higher if eight instead of five temperature modes are used
for Ri = 0.24, which can be clearly seen in Figure 6.11. This indicates that the



LOW PRANDTL NUMBER FLUIDS 127

ROM is not fully consistent with the high-fidelity model.
The discrepancy between the RANS and ROM simulations can have different

causes. First of all the SIMPLE algorithm is implemented in the high fidelity
model, but not in the reduced order model.

Furthermore, the turbulence transport equations for k and ε (Equations 6.4
and 6.5) are not projected on the reduced basis. Instead, the eddy viscosity and
turbulence thermal diffusivity fields are approximated with an RBF interpolation
approach. The advantage is that the reduced order model is independent of the
turbulence model used in the RANS simulations [111]. Also if the effect of buoy-
ancy is modeled in the turbulence transport equations (Equations 6.4 and 6.5),
the reduced system of equations (Equations 6.29 and 6.30) does not have to be
adjusted. Another option is to project the equation for the turbulence diffusivity
field, Equation 6.12, in combination with Equation 6.13, onto the reduced basis.
Then the νt and αt fields can share the same coefficients as αt is depending on νt
(Equation 6.12). However, this is not tested in this study.

Moreover, some modes contain more features of the flow solution for higher
Richardson numbers than others. This can be seen in Figure 6.5 as the basis pro-
jection error is not the same for all Richardson numbers. Also, the projection error
stagnates more or less at 7 modes, as can be seen in the same figure. This means
that constructing a reduced basis with even more modes can have a detrimental
effect on the ROM solution as these higher modes contain only a limited amount
of physical information.

The ROM over-predicts the local Stanton number at the heater and under-
predicts the skin friction for Ri = 0.12 as shown in Figures 6.12 and 6.13, re-
spectively. Neither increasing/decreasing the number of modes of all variables nor
increasing/decreasing the penalty factors resulted in a lower error. In this work, the
amount of RANS data is limited as only 10 snapshots are used for the construction
of the reduced basis. Therefore, a possible solution is to construct a ROM with
more snapshots collected in a narrow range of Richardson numbers around the pa-
rameter to be tested [109]. However, this approach is time consuming as multiple
local reduced order models need to be constructed.

In this study, the penalty factors are found by numerical experimentation. This
can, however, be a time consuming process if the results are not satisfactory after
a few tries. It remains a question how to properly select the penalty factors for the
enforcement of boundary conditions in the reduced order models. This highlights
one of the main drawbacks of the penalty methods, namely that the factors cannot
be determined a priori [93]. Instead of performing a sensitivity study to determine
the penalty factors, the iterative penalty method that is presented in Chapter 4 can
be implemented to determine the factors automatically in the ROM setting [248].

The parametric ROM is constructed in this work to study solutions for different
Richardson numbers, for which the associated heat flux is considered to be the
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corresponding varying physical parameter. The ROM is already set-up in such
a way that it can also be used for other parameters. For instance, the constant
viscosity is taken outside the reduced matrix for the diffusive term and the inlet
velocity that appears as variable in the penalty term of the reduced momentum
equations. Nevertheless, the ROM is not trained for these parameters even when
staying within the range of Richardson numbers for which snapshots are collected.
Therefore, a new ROM needs to be constructed if new or additional snapshots are
needed as the POD basis functions are assumed to be based on a linear combination
of the snapshots. Furthermore, geometric parametrization, like changing the height
of the step, is not possible with this ROM.

The ROM can be extended to unsteady RANS simulation by incorporating
a time integration method at the reduced order level. However, standard POD-
Galerkin ROMs tend to exhibit instabilities when an iterative algorithm for solving
the nonlinear implicit equations is implemented at the reduced order level [5, 18,
25, 78]. An iterative algorithm is required due to the presence of the coupling
between pressure and velocity [241]. A pressure stabilization method might be
required instead of that velocity and pressure share the same coefficients for the
development of the reduced order model. Moreover, the snapshots do not only
need to be collected in parameter space, but also at several time instances [146]. In
addition, the time-dependency needs to be incorporated into the RBF interpolation
method such that the approach is suitable for unsteady cases [112].

Finally, it is known from the literature that simulating unsteady turbulent con-
vective (buoyant) flows is challenging and RANS simulations are inaccurate for
large classes of flows [68]. The large eddy simulation method, which is giving
access to the fluctuating quantities, is often required [12, 101, 232]. One of the
challenges of developing a LES-ROM, other than applying filtering, is the deriva-
tion of the ROM closure model to improve the accuracy and instability of the
standard POD-Galerkin ROM [185, 280, 293]. More research is needed to extend
the current ROM for transient simulations as well as for large eddy simulation.

6.7 Conclusion

A Finite-Volume based POD-Galerkin reduced order modeling strategy for steady-
state Reynolds-averaged Navier-Stokes simulations is developed for low-Prandtl
number fluid flow. Simulations are performed for sodium flow over a vertical
backward-facing step with a heater placed on the wall directly downstream of the
step. The results for different Richardson numbers show that buoyancy has large
influence on the flow and heat transfer. Even though the behavior is nonlinear, the
reduced order model is capable of reproducing the RANS results with good accu-
racy. The prediction error between the RANS and ROM velocity fields is of the
order O(10−2) and below the order O(10−1) for new parameter values inside the
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range of Richardson numbers. For temperature, the relative error is about or less
than the order O(10−3) for all parameter values. Also, the local Stanton number
and skin friction distribution at the heater are qualitatively well captured. Further-
more, the eddy viscosity and turbulence thermal diffusivity coefficients, needed for
the turbulence closure modeling at the reduced order level, are approximated with
the radial basis function interpolation method. The advantage of this method is that
the reduced order model is independent of the turbulence model used in the RANS
simulations. Finally, the reduced order simulations performed on a single Intel R©

Xeon R© core are about 105 times faster than the RANS simulations performed on
8 cores.

For further work, the aim is to extend the reduced order model of turbulent
convective buoyant flow of low-Prandtl number fluid for the parametrized unsteady
RANS equations. An interesting follow-up study would be to develop a ROM for
unsteady flow and heat transfer of sodium in an outlet plenum [171]. Furthermore,
neural networks [83], instead of using radial basis functions as an interpolation
method, could potentially be used to approximate the eddy viscosity and thermal
diffusion coefficients conducted in this work [112].





7
A ‘discretize-then-project’ approach

for the incompressible Navier-Stokes
equations on collocated grids

This chapter introduces the ‘discretize-then-project’ for incompressible fluids on
collocated grids. We repeat here part of Chapter 2 on the finite volume discretiza-
tion method that is essential for the understanding of the ‘discretize-then-project’
approach and due to some changes in notations. The results of this chapter are
submitted as [246].

7.1 Introduction

Despite the potential and the increasing popularity of FV-based POD-Galerkin re-
duced order models for all sorts of applications, they tend to have issues with accu-
racy and can exhibit numerical instabilities [127, 133, 241]. Challenges regarding
velocity-pressure coupling and satisfying the boundary conditions at ROM level
make it difficult to generalize the ROM methods such that they can be applied to
any problem.

Several works on POD-Galerkin reduced order models have shown that the
pressure gradient term disappears from the momentum equations when the basis
for the velocity-field is (discretely) divergence-free [115, 165, 223]. However, it
is (in contrast to a staggered grid) not straightforward to derive a stable ‘velocity-
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only’ ROM, since the compatibility relation between divergence and gradient op-
erators is not satisfied on a collocated grid [77, 271]. Typically, a combination of
Rhie-Chow interpolation at the level of the full order model [208] and pressure
stabilization on the ROM level is required to obtain stable solutions (as described
in more detail in Section 2.5.3.1). However, even when stabilization techniques
are applied, the ROM velocity and pressure fields are about one or two orders less
accurate than the fields obtained by projecting the full order solutions onto the
POD basis spaces. This is even the case for non-parametric laminar flow cases,
such as the lid driven cavity flow problem [241].

Furthermore, a ‘discretize-then-project’ approach [152], i.e. projecting the fully
discrete system, simplifies the treatment of the velocity boundary conditions. A
recent study on ROMs on a staggered grid [223] demonstrated that the bound-
ary conditions of the discrete FOM can be inherited by the ROM via the projec-
tion of the boundary vectors. With this approach, no additional boundary con-
trol method, such as the penalty [93, 134, 161, 234] or lifting function meth-
ods [79, 93, 239, 262]that are described in Chapter 4, is needed to handle the
BCs at the ROM level.

To better understand how to deal with the challenges related to projection,
pressure stabilization and the boundary conditions at ROM level, one needs to
have a deep understanding of the underlying full order models.

In this work, we develop an efficient non-parametric ROM for the incompress-
ible NS equations on collocated grids that does not require a pressure stabilization.
We employ explicit time integration methods instead of implicit ones at the FOM
and the ROM level in order to ease the derivations [17]. We base our approach on
the recent progression on ROMs on staggered grids [223]. First of all, we project
the fully discrete system, i.e. we project the discrete FOM operators and bound-
ary vectors onto the POD basis spaces. Furthermore, we evaluate the divergence-
freeness of the velocity fields and the necessity of pressure in the ROM formulation
to develop a stable ROM. In addition, we derive a boundary condition treatment
for which the ROM inherits the boundary conditions specified at discrete FOM
level via the projection of the boundary vectors.

This chapter is organized as follows: First, we discuss the spatial and temporal
discretization of the Navier-Stokes equations on a collocated grid for two different
approaches for the computation of the convecting face fluxes in Section 7.2. In
Section 7.3, we apply the POD-Galerkin method at the fully discrete level and
show the construction of the ROMs in the online phase. In Section 7.4 the set-
up of two numerical test cases, a lid driven cavity flow and an open cavity (with
an inlet and an outlet) flow problem, are given and the results are provided and
discussed in Sections 7.5 and 7.6, respectively. Finally, conclusions are drawn in
Section 7.7 .
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7.2 Finite volume discretization on collocated grids
We repeat from Section 2.1 that the general equations of mass and momentum con-
servation at the continuum level for a Newtonian flow with constant fluid density,
constant kinematic viscosity and without body forces are given, respectively, by

∇ · u = 0 in Ω, (7.1)

∂u

∂t
= −∇ · (u⊗ u) + ν∇ · (∇u)−∇p in Ω, (7.2)

where u = u(x, t) represents the vectorial velocity field that is evaluated at x ∈
Ω ⊂ Rd with d = 2 or 3. Furthermore, p = p(x, t) is the normalized scalar
pressure field, which is divided by the constant fluid density ρ, and t denotes time.
These equations are subjected to initial and boundary conditions as described in
Section 2.1.

We discretize the governing partial differential equations, Equations 7.1 and 7.2,
using the finite volume method on a collocated grid, which is shown in Figure 7.1.
We present both the spatial and temporal discretization. The fully discretized equa-
tions are projected on reduced basis spaces in the next section.

Figure 7.1: Two-dimensional collocated grid with the location of the unknowns at the cell
center and the faces of a cell volume.

An integral formulation of the governing equations is imposed to all closed
cell volumes such that the conservation laws are satisfied locally [81, 271]. The
integral form of the conservation equations (Equations 2.1 and 2.2) for an arbitrary
cell k are given by ∫

∂(Ωh)k

n · udS = 0, (7.3)
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∫
(Ωh)k

∂u

∂t
dΩ = −

∫
∂(Ωh)k

(n ·u)udS+ν

∫
∂(Ωh)k

n · (∇u) dS−
∫
∂(Ωh)k

npdS,

(7.4)
where (Ωh)k is the volume of cell k and ∂(Ωh)k is its boundary. dΩ is an infinites-
imal volume element and dS is an infinitesimal element of surface area.

7.2.1 Spatial discretization

The finite-volume discretization of the governing equations in integral form, Equa-
tions 7.3 and 7.4, on an arbitrary collocated mesh consisting of h cells can be
written in a matrix-vector notation:

Buf = 0, (7.5)

dup
dt

= −Cp(uf ,up)− rCp + νDpup −Gppp + νrDp , (7.6)

where pp = (pp,1, pp,2, ..., pp,h)T ∈ Rh is the cell-centered pressure and up ∈
Rdh the cell-centered velocity, which are defined as column vectors containing
solely the cell-centered values. For a three-dimensional problem (d = 3), up is ar-
ranged as ((up)1, (up)2, (up)3)T , where each (up)i = ((up,1)i, (up,2)i, ..., (up,h)i)

for i = 1, 2, 3. (uf )i = ((uf,1)i, (uf,2)i, ..., (uf,m)i) ∈ Rdm, is the velocity eval-
uated on the cell faces andm the number of faces. Figure 7.2 depicts the location of
the variables on a coarse grid. The face-centered velocity field uf is related to the
cell-centered velocity fieldup via a linear interpolation operator Ip→f ∈ Rdm×dh:

uf ≡ Ip→fup + ub, (7.7)

where ub ∈ Rdm is a vector that contains only the velocity values that are de-
fined at boundary faces of the domain. For the two-dimensional example given
in Figure 7.2, (ub)i = (0, 0, ..., (uf,13)i, ..., (uf,24)i) for i = 1, 2 and 13, ..., 24
are the indices of the faces at the boundary of the domain. An alternative option
to relate uf to up will be discussed in Section 7.2.2.2. Furthermore, matrix B
∈ Rh×dm is the face-to-center discrete divergence operator, Dp ∈ Rdh×dh rep-
resents the discrete cell-centered Laplacian operator associated with the diffusion
term, Cp(uf ,up) ∈ Rdh×dh represents the nonlinear convection operator and
matrixGp ∈ Rdh×h is the discrete gradient operator. Furthermore, rCp ∈ Rdh and
rDp ∈ Rdh are boundary vectors that contain the contributions of the convection
and diffusion terms, respectively. All operators are scaled with the finite volume
sizes.

We now detail the discretization of each term of the equations in integral form
(Equations 7.3 and 7.4) for an arbitrary cell k, i.e. we give the details of the oper-
ators that are present in Equations 7.5 and 7.6.
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Figure 7.2: Sketch of a two-dimensional collocated grid with the location of the
cell-centered pressure (left), the cell-centered velocity (middle) and the face-centered

velocity (right).

The discretization of the continuity equation (Equation 7.3) yields

∫
∂(Ωh)k

n · udS =

Nf∑
i

∫
Sf,i

n · udS ≈
Nf∑
i=1

Sf,i · uf,i =

Nf∑
i=1

φf,i = 0, (7.8)

where Nf is the total number of faces bordering the cell k and Sf = nSf is the
outward-pointing face area vector with Sf the area of the particular face. Hence,
the face-to-center discrete divergence operator B of Equation 7.5 consists of the
outward pointing face areas associated with all faces of the discrete domain. How-
ever, Equation 7.8 shows that the divergence-free constraint is applied to the face
flux, φf = Sf · uf , and not to the cell-centered velocity up. Therefore, we also
need to introduce the center-to-center discrete divergence operatorBp ∈ Rh×dh:

Bp ≡ BIp→f . (7.9)

Hence, the semi-discretized continuity Equation 7.5 can also be written as

Buf = BIp→fup +Bub = Bpup + rBp = 0, (7.10)

where the boundary vector rBp ∈ Rh is given by

rBp ≡ Bub, (7.11)

which contains the contributions of the boundary conditions associated with the
continuity equation.

The discretization of the pressure gradient term yields

∫
∂(Ωh)k

npdS =

Nf∑
i=1

∫
Sf,i

npdS ≈
Nf∑
i=1

Sf,ipf,i, (7.12)
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where, the face-centered pressure field pf is related to the cell-centered pressure
field pp via a linear interpolation operator Πp→f ∈ Rm×h:

pf ≡ Πp→fpp. (7.13)

Hence, the discretization of the pressure gradient Gp consists of the face area
vectors multiplied by the interpolation factors that are contained in Πp→f .

Furthermore, the discretization of the diffusion term of the momentum equa-
tions for orthogonal meshes yields

∫
∂(Ωh)k

n · ∇udS =

Nf∑
i=1

∫
Sf,i

n · ∇udS ≈
Nf∑
i=1

|Sf,i|
up,N − up,P

|d|
, (7.14)

where d is the distance vector between any adjacent cell centers N and P to a
particular face as shown in Figure 7.1. Hence, the discrete diffusion operator Dp

consists of coefficients associated with the face area vectors and the reciprocal of
center-to-center distances. If the cell is neighboring a face, b, that is coinciding
with the boundary of the computational domain, as shown in Figure 7.3, the dis-
cretization associated to that face changes to:

|Sf,b|
uf,b − up,P
|dn|

, (7.15)

which is split in two terms:

|Sf,b|
0− up,P
|dn|︸ ︷︷ ︸

Dp

+ |Sf,b|
uf,b − 0

|dn|︸ ︷︷ ︸
rDp

, (7.16)

where uf,b is the value of velocity at the boundary face b, dn is the distance
vector between the face at the boundary of the domain and the center of the cell
and Sf,b is the face area vector of b. The first term of Equation 7.16 is contained
in the discrete diffusion operator Dp, while the second term is contained in the
boundary vector rDp ∈ Rdh.

Finally, the discretization of the convection term yields

∫
∂(Ωh)k

(n · u)udS =

Nf∑
i=1

∫
Sf,i

(n · u)udS ≈
Nf∑
i=1

(Sf,i · uf,i)uf,i

=

Nf∑
i=1

φf,iuf,i.

(7.17)

This shows that the convection operator Cp(uf ,up) is a nonlinear operator that
depends on the face fluxes φf . In the case that the cell has a face that corresponds



A ‘DISCRETIZE-THEN-PROJECT’ APPROACH 137

to the boundary of the domain, as shown in Figure 7.3, the term:

(Sf,b · uf,b)uf,b︸ ︷︷ ︸
rCp

(7.18)

is contained in the boundary vector rCp ∈ Rdh instead of the matrix associated with
the convection operator. In this work, the nonlinearity of the discretized convection
term is quadratic, because uf is obtained via linear interpolation of up. Hence, we
can redefine the convection operator in terms of a matrix-vector product:

C̃p(uf )up ≡ Cp(uf ,up). (7.19)

Finally, substituting Equation 7.10 in the continuity equation (Equation 7.5)
and Equations 7.19 in the momentum equations (Equation 7.6) results in the fol-
lowing spatially discretized system of equations:

Bpup + rBp = 0, (7.20)

dup
dt

= −C̃p(uf )up + νDpup −Gppp + rp, (7.21)

where rp ∈ Rdh ≡ −rCp + νrDp . All operators are scaled with the finite volume
sizes.

Figure 7.3: Two-dimensional collocated grid with the location of the velocity at the cell
center and the faces of a cell volume of a cell near the boundary face of the domain.
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7.2.2 Explicit projection methods (temporal discretization)

Applying a central discretization stencil to the velocity divergence (Equation 7.8)
and the pressure gradient (Equation 7.12) together with collocated grids generally
results in spurious pressure oscillations [140]. These oscillations occur because
the compatibility relation between the divergence and gradient operators is not
satisfied (in contrast to a staggered grid) [77, 271]. This so-called checkerboard
problem is caused by a wide stencil in the PPE, which yields a pressure-velocity
decoupling at adjacent cell centers [60]. The typical solution for this problem is
to use the Rhie-Chow interpolation [208] for the cell-centered face velocities. The
PISO (Pressure-Implicit with Splitting of Operators [128]) solver that is standardly
available in OpenFOAM corresponds to this method of Rhie and Chow [144].
However, the use of the Rhie-Chow interpolation is unnecessary even on collo-
cated grids when finite volume projection methods (also called fractional methods
and not to be confused with the Galerkin projection method) with explicit time
integration methods are employed [114].

We showed in the previous section that in a collocated setting there exist two
different velocity fields, namely, the velocities at the cell faces, uf , and the cell-
centered velocities, up. The cell-centered velocities together with the pressure
form the primary solution variables. They can be related to the face-centered ve-
locity via a linear interpolation (Equation 7.7). We call this approach the incon-
sistent flux method (IFM). The fluxes at the cell centers are only approximately
discretely divergence free with this approach, which is shown in the next subsec-
tion. We therefore also discuss a second approach for which we have an additional
equation for the face velocities. We call this method the consistent flux method
(CFM).

Recently, Komen et al. [144] analyzed five numerical algorithms in finite vol-
ume collocated grid solvers for the incompressible Navier-Stokes equations for a
selection of explicit (and implicit) Runge-Kutta schemes. They demonstrated that
the temporal order reduces to approximately one also for the higher order schemes
(except for the high-order method of Kazemi [136], which however turns out to
be very dissipative). Therefore, and for simplicity reasons as mentioned in the In-
troduction, we describe both projection methods (IFM and CFM) with the explicit
Euler method [278] (also called Forward Euler) i.e. the original Chorin-Temam al-
gorithm [42, 55, 254]. The extension of our approach to multi-stage (Runge-Kutta)
methods is straightforward.

7.2.2.1 Inconsistent flux method

We discretize in the time using Forward Euler, which is first order [224], the spa-
tially discretized mass and momentum equations including boundary conditions
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(Equations 7.20 and 7.21). Writing them in vector form results in:

Bpu
n+1
p + rBp = 0, (7.22)

un+1
p − unp

∆t
= −C̃p(u

n
f )unp + νDpu

n
p −Gpp

n+1
p + rp, (7.23)

where ∆t is the time step and unp ≈ up(tn) is the solution at the nth time step.
As we showed in the previous section, velocity and pressure are coupled. The

projection method computes first an intermediate velocity u∗p by ignoring the pres-
sure gradient term in the momentum equations:

u∗p − unp
∆t

= −C̃p(u
n
f )unp + νDpu

n
p + rp. (7.24)

Only the viscous and convective forces are thus considered in this step. Moreover,
u∗p is, in general, not divergence free.

Then the projection step follows, where the intermediate velocity field is cor-
rected by the pressure in order to obtain the solution of up at time step n+ 1:

un+1
p = u∗p −∆tGpp

n+1
p . (7.25)

In order to obtain a divergence free velocity field at the next time step, Equa-
tion 7.22, we take the divergence of Equation 7.25:

Bpu
n+1
p + rBp =

(
Bpu

∗
p + rBp

)
−∆tBpGpp

n+1
p = 0. (7.26)

Rewriting Equation 7.26 leads to the PPE in fully-discretized form:

Lpp
n+1
p =

1

∆t

(
Bpu

∗
p + rBp

)
, (7.27)

where Lp ≡ BpGp ∈ Rh×h is a wide stencil Laplacian operator. Basically, this
operator is based on interpolating the computed cell-centered pressure gradients
to the cell faces. As a result, the pressure is decoupled at neighboring cells [140].
Hence, the pressure solution may contain non-physical spurious modes, which is
known as the checkerboard problem.

By taking the pressure gradient directly at the cell faces, the checkerboard
problem is avoided. This is similar to the way the diffusion operator is discretized
in Equation 7.14, for which the direct neighboring cells are used without alter-
nately skipping neighboring cells [271]. This approach corresponds to the original
interpolation method of Rhie and Chow. Therefore, we use the compact stencil
given by the compact Laplacian operator Lf ∈ Rh×h instead of Lp. Lf is also
the standard Laplacian operator used in OpenFOAM [278]. However, when using
Lf instead of Lp, the continuity constraint at the cell centers Bpu

n+1
p + rBp = 0

is no longer satisfied.
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Finally, the solution of the PPE is used to correct the cell-centered velocity
field as done in Equation 7.25. As a result, the cell-centered velocity fields do not
conserve mass and are only approximately divergence free [74, 176]. Moreover,
the computation of the face velocity lacks the correction by the flux that appears
in the PPE and an incomplete flux term remains [144].

To make the Galerkin projection procedure that will be introduced in Sec-
tion 7.3 straightforward, we rewrite the fully discrete system of equations (Equa-
tions 7.24-7.27) in such a way that we have only one equation for the pressure and
one equation for the cell-centered velocity at the next time step, respectively:

Lfp
n+1
p =

1

∆t

(
Bpu

n
p + rBp

)
+Bp

(
−C̃p(u

n
f )unp + νDpu

n
p + rp

)
, (7.28)

un+1
p = unp + ∆t

(
−C̃p(u

n
f )unp + νDpu

n
p + rp

)
−∆tGpp

n+1
p . (7.29)

For the inconsistent flux method, the velocity at the faces uf are approximated
using the interpolation operator Ip→f of Equation 7.7. Furthermore, the linear
system of Equation 7.28 needs to be solved to obtain pn+1

p , while Equation 7.29
is fully explicit.

7.2.2.2 Consistent flux method

In this method, we use the pressure field obtained by solving the PPE (Equa-
tion 7.28) to also correct the face fluxes. We apply first the linear interpolation
operator onto Equation 7.29:

un+1
f = Ip→f

[
unp + ∆t

(
−C̃p(u

n
f )unp + νDpu

n
p + rp

)
−∆tGpp

n+1
p

]
,

(7.30)
which is equivalent to Equation 7.7. However, rather than interpolating the cell-
centered pressure gradients (using Ip→fGp), we directly evaluate the pressure
gradients at the faces using a new discrete face gradient operator Gf ∈ Rdm×h.
Therefore, Equation 7.30 can be rewritten as:

un+1
f = Ip→fu

n
p + ∆tIp→f

(
−C̃p(u

n
f )unp + νDpu

n
p + rp

)
−∆tGfp

n+1
p .

(7.31)
The spatial discretization of the pressure gradient term, i.e. the last term of

Equation 7.31 on the right hand side, for a cell k is approximated by

Nf∑
i=1

Sf,i
pp,N − pp,P
|d|

. (7.32)

Hence, the gradient operatorGf consists of coefficients associated with the surface
normal vectors and the reciprocal of center-to-center distances. Gf directly uses
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the cell-centered pressure to calculate the gradient, while Gp (Equation 7.12) is
based on the linear interpolation of the pressure in the cell centers.

If we then take the divergence of Equation 7.31 according to 7.10:

Bun+1
f =

(
Bpu

n
p + rBp

)
+Bp

[
∆t
(
−C̃p(u

n
f )unp + νDpu

n
p + rp

)]
−∆tBGfp

n+1
p ,

(7.33)

we see that the combination of the first two terms on the right hand side is equal
to the right hand side of Equation 7.28 (multiplied by ∆t). Therefore, substituting
the pressure computed with Equation 7.28, proves that the face velocity fields are
discretely divergence free as the right hand side of Equation 7.33 is zero.

The system of equations for the consistent flux method is then formed by Equa-
tions 7.28, 7.29 and 7.31, which are solved in this particular order to obtain the
solution for uf , up and pp at tn+1.

7.3 POD-Galerkin reduced order models for the ex-
plicit projection methods

We apply the POD-Galerkin method [149, 235] directly on the fully discrete for-
mulations given by Equations 7.28 and 7.29 for the inconsistent flux method and
Equations 7.28, 7.29 and 7.31 for the consistent flux method. Therefore, the full
order models and reduced order models are both first order in time (Forward Eu-
ler).

We assume that the FOM solutions can be expressed as a linear combination of
orthonormal spatial modes multiplied by time-dependent coefficients [149]. The
discrete cell-centered velocity fields, up, are approximated by

up ≈ up,r = Φa, (7.34)

where Φ = (ϕ1,ϕ2, ...,ϕNur ) ∈ Rdh×Nur is a matrix containing the cell-centered
velocity modes ϕ ∈ Rdh. For a three-dimensional problem (d = 3), ϕ is arranged
as ((ϕ)1, (ϕ)2, (ϕ)3)T , where each (ϕ)i = ((ϕ1)i, (ϕ2)i, ..., (ϕh)i) for i = 1, 2, 3.
a = (a1, a2, ..., aN

u
r )T ∈ RNur are the corresponding time-dependent coefficients

with Nu
r the number of velocity modes. The subscript r denotes quantities associ-

ated to the ROM.
Similarly, the discrete pressure fields are approximated by

pp ≈ pp,r = Xb, (7.35)

where X = (χ1,χ2, ...,χNpr ) ∈ Rh×Npr is a matrix containing the cell-centered
pressure modes χ = (χ1, χ2, ..., χh)T ∈ Rh and bn = (b1, b2, ..., bN

p
r )T ∈ RNpr



142 CHAPTER 7

the corresponding time-dependent coefficients with Np
r the number of pressure

modes.
Finally, the discrete face velocity fields are approximated by

uf ≈ uf,r = Ψc, (7.36)

where Ψ = (ψ1,ψ2, ...,ψNur ) ∈ Rdm×Nur is a matrix containing the face velocity
modes ψ ∈ Rm and c(t) = (c1, c2, ..., cN

u
r )T ∈ RNur the corresponding time-

dependent coefficients. For a three-dimensional problem (d = 3), ψ is arranged as
((ψ)1, (ψ)2, (ψ)3)T , where each (ψ)i = ((ψ1)i, (ψ2)i, ..., (ψm)i) for i = 1, 2, 3.

7.3.1 Proper orthogonal decomposition

The optimal POD basis space for the cell-centered velocity, EupPOD = span(ϕ1,ϕ2,
...,ϕNur ) is constructed by minimizing the difference between the snapshots, i.e.
the discrete solutions at several time instances, and their orthogonal projection
onto the reduced basis for the L2-norm:

E
up
POD = arg min

ϕ1,...,ϕNur

1

Nu
s

Nus∑
n=1

∥∥∥∥∥∥unp −
Nur∑
i=1

(
unp ,ϕi

)
L2(Ωh)

ϕi

∥∥∥∥∥∥
2

L2(Ωh)

, (7.37)

subjected to the orthogonality constraint ΦTΩΦ = I , where Ω ∈ Rdh×dh is a
diagonal matrix with the cell-centered control volumes and I ∈ RNur ×Nur is the
identity matrix. Nu

s is the number of velocity snapshots andNu
r ≤Nu

s . (·, ·)L2(Ωh)

is the discrete L2-inner product of the fields over the whole discrete domain Ωh.
The L2-norm is the preferred norm for discrete numerical schemes [40, 241] with

(
unp ,ϕi

)
L2(Ωh)

≡
h∑
j=1

unp,j ·ϕi,j(Ωh)j . (7.38)

The optimal POD basis space for the cell-centered pressure, EpPOD = span(χ1,χ2,
...,χNpr ) is constructed in a similar way.

For the face velocity, EufPOD = span(ψ1,ψ2, ...,ψNur ) is constructed as follows:

E
uf
POD = arg min

ψ1,...,ψNur

1

Nu
s

Nus∑
n=1

∥∥∥∥∥∥unf −
Nur∑
i=1

(
unf ,ψi

)
L2(Σ)

ψi

∥∥∥∥∥∥
2

L2(Σ)

, (7.39)

where the discrete inner product (·, ·)L2(Σ) is defined over all face areas Σ:

(
unf ,ψi

)
L2(Σ)

≡
m∑
j=1

unf,j ·ψi,j(Sf )j . (7.40)
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The minimization problem mentioned in Equation 7.37 is equivalent to solving
the following eigenvalue problem on a set of snapshots:

CuQu = Quλu, (7.41)

with
Cuij =

(
uip,u

j
p

)
L2(Ωh)

for i, j = 1, ..., Nu
s , (7.42)

where Cu ∈ RNus ×Nus is the correlation matrix of velocity snapshots, Qu ∈
RNus ×Nus is a square matrix of eigenvectors and λu ∈ RNus ×Nus is a diagonal
matrix containing the eigenvalues. The POD modes, ϕi, are then constructed as
follows

ϕi =
1

Nu
s

√
λui

Nus∑
n=1

unpQ
u
in for i = 1, ..., Nu

r . (7.43)

The cell-centered velocity modes ϕ are only approximately discretely divergence
free like the cell-centered velocity up. As a consequence, it is necessary to include
pressure in the ROM formulations to develop a stable ROM.

The most energetic (dominant) POD modes are selected based on the decay of
the eigenvalues λui . The procedure is the same for obtaining the pressure modes
and the face velocity modes using the appropriate inner products.

7.3.2 Galerkin projection for the inconsistent flux method

The approximations of the discrete velocity and pressure fields (Equations 7.34
and 7.35) are substituted into the FOM of the inconsistent flux method (Equa-
tions 7.28 and 7.29). The PPE (Equation 7.28) is then projected onto the reduced
basis spanned by the pressure modes by left-multiplying withXTΩ:

XTΩLfXb
n+1 =

1

∆t

(
XTΩBpΦa

n +XTΩrBp

)
+XTΩBp

(
−C̃p(Ip→fΦa

n)Φan + νDpΦa
n + rp

)
.

(7.44)

Rewriting leads to the following ROM formulation for the equation for pressure:

Lrb
n+1 =

1

∆t

(
Bra

n + qBr
)
− Âr(a

n)an + νD̂ra
n + qr, (7.45)

where the reduced matrices associated with the linear terms, Lr = XTΩLfX ∈
RNpr×Npr , Br = XTΩBpΦ ∈ RNpr×Nur and D̂r = XTΩBpDpΦ ∈ RNpr×Nur
and the reduced vector qr = XTΩBprp ∈ RNpr , can all be determined during the
offline stage. The nonlinear convection term Âr(a) ∈ RNpr×Nur ×Nur is also pre-
computed during the offline stage and is stored as a third order tensor. Therefore,
Âr consists of Nu

r components Âr,i ∈ RNpr×Nur and is constructed as:

Âr,i = XTΩBpC̃p(Ip→fΦi)Φ. (7.46)
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During the online stage, the term Âr(a
n)an of Equation 7.45 is evaluated as

Nur∑
i=1

(an)T Âr,ia
n. (7.47)

This only holds when the interpolation operator Ip→f is linear, e.g. the convection
term is quadratic and discretized with a linear discretization scheme.

Similarly, the discrete momentum equations 7.29 are projected onto the re-
duced basis spanned by the velocity modes by left-multiplying with ΦTΩ:

ΦTΩΦan+1 =ΦTΩΦan + ∆tΦTΩ
(
−C̃p(Ip→fΦa

n)Φan + νDpΦa
n + rp

)
−∆tΦTΩGpXb

n+1.

(7.48)

Rewriting this is in matrix-vector notation leads to the following ROM formu-
lation for the momentum equations:

an+1 = an + ∆t
(
−Ĉr(a

n)an + νDra
n + rr

)
−∆tĜrb

n+1, (7.49)

where the reduced matricesDr = ΦTΩDpΦ ∈ RNur ×Nur and Ĝr = ΦTΩGpX ∈
RNur ×Npr and the reduced vector rr = ΦTΩrp ∈ RNur can all be determined dur-
ing the offline stage. The equation is simplified by ΦTΩΦ = I . Similar to Equa-
tion 7.46, the nonlinear convection term Ĉr(a) ∈ RNur ×Nur ×Nur is precomputed
during the offline stage and stored as a third order tensor.

During the online stage, the linear system of Equation 7.45 can be solved for
the pressure coefficients bn+1 as all terms of the right hand side depend solely on
the solutions at time step tn. This vector of coefficients is then used to calculate
the velocity coefficients an+1 at the new time step tn+1 from Equation 7.49. The
boundary conditions are incorporated in the ROM (Equations 7.44 and 7.49) as
the boundary vector rp is also projected onto the reduced bases. Therefore, no
additional boundary control method is needed.

In many POD-Galerkin ROMs it is assumed that the POD velocity modes sat-
isfy the strong divergence free constraint and that the pressure only enters the ROM
on the boundary [149, 161]. Then, the pressure gradient term completely vanishes
in the case of enclosed flow. This is not true for the inconsistent flux method as
the discrete cell-centered velocity field is only approximately discretely divergence
free. Therefore the divergence free constraint is also not fully satisfied neither at
the FOM nor at the ROM level.

7.3.3 Galerkin projection for the consistent flux method

We obtain the ROM for the consistent flux method by following the same Galerkin
projection procedure for the inconsistent flux method as described in the previ-



A ‘DISCRETIZE-THEN-PROJECT’ APPROACH 145

ous subsection. The approximations of the discrete cell-centered velocity, face-
centered velocity and pressure fields (Equations 7.34, 7.35 and 7.36) are substi-
tuted into the FOM of the consistent flux method (Equations 7.28, 7.29 and 7.31).
This results in the following reduced system of equations in matrix-vector nota-
tion:

Lrb
n+1 =

1

∆t

(
Bra

n + qBr
)
−Ar(c

n)an + νD̂ra
n + qr, (7.50)

an+1 = an + ∆t (−Cr(c
n)an + νDra

n + rr)−∆tĜrb
n+1, (7.51)

W rc
n+1 = V ra

n + ∆t (−Kr(c
n)an + νP ra

n + sr)−∆tGrb
n+1, (7.52)

with W r = ΨTΣΨ ∈ RNur ×Nur , V r = ΨTΣIp→fΦ ∈ RNur ×Nur , P r =

ΨTΣDpΦ ∈ RNur ×Nur , Gr = ΨTΣGfX ∈ RNur ×Npr and the reduced vector
sr = ΨTΣrp ∈ RNur . The matrix Σ ∈ Rdm×dm contains the face areas of
the cells. The reduced convection terms Ar(a

n) ∈ RNpr×Nur ×Nur , Cr(a
n) ∈

RNur ×Nur ×Nur andKr(a
n) ∈ RNur ×Nur ×Nur are determined, respectively, by

Ar,i = XTΩBpC̃p(Ψi)Φ, (7.53)

Cr,i = ΦTΩC̃p(Ψi)Φ, (7.54)

Kr,i = ΨTΣC̃p(Ψi)Φ. (7.55)

As the face-centered velocity fields are discretely divergence free, also the
POD flux modes are discretely divergence free [41]. Therefore, the pressure gradi-
ent term of Equation 7.52 completely vanishes in the case of enclosed flow [149].

The reduced system of the CFM (Equations 7.50-7.52) differs from the reduced
system of the IFM (Equations 7.45-7.49) in three ways. First of all, the reduced
equation for the coefficients of the face-centered velocity is added to the CFM-
ROM in the same way that the CFM-FOM also has an additional equation foruf at
the new time step. Secondly, the convection terms of Equations 7.50-7.52 depend
on the face-centered velocity coefficients c instead of the cell-centered velocity
coefficients a. Thirdly, more reduced matrices need to be precomputed during the
offline stage, which results in additional storage and CPU costs compared to the
IFM.

7.4 Numerical set-up

In this section the numerical set-up of two cases is described. The first test case
is the classical lid driven cavity benchmark, which is a closed flow problem. The
second test case consists of an open cavity flow problem featuring an inlet and
outlet boundary. This is an important test case for testing the projection of the
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boundary vectors. Both cases are modeled on a two-dimensional domain. Full or-
der simulations are carried out for both the consistent and inconsistent flux method
that have been implemented in ITHACA-FV [240], which is an open source C++

library based on OpenFOAM [130]. The libraries of OpenFOAM 6 are used in
this work. For the full order simulations, the spatial discretization is performed
using central differencing schemes. For the open cavity, an upwind discretization
scheme is used for the convective term due to a higher Peclet number of this case
and to test the methods for different numerical schemes.

We focus on the non-parametric case. Therefore, the same boundary conditions
are applied in the ROM as in the FOM for which the snapshots are collected. The
time step, total simulation time and the Reynolds number are also identical for the
FOM and the ROM.

7.4.1 Lid-driven cavity flow problem

Figure 7.4 depicts a sketch of the geometry of the two-dimensional lid driven cav-
ity problem. The length of the square cavity, L, equals 1.0 m. A (64 × 64) struc-
tured mesh with quadrilateral cells is constructed on the domain. A tangential
uniform velocity Ulid = 1.0 m/s is prescribed at the top wall and non-slip condi-
tions are applied to the other walls. The Reynolds number based on the velocity
of the lid and the cavity characteristic length is 100 and the flow is considered
laminar. The pressure reference value is set to 0 m2/s2 at coordinate (0,0) at the
lower left corner of the cavity. The initial condition for the cell-centered velocity
is a zero field: u0 = 0 m/s. Simulation are run with a constant time step of ∆t = 5
· 10−3 s and for a total simulation time, T , of 1.0 s.
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Figure 7.4: Sketch of the geometry and mesh of the 2D square cavity with a moving top lid.

7.4.2 Open cavity flow problem

The second test case consists of a two-dimensional square cavity problem with
an inlet and outlet along the top [21, 198, 233]. Figure 7.5 depicts a sketch of
the geometry. The height of the cavity equals its length L = 1.0 m. The fluid
enters from the left of the domain at a uniform velocity U∞ = 1.0 m/s. The inlet
is located Lu = 1.2L upstream of the cavity and the exit Ld = 1.5L downstream
of the cavity. The outflow boundary condition of Equation 2.10 is considered at
the outlet. The no-slip boundary condition is applied to all walls. The pressure
reference value is set to 0 Pa at coordinate (0,0). The computational domain is
divided into 7125 quadrilateral cells. The Reynolds number based on the free-
stream velocity U∞ and the cavity characteristic length L is 200.

The initial condition for the cell-centered velocity is determined by solving a
potential flow problem subjected to the problem’s boundary conditions is given by{

∇ · u0 = 0 in Ω,

∇2p = 0 in Ω.
(7.56)

The total simulation time is T = 2.0 s with a time step ∆t = 2.5 × 10−3 s.
Snapshots of the flow fields are collected every time step. Table 7.1 summarizes
the computational details for the open cavity flow problem.
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Figure 7.5: Sketch of the geometry and mesh of the 2D open cavity.

Table 7.1: Computational details for the lid driven cavity and open cavity flow problems.

Variables Lid driven cavity Open cavity
Number of cells 4096 7125
Cavity length L 1.0 m 1.0 m
Ulid, U∞ 1.0 m/s 1.0 m/s
Viscosity ν 0.01 m2/s 0.005 m2/s
Reynolds number 100 200
Simulation time T 1.0 s 2.0 s
Time step ∆t 0.005 s 0.0025 s
Spatial scheme convection Linear (central differencing) Linear (upwind)
Temporal scheme Forward Euler Forward Euler

7.5 Results

In this section, we show the full order and reduced order results of two test cases:
the lid driven cavity flow problem and the open cavity flow problem. These open
and closed flow test cases are excellent test cases to demonstrate the difference in
the treatment of the (non-homogeneous) boundary conditions: In the case of the
closed cavity, an tangential boundary condition is applied on the top wall of the
cavity, while an inflow and outflow boundary condition are applied for the open
flow problem.

One of the main goals of this work is to reproduce the FOM results with our de-
veloped reduced order models in a stable and accurate way. Therefore, rather than
validating the models against experimental results and/or other numerical models,
we directly compare the ROM results with the corresponding FOM results.

We analyze and compare the FOM and ROM results of the inconsistent flux
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method and the consistent flux method. The main difference between the two
projection methods is that mass conserving face fluxes are obtained with the CFM,
while the fluxes are only approximately discretely divergence free in the case of
the IFM. Therefore, we compare the summation of the local continuity errors for
every cell at all time instances as they give an indication of how well the continuity
equation is satisfied in the simulations. The local time step continuity error is
calculated, according to the definition used by OpenFOAM [95], as follows for the
FOM fields:

εlocal(t
n) =

h∑
k=1

∆t

(Ωh)k

∣∣∣∣∣∣
Nf∑
i=1

φf,i(t
n)


k

∣∣∣∣∣∣ . (7.57)

Similarly, the local time step continuity error can be determined for the POD ve-
locity modes and the fields obtained with the ROMs.

Furthermore, we compute the relative error of the cell-centered fields at each
time step to show the performance of the proposed methods. For this we consider
the following three types of fields at a time instance tn: the full order fields unp
and pnp , the projected fields ûnp,r = ΦΦTΩunp and p̂np,r = XXTΩpnp , which
are obtained by the L2-projection of the snapshots onto the POD bases and lastly,
the predicted fields unp,r and pnp,r obtained by solving the ROMs. For every time
instance, tn, the relative basis projection error is given by

ε̂uL2
(tn) =

‖unp − û
n
p,r‖L2(Ωh)

‖unp‖L2(Ωh)
, (7.58)

and the relative prediction error is determined by

εuL2
(tn) =

‖unp − unp,r‖L2(Ωh)

‖unp‖L2(Ωh)
. (7.59)

Similarly, ε̂pL2
(tn) and εpL2

(tn) are computed for the pressure fields. For each
of the cases and methods we compare the relative prediction error with the basis
projection error, which is the ‘best possible’ error at every time instance.

Finally, we determine the speedup in computational time, which is defined as
the FOM CPU time divided by the ROM CPU time.

7.5.1 Lid driven cavity flow problem

Full order simulations are performed for the lid driven cavity problem according to
Section 7.4.1. The velocity and pressure profiles at the centerlines of the cavity at
final simulation time are shown in Figures 7.6 and 7.7, respectively. These figures
show that the full order solutions obtain with the inconsistent flux method are close
to the consistent-flux solutions.
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The local continuity errors (Equation 7.57) of the IFM-FOM is of the order
O(10−6), while it is of the order O(10−16) in the case of the CFM-FOM. Never-
theless, this difference can be considered negligible in this particular case as the
Figures 7.6 and 7.7 show that the methods perform equally.
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Figure 7.6: Velocity profiles for the lid driven cavity flow case at final simulation time: (left)
normalized velocity component in the x-direction at x/L = 0.5; (right) normalized velocity
component in the y-direction at y/L = 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
y/L 

0.05

0.04

0.03

0.02

0.01

0.00

0.01

p 

IFM
CFM

0.0 0.2 0.4 0.6 0.8 1.0
x/L 

0.03

0.02

0.01

0.00

0.01

0.02

0.03

p 

IFM
CFM

Figure 7.7: Normalized pressure profiles for the lid driven cavity flow case at final simula-
tion time: (left) at x/L = 0.5; (right) at y/L = 0.5.

The POD eigenvalues of the cell-centered velocity and pressure modes are
shown in Figure 7.8 for the IFM and CFM. The eigenvalues are approximately
the same for both projection methods. For both velocity and pressure, the values
decay rapidly for increasing number of modes. Therefore, the problem is suited for
dimension reduction. A plateau is reached at about 25 modes due to the machine
precision. As the slope of eigenvalue decay is almost the same for pressure and
velocity, we take an equal number of modes Nr for the reduced pressure basis and
reduced velocity basis: Nr = Nu

r = Np
r .
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Figure 7.8: Eigenvalues as function of the number of modes for the lid driven cavity flow
case.

We study the effect of increasing the number of modes on the accuracy of the
cell-centered velocity field, while using the full snapshot set as basis for the POD.
We take Nr = 2; 5; 10; 15; 20.

The relative prediction and basis projection errors are plotted in Figure 7.9 for
velocity and Figure 7.10 for pressure. We clearly see how the accuracy increases
when increasing the number of modes. The relative error for a certain number of
modes appears to be almost the same for both projection methods. This means that
both ROMs are consistent with the FOMs used for the snapshot collection [99].
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Figure 7.9: Relative cell-centered velocity error as a function of time for different number
of modes for the lid driven cavity flow case. Dashed lines: basis projection error (projecting
snapshots onto truncated basis).

Furthermore, for both ROM methods, the relative velocity errors (Equation 7.59)
are very close to the relative basis projection errors (Equation 7.58) as they are al-
most overlapping. In addition, the relative pressure errors are of the same order as
the velocity errors for the same number of modes. This is also shown in Figure 7.11
in which we plotted the time-averaged basis projection errors (Equation 7.58) and
time-averaged ROM prediction errors (Equation 7.59) for velocity and pressure.
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Figure 7.10: Relative pressure error as a function of time for different number of modes for
the lid driven cavity flow case. Dashed lines: basis projection error (projecting snapshots
onto truncated basis).

In all cases, stable ROM results were obtained with the proposed explicit pro-
jection method. This indicates that additional pressure stabilization methods, such
as the supremizer enrichment technique, the exploitation of a pressure Poisson
equation during the projection stage or the novel local projection stabilization
methods [222], are not required. Moreover, in this test case a relative error of about
O(10−4), which is accurate enough for many engineering applications, is obtained
with only 10 velocity and 10 pressure modes (plus 10 face velocity modes in the
case of the consistent flux method).
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Figure 7.11: Time-averaged relative basis projection and prediction errors of the lid driven
cavity flow problem.

Furthermore, the local continuity errors computed for the IFM-POD velocity
modes and the IFM-ROM are of the O(10−6) (regardless the number of modes
used). On the other hand, the local continuity errors are of the order O(10−16)
for the CFM, which is of the order of the machine precision. They are of the
same order as for the corresponding FOMs. Thus, the discrete face velocity is
only approximately discretely divergence free in the case of the IFM, whereas it is
discretely divergence free with the consistent flux method.
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Finally, the computational time required by the ROMs is compared to the FOM
CPU times in Figure 7.12 for the IFM and CFM. The plotted computational times
are the average times of two simulations.
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Figure 7.12: Computational times in seconds as function of number of modes for the lid
driven cavity flow case.
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For both methods, the speedup ratio between the ROM and the FOM is shown
in Figure 7.13, which depend strongly on the number of modes used for the ROMs.
In the case of the CFM, an additional equation for the face velocity (Equation 7.30)
needs to be solved at the reduced order level, which explains the lower speedup
compared to the IFM. Moreover, the larger the number of modes, the more time it
takes to precompute the reduced matrices. This especially applies to those related
to the convection operators as the dimension of the tensors increases with the cube
of the number of POD modes. The cost is higher for the CFM than the IFM as
more matrices need to be precomputed due to the additional equation for the face
velocity (Equation 7.30). Therefore, the time to compute the POD modes is also
higher for the consistent flux method. The POD is relatively expensive compared
to the ROM simulation time. However, the POD modes only need to be determined
once during the offline phase.
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Figure 7.13: Speedup in computational time of the ROM compared to the FOM in seconds
as function of number of modes for the lid driven cavity flow case.
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7.5.2 Open cavity flow problem

Full order simulations are performed for the open cavity problem according to
Section 7.4.2. The cell-centered velocity (magnitude) and pressure snapshots at t
= 0; 0.5; 1.0; 2.0 s that are obtained with the consistent flux method are shown in
Figure 7.14; these snapshots look similar for the IFM. This figure shows that the
problem is unsteady for the simulated time span.

Figure 7.14: From top to bottom: Snapshots obtained at t = 0; 0.5; 1.0; 2.0 s with the
consistent flux method: (left) cell-centered velocity magnitude in m/s; (right) pressure in
Pa.

The POD eigenvalues of the cell-centered velocity and pressure modes are
shown in Figure 7.15. The eigenvalues are approximately the same for both pro-
jection methods. For both velocity and pressure, the rate of decay of the first ten
modes is steeper than the rate of decay of the higher modes. The eigenvalues
also decay less rapidly for increasing number of modes compared to the lid driven
cavity case (Figure 7.8), which indicates that more POD modes are needed to ap-
proximate the FOM solutions accurately. As the slope of eigenvalue decay is more
or less the same for pressure and velocity, we take equal numbers of modes Nr =
2; 5; 10; 15; 20 for the reduced pressure basis and reduced velocity basis.
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Figure 7.15: Eigenvalues for the open cavity flow case.

The relative prediction and basis projection errors (Equations 7.58 and 7.59)
are plotted in Figure 7.16 for velocity and Figure 7.17 for pressure. These figures
show that the errors decrease when increasing the number of modes for both the
IFM-ROM and CFM-ROM. Figure 7.16 shows that the relative velocity errors
(Equation 7.59) are very close to the basis projection errors (Equation 7.58) as
they are almost overlapping. However, after about 1.5 seconds of simulation time
the prediction error for 20 modes start slightly deviating from the projection error
for the same number of modes in the case of the inconsistent flux methods, while
the errors are almost overlapping in the case of the consistent flux method.
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Figure 7.16: Relative cell-centered velocity error as a function of time for different number
of modes for the open cavity flow case. Dashed lines: basis projection error (projecting
snapshots onto truncated basis).

The relative pressure errors plotted in Figure 7.17 are of the same order as the
velocity errors in Figure 7.16 for the same number of modes. Also for pressure,
the prediction error at around 1.8 s of simulation time is higher for the IFM-ROM
compared to the CFM-ROM for 20 modes.
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Figure 7.17: Relative pressure error as a function of time for different number of modes for
the open cavity flow case. Dashed lines: basis projection error (projecting snapshots onto
truncated basis).

Moreover, the difference between the prediction and projection errors is the
smallest for 10 modes as is also shown in Figure 7.18 in which we plotted the
time-averaged basis projection errors (Equation 7.58) and time-averaged ROM
prediction errors (Equation 7.59) for velocity and pressure, respectively.
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Figure 7.18: Time-averaged relative basis projection and prediction errors of the open
cavity flow problem.

In all cases, stable ROM results were obtained with the proposed explicit pro-
jection method, indicating that additional pressure stabilization methods are not
required (as discussed in the Introduction (Section 7.1)). Moreover, a relative er-
ror of about O(10−3) is obtained with only 10 velocity and 10 pressure modes
(plus 10 face velocity modes in the case of the consistent flux method) in this test
case.

Furthermore, the local continuity errors (Equation 7.57) of the IFM-FOM is
of the order O(10−5)). Also the local continuity errors computed for the POD
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velocity modes and the IFM-ROM are of the orderO(10−5) (regardless the number
of modes used). On the other hand, the local continuity errors are of the order
O(10−16) for the CFM, which is of the order of the machine precision. Thus, the
discrete face velocity is only approximately discretely divergence free in the case
of the IFM, whereas the constraint is fully satisfied with the CFM.

Finally, the computational times required by the ROMs is compared to the
FOM CPU times in Figure 7.19.
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Figure 7.19: Computational times in seconds as function of number of modes the open
cavity flow case.
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The plotted computational times are the average times of two simulations. The
speedup is plotted in Figure 7.20 and is between about 2× 102 and 4× 103, de-
pending on the number of modes used for the IFM-ROM, while the speedup is
between about 6× 101 and 1× 103 for the CFM-ROM. This is according to ex-
pectations as an additional equation for the face velocity (Equation 7.30) needs
to be determined at ROM level. For the same reason, more matrices need to be
precomputed for the CFM, which explains the higher cost. Moreover, the larger
the number of modes, the more time it takes to precompute the reduced matrices.
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Figure 7.20: Speedup in computational time of the ROM compared to the FOM in seconds
as function of number of modes for the open cavity flow case.

7.6 Discussion

The main difference between the two projection methods, the inconsistent flux
method and the consistent flux method, is the divergence freeness of the fluxes.
Whereas the fluxes are discretely divergence free in the case of the CFM, they
are only approximately discretely divergence free in the case of the IFM. Never-
theless, the difference in the cell-centered velocity and pressure solutions can be
considered negligible in our test cases.

However, in both methods the cell-centered velocity fields are only approxi-
mately discretely divergence free. As a consequence, velocity and pressure are
also coupled at the reduced order level. Therefore, pressure needs to be included
in the ROM formulation for the incompressible NS equations and cannot be sim-
ply recovered in a post-processing step, in contrast to ‘velocity-only’ ROMs [41,
82, 137].
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The CFM-FOM and CFM-ROM simulation take more computational time than
the equivalent models with the IFM as shown in Figures 7.12 and 7.19, for the lid
driven cavity and open cavity test cases, respectively. This is mostly due to the
additional equation that needs to be solved for the fluxes at FOM and ROM level
as well as computing the reduced POD basis space for the face-centered velocity.
Therefore, it is plausible to prefer the IFM method despite the fact that the velocity
fields are only approximately discretely free.

On the other hand, as observed for the open cavity case, the IFM-ROM is
slightly less accurate than the CFM-ROM towards the end of the ROM simulation
when a large number of modes is used for the construction of the reduced bases.
For different test cases than the cases studied in this work, the divergence error
of the IFM could be potentially much larger, leading to possibly non-physical or
inaccurate results.

Another possible cause of the slight difference, which only occurred for large
number of modes, is that the modes with smaller eigenvalues are dominated by
numerical noise. Therefore, the drop in eigenvalue magnitude does not always
provide a reliable identification of a reduced basis of high quality [153].

We have only investigated first order explicit temporal discretization. More-
over, we first discretize in space and in time before performing the Galerkin pro-
jection. Therefore, the ROM formulations are fully corresponding with the FOM
formulations. Higher-order explicit (Runge-Kutta) methods, such as those ana-
lyzed by Komen et al. [144], are generally more accurate than the Forward Euler
scheme used in this work. However, to keep the ROM and the FOM consistent
with each other, higher-order methods would require the implementation of the
different stages also at reduced order level. This is, in contrast to the FOM level,
not straightforward at the ROM level.

Moreover, the disadvantage of explicit schemes is that the systems become
unstable for Courant numbers larger than unity. This can form a severe limitation
for the time step [130]. The standard OpenFOAM method is PISO, which is an
implicit pressure-based scheme for the NS equations. The segregated nature of
PISO induces a decoupling between mass and momentum equations. The PISO
algorithm has similarities with the consistent flux method presented in this work.
Therefore, it would be an asset to extend the CFM to implicit schemes. However, a
number of corrections of the pressure and velocity fields are needed to enforce the
velocity-pressure coupling at each time step and to minimize the errors. Therefore,
the same challenge as for higher order (explicit) Runge-Kutta schemes applies,
namely keeping the ROM and the FOM consistent with each other.

Furthermore, the results have shown that with the current approach of pro-
jecting the boundary vectors onto the reduced bases, it is not needed to use a
penalty method or a lifting function method to enforce the boundary conditions
in the ROM. This approach can also be implemented for PISO or PIMPLE al-
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gorithms for collocated grids that are more frequently used in engineering appli-
cations as the implicit time discretization is, generally, more stable than explicit
schemes [77, 271].

The methodology can be extended to parametric problems as the ROM formu-
lations are already written in such a way that viscosity is not part of the diffusion
operator and the associated boundary vector (when projecting the boundary vec-
tors, rCp and rDp , onto the reduced basis spaces separately).

Finally, the speedup is higher for the open cavity case compared to the lid
driven cavity case as the FOM contains a larger number degrees of freedom. With
an increasing number of modes, the precomputing phase (in particular assembling
the reduced convection operator) becomes the dominant factor in the ROM execu-
tion. In our test cases this is not a concern, as the number of modes is typically suf-
ficient before the precomputing phase becomes a dominant factor. Nevertheless,
one could reduce the complexity of the convection operator (a third order tensor)
by using hyper-reduction techniques such as the discrete empirical interpolation
method [50].

7.7 Conclusions

The novel reduced order models are developed using a ‘discretize-then-project’
approach. The ROM formulations are fully corresponding to the discrete FOM
formulations of the incompressible NS equations on collocated grids. No pressure
stabilization method is needed, even though the pressure term is present in the
ROM. Moreover, the boundary conditions at the ROM level are imposed via the
projection of the boundary vectors that are specified at the discrete FOM level.
Therefore, it is not needed to use a boundary control method such as the penalty
method or lifting function method.

We considered two variants of a Forward Euler time discretization: the incon-
sistent flux method, for which the velocity at the cell centers are considered only
approximately discretely divergence free and the consistent flux method, for which
the face velocities are discretely divergence free.

The ROMs predict well the underlying FOMs as stable and accurate results are
obtained with the proposed methods for the lid driven cavity and open cavity flow
cases. The ROMs obtained with the consistent flux method, having divergence-
free velocity fields, are slightly more accurate compared to the inconsistent flux
method.

However, the speedup of the ROM compared to the FOM is lower for the
consistent flux method due to the additional equation for the face velocity (Equa-
tion 7.30) that also needs to be solved at the ROM level. Furthermore, the speedup
strongly depends on the number of modes used for the reduced basis spaces. For
any number of modes, the speedup is the highest for the open cavity test case with
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the inconsistent flux method as it contains more degrees of freedom than the lid
driven cavity case at full order level.



8
Conclusions and outlook

This dissertation aimed to present novel reduced order models for computational
fluid dynamics and heat transfer problems. This chapter provides the overall con-
clusions of the research and an outlook for future work.

8.1 Overall conclusions

It has been demonstrated that the proposed non-intrusive POD-based identification
method is capable of constructing a reduced order model that can be applied to
linear transport problems for new boundary condition values of interest. The non-
homogeneous time-(in)dependent Dirichlet boundary conditions are imposed in
the ROM with a penalty method. The main shortcoming of the POD-ID method,
at this stage, is that it is not feasible to use the method for nonlinear problems.
A drawback is that the required number of snapshots scales with the cube of the
number of modes. Moreover, at least as many reduced matrices are to be identified
as the number of modes used.

As most (industrial) fluid flow and heat transfer problems are described by non-
linear partial differential equations, the limitations of the non-intrusive method
were not acceptable. Therefore, intrusive reduced order models have been de-
veloped using a finite volume based POD-Galerkin projection technique. This
intrusive reduced order modeling technique requires the knowledge of the high fi-
delity solver’s discretization and solution algorithm. Moreover, a boundary control
method needs to be used to impose the non-homogeneous boundary conditions at
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the reduced order level. Two boundary control methods have been tested: the lift-
ing function method and the penalty method. Moreover, the penalty method has
been improved by using an iterative solver for the determination of the penalty
factors, rather than using numerical experimentation. The factors were determined
by the iterative solver in about a second for both test cases. The ROM results
show that the boundary control methods perform equally well and can be used for
parametric boundary problems.

Thermal-hydraulic studies and other industrial applications require thermal
buoyancy modeling for natural and mixed convection regimes. In this work, re-
duced order models have been developed for buoyancy-driven flows that include
the Boussinesq approximation and energy equation. The additional buoyancy term
in the ROM induces a two-way coupling between momentum and energy. Fur-
thermore, a reduced order model has been developed for steady-state Reynolds-
averaged Navier-Stokes simulations of low-Prandtl number fluid flow. Simula-
tions are performed for sodium flow over a vertical backward-facing step with a
heater placed on the wall directly downstream of the step. The results for dif-
ferent Richardson numbers show that buoyancy has a large influence on the flow
and heat transfer. Even though the behavior is nonlinear, the reduced order model
is capable of reproducing the RANS results with good accuracy also for new pa-
rameter values inside the range of Richardson numbers. Also, the local Stanton
number and skin friction distribution at the heater are qualitatively well captured.
The eddy viscosity and turbulence thermal diffusivity coefficients, needed for the
turbulence closure modeling at the reduced order level, are approximated with the
radial basis function interpolation method. The advantage of this method is that
the reduced order model is independent of the turbulence model used in the RANS
simulations.

The main challenges of reduced order modeling for fluid flow problems are
related to (pressure) stabilization and the treatment of boundary conditions at re-
duced order level. Therefore, novel reduced order models of the incompress-
ible Navier-Stokes equations on collocated grids have been developed using a
‘discretize-then-project’ approach. The formulations of the reduced order mod-
els are fully corresponding to the discrete full order model formulations. No
pressure stabilization method is needed, even though the pressure term is present
in the ROM. Moreover, the boundary conditions at the ROM level are imposed
via the projection of the boundary vectors that are specified at the discrete FOM
level. This is a big improvement compared to all other reduced order models pre-
sented in this dissertation that required a boundary control method, such as the
penalty method or lifting function method, to impose the boundary conditions in
the ROMs.

Finally, all developed reduced order models are efficient in terms of compu-
tational time and storage, due to the offline-online decomposition. The reduced
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matrices for the linear terms and third order tensors for the nonlinear terms of all
reduced order models were precomputed and stored during the offline stage. The
reduced system of equations were solved during the online phase. The speedup
factor, the ratio between the full order model and reduced order model simulation
time, is highly problem dependent. The simulation time depends on the number
of degrees of freedom at full and reduced order level, the complexity of the prob-
lem, e.g turbulence or buoyancy modeling, and on the pressure stabilization and
boundary control methods used.

8.2 Suggestions for future work

The reduced order models developed in this study can be improved in several ways.
In this outlook, we propose some suggestions for future investigations.

Progress has been made in the last part of the Ph.D. project with the work on
a ‘discretize-then-project’ approach that requires no pressure stabilization tech-
nique nor a boundary control technique. First, the approach of projecting the full
order boundary vectors containing the contributions of the boundary conditions
needs to be extended to parametric (time-dependent) boundary conditions. The
approach can then be applied to all other intrusive POD-Galerkin reduced order
models developed in this dissertation. That way, boundary control methods such
as the (iterative) penalty and lifting function method become redundant. Moreover,
the ‘discretize-then-project’ approach should be extended to higher-order explicit
and implicit time discretization methods to be widely applicable to industrial fluid
flow and heat transfer problems. Then, the reduced order models developed with
the ‘discretize-then-project’ approach can be compared to the reduced order mod-
els developed with the approach of exploiting a pressure Poisson equation during
the projection stage in terms of performance and limitations.

Regards to (nuclear) engineering applications, it would be an asset to extend
the reduced order model of turbulent convective buoyant flow of low-Prandtl num-
ber fluids for the parametrized unsteady RANS equations. In addition, neural net-
works [83], instead of using radial basis functions as an interpolation method,
could potentially be used to approximate the eddy viscosity and thermal diffusion
coefficients (for turbulence modeling) [112].

An interesting follow-up study would be to develop a reduced order model for
unsteady flow and heat transfer of sodium in an outlet plenum [171]. Thereafter,
it would be of interest to develop reduced order models based on transient simu-
lations with the MyrrhaFOAM solver, which is currently being developed by the
Von Karman Insititute [143].

Lastly, this work has not been focused on determining the optimal reduced ba-
sis spaces. However, to improve the accuracy of the reduced order models, the
effect of the variation of the number of basis functions needs to be investigated.
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In addition, the sampling in time of the snapshot selection procedure needs to be
optimized, which would also reduce the number of expensive high fidelity simula-
tions that typically need to be performed in the offline phase. Also, the validity of
the reduced order solutions away from the parametric snapshots can be improved
by sampling the parameter spaces carefully. A priori error estimates and greedy
strategies need to be investigated in order to optimize the snapshots selection pro-
cedures. Future work could include the use of (data-driven) techniques to adapt
the ROM while the reduced order simulation proceeds [189, 202].
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[131] M. Jeltsov, K. Kööp, P. Kudinov, and W. Villanueva. Development of a
domain overlapping coupling methodology for STH/CFD analysis of heavy
liquid metal thermal-hydraulics. In 15th International Topical Meeting on
Nuclear Reactor Thermal Hydraulics (NURETH-15), 2013.

[132] J.-J. Jeong, S. K. Sim, and S. Y. Lee. Development and assessment of
the COBRA/RELAP5 code. Journal of Nuclear Science and Technology,
34(11):1087–1098, 1997.

[133] I. Kalashnikova and M. Barone. Stable and efficient Galerkin reduced order
models for non-linear fluid flow. In 6th AIAA Theoretical Fluid Mechanics
Conference, page 3110, 2011.

[134] I. Kalashnikova and M. Barone. Efficient non-linear proper orthogonal de-
composition/Galerkin reduced order models with stable penalty enforce-
ment of boundary conditions. International Journal for Numerical Methods
in Engineering, 90(11):1337–1362, 2012.



REFERENCES 183

[135] W. M. Kays. Turbulent Prandtl number–where are we? Journal of Heat
Transfer, 116(2):284–295, 1994.

[136] V. Kazemi-Kamyab, A. Van Zuijlen, and H. Bijl. Analysis and application
of high order implicit Runge–Kutta schemes to collocated finite volume
discretization of the incompressible Navier–Stokes equations. Computers
& Fluids, 108:107–115, 2015.

[137] K. Kean and M. Schneier. Error analysis of supremizer pressure recovery
for POD based reduced-order models of the time-dependent Navier–Stokes
equations. SIAM Journal on Numerical Analysis, 58(4):2235–2264, 2020.

[138] H. J. Kelley. Method of gradients. In Mathematics in Science and Engi-
neering, volume 5, pages 205–254. Elsevier, 1962.

[139] G. Kennedy, K. Van Tichelen, and H. Doolaard. Experimental investigation
of the pressure loss characteristics of the full-scale MYRRHA fuel bundle
in the COMPLOT LBE facility. In NURETH-16: International Topical
Meeting on Nuclear Reactor Thermal Hydraulics, page 61, 2015.

[140] C. M. Klaij. On the stabilization of finite volume methods with co-located
variables for incompressible flow. Journal of Computational Physics,
297:84–89, 2015.

[141] D. J. Knezevic, N.-C. Nguyen, and A. T. Patera. Reduced basis approxima-
tion and a posteriori error estimation for the parametrized unsteady Boussi-
nesq equations. Mathematical Models and Methods in Applied Sciences,
21(07):1415–1442, 2011.

[142] A. N. Kolmogorov. The local structure of turbulence in incompressible vis-
cous fluid for very large Reynolds numbers. Proceedings of the Royal Soci-
ety of London. Series A: Mathematical and Physical Sciences, 434(1890):9–
13, 1991.

[143] L. Koloszar, S. Buckingham, P. Planquart, and S. Keijers. MyrrhaFoam: A
CFD model for the study of the thermal hydraulic behavior of MYRRHA.
Nuclear Engineering and Design, 312:256–265, 2017.

[144] E. Komen, E. Frederix, T. Coppen, V. D’Alessandro, and J. Kuerten. Anal-
ysis of the numerical dissipation rate of different Runge–Kutta and velocity
interpolation methods in an unstructured collocated finite volume method in
OpenFOAM R©. Computer Physics Communications, page 107145, 2020.

[145] K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition
methods for a general equation in fluid dynamics. SIAM Journal on Numer-
ical Analysis, 40(2):492–515, 2002.



184 REFERENCES

[146] K. Kunisch and S. Volkwein. Optimal snapshot location for computing POD
basis functions. ESAIM: Mathematical Modelling and Numerical Analysis,
44(3):509–529, 2010.

[147] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic mode
decomposition: data-driven modeling of complex systems. SIAM, 2016.

[148] I. Lasiecka. Ritz–Galerkin approximation of the time optimal boundary
control problem for parabolic systems with Dirichlet boundary conditions.
SIAM Journal on Control and Optimization, 22(3):477–500, 1984.

[149] T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza. Model order re-
duction in fluid dynamics: challenges and perspectives. In Reduced Order
Methods for modeling and computational reduction, pages 235–273. Berlin:
Springer, 2014.

[150] B. E. Launder and B. Sharma. Application of the energy-dissipation model
of turbulence to the calculation of flow near a spinning disc. Letters in Heat
and Mass Transfer, 1(2):131–137, 1974.

[151] D. Lazzaro and L. B. Montefusco. Radial basis functions for the multivari-
ate interpolation of large scattered data sets. Journal of Computational and
Applied Mathematics, 140(1-2):521–536, 2002.

[152] K. Lee and K. T. Carlberg. Model reduction of dynamical systems on non-
linear manifolds using deep convolutional autoencoders. Journal of Com-
putational Physics, 404:108973, 2020.

[153] M. W. Lee and E. H. Dowell. On the Importance of Numerical Error in
Constructing POD-based Reduced-Order Models of Nonlinear Fluid Flows.
In AIAA Scitech 2020 Forum. AIAA Scitech 2020 Forum, 2020.

[154] S. Y. Lee, J. J. Jeong, S.-H. Kim, and S. H. Chang. COBRA/RELAP5: a
merged version of the COBRA-TF and RELAP5/MOD3 codes. Nuclear
Technology, 99(2):177–187, 1992.

[155] G. Leitmann. Optimization techniques: with applications to aerospace sys-
tems, volume 5. Academic Press, 1962.

[156] W. Leysen, D. Terentyev, and A. Stankovskiy. Fusion target station on
MYRRHA facility: Baseline concept. Journal of Nuclear Materials,
538:152242, 2020.

[157] W. Li, X. Wu, D. Zhang, G. Su, W. Tian, and S. Qiu. Preliminary study of
coupling CFD code FLUENT and system code RELAP5. Annals of Nuclear
Energy, 73:96–107, 2014.



REFERENCES 185

[158] J. Lions and E. Magenes. Non-homogeneous boundary value problems and
applications, volume 1. Springer, 1973.

[159] J.-G. Liu, J. Liu, and R. L. Pego. Stable and accurate pressure approxima-
tion for unsteady incompressible viscous flow. Journal of Computational
Physics, 229(9):3428–3453, 2010.

[160] G. Locatelli, M. Mancini, and N. Todeschini. Generation IV nuclear reac-
tors: Current status and future prospects. Energy Policy, 61:1503 – 1520,
2013.

[161] S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza. POD-Galerkin method
for finite volume approximation of Navier–Stokes and RANS equations.
Computer Methods in Applied Mechanics and Engineering, 311:151–179,
2016.

[162] P. Lorusso, S. Bassini, A. Del Nevo, I. Di Piazza, F. Giannetti, M. Tarantino,
and M. Utili. GEN-IV LFR development: status & perspectives. Progress
in Nuclear Energy, 105:318–331, 2018.

[163] D. J. Lucia, P. S. Beran, and W. A. Silva. Reduced-order modeling: new ap-
proaches for computational physics. Progress in Aerospace Sciences, 40(1-
2):51–117, 2004.

[164] J. L. Lumley. Coherent structures in turbulence. In Transition and turbu-
lence, pages 215–242. Elsevier, 1981.

[165] X. Ma and G. E. Karniadakis. A low-dimensional model for simulating
three-dimensional cylinder flow. Journal of Fluid Mechanics, 458:181–190,
2002.

[166] M. H. Malik. Reduced Order Modeling for Smart Grids Simulation and
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de Catalunya, 2017.

[167] G. D. Mallinson and S. E. Norris. 6 Fundamentals of Computational Fluid
Dynamics. Mathematical Modeling of Food Processing, page 125, 2010.

[168] R. Manceau, S. Parneix, and D. Laurence. Turbulent heat transfer predic-
tions using the v2–f model on unstructured meshes. International Journal
of Heat and Fluid Flow, 21(3):320–328, 2000.

[169] A. Marino, J. Lim, S. Keijers, J. Deconinck, and A. Aerts. Numerical mod-
eling of oxygen mass transfer in a wire wrapped fuel assembly under flow-
ing lead bismuth eutectic. Journal of Nuclear Materials, 506:53–62, 2018.



186 REFERENCES

[170] A. Marino, J. Lim, S. Keijers, J. Van den Bosch, J. Deconinck, F. Rubio,
K. Woloshun, M. Caro, and S. Maloy. Temperature dependence of dissolu-
tion rate of a lead oxide mass exchanger in lead–bismuth eutectic. Journal
of Nuclear Materials, 450(1-3):270–277, 2014.

[171] N. C. Markatos. Transient flow and heat transfer of liquid sodium coolant
in the outlet plenum of a fast nuclear reactor. International Journal of Heat
and Mass Transfer, 21(12):1565–1579, 1978.

[172] N. C. Markatos and K. Pericleous. Laminar and turbulent natural convection
in an enclosed cavity. International Journal of Heat and Mass Transfer,
27(5):755–772, 1984.

[173] MATLAB. Release 2017a. The MathWorks Inc., 2017.

[174] H. G. Matthies and J. Steindorf. Strong coupling methods. In Analysis and
simulation of multifield problems, pages 13–36. Springer, 2003.

[175] V. Moreau, M. Profir, A. Alemberti, et al. Pool CFD modelling: lessons
from the SESAME project. Nuclear Engineering and Design, 355:110343,
2019.

[176] Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin. Fully conservative
higher order finite difference schemes for incompressible flow. Journal of
Computational Physics, 143(1):90–124, 1998.

[177] F. Moukalled, L. Mangani, M. Darwish, et al. The finite volume method in
computational fluid dynamics. An Advanced Introduction with OpenFOAM
and Matlab, pages 3–8, 2016.
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A
Coupling between a system

thermal-hydraulics code and a reduced
order model

This appendix deals with the coupling of a reduced order model of a computational fluid
dynamics model with a system thermal hydraulics code. The results are submitted as [247].

A.1 Introduction
For the design and safety assessment of a new generation of nuclear reactors, such as the
MYRRHA reactor, computer codes have been developed for the thermal-hydraulic analy-
ses of the reactor’s primary system in operational and accidental conditions. There are two
main types of numerical codes for thermal-hydraulic analyses used in the nuclear indus-
try: the system codes, also called the lumped parameter codes, based on one-dimensional
models of physical transport phenomena and the field codes, based on three-dimensional
computational fluid dynamics models [184].

The flow in many reactor primary components exhibit phenomena as natural circulation,
mixing and stratification that cannot be modeled by system codes adequately. CFD codes
are therefore used to numerically simulate these types of transient flows to accurately quan-
tify the system behavior in accidental conditions and to handle complex geometries [260].
However, the number of nuclear reactor simulations in a safety analysis is, in the majority
of cases, beyond the possibilities of present hardware if a CFD code is used alone.

Thus, to get the best out of both worlds, coupling between system and CFD codes has
been postulated as a new method for thermal-hydraulic analyses. The nuclear community
has performed extensive research on interfacing CFD codes with the traditional system
codes. Gibling and Mahaffy [89] were among the first to study the transition between the
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1D and 3D descriptions at an interface.
A well recognized system thermal-hydraulics code by many nuclear authorities for

safety analyses is the RELAP5 series. The RELAP5 series have been coupled with sev-
eral computer codes as the sub-channel code COBRA-TF [132, 154], the containment
analysis code GOTHIC [98, 121] and CFD codes ANSYS-CFX (previous called CFDS-
FLOW3D) [15, 38], ANSYS Fluent [6, 8, 75, 157, 228] and Star-CCM+ [131]. Recently,
work has been conducted in the framework of the THINS project of the 7th Framework EU
Program on nuclear fission safety [20, 194].

SCK CEN uses the RELAP5-3D [255] version for MYRRHA safety studies that allows
the use of LBE as a working fluid. Moreover, SCK CEN has developed a numerical algo-
rithm to couple RELAP5-3D with ANSYS Fluent for multi-scale transient simulations of
pool-type reactors [260]. Another CFD code that has been coupled already to several STH
codes [80, 194, 299], but to the best of the authors’ knowledge not yet with RELAP5, is the
open source code OpenFOAM [130].

Even though coupled systems require considerably less computational resources and
time than stand-alone CFD codes, the gain in computational effort is still limited by the CFD
part [39]. To overcome this burden, this work proposes to couple the system code with a re-
duced order model of the high fidelity CFD code. The STH code RELAP5-MOD3.3 [182]
and a reduced order CFD model that is constructed using the libraries of the open source
code OpenFOAM 6 are coupled, which is called the RELAP5/ROM model hereafter. The
codes are coupled using a domain decomposition coupling algorithm, which is explained
in Section A.2. The exchange of the hydraulic quantities between the coupled domains
at the coupling interfaces is explained in Section A.3. The CFD and ROM formulations
for an incompressible Newtonian fluid are described in Sections A.4 and A.5, respectively.
In Section A.6, some challenges for coupling STH codes with reduced order models are
presented. The set-up of three numerical test cases, the open pipe flow test, the open pipe
flow reversal test and the closed pipe flow test, are described in Section A.7. Then in Sec-
tion A.8, the coupling methodology is first evaluated by comparing the results of a coupled
RELAP5/CFD model with RELAP5 stand-alone results. Consecutively, the coupled RE-
LAP5/ROM model is tested on a series of parametric problems that are evaluated against
the coupled RELAP5/CFD model and the results are discussed in Section A.9. Finally, con-
clusions are drawn and an outlook for further improvements is provided in Section A.10.

A.2 Coupling methodology
A methodology is developed for a coupling approach [174] together with a domain de-
composition method [237] in which the different domains are resolved separately by in-
dependent solvers. The whole simulation domain is split into sub-domains; where the
one-dimensional approximation is deemed accurate enough for the given problem, the sub-
domain is allocated to the STH code and if not to the CFD code. The number of coupling
faces between the sub-domains is identified.

At each coupling interface between two sub-domains, thermal-hydraulic quantities, like
mass flow rate, pressure and temperature, are exchanged between the solvers. By treating
the sub-domains as black boxes, the following input-output relations hold at each coupling
interface:

OSTH = GSTH(ISTH), (A.1)

OCFD = GCFD(ICFD), (A.2)
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where I and O are the input and output vectors, respectively. These vectors are either
obtained by the STH code or the CFD code. G is the associated operator. Hence, the output
O is obtained from the given input I .

Then, as the thermal-hydraulic quantities are exchanged between the sub-domains, the
following relation holds between the inputs and outputs at the coupling interfaces:

ICFD = OSTH , (A.3)

ISTH = OCFD. (A.4)
Based on Equations A.1-A.4, the STH/CFD coupled problem can be expressed in its fixed-
point formulation as follows:

ICFD = GSTH(ISTH) = GSTH(GCFD(ICFD)). (A.5)

For time-dependent problems, the coupling can either be done by an explicit or implicit
coupling method. Explicit coupling procedures are appealing in terms of efficiency as only
one (or a few) solution of the sub-problems per time step are needed. However, the numer-
ical stability of the scheme can be drastically compromised, especially when dealing with
incompressible fluids. Consequently, the time step size needs to be restricted. For more
details and the analytical explanation, the reader is referred to [102]. Moreover, it is known
from the work of Toti et al. [258] that the implicit coupling scheme is numerically more sta-
ble than the explicit coupling schemes. As reduced order models are sensitive to numerical
instabilities [5, 25, 234], the coupling is only done by an implicit coupling method in this
work.

A.2.1 Implicit coupling numerical scheme
In order to assure a global conservation of transported quantities over the interface, an
implicit numerical scheme, which determines the solution of the fixed-point problem of
Equation A.5, is implemented. The exchange of data between the codes is repeated through
an iterative procedure within a time step until a defined convergence criterion is met. In
this way, an equilibrium is reached at the coupling boundary interfaces and the numerical
stability is improved. The coupled problem of Equation A.5 is reformulated as a root finding
problem:

R(ICFD) = GSTH(GCFD(ICFD))− ICFD = 0, (A.6)
where R is the residual vector. This residual is approximated by a first order Taylor ex-
pansion around the current solution at each coupling iteration, k, within time step n as
expressed below

nRk+1(nIk+1
CFD) = nRk(nIkCFD) + nJk

(
n∆IkCFD

)
= 0, (A.7)

where J is the Jacobian matrix which contains the partial derivatives of the residual vec-
tor R = [r1, r2, ..., rm] with respect to the terms of the CFD input vector ICFD =
[I1, I2, ..., Im]. The Jacobian at the nth time step and kth iteration is given by

nJk =



n∂rk1
n∂Ik1

n∂rk1
n∂Ik2

...
n∂rk1
n∂Ikm

n∂rk2
n∂Ik1

n∂rk2
n∂Ik2

...
n∂rk2
n∂Ikm

...
...

. . .
...

n∂rkm
n∂Ik1

n∂rkm
n∂Ik2

...
n∂rkm
n∂Ikm


. (A.8)
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The unknown terms of the Jacobian are approximated by finite differences:

n∂rki
n∂Ikj

≈
nrki − nrk−1

i

nIkj − nIk−1
j

. (A.9)

Once the Jacobian is known, n∆IkCFD is calculated based on Equation A.7 and is
added to the CFD input vector of the current iteration k to get the input vector for the next
iteration k + 1:

nIk+1
CFD = nIkCFD + n∆IkCFD. (A.10)

This method is also known as the interface Quasi-Newton method. The computed Ja-
cobian matrix for a certain time step n obtained for the first iteration k = 0 can be used for
several following coupling iterations as long as the following condition is met

‖nRk‖ < ‖
nR0‖
10

, (A.11)

where 10 is a heuristic value that is introduced to assure a quick convergence [260]. If the
condition is not met, the Jacobian needs to be recomputed. For a more detailed description
of the procedure to create and to evaluate the Jacobian the reader is referred to [260].

Figure A.1 shows a simplified flowchart of the implicit coupling algorithm.

Figure A.1: Flowchart of the generic implicit coupling numerical algorithm with the
interface Quasi-Newton algorithm. ε > 0 is the given tolerance, t denotes time and tend is

the final simulation time.
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A.3 Transport of hydraulic quantities over the cou-
pling interfaces of coupled models

The transport of hydraulic quantities over the coupling interfaces of a coupled RELAP5
with OpenFOAM (RELAP5/CFD) model is explained in this section. The procedure is the
same when RELAP5 is coupled with the reduced order model.

As introduced previously, the coupling method is based on a domain decomposition
technique. In this work, the computational domain Ω is divided into several non-overlapping
sub-domains: the STH sub-domain(s), ΩSTH , attributed to RELAP5 and the CFD sub-
domain(s), ΩCFD , attributed to OpenFOAM. This work is limited to simple configurations
with only two interfaces, Γ1 and Γ2, between the STH and CFD sub-domain as depicted in
Figure A.2. However, the methodology is straightforward to expand to more interfaces.

Two hydraulic quantities are transported over the coupling interfaces: velocity and ki-
netic pressure. This is done in such a way that mass and momentum are conserved. The
average velocity determined at the single junction USTH of the STH sub-domain at cou-
pling interface 1 is implemented as an uniform inlet velocity profile onto the inlet boundary
of the CFD sub-domain. At coupling interface 2, the area-averaged velocity UCFD at the
outlet boundary of the CFD sub-domain is transported to the single junction of the STH
sub-domain.

The transport of pressure over the interfaces is done differently. OpenFOAM uses the
kinematic pressure, which is pressure divided by the fluid density ρ. Moreover, the pressure
is only calculated relative to a reference level and is therefore set to 0 Pa at the outlet of the
CFD sub-domain. RELAP5 on the other hand calculates the absolute pressure at the center
of all cells in the STH sub-domain. To determine the pressure at the coupling interface 2,
the volume-centered pressures from the first two neighboring cell centers of the STH sub-
domain, P1 and P2, as depicted in Figure A.3, are extrapolated to the center of the boundary
of the STH sub-domain as follows

PΓ2
STH = P1 +

P1 − P2

2
, (A.12)

where it is assumed that these neighboring cells have the same size.
The outlet boundary of the STH sub-domain at coupling interface 1 is then updated

based on the pressure determined at coupling interface 2 and the area-averaged pressure
drop over the CFD sub-domain in the following way:

PΓ1
STH = ∆PCFD + PΓ2

STH . (A.13)

As the area-averaged velocity is transferred in one direction and the area-averaged pres-
sure in the opposite direction at the coupling interfaces, transient simulations of reverse
flows can also be performed using this approach [260].



204 APPENDIX A

Figure A.2: Variable exchanges over the coupling interfaces between the STH
sub-domains and the CFD sub-domain.

Figure A.3: Pressure extrapolation at coupling interface 2. The legend of Figure A.2
applies.

A.4 The coupled codes’ governing equations and
models

This section presents a brief description of the best-estimate system thermal-hydraulics code
RELAP5-MOD3.3. Furthermore, the governing equations that are discretized and solved
with the CFD code OpenFOAM are described as those equations are projected onto a re-
duced basis in order to construct the ROM.
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A.4.1 RELAP5-MOD3.3: Thermal-hydraulic modeling
The RELAP5-MOD3.3 code [182] is developed at the Idaho National Engineering & Envi-
ronmental Laboratory for the U.S. Nuclear Regulatory Commission. The code makes use of
a two-fluid model in 1D form. The computational domain is subdivided in volumes that are
joined by junctions. In the RELAP5 approach, the equations of mass and energy are solved
in the control volumes and momentum equations are solved in the junction components
i.e. across the two volumes. Therefore, the quantities that come from the solution of the
mass and energy equations, like pressure and temperature, are evaluated at the center of the
nodes. Instead, the quantities that come from the solution of the momentum equation, like
velocity and mass flow rate, are evaluated at the interface between two adjoining volumes
(junction).

A.4.2 OpenFOAM 6: Reynolds-averaged Navier-Stokes equa-
tions for incompressible turbulent flow

Industrial turbulent flows are often described with the Reynolds-averaged Navier-Stokes
(RANS) equations. The governing unsteady RANS equations for an incompressible New-
tonian flow without gravity and body forces are given by{

∇ ·U = 0 in ΩCFD,
∂U
∂t

+∇ · (U ⊗U) = −∇P +∇ ·
[
(ν + νt)

(
∇U +

(
∇UT

))]
in ΩCFD,

(A.14)

where U are the time-averaged values for velocity and P is the time-averaged kinematic
pressure, which is pressure divided by the fluid density ρ, ν is the kinematic viscosity and
t denotes time. Often one or two equation turbulence models are used to model incom-
pressible turbulent flows. This work uses the k-ε turbulence model [150], according to the
previous work done by Toti et al. [260]. In this model the eddy viscosity, νt, is a function of
the two variables k and ε, which stand, respectively, for the turbulence kinetic energy and
the turbulence dissipation rate.

OpenFOAM uses a finite volume discretization method for which the computational
domain is broken into smaller regions that are called control volumes [177]. In this work,
the RANS equations A.14 are discretized and solved using a PIMPLE [77] algorithm for
the pressure-velocity coupling, which is a combination of SIMPLE [187] and PISO [128].

A.5 POD-Galerkin reduced order model for incom-
pressible turbulent flow

The reduced order model for the full order CFD code is constructed using a POD-Galerkin
technique. POD stands for proper orthogonal decomposition and is used to reduce the
dimensionality of a system by transforming the original set of Nh degrees of freedom into
a new set of Nr degrees of freedom, so-called modes, where Nr � Nh. These modes
are ordered in such a way that the first few modes retain most of the energy present in the
original solution [149]. For more details about POD and other reduced basis techniques, the
reader is referred to [53, 110, 203, 217].

Flow field solutions obtained by solving the unsteady RANS equations, so-called snap-
shots, are collected at certain time instances. As the finite volume discretization is used
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on collocated grids, the variables velocity and pressure are known at discrete points in the
spatial domain, which is at the center of the control volumes. POD assumes that these
solutions can be expressed as a linear combination of spatial modes multiplied by time-
dependent coefficients. The L2 norm is preferred for discrete numerical schemes [40, 241]
with (·, ·)L2(ΩCFD) the L2 inner product of the fields over the sub-domain ΩCFD . As the
POD modes are orthonormal to each other,

(
ϕi,ϕj

)
L2(ΩCFD)

= δij holds, where δ is the
Kronecker delta.

For the velocity and pressure fields, the approximations are given, respectively, by

U(x, t) ≈ Ur =

NUr∑
i=1

ϕi(x)ai(t), (A.15)

P (x, t) ≈ Pr =

NPr∑
i=1

χi(x)bi(t), (A.16)

where ϕi and χi are the modes of the velocity and pressure, and respectively ai and bi the
corresponding time-dependent coefficients. NU

r is the number of velocity modes and NP
r

is the number of pressure modes.
The above assumptions are extended to the eddy viscosity fields, νt as follows

νt(x, t) ≈ νtr =

N
νt
r∑
i=1

ηi(x)ci(t), (A.17)

with ηi the eddy viscosity modes and ci the corresponding time-dependent coefficients.
Nνt
r is the number of eddy viscosity modes.

The optimal POD basis space for velocity, EUPOD = span(ϕ1,ϕ2, ...,ϕNUr ) is then con-
structed by minimizing the difference between the snapshots and their orthogonal projection
onto the basis for the L2 norm [205]. This gives the following minimization problem

EUPOD = arg min
ϕ1,...,ϕNUr

1

Ns

Ns∑
n=1

∥∥∥∥∥∥Un −
NUr∑
i=1

(Un,ϕi)L2(ΩCFD)ϕi

∥∥∥∥∥∥
2

L2(ΩCFD)

, (A.18)

whereNs is the number of collected velocity snapshots andNs >NU
r . The POD modes are

then obtained from this minimization problem by solving the following eigenvalue problem
on the snapshots [235, 239, 241]:

CUQU = QUλU , (A.19)

whereCUij =
(
U i,U j

)
L2(ΩCFD)

for i,j = 1, ...,Ns is the correlation matrix,QU is a square

matrix of eigenvectors and λU is a diagonal matrix containing the eigenvalues. The POD
modes, ϕi, can then be constructed as follows

ϕi(x) =
1

Ns
√
λUi

Ns∑
n=1

Un(x)QUin for i = 1, ..., NU
r , (A.20)

of which the most energetic (dominant) modes are selected. The above assumptions can be
extended to obtain the pressure and eddy viscosity modes.
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To obtain a reduced order model, the POD is combined with the Galerkin projection,
for which the momentum equations of the set of governing equations A.14 are projected
onto the reduced POD basis space. The following reduced system of momentum equations
is then obtained

Mrȧ+ aTCra+Arb− ν(Dr +DTr)a− cT (Er +ETr)a = 0, (A.21)

where the ’over-dot’ indicates the time derivative and

Mrij =
(
ϕi,ϕj

)
L2(ΩCFD)

, (A.22)

Arij = (ϕi,∇χj)L2(ΩCFD), (A.23)

Drij =
(
ϕi,∇ · ∇ϕj

)
L2(ΩCFD)

, (A.24)

DTrij =
(
ϕi,∇ ·

(
∇ϕTj

))
L2(ΩCFD)

, (A.25)

Crijk =
(
ϕi,∇ · (ϕj ⊗ϕk)

)
L2(ΩCFD)

, (A.26)

Erijk =
(
ϕi,∇ · ηj∇ϕk

)
L2(ΩCFD)

, (A.27)

ETrijk =
(
ϕi,∇ · ηj

(
∇ϕTk

))
L2(ΩCFD)

. (A.28)

These reduced matrices and third order tensors are stored while constructing the re-
duced order model during a, so-called, off-line stage. More details on the POD and Galerkin
projection method can be found in [87, 239, 241].

Standard Galerkin projection-based reduced order models are unreliable when applied
to the nonlinear unsteady Navier-Stokes equations [5, 25, 41, 149, 221, 234]. This is mainly
caused by the fact that there is no dedicated equation for pressure in Equations A.14. There-
fore, for fluid problems that are solved numerically using a finite volume discretization
technique [177, 271], a Pressure Poisson Equation (PPE) is solved rather than the equation
for mass conservation (Equation A.14a). For more details on the derivation of the PPE
the reader is referred to J.-G Liu et al. [159]. Alternative methods are possible, which are
discussed in [241].

Moreover, reduced order models for scale resolving turbulent flow simulations are often
affected by the energy blow up due to the truncation of POD modes. The occurrence of
unstable time behavior in the reduced order model can then be explained by the concept
of the energy cascade [57]. A closure modeling between the POD-based ROM and the
full order scale resolving turbulence representation is then required to improve the accuracy
and instability of POD-Galerkin ROMs [185, 280, 293]. ROMs based on RANS simulation
typically include a closure model based on the eddy viscosity at ROM level as eddy viscosity
models are already present in the full order model [238, 271].

Also the reduced system of equations constructed in this work, consisting of the mo-
mentum equations (Equation A.21) together with the PPE, is not sufficient to determine all
unknown coefficients (of velocity, pressure and eddy diffusivity). Therefore, the coefficients
ci(t), that are used in the approximation of the eddy viscosity fields, are computed with a
data-driven non-intrusive interpolation procedure using Radial Basis Functions (RBF) as
described in [151]. The advantage of approximating the eddy viscosity coefficients with
RBFs is that the turbulence transport equations for k and ε of the system of Equations A.14
do not need to be projected onto the POD basis space spanned by the eddy viscosity modes.
Therefore, the reduced order model is independent of the turbulence model used in the
RANS simulations [111].
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The initial conditions for the reduced system of ordinary differential equations (Equa-
tion A.21) are obtained by performing a Galerkin projection of the initial conditions for the
RANS simulations onto the POD basis spaces as follows

ai(0) = (ϕi(x),U(x, 0))L2(ΩCFD) , (A.29)

bi(0) = (χi(x), P (x, 0))L2(ΩCFD) , (A.30)

for velocity and kinematic pressure, respectively.

A.6 Challenges for coupling system thermal-hydraulics
codes with a reduced order model

In the previous section and in Section A.2, we noted that POD-Galerkin reduced order
models are, in general, sensitive to numerical instabilities [5, 25, 234]. This is one of the
main challenges of reduced order modeling for fluid flow problems [149]. Therefore, only
an implicit coupling scheme is considered in this work, which is numerically more stable
than the explicit coupling schemes [258].

The Quasi-Newton coupling algorithm of Figure A.1 for coupling a system thermal-
hydraulics code with a CFD solver is the same for the coupling with a reduced order model.
Nevertheless, there are a couple of challenges that need to be taken into account when
replacing the CFD part with a ROM.

The velocity and pressure snapshots, required for the creation of the reduced basis
spaces of the ROM, are typically collected by performing high fidelity simulations. For the
RELAP5/ROM coupled model, the snapshots need to be collected by performing coupled
RELAP5/CFD simulations. If there are perturbations present in the coupled RELAP5/CFD
solutions, they can have a detrimental effect on the performance of the RELAP5/ROM cou-
pled model.

Moreover, reduced order models are only capable of predicting solutions for new pa-
rameter values and for long time integration if the flow features of these new cases are
contained in the reduced basis spaces spanned by the POD modes [149]. It is challenging
to construct the optimal reduced basis spaces, especially for parametric ROMs. We will not
focus on this challenge in this work. For more details on constructing the optimal reduced
basis spaces we refer the reader to [25, 149].

A challenge related to the exchange of hydraulic quantities over the coupling interfaces
is that non-homogeneous time-dependent boundary conditions need to be imposed in the
ROM using a boundary control method [93]. Another challenge is related to the accuracy
of the ROM. We discuss both challenges in the subsequent subsections.

A.6.1 Imposing the non-homogeneous time-dependent bound-
ary conditions in the ROM

As described in Section A.3, the average velocity determined at the single junction of the
STH sub-domain at coupling interface 1 is implemented as an uniform inlet velocity profile
on the inlet boundary of the CFD sub-domain. Boundary conditions of the CFD sub-domain
at the coupling interfaces of a coupled RELAP5/CFD system are controlled every time step
as described in Section A.2. However, the boundary conditions are not explicitly present in
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the reduced momentum equations (Equation A.21). Therefore, they cannot be controlled di-
rectly [161]. The selected approach in this work for handling the non-homogeneous Dirich-
let BCs is the penalty method [93]. The aim of the penalty method is to enforce the BCs in
the ROM with a penalty factor τ [234] as described in Section 4.3.2. The velocity boundary
value determined at the single junction of the STH sub-domain, USTH , is imposed at the
reduced order level on the inlet boundary of the CFD sub-domain as follows

Mrȧ+aTCra+Ara−ν(Dr+DTr)a−cT (Er+ETr)a+τ (Ora− USTHPr) = 0,
(A.31)

where

Pri = (ϕi,Λ)L2(Γ1,CFD), (A.32)

Orij =
(
ϕi,ϕj

)
L2(Γ1,CFD)

, (A.33)

with Λ a unit field and Γ1,CFD the boundary of the CFD sub-domain.
The penalty factor is usually tuned with a sensitivity analysis [93, 134, 161]. However,

if τ tends to zero, the BCs are not enforced and if the factor tends to infinity the ROM
becomes ill-conditioned [161].

A.6.2 Relative error
Reduced order models contain a lower number of degrees of freedom than the high fidelity
models due to a truncation of the POD modes. That way, they are computationally more
efficient, but have generally a lower accuracy than the high fidelity models [96, 149].

To determine the accuracy of the coupled model of which the CFD part is replaced by
a ROM, the solutions need to be compared with those of the coupled RELAP5/CFD model.

In this work, the accuracy of the RELAP5/ROM coupled model is determined by cal-
culating the relative L2 error for each time step, t, between the RELAP5/CFD solutions,
XCFD , and the fields obtained by performing coupled RELAP5/ROM simulations,XROM .
This so-called relative prediction error is defined as

εL2(ΩCFD)(t) =
‖XCFD(t)−XROM (t)‖L2(ΩCFD)

‖XCFD(t)‖L2(ΩCFD)

. (A.34)

where X represents the velocity or pressure fields.
We compare the prediction errors with the basis projection error, which acts as a lower

error bound for the reduced order model. The basis projection error, ε̂L2(ΩCFD), is defined
as the relative L2 error between the RELAP5/CFD solutions, XCFD , and the projected
fields, Xr , which are obtained by the L2-projection of the snapshots onto the POD bases:

ε̂L2(ΩCFD)(t) =
‖XCFD(t)−Xr(t)‖L2(ΩCFD)

‖XCFD(t)‖L2(ΩCFD)

. (A.35)

In practice, the prediction error is larger than the projection error for a single parameter
point.

A.7 Numerical test cases
In this section, the set-ups for three different configurations are described: the open pipe
flow test, the open pipe flow reversal test and the closed pipe flow test. All tests are carried
out for single-phase water flow with kinematic viscosity ν = 1.0·10−6 m2/s.
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For the coupled models, the computational domain is divided into a CFD sub-domain
and an STH sub-domain. For all configurations, the CFD sub-domain consists of a circular
pipe of lengthLCFD = 0.5 m and diameterD = 0.1 m. A mesh with 145945 hexahedral cells
is constructed onto the three-dimensional domain, as depicted in Figure A.4. As the CFD
sub-domain and mesh are kept unchanged, the coupling procedure for coupling RELAP5
with the reduced order model is the same as for the RELAP5/CFD coupled model.

Figure A.4: Mesh of the CFD sub-domain consisting of a circular pipe of length LCFD
and diameter D.

The unsteady RANS equations (Equation A.14) are discretized and solved by the finite
volume method with ITHACA-FV [240], which is an open source C++ library based on
the finite volume solver OpenFOAM [130]. In this work, the libraries of OpenFOAM 6
are used. The spatial discretization is performed with linear interpolation schemes and the
temporal discretization is treated using a first order implicit differencing scheme. The cal-
culation of the POD modes, the Galerkin projection of the RANS solutions on the reduced
subspace and the ROM simulations are also carried out with ITHACA-FV. For more details
on the code, the reader is referred to [239, 240, 241].

All stand-alone STH models of the computational domains are constructed with RELAP5-
MOD3.3. The reduced order CFD models are constructed according to the methodology
described in section A.5. The velocity and pressure snapshots needed for the creation of
the reduced subspaces are collected by performing a coupled RELAP5/CFD simulation for
a certain parameter set. This is required for each of the three flow configurations. More-
over, the coupled RELAP5/CFD model is first evaluated against the corresponding STH
stand alone model in order to evaluate the implicit coupling methodology. Thereafter, the
coupled RELAP5/ROM models are tested and compared with the coupled RELAP5/CFD
models.

All simulations are run on a single Intel R© Xeon R© GOLD 5118 @ 2.30GHz core.

A.7.1 Open pipe flow test
The simple open pipe configuration consists of a circular straight pipe with length L = 8.5
m and internal diameter D = 0.1 m. The pipe is split in three parts; the beginning and the
ending parts have both have a length LSTH−1 = LSTH−2 = 4.0 m and the middle part has
length LCFD = 0.5 m. Figure A.5 shows a sketch of the set-up for an STH stand-alone
simulation at the top. In the same figure, the set-up of the coupled RELAP5/CFD model
is shown at the bottom. The beginning and ending parts of the STH domain are divided in
10 volumes of 0.4 m. The middle is either modeled with a finer mesh of 20 equally sized
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volumes of 0.0025 m for the STH stand-alone simulations or assigned to the CFD code for
the coupled simulations.

Figure A.5: RELAP5 stand-alone nodalization of the open pipe flow configuration (top)
and the domain decomposition of the open pipe flow configuration for the coupled RE-
LAP5/CFD model (bottom). The legend of Figure A.2 applies.

The fluid is initially at rest and driven by an abrupt pressure difference, ∆P , of 0.20
bar applied over the whole pipe at t = 0 s. The total time of simulation is 10 s. The inlet and
outlet boundary conditions of the STH sub-domains are set by time-dependent volumes. A
previous study by Toti at al. [260] showed that accurate results for velocity and pressure are
obtained for a time step of 0.1 s in the case of implicit coupling. Therefore, the coupled
simulations are performed with this time step.

The coupling methodology is evaluated by comparing the time evolution of the mass
flow rate and the area-averaged pressure at coupling interface Γ2 obtained with RELAP5/CFD
and the stand-alone RELAP5 simulations for the pressure drop of 0.20 bar. Snapshots of the
velocity and pressure fields that are calculated at the CFD sub-domain are collected every
0.1 s during the coupled RELAP5/CFD simulation. Thus, 100 snapshots are collected in to-
tal that are used for the construction of the RELAP5/ROM model according to section A.5.

The coupled RELAP5/ROM model is then tested for the same pressure difference and
for four new conditions, namely ∆P = 0.10, 0.15, 0.21 and 0.23 bar. As described in
Section A.6.1, the uniform velocity boundary value at the inlet is enforced in the ROM with
a penalty method. In this work, the penalty factor is set to 1.0. The RELAP5/ROM results
are compared with corresponding coupled RELAP5/CFD results.

A.7.2 Open pipe flow reversal test
Using the same set-up as for the open pipe flow test case, both the RELAP5/CFD and the
RELAP5/ROM models are tested for sudden flow reversal. Initially, the absolute pressure
at the inlet of the STH domain is set to 1.40 bar while the outlet pressure is set to 1.20 bar.
Thus, the total pressure drop over the whole pipe is 0.20 bar. Between t = 9 s and t = 13 s, the
pressure at the inlet is decreased linearly up to 1.0 bar and the simulation is run up to t = 25
s. Once the pressure at the inlet is lower than the pressure at the outlet, the fluid eventually
starts flowing in the opposite direction. This is tested for STH stand alone, RELAP5/CFD
and RELAP5/ROM. As done for the open pipe flow test, snapshots are collected every 0.10
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s. Moreover, the coupled RELAP5/ROM model is tested for pressure drops of 0.10, 0.15,
0.21 and 0.23 bar.

Furthermore, the ROM performance for long time integration is tested with this test
case. 100 velocity, pressure and eddy viscosity snapshots are collected during the first 10
seconds of simulation time. The obtained RELAP5/ROM model, after performing POD
onto the snapshots, is used to simulate the whole transient up to t = 25 s and the results are
compared with an additional RELAP5/ROM for which 250 snapshot were collected during
the whole simulation time.

A.7.3 Closed pipe flow test
The last configuration consists of a closed loop. The STH configuration of the open pipe
flow test is extended with a circulation pump and an expansion tank as shown in Figure A.6.
Figure A.7 shows the same configuration with the domain decomposition for the coupled
simulations. The two vertical legs of the loop are 1.6 m long while the horizontal legs are
8.5 m long. The top horizontal leg is split similarly to the open pipe flow test case. In this
configuration, the transient is initiated by the start of the pump causing again a mass flow
ramp. The pump reaches its nominal speed after 5 seconds of simulation time. The total
simulation time is 10 s. A coupled RELAP5/CFD simulation is performed with the nominal
speed of the rotor set to 100 rad/s and snapshots are collected every 0.10 seconds. Coupled
RELAP5/ROM simulations are also performed for a nominal rotor speed of 80 rad/s, 90
rad/s and 110 rad/s.

Figure A.6: Set-up of the STH stand-alone normalization of the closed pipe flow configura-
tion. The legend of Figure A.2 applies.
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Figure A.7: Set-up of the closed pipe flow configuration for the domain decomposition
coupled RELAP5/CFD model. The legend of Figure A.2 applies.

A.8 Results and analysis
For each of the flow configurations, the coupled model is first evaluated against the corre-
sponding STH stand alone model in order to evaluate the implicit coupling methodology.
Thereafter, the coupled RELAP5/ROM models are tested and compared with the coupled
RELAP5/CFD models.

A.8.1 Open pipe flow test
The coupled RELAP5/CFD system is tested for a pressure drop of 0.20 bar over the open
pipe. The results are compared with the results of the RELAP5 stand alone simulation.
Figures A.8 and A.9 show the time evolution of the mass flow rate at interface Γ2 and the
area-averaged pressure at the same interface, respectively. Pressure oscillations are present
at the beginning of the simulation, but they dissolve as the simulation time proceeds. The
oscillations in pressure do not result in oscillations of the mass flow rate.

The coupled RELAP5/ROM is tested and compared with the coupled RELAP5/CFD
model. Snapshots are collected every 0.1 s for a pressure drop of 0.20 bar over the open
pipe. Figure A.10 shows the time-averaged basis projection error. The basis projection
error is the relative error of the projected fields and the snapshots (Equation A.35). The
time-averaged projection error of velocity is of the order O(10−2) and for pressure of the
order O(10−1). Only a few modes are needed to represent the flow solutions due to the
rapid decay of the error with increasing number of modes. Based on this, ten velocity and
ten pressure modes are used to construct the reduced bases for this and all other test cases.
The same number of eddy viscosity modes are used. In general, the number of POD modes
should be determined based on the decay of eigenvalues.
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Figure A.8: Time evolution of the mass flow rate through the pipe at interface 2 in the abrupt
pressure difference transient (∆P = 0.20 bar) for an open pipe flow configuration.
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Figure A.9: Time evolution of the pressure at interface 2 in the abrupt pressure difference
transient (∆P = 0.20 bar) for an open pipe flow configuration.
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Figure A.10: The time-averaged relative basis projection error per number of modes for
the open pipe flow test: (left) velocity; (right) pressure.

Furthermore, the time evolution of the relative error between the reconstructed velocity
and pressure fields and the RELAP5/CFD results is plotted in Figure A.11, which are com-
pared with the basis projection error. The relative velocity error increases over time after
about 1 s of simulation time, while the basis projection error decreases over the whole sim-
ulation time. The pressure relative error is about two orders higher than the projection error.
As velocity and pressure are coupled with the Pressure Poisson Equation, the velocity re-
sults are affected by the pressure results. Nevertheless, the relative velocity error stabilizes
at about 5 %.

We also compare the profiles of the velocity magnitude in the CFD sub-domain obtained
with the RELAP5/ROM coupled model with the profiles obtained with the RELAP5/CFD
model at LCFD/D = 0.5 at t = 1.0, 2.0 and 10.0 s of simulation time in Figure A.12. Even
though the relative L2 error is of the order O(10−2), the velocity profiles visually overlap.
Therefore, the velocity results are considered reliable for the application studied.
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Figure A.11: Relative error and basis projection error for the CFD sub-domain in the
abrupt pressure difference transient (∆P = 0.20 bar) for an open pipe flow configuration.
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Figure A.12: Profiles of the velocity magnitude at LCFD/D = 0.5 downstream of the inlet
of the CFD sub-domain at t = 1.0, 2.0 and 10.0 s of simulation time in the abrupt pressure
difference transient (∆P = 0.20 bar) for an open pipe flow configuration. Solid lines:
RELAP5/CFD; Dashed lines: RELAP5/ROM.

RELAP5/ROM simulations are performed for pressure drops of 0.10, 0.15, 0.20, 0.21
and 0.23 bar over the whole pipe. Figures A.13 and A.14 show the time evolution of the
mass flow rate at interface Γ2 and the area-averaged pressure at the same interface, respec-
tively. The RELAP5/ROM results overlap with the RELAP5/CFD results. Therefore, the
ROM accurately predicts the CFD results for the entire parameter range even though the
ROM is only constructed using the snapshots of the case with ∆P = 0.20 bar. However, the
ROM is only valid in a range around the parameter used for the training. As information
about the flow for lower pressure drops is contained in the snapshots, the ROM can even
be used to simulate a pressure drop of 0.10 bar. However, when increasing the pressure
drop more than 0.23 bar, the results become unphysical as the flow characteristics are not
contained in the POD modes.

The coupled RELAP5/CFD simulation of 10 seconds of simulation time takes about
2.8·103 seconds for one parameter on one Intel R© Xeon R© core. On the other hand, one
coupled RELAP5/ROM simulation takes about 7.0·102 seconds on a single core. Therefore,
the speed-up is about 4.0 times. The computational cost of the construction of the ROM
(generating snapshots, calculating the POD modes and performing the Galerkin projection)
is dominated by the time it takes to collect the snapshots. This cost is not taken into account
in the calculation of the speed-up offered by the ROM itself.
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Figure A.13: Time evolution of the mass flow rate through the pipe at interface 2 in the
abrupt pressure difference transient of different pressure drops for an open pipe flow con-
figuration.
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Figure A.14: Time evolution of the pressure at interface 2 in the abrupt pressure difference
transient of different pressure drops for an open pipe flow configuration.

A.8.2 Open pipe flow reversal test
Coupled simulations are performed for the open pipe flow reversal test case. First, the
coupled RELAP5/CFD results for a pressure drop of 0.20 bar are compared with RELAP5
stand-alone simulation as shown in Figure A.15 for the mass flow rate and Figure A.16 for
pressure at interface Γ2. Similar to the previous test case, oscillations are present in the
pressure. Especially at the beginning of the simulation, there is a spike in pressure obtained
with the coupled system compared to the RELAP5 stand alone simulation. Oscillations also
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occur when the drop in mass flow rate (between 12 and 13 seconds of simulations time) is
the steepest. However, they disappear as the simulation time proceeds.
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Figure A.15: Time evolution of the mass flow rate through the pipe at interface 2 in the
abrupt forward and reverse pressure difference transient for a pressure drop of 0.20 bar
over the open pipe.
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Figure A.16: Time evolution of the pressure at interface 2 in the abrupt forward and reverse
pressure difference transient for a pressure drop of 0.20 bar over the open pipe.
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Furthermore, the coupled RELAP5/ROM model is tested for several new values of the
pressure drop over the pipe and compared to the coupled RELAP5/CFD results in Fig-
ures A.17 and A.18. The figures show that the ROM is capable of predicting the FOM
results within the tested range of parameter values.

The coupled RELAP5/CFD simulation takes about 7.4·103 seconds for one parameter
on a single core. On the other hand, one coupled RELAP5/ROM simulation takes about
1.6·103 seconds on a single core. Therefore, the speed-up is about 4.6 times.
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Figure A.17: Time evolution of the mass flow rate through the pipe at interface 2 in the
abrupt forward and reverse pressure difference transient for different pressure drops for an
open pipe flow configuration.



COUPLING BETWEEN AN STH CODE AND A ROM 221

0 5 10 15 20 25
time (s)

1.0

1.1

1.2

1.3

1.4

1.5

pr
es

su
re

 (b
ar

)

P = 0.10 bar (CFD)
P = 0.15 bar (CFD)
P = 0.20 bar (CFD)
P = 0.23 bar (CFD)
P = 0.10 bar (ROM)
P = 0.15 bar (ROM)
P = 0.20 bar (ROM)
P = 0.23 bar (ROM)

Figure A.18: Time evolution of the pressure at interface 2 in the abrupt forward and reverse
pressure difference transient for different pressure drops for an open pipe flow configura-
tion.

A.8.2.1 Long time integration

The coupled RELAP5/ROM model is also tested for long-term integration. Snapshots are
collected using the RELAP5/CFD model for the reverse flow test case up to 10 seconds
of simulation time. Thus, in total 100 snapshots are collected for the reduced basis con-
struction. A RELAP5/ROM simulation is then performed up to 25 seconds of simulation
time. The results for a pressure drop of 0.20 bar are shown in Figures A.19 and A.20, which
are compared with the previous RELAP5/ROM model of which the reduced basis is con-
structed with all 250 snapshots. The RELAP5/ROM model fully predicts the behavior of
the RELAP5/CFD model at coupling interface 2 as the results for the time evolution of the
mass flow rate and pressure correspond to those of the RELAP5/ROM model based on 250
snapshots. It is important to note that this is true at the coupling interfaces.
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Figure A.19: Time evolution of the mass flow rate through the pipe at interface 2 in the long
term integration test (∆P = 0.20 bar) for an open pipe flow configuration.
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Figure A.20: Time evolution of the pressure at interface 2 in the long term integration test
(∆P = 0.20 bar) for an open pipe flow configuration.

The relative error of the solution in the CFD sub-domain for the coupled RELAP5/ROM
and coupled RELAP5/ROM on the long term integration are plotted in Figure A.21 for
the velocity and pressure. For all models, the relative error spikes at about 13 seconds of
simulation time. Around this time the decrease in mass flow rate is the steepest.

Even though only the first 100 snapshots, obtained till 10 seconds of simulation time,
are included in the reduced order model in the case of long time integration, the RE-
LAP5/ROM model is capable of reproducing the RELAP5/CFD results. This means that
the overall mass flow through the pipe is conserved. Also the relative pressure errors are of
the same order.
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Figure A.21: Relative error and basis projection error in the CFD sub-domain for the long
term integration test (∆p = 0.20 bar) for an open pipe flow configuration.

Figure A.22 shows the profiles of the velocity magnitude obtained with the RELAP5/CFD
and RELAP5/ROM trained with 250 snapshots at LCFD/D = 0.5 downstream of the inlet
of the CFD sub-domain at t = 1.0, 10.0 and 25.0 s of simulation time. The results are vi-
sually overlapping, except at the final simulation time (t = 25.0 s). This corresponds to the
relative velocity error plotted in Figure A.21a, which is about one order higher at t = 25.0 s
compared to t = 1.0 and 10.0 s of simulation time.

Finally, the RELAP5/ROM model accurately determines the mass flow rate and pres-
sure at coupling interface 2 during the flow reversal test and does not exhibit instabilities
even outside the time domain in which snapshots were collected.
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Figure A.22: Profiles of the velocity magnitude at LCFD/D = 0.5 downstream of the inlet
of the CFD sub-domain at t = 1.0, 10.0 and 25.0 s of simulation time of the reverse pres-
sure difference transient for a pressure drop of 0.20 bar over the open pipe. Solid lines:
RELAP5/CFD; Dashed lines: RELAP5/ROM.

A.8.3 Closed pipe flow test
The coupling methodology is also tested on the closed pipe flow test case. Snapshots are
collected for a maximum pump rotor rotational speed of 100 rad/s and the results for the
mass flow rate and pressure at coupling interface 2 are compared with a RELAP5 stand
alone simulation in Figures A.23 and A.24, respectively.
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Figure A.23: Time evolution of the mass flow rate through the pipe at interface 2 for the
closed pipe flow test with a maximum pump rotor rotational speed of 100 rad/s.
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Figure A.24: Time evolution of the pressure at interface 2 for the closed pipe flow test with
a maximum pump rotor rotational speed of 100 rad/s.

The closed loop test case is also used to test the coupled RELAP5/ROM model, of
which the reduced basis is constructed with snapshots obtained for ω = 100 rad/s, on a para-
metric problem. Figures A.25 and A.26 show the mass flow rate and the pressure evaluated
at interface Γ2 for the maximum pump rotor rotational speed of 80, 90, 100 and 110 rad/s,
respectively. The results are compared with those obtained with the RELAP5/CFD model
for the same rotational speeds.
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Figure A.25: Time evolution of the mass flow rate through the pipe at interface 2 for the
closed pipe flow test for different maximum pump rotor rotational speeds.
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Figure A.26: Time evolution of the pressure at interface 2 for the closed pipe flow test for
different maximum pump rotor rotational speeds.

The relative velocity and pressure errors are plotted in Figure A.27. The velocity rela-
tive error is the largest at the beginning of the simulation. As the flow is initially at rest, a
small error in the reconstructed flow field results in large relative error. As soon as the mass
flow rate increases, the relative error drops. This also indicates that the closed pipe flow
test case is numerically more stable than the open pipe flow test, where the relative velocity
error increased as function of time as shown in Figure A.11a. The relative pressure error is
about two orders larger than the projection error.
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Figure A.27: Relative error and basis projection error in the CFD sub-domain for the closed
pipe flow test with a maximum pump rotor rotational speed of 100 rad/s.

Figure A.28 shows the profiles of the velocity magnitude in the CFD sub-domain ob-
tained with the RELAP5/CFD and RELAP5/ROM coupled models at LCFD/D = 0.5 at t
= 1.0, 5.0 and 10.0 s of simulation time. The RELAP5/ROM velocity profiles are in good
agreement with the RELAP5/CFD profiles. At t = 5.0 s the profiles are slightly deviating
from each other, while they are almost fully overlapping at t = 10.0 s. This corresponds
to Figure A.27a, which shows that the velocity relative error decreases towards the final
simulation time.
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Figure A.28: Profiles of the velocity magnitude at LCFD/D = 0.5 downstream of the inlet
of the CFD sub-domain at t = 1.0, 5.0 and 10.0 s of simulation time of the closed pipe flow
test with a maximum pump rotor rotational speed of 100 rad/s. Solid lines: RELAP5/CFD;
Dashed lines: RELAP5/ROM.

Finally, one coupled RELAP5/CFD simulation for the closed pipe flow test takes 3.2 ·
103 seconds, while a coupled RELAP5/ROM simulation takes 6.5 · 102 seconds to com-
plete. Thus, the obtained speed-up is about 3.5 times.

A.8.4 Convergence history
The performance of the implicit coupling algorithm is analyzed by checking the number of
iterations needed to reach a residual norm below 10−3. Figure A.29 shows the convergence
history for the first two coupling time steps for the open and closed pipe flow tests. In the
case of the open pipe flow test case, the first time step requires five iterations for the residual
to drop below the threshold and the second time step requires three iterations. For the closed
loop test case, the number of iterations is reduced to three for the first time step and only
one for the second time step. Therefore, the convergence rate is higher for the closed pipe
flow test than the open pipe flow test. Previous results of the relative error (Figure A.11)
also showed that this test case is numerically more stable than the open pipe flow test. For
both cases the Jacobian is not available in the first iteration of the first time step, which
explains the difference in number of iterations for the first and second time step. In the case
of the closed pipe flow test, the Jacobian computed in the first time step is also used in the
second time step as Equation A.11 is satisfied [260]. Therefore, the convergence criterion
is met with only one additional iteration.
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Figure A.29: Interface convergence history for the first two time steps.

A.9 Discussion
The RELAP5/CFD models exhibit numerical perturbations in the form of oscillations through-
out the coupled simulations. As concluded in previous works on coupled CFD codes with
1D system codes [102, 260], these perturbations are caused by the overestimation of the
mass flow rate at the coupling interfaces in the first few time steps of the simulations. A
change in pressure drop will immediately affect the whole solution domain as the fluid den-
sity does not change with pressure unlike in compressible fluids. These small oscillations
are also present in the results of the RELAP5/ROM models. Nevertheless, the ROMs re-
main stable, i.e. the ROM results do not blow up over time, even though small perturbations
in reduced order models can lead to unphysical results [149]. Toti et al. [258] concluded that
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reducing the time step of the coupled simulations affects how rapidly numerical oscillations
are damped during the transients. However, the maximum pressure oscillation amplitude is
independent from the time step.

For all test cases, only one coupled RELAP5/CFD simulation for a single parameter
value has been performed for collecting the snapshots. The ROMs are capable of predict-
ing solutions for new parameter values and for long time integration as (part of) the flow
features for these new cases are similar to the snapshots. However, to be able to analyze
and to improve the accuracy of the ROM for a larger parameter range, snapshots from mul-
tiple simulations for different parameter values are required to construct the reduced basis
spaces. When several sets of snapshots are required for the POD, one can optimize the POD
procedure by using a nested POD approach [87].

In this work, a uniform velocity profile is implemented at the inlet of the CFD sub-
domain. Toti [260] et al. considered in their work for open and closed pipe flow test that the
error introduced by the uniform profile is small as the velocity distribution across the section
of the pipe is fairly flat in the case of fully developed turbulent pipe flow. However, as one
of the main purposes of developing coupled models that accurately quantify the flow fields
in specific parts of the computational domain, it is better to take into account the curvature
of the velocity profiles in the case of complex flow problems.

The relative velocity error is about two orders lower at the final simulation time in the
case of the closed pipe flow test compared to the open pipe flow test. The closed loop is
less prone to numerical instabilities due to the absence of interruptions in the STH domain.
Therefore, perturbations are transported throughout the whole STH domain within a single
coupling iteration, while several coupling iterations are required in the case of the open pipe
test as the upstream and downstream parts of STH sub-domain are hydraulically decoupled.
Because of that, the convergence rate is generally higher for the closed pipe than for the
open pipe test. Reduced order models are sensitive to these numerical instabilities what
explains the difference in relative errors for these two test cases. As system analysis of
nuclear installations, like MYRRHA, are dealing mainly with closed cooling loops, it is
advantageous that numerical instabilities are less prone for closed loop systems.

Furthermore, the results for pressure fields calculated in the CFD sub-domain are about
two orders worse than those for the velocity fields. This has been observed in the previous
work of Stabile et al. [241]. Other pressure stabilization methods, rather than using the PPE
method, can be used to improve the pressure fields.

A.10 Conclusions and outlook
The best-estimate system thermal-hydraulics code RELAP5 is coupled with the finite vol-
ume CFD solver OpenFOAM and its reduced order model. The codes are coupled implic-
itly by a domain decomposition coupling algorithm in which the hydraulics variables are
exchanged between the sub-domains at the coupling boundary interfaces.

The ROM is constructed with a finite volume based POD-Galerkin projection method.
The average velocity determined at the single junction of the STH sub-domain at coupling
interface 1 is imposed at the inlet boundary of the reduced order model with a boundary
control method, namely a penalty method.

Academic tests are carried out on open and closed pipe flow configurations. The cou-
pled RELAP5/ROM models accurately predict the time evolution of the mass flow rate and
pressure results of the coupled RELAP5/CFD models at one of the coupling interfaces. Also
for new conditions, the RELAP5/ROM models are capable of reproducing the behavior of
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the RELAP5/CFD models at the coupling interface. In addition, the RELAP5/ROM model
for reversed flow in a closed loop flow test case performs well for long time integration.
The effect of the number of POD modes on the accuracy of the RELAP5/ROM results is
not investigated in this work.

The pressure results exhibit numerical perturbations in the form of oscillations through-
out the coupled simulations, both with the CFD solver and the reduced order model. Nev-
ertheless, they do not lead to a blow up of the RELAP5/ROM results, even though small
perturbations in reduced order models can, generally, lead to unphysical results.

Finally, the coupled RELAP5/ROM simulations are about 3 to 5 times faster than the
coupled RELAP5/CFD simulations performed on a single Intel R© Xeon R© core. Therefore,
it is shown that the computational cost of coupled STH/CFD models can be reduced by re-
placing the CFD solver by a reduced order model. Furthermore, the coupled RELAP5/ROM
model can be used to study a number of different conditions at a lower computational cost
compared to the coupled RELAP5/CFD model.

In future work, the methodology needs to be extended to reduced order models for
turbulent buoyancy driven flows, for which the discretized momentum and energy equations
are coupled in a two-way manner [244, 267]. In addition, the models need to be adjusted
for low-Prandtl number fluid flows [249], such as LBE. The coupled models also need to
be validated against experimental results, such as a loss of flow due to a pump trip transient
in the TALL-3D experimental facility [259]. Moreover, the coupling could be extended to
parallel computing to speed up the simulations.
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