ELSEVIER Contents lists available at ScienceDirect ### European Journal of Medicinal Chemistry journal homepage: http://www.elsevier.com/locate/ejmech ### Research paper # Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents Tim Van de Walle ^a, Maya Boone ^a, Julie Van Puyvelde ^a, Jill Combrinck ^{b, c}, Peter J. Smith ^b, Kelly Chibale ^d, Sven Mangelinckx ^a, Matthias D'hooghe ^{a, *} - ^a SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium - ^b Division of Clinical Pharmacology, Department of Medicine, Medical School, University of Cape Town, K45, OMB, Groote Schuur Hospital, Observatory, 7925, South Africa - ^c Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, South Africa - ^d South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa ### ARTICLE INFO Article history: Received 24 March 2020 Received in revised form 10 April 2020 Accepted 10 April 2020 Available online 23 April 2020 Keywords: Quinolines Piperidines Malaria Chloroquine Plasmodium ### ABSTRACT The parasitic disease malaria places almost half of the world's population at risk of infection and is responsible for more than 400,000 deaths each year. The first-line treatment, artemisinin combination therapies (ACT) regimen, is under threat due to emerging resistance of Plasmodium falciparum strains in e.g. the Mekong delta. Therefore, the development of new antimalarial agents is crucial in order to circumvent the growing resistance. Chloroquine, the long-established antimalarial drug, still serves as model compound for the design of new quinoline analogues, resulting in numerous new active derivatives against chloroquine-resistant *P. falciparum* strains over the past twenty years. In this work, a set of functionalized quinoline analogues, decorated with a modified piperidine-containing side chain, was synthesized. Both amino- and (aminomethyl)quinolines were prepared, resulting in a total of 18 novel quinoline-piperidine conjugates representing four different chemical series. Evaluation of their in vitro antiplasmodium activity against a CO-sensitive (NF54) and a CO-resistant (K1) strain of P. falciparum unveiled highly potent activities in the nanomolar range against both strains for five 4-aminoquinoline derivatives. Moreover, no cytotoxicity was observed for all active compounds at the maximum concentration tested. These five new aminoquinoline hit structures are therefore of considerable value for antimalarial research and have the potency to be transformed into novel antimalarial agents upon further hit-to-lead optimization studies. © 2020 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ### 1. Introduction Malaria refers to a fatal infection of red blood cells, caused by a protozoan parasite of the genus *Plasmodium* and transmitted to humans by *Anopheles* mosquitoes. Out of the five *Plasmodium* species that can cause malaria, *Plasmodium falciparum* and *Plasmodium vivax* are the most prevalent, with *P. falciparum* being the most lethal [1]. Despite numerous endeavours to reduce malaria incidence over the last decades, this tropical disease remains far from being vanquished. According to the latest WHO report, malaria gave rise to 228 million new cases and 405,000 deaths worldwide in 2018, mostly in the African region (93% of all new cases and 94% of all deaths) and in the age group of children under five years (67% of all deaths) [2]. These numbers confirm that malaria remains the most lethal parasitic infection worldwide. Current malaria control relies on three pillars: mosquito vector control with insecticides, treatment of infected people using antimalarial agents and, most recently, vaccination [3]. Although the employment of insecticides and vaccination are important prevention tools, the cure of infected people completely depends on antimalarial medicines. In the past, all antimalarial agents that have been deployed for the treatment of malaria, e.g. quinine, chloroquine, amodiaquine, sulfadoxine-pyrimethamine, mefloquine, piperaquine and halofantrine, shared the same fate [1,4—6]. *Plasmodium* parasites developed clinical resistance to these antiplasmodials in one area E-mail address: matthias.dhooghe@UGent.be (M. D'hooghe). ^{*} Corresponding author. and then spread to other parts of the world [6,7]. Currently, artederivatives (artesunate, artemether and dihydroartemisinin (DHA)) are the first-line drugs to cure malaria, on the one hand as monotherapy for severe malaria cases, but mostly as part of the artemisinin combination therapies (ACT) regimen for uncomplicated malaria, whereby artemisinin derivatives are coadministered with a longer half-life antimalarial drug such as amodiaguine. piperaguine. mefloquine or sulfadoxinepyrimethamine [1,6,8]. However, a reduced in vivo susceptibility of P. falciparum to artemisinins was already noticed more than ten years ago in the Cambodia-Thailand border area, which were the first signs of resistance development [9]. At present, an emerging multidrug resistance and growing ability to withstand ACT is the sobering situation [3,6]. A spread of this ACT-resistant *P. falciparum* from the Cambodia-Thailand area to other parts of the world, which has occurred in the past for both chloroquine and sulfadoxinepyrimethamine, would result in a public health disaster, certainly when there is no plan B in terms of the availability of new potent antimalarial agents [1,3,6,10]. Throughout the history of antimalarial chemotherapy, the quinoline scaffold has always played a leading role, as can be seen from the numerous quinoline-containing antimalarial drugs such as quinine 1, chloroquine 2, mefloquine 3, amodiaquine 4, primaquine 5 and piperaquine 6 (Fig. 1). Although the Plasmodium parasite (especially *P. falciparum*) has developed resistance against all these quinolines, they are still of value as antimalarial medicines against more sensitive Plasmodium parasites or in combination artemisinins [1.8.11]. Ouinolines, in particular 4aminoquinolines, based on the reference antimalarial chloroquine 2, are still of high interest in the quest for novel antiplasmodium compounds, resulting in various highly potent quinolines over the last twenty years [3,4,12–14]. It is generally believed that quinine 1, chloroquine 2, mefloquine 3, amodiaquine 4 (and by extension all 4-substituted quinolines) rely on the same mode of action against Plasmodium [15]. Human hemoglobin is digested in the digestive vacuole of the parasite to produce amino acids, which are needed for its growth. Heme, a toxic side product formed during this degradation, is normally bio-crystallized by the Plasmodium parasite into hemozoin, a non-toxic crystal form [16]. When administered to infected people, chloroquine 2 and other quinolines enter the acidic digestive vacuole (pH 5) of the Plasmodium parasite through diffusion, where they are protonated. These protonated forms are unable to diffuse back across the membrane and are thereby accumulated in high concentrations in this digestive vacuole [17–19]. They subsequently inhibit the crystallization of heme into hemozoin by forming a heme-quinoline complex, resulting in a build-up of toxic heme molecules and consequently death of the protozoans [4,13,20]. The Plasmodium parasite can gain resistance against established antimalarial drugs via two different mechanisms: by means of mutations in the drug target or via mutations in drug transporters [21,22]. For chloroquine 2 and mefloquine 3, and presumably also other quinolines having the same mode of action, the latter mechanism is responsible for the developed resistance [6]. Although not fully understood, there is much evidence that multiple point mutations in the PfCRT (P. falciparum chloroquine resistance transporter) gene in case of chloroquine resistance and an increased copy-number of the pfmdr1 (P. falciparum multidrug resistance) gene in case of mefloquine resistance are involved [4,6,23-25]. Either way, these mutated transporters, located in the membrane of the parasite's digestive vacuole, impair the accumulation of chloroquine 2 or mefloquine 3 inside the digestive vacuole, probably via an increased efflux mechanism. In that way, they prevent the inhibitory activity of these antimalarial drugs, simply because they cannot reach their target [6,17,21,25-27]. However, the target activity itself, i.e. binding to heme units, is not altered in these resistant *Plasmodium* strains and therefore remains very interesting to tackle, as this is a biological process that is unique to the malarial parasite, resulting in limited host toxicity [28]. Examining the potent chloroquine derivatives that have been designed over the past twenty years, a variety of side chain modifications, including the introduction of different heterocyclic moieties, has been applied and well tolerated without being detrimental to biological activity, while the pharmacophoric quinoline moiety is always maintained. Authors frequently refer to the term hybrid structures, i.e. the implementation of a second pharmacophore group as side chain onto the quinoline nucleus, with the rationale of obtaining a compound with a dual mode of action [3,4,12,14]. It is believed that these side chain modifications can also hinder binding and/or transport by mutated PfCRT in chloroquine-resistant (CO-resistant) strains, due to steric hindrance [17,29]. Even though many of these so called hybrid structures possess very good antiplasmodium properties against CQ-resistant P. falciparum, there is not
always experimental proof that this improved activity can truly be attributed to a dual mode of action, or solely to an excellent chloroquinetype mode of action that has surpassed resistance by circumventing the mutated transporter mechanisms. Regardless of which mechanism is responsible for their superior activity, the abundance of Fig. 1. Examples of clinically used antimalarials containing a quinoline scaffold: quinine 1, chloroquine 2, mefloquine 3, amodiaquine 4, primaquine 5 and piperaquine 6. potent examples proves that the development of new chloroquine analogues with a functionalized side chain still constitutes a promising strategy in the quest for new antimalarial agents. Within that framework, and inspired by the structural properties of quinine 1 and mefloquine 3, we aimed to synthesize functionalized quinoline derivatives bearing a piperidine moiety in their side chain. In our opinion, the introduction of piperidine as heterocyclic structure in antimalarial quinoline analogues is underinvestigated compared to other heterocycles such as triazine, triazole and pyrimidine [3,4,12]. Furthermore, the introduction of a piperidine moiety will deliver a weakly basic side chain, which is presumed to be essential for uptake and accumulation of the antimalarial drug via pH trapping in the acidic digestive vacuole [17,30,31]. In analogy with quinine 1 and mefloquine 3, we selected one bridged and one monocyclic functionalized piperidine scaffold, suitable for linking with different quinoline cores. This paper presents the synthesis of four different series of novel quinoline derivatives modified with a piperidine side chain and the assessment of their antiplasmodium activity against a CQ-sensitive strain (NF54) of P. falciparum. The most promising analogues were further evaluated for their potency in a CQ-resistant strain (K1) of P. falciparum, and for their cytotoxicity in a mammalian Chinese hamster ovary (CHO) cell line. ### 2. Results and discussion ### 2.1. Synthesis In order to have convenient access to more decorated piperidine side chains, we decided to construct our contemplated quinolinepiperidine analogues from appropriate piperidine scaffolds, instead of commencing with the modification of a quinoline nucleus, as is most commonly done in the literature. To that end, two different piperidine compounds were selected, both bearing a functional group (an N-4-methoxybenzyl and a nitrile moiety, respectively) that can be converted into a free amino group, since this was the preferred route towards reaction with various guinolines. As a first heterocyclic scaffold, a bridged piperidine, i.e. 2-[N-(4-methoxybenzyl)aminomethyl]-4-phenyl-1-azabicyclo[2.2.1] heptane 7 was chosen on the basis of its similarity to the side chain present in quinine 1 and based on our in-house knowledge pertaining to the synthesis of this class of compounds. A series of 1azabicyclo[2.2.1]heptanes had previously been synthesized in our group and evaluated for in vitro antiplasmodium activity [32]. Based on in silico docking studies of the most active compound, the moderate antiplasmodium activity observed was hypothesized to (partially) be attributed to inhibition of plasmepsin II, an enzyme essential for hemoglobin digestion in the parasite [32]. Therefore, it seemed reasonable to explore whether or not the observed moderate antiplasmodium activity could contribute to a potential dual mode of action in our target analogues. For the synthesis of the contemplated bridged piperidine-quinoline analogues, 1-azabicyclo[2.2.1]heptane **7**, bearing a *p*-methoxybenzyl (PMB) protecting group, was used as a starting point because of the inability to transform the other known 1-azabicyclo[2.2.1]heptanes (with *N*-benzyl, *N*-(4-chlorobenzyl) and *N*-(4-methylbenzyl)) [32] into the corresponding primary amine via common debenzylation methods. As described in the literature, bridged piperidine **7** was prepared by treatment of the corresponding 2-(bromomethyl)aziridine [33–35] with α -lithiated phenylacetonitrile in THF, followed by deprotonation with LDA and subsequent quenching with 1-bromo-2-chloroethane [36], and finally a one-step LiAlH₄-mediated ring closure to afford the constrained piperidine (Synthesis and Experimental Data, see Supporting Information) [32]. It should be noted that the separation of both diastereomers of 1-azabicyclo[2.2.1]heptane 7 is possible via selective crystallization in ethanol [36], but for practical reasons in view of the reaction scale, constrained piperidine 7 was used as mixture of endo- and exo-isomers (dr 55/45) for further synthetic elaboration. Treatment of 1-azabicyclo[2.2.1]heptane 7 with cerium ammonium nitrate (CAN) in an acetonitrile/water (1/ 4) mixture resulted in primary amine 8 (Scheme 1). Purification using both normal phase or reversed phase column chromatography led to product degradation. For this reason, after acid-base work-up to remove the 4-methoxybenzaldehyde byproduct, the crude 2-aminomethyl-4-phenyl-1-azabicyclo[2.2.1]heptane 8 was used as such in the next step. To chemically link this constrained piperidine scaffold with a quinoline nucleus, two different coupling reactions were deployed, resulting in two different sets of quinoline-piperidines (Scheme 1). First, reaction with 4,7dichloroguinoline **9a** and 4-chloroguinoline **9b** under microwave irradiation, without the addition of solvent ('neat'), produced 4aminoquinolines 11a and 11b. Remarkably, performing the synthesis in the high-boiling solvent phenol, commonly applied for this type of amine-halide exchange reactions [37,38], resulted in a considerable side reaction of 4-chloroquinolines 9 with phenol, which rendered this procedure not useful. Purification by means of automated reversed phase column chromatography yielded 4aminoquinolines **11a-b** in pure form (purity >95%, based on ¹H NMR and LC-MS analysis), as a mixture of diastereomers. As can be seen in Scheme 1, the endo and exo forms eventually displayed the same reactivity, since the diastereomeric ratio did not change significantly after reaction (dr determined before purification). In order to expand our library of quinoline-piperidine analogues, a second series of new chloroquine analogues, i.e. (aminomethyl) quinolines (inspired by quinine 1 and mefloquine 3), having an extra methylene linker between the quinoline core and the amino group, was developed, as this part of the antimalarial drug space is mostly untouched. Moreover, a recently reported 3-(aminomethyl) quinoline with promising activity against both a CQ-sensitive $(IC_{50} = 4.73 \mu M)$ and CQ-resistant $(IC_{50} = 15.25 \mu M)$ strain of P. falciparum [39], prompted us to combine our 1-azabicyclo[2.2.1] heptane with quinolines in this fashion. To that end, free amine 8 was subjected to reductive amination conditions using different commercially available quinoline carboxaldehydes 10a-e and NaBH₄ in methanol. After purification using automated reversed phase column chromatography, five novel (aminomethyl)quinolines 12a-e, bearing a bridged piperidine side chain at either the 2-, 3-, or 4-position of the quinoline core (Scheme 1), were obtained in pure form (purity >95%, based on ¹H NMR and LC-MS analysis). Also here, the reaction conditions applied did not affect the diastereomeric ratio (dr determined before purification). It must be emphasized that the reported yields in Scheme 1 for both 4aminoquinolines 11 and (aminomethyl)quinolines 12 are calculated over two steps, starting from the N-protected 1-azabicylo [2.2.1] heptane 7. The low yields are mainly attributed to the elaborate work-up procedure after CAN deprotection, which, after intensive extraction procedures, only afforded roughly 50% of crude primary amine 8. The extended purification en route to analytically pure samples for bio-evaluation also contributed to the low yields. As a second heterocyclic structure, we proposed the introduction of a monocyclic piperidine ring in our desired set of quinoline-piperidine analogues, based on the structure of mefloquine **3**. Since our synthetic strategy required the presence of a functional group that could be converted into a primary amine, the *cis*-1-allyl-5-benzyloxy-3,3-dimethylpiperidine-4-carbonitrile **13** available inhouse was selected as suitable and easily accessible monocyclic piperidine (Scheme 2). This class of piperidine-4-carbonitriles has not been previously screened for antiplasmodium activity, which allows for an interesting comparison with the 1-azabicyclo[2,2.1] Scheme 1. Synthetic route towards 4-aminoquinolines 11a-b and (aminomethyl)quinolines 12a-e functionalized with a 1-azabicyclo[2.2.1]heptane scaffold. heptane-quinolines 11 and 12. The synthesis of piperidine-4carbonitrile 13 is based on a 5-step literature procedure, involving the preparation of 4-(2-bromoalkyl)- β -lactams via the Staudinger reaction [40], their subsequent reduction to the corresponding azetidines and finally a ring transformation with potassium cyanide to obtain the desired piperidine-4-carbonitrile scaffold (Synthesis, see Supporting Information) [41]. Based on ¹H NMR analysis of the intermediate *cis*-β-lactams, it was confirmed that piperidine-4-carbonitrile 13 also displayed the cis-configuration [41]. The introduction of an N-allyl group was envisaged to provide a handle for further synthetic modification later on, if desired, although other substituents (e.g. benzyl or tBu) can also be easily incorporated. Reduction of the nitrile functionality with LiAlH₄ yielded the corresponding 4-(aminomethyl)piperidine 14, but also gave rise to a substantial amount of side product 15, in which the benzyloxy moiety was cleaved off (Scheme 2). Although the removal of a methoxy group from a piperidine ring with LiAlH₄ is known in the literature [42,43], this is the first reported example of a simultaneous nitrile reduction and benzyloxy group removal through the use of LiAlH₄.
Modification of the reaction parameters (adaptation of numbers of equivalents of LiAlH₄, temperature and time) always resulted in a mixture with at least 50% of 5unsubstituted piperidine 15. Separation of the primary amines by means of reversed phase column chromatography only succeeded partially due to their tailing behaviour and was also accompanied by some product degradation. Therefore, we decided to use the mixture of primary amines 14 and 15 as such to react with an appropriate quinoline scaffold in the next step. To calculate the correct amount of reagents, an average molecular weight of the reaction mixture was used according to the ratio of both primary amines, which was approximately 1/4 (14/15) based on ¹H NMR analysis. In order to compare the antiplasmodium activity of these monocyclic piperidine-quinoline series with the previously synthesized 1-azabicyclo[2.2.1]heptane-quinolines, the monocyclic piperidines were reacted with the same quinolines as in Scheme 1. Thus, 4-chloroquinolines 9a-b were reacted with the mixture of primary amines 14 and 15 under microwave irradiation ('neat'), which afforded a mixture of the corresponding 4-aminoquinolines **16** (Scheme 2). Only 0.8 equivalents of 4,7-dichloroquinoline **9a** or 4-chloroquinoline **9b** were used, since upon addition of an equimolar quantity, a significant amount of 4-chloroquinolines 9a-b remained unreacted. By means of purification using automated reversed phase column chromatography, both piperidine-quinoline analogues 16a and 16b could be isolated in high purity in the case of $R^1 = Cl$, whereas for $R^1 = H$, only the analogue without the benzyloxy group (16c) was separated from the reaction mixture in high purity (purity >95%, based on ¹H NMR and LC-MS analysis). Next to 4-aminoquinolines, a series of (aminomethyl)quinolines decorated with a monocyclic piperidine side chain was synthesized as well via reductive amination using four different quinoline carboxaldehydes **10a,c-e** (Scheme 2). In case no complete conversion was achieved after addition of 1.5 equivalents of NaBH₄, 0.5 extra equivalents were added to reach a conversion of 100%. Table 1 gives an overview of (aminomethyl)quinolines 17a-g that were isolated in a purity of >95% (based on ¹H NMR and LC-MS analysis) after automated reversed phase column chromatography. Only Scheme 2. Synthetic route towards 4-aminoquinolines 16a-c and (aminomethyl)quinolines 17a-g functionalized with a monocyclic piperidine side chain. **Table 1**Specific substitution pattern and yields of all piperidine-(aminomethyl)quinolines **17a-g**, functionalized with a monocyclic piperidine side chain, that were obtained in pure form. | Compound | OBn? | Aldehyde 10 | Equiv. NaBH ₄ | Yield (%) | |----------|------|--------------------|--------------------------|----------------| | 17a | Yes | 10a | 1.5 | 16 | | 17b | No | 10a | 1.5 + 0.5 | 11 | | 17c | Yes | 10c | 1.5 + 0.5 | 5 ^a | | 17d | No | 10c | 1.5 + 0.5 | 26 | | 17e | No | 10d | 1.5 | 12 | | 17f | Yes | 10e | 1.5 + 0.5 | 15 | | 17g | No | 10e | 1.5 + 0.5 | 9 | ^a Purity >85%, based on ¹H NMR and LC-MS analysis. derivative 17c had a purity of >85% (based on ¹H NMR and LC-MS analysis), but could still be characterized. In addition to these seven monocyclic piperidine-quinoline analogues 17a-g, (aminomethyl)quinoline 17h (see Fig. 2), containing a 5-methoxysubstituted piperidine structure, was synthesized in a similar fashion in a yield of 6%, by reaction of quinoline-4-carboxaldehyde **10a** and the mixture of cis-1-allyl-4-aminomethyl-5-methoxy-3,3dimethylpiperidine and 1-allyl-4-aminomethyl-3,3dimethylpiperidine 15. Since the intermediate mixture of primary amines 14 and 15 was not purified, the yields for all novel 4aminoquinolines 16a-c and aminomethylquinolines 17a-h, functionalized with a monocyclic piperidine side chain, were calculated over two steps, starting from the corresponding piperidine-4carbonitrile 13. Also, novel analogues bearing a methoxy or benzyloxy group (**16a**, **17a**, **17c**, **17f**, **17h**) featured the *cis*-configuration, since no diastereomerisation was observed via ¹H NMR analysis during all reactions. ### 2.2. Antiplasmodium activity assessments An antiplasmodium assay was performed on this set of 18 novel quinoline-piperidine analogues to establish their potential as antimalarial agents. Fig. 2 shows an overview of the different compounds subjected to biological screening. All compounds were screened for in vitro antiplasmodium activity against a CQ-sensitive strain of P. falciparum (NF54). Subsequently, compounds showing promising antiplasmodium activity were also tested against a COresistant strain of P. falciparum (K1) and analysed for in vitro cytotoxicity against a mammalian cell line, Chinese hamster ovarian cells. using the 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazoliumbromide (MTT)-assay. Continuous in vitro cultures of asexual erythrocyte stages of P. falciparum were maintained using a modified method of Trager and Jensen [44], and quantitative assessment of antiplasmodium activity in vitro was determined via the parasite lactate dehydrogenase assay using a modified method described by Makler [45]. The test samples were tested in triplicate on one occasion. The MTT-assay was used as a colorimetric assay for cellular growth and survival, and compares well with other available assays [46,47]. The tetrazolium salt MTT was used to measure all growth and chemosensitivity. Again, samples were tested in triplicate on one occasion. Chloroquine was used as reference compound in both antiplasmodium screenings, while Fig. 2. Overview of novel 4-aminoquinoline-piperidines 11 and 16, novel (aminomethyl)quinoline-piperidines 12 and 17, and 1-azabicyclo[2.2.1]heptane 7, which were assayed on their antiplasmodium activity. emetine was used as known antiprotozoal agent in the MTT-assay. Table 2 summarizes the results of the biological tests. The IC₅₀ values against NF54, K1 and CHO, accompanied by, if applicable, selectivity (SI) and resistance indices (RI) are shown. Since the compounds were not analysed all together but in three separate subsets, three IC₅₀ values for chloroquine and emetine are reported. The data obtained reveals that all piperidine-(aminomethyl) quinoline analogues **12** and **17** possess moderate activity against the CQ-sensitive strain of *P. falciparum* (NF54) with IC₅₀ values below 8 μ M, except for **17h**. However, the 4-aminoquinoline-piperidines **11** and **16** clearly stand out, exhibiting antiplasmodium activities in the low nanomolar range, comparable to chloroquine itself, with the exception of **16c**. Results in the CQ-resistant *P. falciparum* strain (K1) are in line with those observed in NF54. All 4-aminoquinoline-piperidines **11** and **16** demonstrate excellent inhibitory activity with nanomolar IC $_{50}$ values in K1 (25–69 nM), 2.5- to 7-fold more potent than chloroquine. Their RI values are approximately 10 times lower compared to chloroquine. Peculiarly, 4-aminoquinoline-piperidine **16c** has a RI value below 1 (RI = 0.3). Although not unheard of, RI values lower than 1 are quite unusual, and cannot be explained straightforwardly. Nevertheless, these five 4-aminoquinoline-piperidines can be considered very promising potential novel antimalarial hit structures, showing the same intrinsic inhibitory activity as chloroquine (except for **16c**) in NF54 **Table 2**IC₅₀ values of 4-aminoquinolines (**11** and **16**), (aminomethyl)quinolines (**12** and **17**) and 1-azabicyclo[2.2.1]heptane **7** tested for their *in vitro* antiplasmodium activity against a CQ-sensitive (NF54) and a CQ-resistant (K1) *P. falciparum* strain and their cytotoxicity. Data are expressed as mean ± SD values of three independent experiments. | Compound | NF54 IC_{50} (μ M) | K1 IC ₅₀ (μM) | CHO IC ₅₀ (μM) | SI ^a | RI ^b | |--------------------------|---------------------------|---------------------------|---------------------------|-----------------|-----------------| | 11a ^d | 0.021 ± 0.0050 | 0.033 ± 0.0062 | 26.0 ± 2.9 | 1266 | 1.6 | | 11 b ^e | 0.045 ± 0.007 | 0.069 ± 0.0113 | 11.2 ± 2.1 | 250 | 1.5 | | 12a ^c | 6.77 ± 0.25 | _ | _ | _ | _ | | 12b ^ℂ | 4.07 ± 0.74 | _ | _ | _ | _ | | 12c ^c | 1.27 ± 0.04 | _ | _ | _ | _ | | 12d ^c | 0.72 ± 0.03 | 4.64 ± 0.13 | 102.65 ± 19.67 | 142 | 6.4 | | 12e ^c | 3.60 ± 0.31 | _ | _ | _ | _ | | 16a ^d | 0.012 ± 0.0010 | 0.026 ± 0.0057 | 121.8 ± 41.4 | 10,149 | 2.2 | | 16b ^d | 0.015 ± 0.0017 | 0.025 ± 0.0089 | 29.9 ± 1.2 | 1991 | 1.7 | | 16c ^e | 0.236 ± 0.032 | 0.0685 ± 0.0078 | 27.0 ± 3.2 | 114 | 0.3 | | 17a ^d | 2.37 ± 1.05 | 3.66 ± 0.43 | 139.4 ± 14.1 | 59 | 1.5 | | 17b ⁴ | 4.94 ± 1.18 | _ | _ | _ | | | 17c ^d | 1.57 ± 0.17 | 2.82 ± 0.14 | 210.6 ± 31.4 | 134 | 1.8 | | 17 d ^d | 3.66 ± 0.82 | _ | _ | _ | _ | | 17e ^d | 2.89 ± 1.06 | _ | _ | _ | _ | | 17f ^d | 1.28 ± 0.33 | 1.95 ± 0.078 | 199.0 ± 23.3 | 156 | 1.5 | | 17g ^d | 7.75 ± 1.44 | _ | _ | _ | _ | | 17h ^d | 17.99 ± 2.44 | _ | _ | _ | _ | | 7 ^c | 1.55 ± 0.13 | _ | _ | _ | _ | | Chloroquine | $0.011 \pm 0.001^{\circ}$ | $0.167 \pm 0.028^{\circ}$ | _ | _ | 14.7 | | | 0.010 ± 0.0004^{d} | 0.169 ± 0.047^{d} | | | 17.8 | | | 0.020 ± 0.001^{e} | 0.169 ± 0.047^{e} | | | 8.5 | | Emetine - | _ | _ | $0.04 \pm 0.01^{\circ}$ | _ | _ | | | | | 0.14 ± 0.04^{d} | | | | | | | 0.03 ± 0.01^{e} | | | ^{-:} not tested. data, but able to circumvent the chloroquine resistance mechanisms. Additionally, data from the MTT-assay indicate no cytotoxicity issues for all 4-aminoquinoline-piperidines **11** and **16**, with SI values above 100. A selective screening of the best performing (aminomethyl) quinolines (12d, 17a, 17c and 17f) shows moderate antiplasmodium activity (IC $_{50}$
1.95–4.64 μM) in K1, comparable with that in NF54. These IC₅₀ values in K1 are still higher than those of chloroquine, suggesting that this class of novel (aminomethyl)quinolines 12 and 17 exert their medium activity either much less effectively than chloroquine, or via another mechanism that does not significantly contribute to the antiplasmodium effect. Nevertheless, it is clear from these results that insertion of an extra methylene unit between the quinoline moiety and the amino functionality, as in (aminomethyl)quinoline-piperidines 12 and 17, is detrimental to the antiplasmodium activity. Analysing the structures of the best performing compounds 11 and 16, it seems that the presence of a chlorine atom on the 7-position of the quinoline nucleus delivers the best activity (analogues 11a and 16a-b). Conversely, omitting this chlorine atom (analogues 11b and 16c) lowers the activity only 2 to 3 times in the CQ-resistant strain, while its influence on activity in the CQ-sensitive strain varies, but still leads to nanomolar IC50 values in its absence. Thus, it appears that, with respect to the 4amino-7-chloroquinoline nucleus present in chloroquine 2, the 4aminoquinoline moiety is the principal pharmacophore required for good activity, while the 7-chloro substitution only provides an additional effect. Furthermore, no substantial difference in antiplasmodium activity can be observed between bridged piperidinequinolines 11 and monocyclic piperidine-quinolines 16. In contrast, 1-azabicyclo[2,2,1]heptane **7** possesses moderate antiplasmodium activity, comparable to previous reported activities for this class [32], while their monocyclic counterparts were also tested and, as expected, displayed no antiplasmodium activity at all (data not shown). Thus, the antiplasmodium activity of the introduced piperidine side chain itself seems to exert little influence on the final activity of the 4-aminoquinoline-piperidines. From these findings, it seems unlikely that 1-azabicyclo[2.2.1]heptane-piperidines 11 are hybrid structures with a dual mode of action. Therefore, we assume that our novel 4-aminoquinoline-piperidines 11 and 16 bypass the chloroquine resistance mechanism and are not recognized by the mutated chloroquine transporters, or at least to a much lesser extent, and therefore can still exert their antiplasmodium activity by inhibition of heme crystallization. However, elaborate biological follow-up studies are necessary to confirm this hypothesis. ### 3. Conclusion In this work, a library of 18 novel quinoline-piperidine conjugates was synthesized with the aim to investigate their antimalarial potential. To that end, two different piperidine moieties, a bicyclic 1-azabicyclo[2.2.1]heptane scaffold and a 4-substituted monocyclic piperidine, were selected and coupled with different quinoline cores either via an addition-elimination reaction or a reductive amination, affording in total four different series of quinolinepiperidines. Antiplasmodium evaluation against a CQ-sensitive (NF54) and a CQ-resistant (K1) strain of P. falciparum revealed a promising activity for almost all compounds. Amongst them, five novel analogues belonging to the class of 4-aminoquinoline-piperidines (11a-b and 16a-c) demonstrated excellent in vitro antiplasmodium activity, with nanomolar IC₅₀ values against both NF54 (12-236 nM) and K1 (25-69 nM) parasite strains. Furthermore, biological assessment in mammalian CHO cells did not indicate any cytotoxicity issues. Given the urgent need for novel antimalarial agents in the battle against this lethal parasitic disease and the emerging resistance to artemisinins, we propose our small library ^a SI (selectivity index) = IC₅₀ CHO/IC₅₀ NF54. ^b RI (resistance index) = IC_{50} K1/ IC_{50} NF54. ^c Reference values: CQ: IC_{50} (NF54) 11.3 \pm 1.0 nM, IC_{50} (K1) 166.5 \pm 27.9 nM; emetine: IC_{50} 0.04 \pm 0.01 μ M. ^d Reference values: CQ: IC_{50} (NF54) 9.5 \pm 0.4 nM, IC_{50} (K1) 169.0 \pm 46.7 nM; emetine: IC_{50} 0.14 \pm 0.04 μ M. ^e Reference values: CQ: IC_{50} (NF54) 20.0 ± 1.4 nM, IC_{50} (K1) 169.0 ± 46.7 nM; emetine: IC_{50} 0.03 \pm 0.01 μ M. of five novel 4-aminoquinoline-piperidines **11a-b** and **16a-c** as promising hit structures for further hit-to-lead optimization towards new potent antimalaria medicines. ### 4. Experimental section #### 4.1. Synthesis and characterization ### 4.1.1. General All reagents were purchased from commercial suppliers and were used as received without any further purification. Dry solvents (THF, toluene, dichloromethane and diethyl ether) were obtained using the MBraun SPS-800 solvent purification system. Dry methanol was purchased from Acros Organics. Other solvents were purchased at the highest quality possible and used as supplied. Thin layer chromatography (TLC) analysis of crude reaction mixtures or pure samples was performed using glass-backed 0.25 mm Merck silica gel 60 F₂₅₄ TLC plates, and visualised under UV light (254 nm) or by using a KMnO₄ or ninhydrin stain. Purification by means of column chromatography was executed on chromatographic silica gel (particle size 35–70 μM, pore diameter 6 nm). Automated flash chromatography was carried out on a Grace Reveleris® X1 flash chromatography system (reversed phase) or Büchi Reveleris® X2 flash chromatography system (normal phase), using prepacked Reveleris® silica or Reveleris® C18 cartridges. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 100.6 MHz, respectively, on a Bruker Avance III, equipped with ¹H/BB z-gradient probe (BBO, 5 mm). CDCl₃ was used as solvent, and TMS was used as an internal chemical shift standard. All spectra were processed using TOPSPIN 3.6.2 and were acquired through the standard sequences available in the Bruker pulse program library. 2D spectra (COSY, HSQC, HMBC) were recorded as additive spectra for complete structure elucidation. IR spectra were obtained from samples in neat form with a Quest ATR (Attenuated Total Reflectance) accessory with diamond crystal puck using a Shimadzu IRAFFINITY-1S Fourier Transform Infrared Spectrophotometer (FTIR). Melting points of solid compounds were determined using a Kofler Bench, type WME Heizbank of Wagner & Munz. For HPLC analyses, an Agilent 1200 Series HPLC equipped with a Supelco Ascentic Express C18 column (3 cm \times 4.6 mm, 2.7 μ m fused-core particles, 90 Å), a Phenomenex Guard column (SecurityGuard Standard) and a UV-DAD detector was used. The HPLC is coupled to an Agilent 1100 Series MS with electrospray ionisation (70 eV) with a single quadrupole detector for HPLC-MS analyses. The latter one was also used for low resolution mass spectra (LRMS). High resolution electron spray (ES-TOF) mass spectra were obtained with an Agilent Technologies 6210 Series Time of Flight. Microwave reactions were performed in a CEM FocusedTM Microwave Synthesis System, Model Discover in 10 ml vials. ## 4.1.2. Procedure for the synthesis of (4-phenyl-1-azabicyclo[2.2.1] heptan-2-yl)methanamine **8** To a mixture of 10 ml acetonitrile and 40 ml water, 2-[*N*-(4-methoxybenzyl)aminomethyl]-4-phenyl-1-azabicyclo[2.2.1]heptane **7** [32] (322 mg, 1 mmol) and CAN (2.74 g, 5 mmol) were added to achieve a concentration of 0.1 M CAN in an acetonitrile/water mixture with a ratio of 1/4. The reaction mixture was stirred for 24 h at room temperature and checked afterwards for having reached acidic conditions (litmus paper). It was poured in 50 ml water and extracted with 50 ml dichloromethane. The dichloromethane phase was separated, while the emulsion-like aqueous phase was extracted in a second separation funnel containing 50 ml dichloromethane. After separation of the dichloromethane phase, the emulsion-like aqueous phase was extracted a last time in a third separation funnel with 50 ml dichloromethane, in order to remove as much as possible of the 4-methoxybenzaldehyde byproduct in the dichloromethane phase. Subsequently, the aqueous phase was basified with 1 N NaOH (litmus paper), and filtrated over Celite to remove the solids present. After filtration, the aqueous phase was extracted with dichloromethane in three different separation funnels (3 \times 50 ml), like previously described. The combined organic phases were washed with 50 ml brine, dried over MgSO₄, filtrated and evaporated under reduced pressure. The obtained crude (4-phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methanamine **8** (94.2 mg) was used as such without purification in the next reactions. ## 4.1.3. Procedure for the synthesis of a mixture of cis-1-allyl-4-aminomethyl-5-benzyloxy-3,3-dimethylpiperidine **14** and 1-allyl-4-aminomethyl-3,3-dimethylpiperidine **15** A solution of cis-1-allyl-5-benzyloxy-3,3-dimethylpiperidine-4carbonitrile 13 [41] (284 mg, 1 mmol) in 15 ml dry THF was cooled to 0 °C. A 1.0 M LiAlH₄ solution in THF (5 ml, 5 mmol) was carefully added at 0 °C under argon atmosphere. Subsequently, the reaction was heated to reflux temperature and stirred for 15 h. Afterwards, the reaction mixture was cooled down to 0 °C again, after which the excess of LiAlH₄ was quenched by carefully adding dropwise 5 ml water, followed by 5 ml 2 N NaOH. The salts in the mixture were removed via filtration, after which the solvent was evaporated. Then, 10 ml water was added and it was extracted with 3×20 ml dichloromethane, whereafter the combined organic phases were dried over MgSO₄ and filtrated. Removal of the solvent under reduced pressure afforded a mixture of cis-1-allyl-4-aminomethyl-5-benzyloxy-3,3-dimethylpiperidine 14 and aminomethyl-3,3-dimethylpiperidine 15 (228.6 mg), which was used without further purification in the next steps. ## 4.1.4. Representative procedure for the synthesis of N-[(4-phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]quinolin-4-amines **11a-b** For ease of calculations, it was assumed that the amount of crude starting material equals 1 equivalent. Primary amine
(4phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methanamine 8 (94.2 mg, 0.47 mmol) and 4,7-dichloroguinoline **9a** (93 mg, 0.47 mmol) were put into a microwave vessel of 10 ml. The mixture was stirred under microwave irradiation for 2 h at 130 °C. After confirmation of full conversion via LC-MS analysis, the reaction product was dissolved in 50 ml dichloromethane, and if necessary 5 ml methanol was used to dissolve all precipitates. 5 ml 2 N NaOH and 10 ml water were added, followed by an extraction with dichloromethane $(2 \times 20 \text{ ml})$. The combined organic phases were washed with water (10 ml), dried over MgSO₄, filtrated and evaporated under reduced pressure. Purification by means of automated column chromatography (C18, gradient MeOH/H₂O 50/50 to 100/0) resulted in 45.2 mg 7-chloro-*N*-[(4-phenyl-1-azabicyclo[2.2.1]heptan-2-yl) methyl]quinolin-4-amine 11a (0.124 mmol) in a purity of >95%, corresponding with a yield of 12% over two steps. The purification conditions for derivative **11b** are specified in the characterization. 4.1.4.1. 7-Chloro-N-[(4-phenyl-1-azabicyclo[2.2.1]heptan-2-yl) methyl]quinolin-4-amine 11a. Spectral data derived from the mixture of diastereomers (dr = 55/45). ¹H NMR (400 MHz, CDCl₃): δ 1.29 (1H, ddd, J = 11.7, 6.2, 1.4 Hz), 1.56 (1H, ddd, J = 11.9, 5.1, 3.6 Hz), 1.60–1.64 (1H, m), 1.72–1.78 (1H, m), 1.91–2.03 (3H, m), 2.19 (1H, ddd, J = 11.6, 10.6, 3.5 Hz), 2.66 (1H, dt, J = 9.8, 1.6 Hz), 2.79–2.87 (2H, m), 2.93–3.02 (5H, m), 3.13–3.32 (4H, m), 3.51–3.57 (1H, m), 3.72 (1H, hept, J = 5.4 Hz), 5.71 (1H, d, J = 4.1 Hz, NH_{minor}), 5.97 (1H, d, J = 7.4 Hz, NH_{major}), 6.37 (1H, d, J = 5.3 Hz), 6.41 (1H, d, J = 5.3 Hz), 7.24–7.39 (12H, m), 7.796 (1H, d, J = 9.0 Hz), 7.801 (1H, d, J = 8.9 Hz), 7.95 (1H, d, J = 2.1 Hz), 7.97 (1H, d, J = 2.1 Hz), 8.53 (1H, d, J = 5.3 Hz), 8.56 (1H, d, J = 5.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 37.6, 38.7, 42.3, 42.9, 44.5, 46.6, 47.1, 53.9, 55.0, 56.4, 59.8, 62.5, 64.87, 64.90, 99.1, 99.3, 117.1, 117.4, 121.4, 121.6, 125.2, 125.4, 126.6, 126.7, 126.8, 128.5, 128.76, 128.79, 134.8, 135.0, 141.8, 142.1, 149.2, 149.3, 149.4, 149.6, 152.1. **IR** (cm $^{-1}$) $\nu_{NH}=3294$, $\nu_{max}=2922$, 2870, 1608, 1578, 1447, 1136, 806, 698. **MS** (70 eV): m/z (%) = 364/366 ([M+H] $^+$, 100). **HRMS** (ESI) calcd for $C_{22}H_{22}ClN_3$ [M+H] $^+$ 364.1575, found 364.1577. Light yellow oil. Yield after automated column chromatography (C18, MeOH/H $_2$ O: 50/50 to 100/0) = 12%. 4.1.4.2. N-[(4-Phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]quino-lin-4-amine 11b. Spectral data derived from the mixture of diastereomers (dr=60/40). ¹**H NMR** (400 MHz, CDCl₃): $\delta = 1.33$ (1H, dd, J = 11.7, 5.4 Hz), 1.57 (1H, ddd, J = 11.9, 4.5, 4.5 Hz), 1.62 - 1.67 (1H, m), 1.72 - 1.79 (1H, m),1.93-2.04 (3H, m), 2.22 (1H, ddd, J = 11.7, 11.2, 2.9 Hz), 2.67 (1H, d, J = 9.5 Hz), 2.81–2.89 (2H, m), 2.97–3.06 (5H, m), 3.16–3.35 (4H, m), 3.54–3.60 (1H, m), 3.74–3.82 (1H, m), 5.79 (1H, br s, NH_{minor}), 6.00 (1H, d, J = 6.8 Hz, NH_{major}), 6.40 (1H, d, J = 5.3 Hz), 6.43 (1H, d, J = 5.2 Hz), 7.24–7.37 (10H, m), 7.45 (2H, dd, J = 7.6, 7.5 Hz), 7.64 (2H, dd, J = 8.0, 7.5 Hz), 7.88 (1H, d, J = 7.6 Hz), 7.89 (1H, d, J)J = 7.6 Hz), 7.98 (1H, d, J = 8.0 Hz), 7.99 (1H, d, J = 8.0 Hz), 8.56 (1H, d, J = 5.3 Hz), 8.59 (1H, d, J = 5.2 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta = 37.6, 38.6, 42.3, 43.0, 44.6, 46.5, 47.2, 53.8, 54.8, 56.4, 59.6, 62.4,$ 64.8, 64.9, 98.8, 99.0, 118.7, 119.0, 119.88, 119.94, 124.6, 124.7, 126.58, 126.63, 126.7, 126.8, 128.51, 128.55, 129.06, 129.12, 129.7, 129.8, 141.8, 142.0, 148.37, 148.42, 149.5, 149.7, 151.0. **IR** (cm⁻¹) $v_{\text{max}} = 2951, 2172, 1580, 1572, 1128, 758, 725, 698.$ MS (70 eV): m/z $(\%) = 330 ([M+H]^+, 100)$. **Mp** = 60 °C. Light yellow powder. Yield after automated column chromatography (C18, MeOH/H2O: 50/50 to 100/0) = 13%. ## 4.1.5. Representative procedure for the synthesis of N-[(4-phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]-1-quinolinylmethanamines 12a-e For ease of calculations, it was assumed that the amount of crude starting material equals 1 equivalent. Crude (4-phenyl-1azabicyclo[2.2.1]heptan-2-yl)methanamine (94.2)0.47 mmol) was dissolved in 10 ml dry methanol and stirred under argon atmosphere. To this mixture, quinoline-4-carboxaldehyde 10a (81.3 mg, 0.52 mmol) was added and subsequently stirred overnight at room temperature. After complete conversion, determined via LC-MS analysis, NaBH₄ (26.7 mg, 0.71 mmol) was added portionwise and the reaction mixture was stirred for an additional 3 h at room temperature. When the reaction reached complete conversion, methanol was evaporated. The reaction mixture was resolved in 20 ml chloroform and 20 ml brine and extracted with chloroform (3 \times 20 ml), after which the combined organic phases were dried over MgSO₄, filtered and evaporated under reduced pressure. The resulting crude product was purified with automated column chromatography (C18, gradient MeOH/H₂O 0/100 to 100/0). Finally, 20.5 mg *N*-[(4-phenyl-1-azabicyclo[2.2.1]heptan-2-yl) methyl]-1-(quinolin-4-yl)methanamine 12a (0.060 mmol) was obtained in a purity of >95%, in a yield of 6% over two steps. 4.1.5.1. N-[(4-Phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]-1-(qui-nolin-4-yl)methanamine 12a. Spectral data derived from the mixture of diastereomers (dr = 54/46). ¹H NMR (400 MHz, CDCl₃): δ 1.12 (1H, ddd, J = 11.4, 5.8, 2.0 Hz), 1.39 (1H, ddd, J = 11.7, 5.5, 3.6 Hz), 1.48–1.54 (1H, m), 1.64–1.71 (1H, m), 1.83–1.92 (3H, m), 2.07 (1H, ddd, J = 11.4, 10.7, 3.5 Hz), 2.32 (2 × 1H, br s, 2 × NH), 2.57–2.62 (2H, m), 2.70 (1H, dd, J = 11.8, 10.0 Hz), 2.75–2.81 (2H, m), 2.86–2.93 (6H, m), 3.01–3.07 (1H, m), 3.13 (1H, ddd, J = 11.8, 11.2, 5.9 Hz), 3.50–3.58 (1H, m), 4.26–4.37 (4H, m), 7.19–7.34 (10H, m), 7.51 (2H, d, J = 4.4 Hz), 7.55–7.59 (2H, m), 7.69–7.73 (2H, m), 8.09–8.14 (4H, m), 8.87 (2H, d, J = 4.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 37.5, 38.7, 42.6, 43.2, 46.8, 50.0, 50.2, 51.4, 53.5, 54.6, 54.9, 56.6, 60.1, 63.8, 65.0, 66.0, 119.7, 119.9, 123.3, 126.4, 126.47, 126.53, 126.7, 126.8, 127.0, 127.1, 128.39, 128.41, 129.0, 129.1, 130.18, 130.22, 142.3, 142.6, 145.5, 145.8, 148.2, 148.3, 150.37, 150.40. IR (cm⁻¹) $v_{NH} = 3306$, $v_{max} = 2949$, 2884, 1593, 1570, 1508, 1497, 754, 698. MS (70 eV): m/z (%) = 344 ([M+H]⁺, 100). HRMS (ESI) calcd for C₂₃H₂₅N₃ [M+H]⁺ 344.2121, found 344.2112. White-yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 0/100 to 100/0): 6%. 4.1.5.2. N-[(4-Phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]-1-(qui-nolin-3-yl)methanamine 12b. Spectral data derived from the mixture of diastereomers (dr=53/47). ¹**H NMR** (400 MHz, CDCl₃): δ 1.10 (1H, ddd, J = 11.6, 6.0, 1.6 Hz), 1.36 (1H, ddd, J = 11.7, 5.5, 3.6 Hz), 1.45 - 1.52 (1H, m), 1.63 - 1.69 (1H, m)m), 1.80-1.91 (3H, m), 2.05 (1H, ddd, I = 11.6, 10.6, 3.7 Hz), 2.13 $(2 \times 1H, \text{ br s}, 2 \times NH), 2.52 (1H, \text{dd}, J = 11.9, 4.3 \text{ Hz}), 2.58-2.65 (2H, 1.9)$ m), 2.73-2.94 (8H, m), 2.97-3.04 (1H, m), 3.12 (1H, ddd, J = 11.9, 11.1, 5.9 Hz), 3.46-3.54 (1H, m), 3.98-4.08 (4H, m), 7.19-7.33 (10H, m), 7.51-7.56 (2H, m), 7.66-7.71 (2H, m), 7.80 (2H, dd, J = 7.8, 3.6 Hz), 8.09-8.14 (4H, m), 8.92 (2H, dd, J = 5.0, 2.1 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 37.5, 38.8, 42.7, 43.2, 46.9, 51.0, 51.51, 51.55, 53.4, 54.5, 54.7, 56.6, 60.0, 63.8, 65.1, 66.1, 126.31, 126.33, 126.6, 126.68, 126.71, 126.8, 127.6, 128.03, 128.04, 128.4, 128.95, 129.01, 129.23, 129.25, 133.01, 133.08, 134.4, 134.5, 142.3, 142.7, 147.48, 147.53, 151.5, 151.6. **IR** (cm^{-1}) $v_{NH} = 3285$, $v_{max} = 2949$, 2868, 1601, 1570, 1495, 1125, 756, 700. **MS** (70 eV): m/z (%) = 344 ([M+H]⁺, 100). **HRMS** (ESI) calcd for $C_{23}H_{25}N_3$ [M+H]⁺ 344.2121, found 344.2126. Brown-vellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 0/100 to 100/0): 6%. 4.1.5.3. N-[(4-Phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]-1-(qui-nolin-2-yl)methanamine 12c. Spectral data derived from the mixture of diastereomers (dr = 55/45). ¹H NMR (400 MHz, CDCl₃): δ 1.13 (1H, ddd, J = 11.6, 6.0, 1.9 Hz), 1.40 (1H, ddd, J = 11.8, 5.1, 3.6 Hz), 1.45–1.52 (1H, m), 1.62–1.69 (1H, m), 1.80–1.91 (3H, m), 2.07 (1H, ddd, J = 11.6, 10.4, 3.7 Hz), 2.29 (2 × 1H, br s, 2 × NH), 2.53–2.61 (2H, m), 2.68–2.97 (8H, m), 3.02–3.10 (2H, m), 3.11–3.17 (1H, m), 3.47–3.57 (1H, m), 4.13–4.22 (4H, m), 7.19–7.33 (10H, m), 7.49–7.54 (4H, m), 7.66–7.72 (2H, m), 7.78–7.81 (2H, m), 8.07 (2H, d, J = 8.4 Hz), 8.12 (2H, d, J = 8.4 Hz). 13C NMR (100 MHz, CDCl₃): δ 37.5, 38.8, 42.8, 43.2, 47.0, 47.8, 51.4, 53.5, 54.7, 55.96, 56.04, 56.6, 60.1, 64.0, 65.2, 66.1, 120.4, 120.5, 126.00, 126.04, 126.3, 126.7, 126.8, 127.3, 127.6, 128.4, 129.0, 129.37, 129.44, 136.4, 142.9, 147.7, 160.5, 160.6. IR (cm⁻¹) ν_{NH} = 3323, ν_{max} = 2951, 2870, 1599, 1425, 1111, 829, 756, 698. MS (70 eV): m/z (%) = 344 ([M+H]⁺, 100). HRMS (ESI) calcd for C₂₃H₂₅N₃ [M+H]⁺ 344.2121, found 344.2109. Brown-yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 0/100 to 100/0): 4%. 4.1.5.4. $2-\{N-[(4-Phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]aminomethyl\}quinolin-8-ol 12d.$ Spectral data derived from the mixture of diastereomers (dr=54/46). ¹H NMR (400 MHz, CDCl₃): δ 1.10 (1H, dd, J = 11.4, 6.0 Hz), 1.34 (1H, ddd, J = 11.6, 5.5, 3.6 Hz), 1.46–1.52 (1H, m), 1.66–1.72 (1H, m), 1.81–1.93 (3H, m), 2.05 (1H, ddd, J = 11.4, 10.6, 3.5 Hz), 2.53–3.11 (12H, m), 3.17–3.24 (1H, m), 3.52–3.59 (1H, m), 4.05–4.22 (4H, m), 7.16–7.47 (18H, m), 8.08–8.11 (2H, m). ¹³C NMR (100 MHz, CDCl₃): δ 37.5, 38.8, 42.6, 43.3, 46.8, 51.5, 53.1, 54.4, 54.6, 54.7, 55.3, 56.4, 60.1, 64.0, 65.0, 66.4, 110.5, 110.6, 117.5, 117.6, 120.9, 121.0, 126.3, 126.7, 126.8, 127.1, 127.2, 127.5, 127.6, 128.3, 128.4, 136.4, 136.5, 137.7, 142.3, 142.7, 152.4, 152.7, 157.7, 158.2. IR (cm⁻¹) ν_{NH} = 3304, ν_{max} = 2932, 2870, 1599, 1505, 1466, 1242, 754, 698. MS (70 eV): m/z (%) = 360 ([M + H⁺], 100). HRMS (ESI) calcd for
C₂₃H₂₅N₃O [M+H]⁺ 360.2070, found 360.2057. Brown oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 0/100 to 100/0): 3%. 4.1.5.5. N-[(4-Phenyl-1-azabicyclo[2.2.1]heptan-2-yl)methyl]-1-(2-chloroquinolin-3-yl)methanamine 12e. Spectral data derived from the mixture of diastereomers (dr = 51/49). ¹**H NMR** (400 MHz, CDCl₃): δ 1.13 (1H, ddd, J = 11.5, 6.0, 1.7 Hz),1.39 (1H, ddd, I = 11.6, 5.2, 3.7 Hz), 1.48 - 1.54 (1H, m), 1.65 - 1.71 (1H, m)m), 1.83–1.91 (3H, m), 2.08 (1H, ddd, I = 11.5, 10.5, 3.5 Hz), 2.29 $(2 \times 1H, br s, 2 \times NH), 2.54-2.62 (2H, m), 2.66-2.71 (1H, m),$ 2.75-2.82 (2H, m), 2.85-2.98 (6H, m), 3.02-3.09 (1H, m), 3.15 (1H, ddd, J = 12.1, 11.2, 5.7 Hz), 3.51-3.59 (1H, m), 4.05-4.08 (4H, m), 7.20-7.33 (10H, m), 7.52-7.56 (2H, m), 7.66-7.71 (2H, m), 7.82 (2H, d, I = 8.0 Hz), 8.01 (2H, d, I = 8.4 Hz), 8.27 (1H, s), 8.28 (1H, s). ¹³C **NMR** (100 MHz, CDCl₃): δ 37.5, 38.8, 42.6, 43.2, 46.8, 50.7, 50.9, 51.1, 53.5, 54.5, 54.6, 56.6, 60.0, 63.9, 65.1, 66.0, 126.4, 126.7, 126.8, 127.0, 127.1, 127.4, 128.2, 128.4, 129.9, 130.0, 131.8, 132.0, 137.0, 137.2, 142.3, 142.6, 146.7, 146.8, 150.5, 150.6. **IR** (cm⁻¹) $v_{NH} = 3316$, $v_{max} = 2936$, 2870, 1593, 1491, 1327, 1032, 756, 700. **MS** (70 eV): m/z (%) = 378/ 380 ([M+H] $^+$, 100). **HRMS** (ESI) calcd for $C_{23}H_{24}ClN_3$ [M+H] $^+$ 378.1732, found 378.1724. Brown-yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 0/100 to 100/ 0): 5%. 4.1.6. Representative procedure for the synthesis of N-[(1-allyl-3,3-dimethylpiperidin-4-yl)methyl]quinolin-4-amines **16a-c** The crude mixture of cis-1-allyl-4-aminomethyl-5-benzyloxy-3,3-dimethylpiperidine 14 and 1-allyl-4-aminomethyl-3,3dimethylpiperidine **15** (101.8 mg, 0.50 mmol)¹ was brought into a microwave vessel of 10 ml, and 4,7-dichloroquinoline 9a (79.2 mg, 0.40 mmol) was added. The reaction mixture was stirred for 2 h at 130 °C under microwave irradiation. In case no complete conversion was reached, the product first had to be dissolved in methanol and evaporated again prior to further microwave irradiation, in order to avoid product degradation. After complete conversion, the reaction product was dissolved in 50 ml dichloromethane, and if necessary 5 ml methanol was used to dissolve all precipitates. 5 ml 2 N NaOH and 10 ml water were added, followed by an extraction with dichloromethane (2 \times 20 ml). The combined organic phases were washed with water (10 ml), dried over MgSO₄, filtrated and evaporated under reduced pressure. Purification by means of automated column chromatography (C18, gradient acetonitrile/ H₂O 30/70 to 100/0 with slow gradient of 1.4% per CV between 50 and 100% acetonitrile) afforded 3.2 mg N-[(cis-1-allyl-5-benzyloxy-3,3-dimethylpiperidin-4-yl)methyl]-7-chloroquinolin-4-amine **16a** (0.007 mmol) and 12.8 mg N-[(1-allyl-3,3-dimethylpiperidin-4-yl)]methyl]-7-chloroquinolin-4-amine 16b (0.037 mmol) in a purity of >95%, in a yield over two steps of 2% and 10% respectively. The purification conditions for N-[(1-allyl-3,3-dimethylpiperidin-4-yl) methyl]quinolin-4-amine **16c** is specified in the characterization. 4.1.6.1. *N*-[(cis-1-Allyl-5-benzyloxy-3,3-dimethylpiperidin-4-yl) methyl]-7-chloroquinolin-4-amine 16a. ¹H NMR (400 MHz, CDCl₃): δ 1.11 (3H, s), 1.18 (3H, s), 1.60–1.77 (1H, m), 1.96 (1H, d, J = 11.5 Hz), 2.13–2.32 (1H, m), 2.38 (1H, d, J = 11.5 Hz), 2.89–3.06 (1H, m), 3.03 (2H, d, J = 6.3 Hz), 3.42–3.48 (1H, m), 3.54–3.63 (1H, m), 3.76–3.85 (1H, m), 4.34 (1H, d, J_{AX} = 11.8 Hz), 4.79 (1H, d, J_{AX} = 11.8 Hz), 5.13–5.25 (2H, m), 5.84–5.95 (1H, m), 6.33 (1H, d, J = 5.4 Hz), 6.77 (1H, d, J = 9.0 Hz), 7.02 (1H, dd, J = 9.0, 1.8 Hz), 7.40–7.42 (5H, m), 7.87 (1H, d, J = 1.8 Hz), 8.45 (1H, d, J = 5.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 24.2, 28.4, 33.8, 39.8, 46.0, 54.0, 61.6, 71.0, 74.6, 98.3, 117.2, 117.6, 121.1, 124.9, 128.1, 128.3, 128.5, 128.8, 134.6, 135.3, 138.6, 142.5, 149.7, 151.9. **IR** (cm $^{-1}$): $\nu_{max}=2953$, 1582, 1368, 914, 743. **MS** (70 eV): m/z (%) = 450/452 ([M+H] $^{+}$, 100). **HRMS** (ESI) calcd for C $_{27}$ H $_{32}$ ClN $_{30}$ 0 [M+H] $^{+}$ 450.2307, found 450.2324. Yellow oil. Yield after automated column chromatography (C18, gradient ACN/H $_{20}$ O 30/70 to 100/0 with slow gradient of 1.4% per CV between 50 and 100% acetonitrile): 2%. Remark: The signal for C_{quat}CH₂N is not visible on ¹³C NMR. 4.1.6.2. N-[(1-Allyl-3,3-dimethylpiperidin-4-yl)methyl]-7chloroquinolin-4-amine 16b. ¹H NMR (400 MHz, CDCl₃): δ 1.04 (3H, s), 1.05 (3H, s), 1.43-1.51 (1H, m), 1.52-1.63 (1H, m), 1.69 (1H, d, J = 11.3 Hz), 1.73–1.79 (1H, m), 1.88 (1H, ddd, J = 11.6, 11.6, 2.8 Hz), 2.50 (1H, dd, J = 11.3, 1.5 Hz), 2.85 (1H, dd, J = 13.5, 6.8 Hz), 2.90-3.05 (3H, m), 3.50-3.57 (1H, m), 4.98 (1H, br s, NH), 5.10-5.21 (2H, m), 5.78–5.89 (1H, m), 6.42 (1H, d, J = 5.3 Hz), 7.36 (1H, dd, J = 5.3 Hz)I = 8.9, 1.9 Hz), 7.64 (1H, d, I = 8.9 Hz), 7.96 (1H, d, I = 1.9 Hz), 8.54 (1H, d, I = 5.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 20.3, 27.4, 27.5, 33.4, 44.34, 44.35, 54.5, 61.9, 67.4, 99.0, 117.19, 117.23, 120.7, 125.3, 129.0, 134.9, 135.6, 149.1, 149.8, 152.0. **IR** (cm⁻¹): $\nu_{\text{max}} = 2951$, 2868, 1611, 1452, 1368, 1136, 918. **MS** (70 eV): m/z (%) = 344/346 ([M+H]⁺, 100). **HRMS** (ESI) calcd for C₂₀H₂₆ClN₃ [M+H]⁺ 344.1888, found 344.1891. **Mp** = 154 °C. White-yellow powder. Yield after automated column chromatography (C18, gradient ACN/H2O 30/70 to 100/0 with slow gradient of 1.4% per CV between 50 and 100% acetonitrile): 10%. 4.1.6.3. N-[(1-Allyl-3,3-dimethylpiperidin-4-yl)methyl]quinolin-4amine 16c. ¹H NMR (400 MHz, CDCl₃): δ 1.04 (3H, s), 1.06 (3H, s), 1.44-1.52 (1H, m), 1.53-1.63 (1H, m), 1.69 (1H, d, J = 11.3 Hz), 1.77(1H, dd, I = 12.9, 2.3 Hz), 1.88 (1H, ddd, I = 11.6, 11.5, 2.3 Hz), 2.50(1H, d, I = 11.3 Hz), 2.84 (1H, dd, I = 13.4, 6.6 Hz), 2.93 (1H, br d, I)I = 11.5 Hz, 2.97–3.04 (2H, m), 3.55 (1H, dt, I = 12.7, 4.3 Hz), 4.99 (1H, br t, I = 4.3 Hz, NH), 5.11-5.19 (2H, m), 5.79-5.89 (1H, m), 6.43(1H, d, J = 5.3 Hz), 7.42 (1H, dd, J = 7.9, 7.6 Hz), 7.63 (1H, dd, J = 8.1,7.6 Hz), 7.71 (1H, d, I = 7.9 Hz), 7.98 (1H, d, I = 8.1 Hz), 8.56 (1H, d, I = 5.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 20.3, 27.4, 27.5, 33.4, 44.31, 44.34, 54.5, 61.8, 67.5, 98.7, 117.1, 118.8, 119.0, 124.6, 129.0, 130.2, 135.7, 148.5, 149.7, 151.1. **IR** (cm⁻¹): $v_{NH} = 3325$, $v_{max} = 2934$, 1574, 1545, 1436, 1375, 764. **MS** (70 eV): m/z (%) = 310 ([M+H]⁺, 100), 156 (30). $\mathbf{Mp} = 134 \, ^{\circ}\text{C}$. White-yellow powder. Yield after automated column chromatography (C18, gradient ACN/H₂O 40/60 to 100/ 0 with slow gradient of 1.4% per CV): 8%. 4.1.7. Representative procedure for the synthesis of N-[(1-allyl-3,3-dimethylpiperidin-4-yl)methyl]-1-quinolinylmethanamines **17a-h** The crude mixture of *cis*-1-allyl-4-aminomethyl-5-benzyloxy-3,3-dimethylpiperidine **14** and 1-allyl-4-aminomethyl-3,3-dimethylpiperidine **15** (50.9 mg, 0.25 mmol),²³ was dissolved in 10 ml dry methanol. Subsequently, 8-hydroxyquinoline-2-carboxaldehyde **10d** (47.6 mg, 0.275 mmol) was added under argon atmosphere and stirred for 15 h at room temperature. After confirmation of complete conversion by LC-MS analysis, NaBH₄ (14.2 mg, 0.375 mmol) was added portionwise and stirring was continued for 3 h at room temperature. In case no complete conversion was reached after 3 h, an extra 0.5 equivalents of NaBH₄ (4.7 mg, 0.125 mmol) were added. Methanol was evaporated, and the crude product was resolved in 10 ml dichloromethane, to which 10 ml brine was added. After a first extraction, the aqueous phase $^{^{1}}$ The ratio of mixture **14/15** was 1/4, so an average MW of 203.5 g/mol was used for calculations. $^{^2}$ The ratio of mixture **14/15** was 1/4, so an average MW of 203.5 g/mol was used for calculations $^{^3}$ For derivative **17h**, a mixture in a ratio of 1/2 was used, with an average MW of 192.3 g/mol. was extracted three times more with 10 ml dichloromethane. The combined organic phases were dried over MgSO₄, filtrated and evaporated under reduced pressure. The obtained mixture of two *N*-[(piperidin-4-yl)methyl]-1-quinolinylmethanamines was purified by means of automated column chromatography (C18, gradient MeOH/H₂O 30/70 to 100/0 with slow gradient of 0.625% per CV between 70 and 100% methanol), which resulted in 9.3 mg 2-{*N*-[(1-allyl-3,3-dimethylpiperidin-4-yl)methyl]aminomethyl}quinolin-8-ol **17e** (0.028 mmol) in a purity of >95%, and in a yield of 12% over two steps. The purification conditions for the other *N*-[(1-allyl-3,3-dimethylpiperidin-4-yl)methyl]-1-quinolinylmethanamines **17a-d,f-h** are specified in the characterization. 4.1.7.1. N-[(cis-1-Allyl-5-benzyloxy-3,3-dimethylpiperidin-4-yl) methyl]-1-(quinolin-4-yl)methanamine 17a. ¹H NMR (400 MHz, CDCl₃): δ 0.94 (3H, s), 1.09 (3H, s), 1.42–1.49 (1H, m), 1.84 (1H, d, J = 11.1 Hz, 1.98–2.10 (1H, m), 2.36 (1H, d, J = 11.1 Hz), 2.75 (1H, dd, J = 11.4, 3.4 Hz), 2.94–3.01 (1H, m), 2.98 (2H, dd, J = 6.3, 1.0 Hz), 3.05 (1H, dd, J = 11.4, 9.8 Hz), 3.79-3.83 (1H, m), 4.13 (1H, d, $J_{AB} = 14.9 \text{ Hz}$), 4.19 (1H, d, $J_{AB} = 14.9 \text{ Hz}$), 4.35 (1H, d, $J_{AX} = 12.2 \text{ Hz}$), $4.68 \text{ (1H, d, } J_{AX} = 12.2 \text{ Hz)}, 5.10-5.22 \text{ (2H, m)}, 5.82-5.93 \text{ (1H, m)},$ 7.15-7.20 (1H, m), 7.23-7.27 (2H, m), 7.29-7.33 (3H, m), 7.49 (1H, ddd, I = 8.4, 7.0, 1.2 Hz), 7.68 (1H, ddd, I = 8.5, 7.0, 1.2 Hz), 7.99 (1H, dd, J = 8.4, 1.2 Hz), 8.10 (1H, dd, J = 8.5, 1.2 Hz), 8.73 (1H, d, J = 4.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 23.7, 28.5, 33.5, 45.8, 48.4, 50.4, 50.9, 55.0, 61.7, 70.9, 73.8, 117.3, 119.5, 123.2, 126.4, 127.0, 127.38, 127.41, 128.3, 129.0, 130.2, 135.6, 139.0, 145.4, 148.1, 150.4. IR (cm^{-1}) : $\nu_{max} = 2951$, 2868, 2749, 1595, 1462, 1357, 1113, 1069, 756. **MS** (70 eV): m/z (%) = 430 ([M+H]⁺, 100). **HRMS** (ESI) calcd for C₂₈H₃₅N₃O [M+H]⁺ 430.2853, found 430.2855. Yellow
oil. Yield after automated column chromatography (C18, gradient MeOH/ H₂O 30/70 to 100/0 with slow gradient of 1.25% per CV between 70 and 100% MeOH): 16%. Remark: One of the C_{arom, quat} signals is missing in ¹³C NMR. 4.1.7.2. N-[(1-Allyl-3,3-dimethylpiperidin-4-yl)methyl]-1-(quinolin-4-yl)methanamine 17b. ¹H NMR (400 MHz, CDCl₃): δ 0.905 (3H, s), 0.909 (3H,s), 1.20–1.28 (1H, m), 1.37–1.58 (1H, m), 1.63 (1H, d, J = 11.2 Hz), 1.80–1.91 (2H, m), 2.38–2.46 (2H, m), 2.82 (1H, dd, J = 13.6, 6.7 Hz), 2.89–2.95 (2H, m), 3.00 (1H, dd, J = 13.6, 5.7 Hz), 4.24 (1H, d, J_{AB} = 12.8 Hz), 4.29 (1H, d, J_{AB} = 12.8 Hz), 5.08-5.19 (2H, m), 5.78-5.89 (1H, m), 7.46 (1H, d, J = 4.4 Hz), 7.57 (1H, ddd, J = 8.4, 6.9, 1.5 Hz), 7.71 (1H, ddd, J = 8.2, 6.9, 1.4 Hz), 8.08 (1H, d, J = 8.4 Hz), 8.13 (1H, d, J = 8.2 Hz), 8.87 (1H, d, J = 4.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 20.4, 27.4, 27.6, 33.2, 45.5, 50.5, 50.9, 54.8, 62.0, 67.7, 117.0, 119.6, 123.3, 126.4, 127.1, 129.1, 130.2, 135.9, 145.9, 148.1, 150.4. IR (cm^{-1}) : $v_{max} = 2947$, 2743, 1510, 1462, 916, 754. **MS** (70 eV): m/z(%) = 324 ([M+H]⁺, 100). **HRMS** (ESI) calcd for $C_{21}H_{29}N_3$ [M+H]⁺ 324.2434, found 324.2434. Yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 30/70 to 100/ 0 with slow gradient of 1.25% per CV between 70 and 100% MeOH): 4.1.7.3. N-[(cis-1-Allyl-5-benzyloxy-3,3-dimethylpiperidin-4-yl) methyl]-1-(quinolin-2-yl)methanamine 17c. Purity > 85% (based on 1 H NMR analysis). ¹**H NMR** (400 MHz, CDCl₃): δ 0.91 (3H, s), 1.06 (3H, s), 1.41–1.50 (1H, m), 1.81 (1H, d, J = 11.2 Hz), 1.96–2.06 (1H, m), 2.32–2.45 (1H, m), 2.72 (1H, dd, J = 11.6, 3.4 Hz), 2.77–3.07 (4H, m), 3.82–3.86 (1H, m), 3.99 (1H, d, J_{AB} = 14.6 Hz), 4.06 (1H, d, J_{AB} = 14.6 Hz), 4.43 (1H, d, J_{AB} = 12.2 Hz), 4.68 (1H, d, J_{AB} = 12.2 Hz), 5.07–5.21 (2H, m), 5.79–5.92 (1H, m), 7.15–7.20 (1H, m), 7.23–7.28 (2H, m), 7.31–7.35 (2H, m), 7.38 (1H, d, J = 8.4 Hz), 7.49 (1H, ddd, J = 8.0, 7.0, 1.0 Hz), 7.67 (1H, ddd, J = 8.3, 7.0, 1.1 Hz), 7.76 (1H, dd, J = 8.0, 1.1 Hz), 8.00 (1H, d, J = 8.3 Hz), 8.02 (1H, d, J = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 23.8, 28.4, 33.4, 45.4, 48.5, 50.6, 55.3, 56.2, 61.8, 71.0, 73.8, 117.1, 120.3, 120.5, 125.9, 127.2, 127.3, 127.4, 127.5, 128.2, 129.0, 129.3, 135.8, 136.3, 139.3, 147.7. **IR** (cm⁻¹): $\nu_{max} = 2949$, 2868, 1508, 1358, 1112. **MS** (70 eV): m/z (%) = 430 ([M+H]⁺, 100). Yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 30/70 to 100/0 with slow gradient of 0.625% per CV between 70 and 100% MeOH): 5%. 4.1.7.4. N-[(1-Allyl-3,3-dimethylpiperidin-4-yl)methyl]-1-(quinolin-2-yl)methanamine 17d. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (3H, s), 0.89 (3H, s), 1.23-1.31 (1H, m), 1.41-1.53 (1H, m), 1.62 (1H, d, I = 11.2 Hz, 1.84–1.92 (2H, m), 2.38 (1H, dd, I = 11.4, 9.9 Hz), 2.43 (1H, dd, J = 11.2, 1.7 Hz), 2.81 (1H, dd, J = 13.7, 6.8 Hz), 2.86-2.94(2H, m), 3.00 (1H, dd, J = 13.7, 5.8 Hz), 4.06 $(1H, d, J_{AB} = 14.5 Hz)$, 4.12 (1H, d, $J_{AB} = 14.5 \text{ Hz}$), 5.08–5.19 (2H, m), 5.78–5.89 (1H, m), 7.46 (1H, d, J = 8.4 Hz), 7.51 (1H, ddd, J = 8.1, 7.0, 1.1 Hz), 7.69 (1H, ddd, J = 8.4, 7.0, 1.1 Hz), 7.80 (1H, dd, J = 8.1, 1.1 Hz), 8.05 (1H, d, J = 8.4 Hz), 8.11 (1H, d, J = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 20.4, 27.4, 27.5, 33.2, 45.4, 50.6, 54.9, 56.2, 62.1, 67.7, 116.9, 120.5, 126.0, 127.3, 127.6, 129.0, 129.4, 136.0, 136.4, 147.8, 160.6. **IR** (cm⁻¹): $\nu_{\text{max}} = 2947, 2772, 2745, 1601, 1503, 1425, 1126, 916.$ **MS** (70 eV): m/z $(\%) = 324 ([M+H]^+, 100)$. **HRMS** (ESI) calcd for $C_{21}H_{29}N_3 [M+H]^+$ 324.2434, found 324.2430. Yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H2O 30/70 to 100/ 0 with slow gradient of 0.625% per CV between 70 and 100% MeOH): 26%. 4.1.7.5. 2-{N-[(1-Allyl-3,3-dimethylpiperidin-4-yl)methyl]aminomethyl}auinolin-8-ol 17e. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (3H, s). 0.89 (3H, s), 1.23-1.32 (1H, m), 1.42-1.55 (1H, m), 1.64 (1H, d, J = 11.2 Hz), 1.84–1.92 (2H, m), 2.35–2.47 (2H, m), 2.83 (1H, dd, I = 13.6, 6.8 Hz), 2.86–2.96 (2H, m), 3.01 (1H, dd, I = 13.6, 5.6 Hz), $4.08 (1H, d, J_{AB} = 15.1 \text{ Hz}), 4.12 (1H, d, J_{AB} = 15.1 \text{ Hz}), 5.08-5.19 (2H, d, J_{AB} = 15.1 \text{ Hz})$ m), 5.79-5.89 (1H, m), 7.16 (1H, d, J = 7.4 Hz), 7.31 (1H, d, J = 7.9 Hz), 7.39–7.44 (1H, m), 7.46 (1H, d, J = 8.4 Hz), 8.11 (1H, d, I = 8.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 20.4, 27.3, 27.5, 33.2, 45.4, 50.4, 54.8, 55.6, 62.0, 67.6, 110.1, 117.1, 117.7, 121.2, 127.1, 127.5, 135.8, 136.6, 137.5, 151.9, 158.1. **IR** (cm⁻¹): $\nu_{\text{max}} = 2949$, 2791, 2745, 1504, 1329, 1246, 833, 750. **MS** (70 eV): m/z (%) = 340 ([M+H]⁺, 100). **HRMS** (ESI) calcd for $C_{21}H_{29}N_3O$ $[M+H]^+$ 340.2383, found 340.2381. Yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 30/70 to 100/0 with slow gradient of 0.625% per CV between 70 and 100% MeOH): 12%. 4.1.7.6. N-[(cis-1-Allyl-5-benzyloxy-3,3-dimethylpiperidin-4-yl) methyl]-1-(2-chloroquinolin-3-yl)methanamine 17f. ¹H (400 MHz, CDCl₃): δ 0.93 (3H, s), 1.08 (3H, s), 1.43-1.51 (1H, m), 1.81-1.87 (1H, m), 1.96-2.15 (1H, m), 2.31-2.47 (1H, m), 2.68 (1H, dd, J = 11.6, 3.4 Hz), 2.94-3.05 (4H, m), 3.79-3.83 (1H, m), 3.87 (1H, m)d, $J_{AB} = 15.3 \text{ Hz}$), 3.92 (1H, d, $J_{AB} = 15.3 \text{ Hz}$), 4.40 (1H, d, J = 12.2 Hz), 4.70 (1H, d, I = 12.2 Hz), 5.09–5.23 (2H, m), 5.82–5.93 (1H, m), 7.10-7.15 (1H, m), 7.21-7.25 (2H, m), 7.31-7.35 (2H, m), 7.50-7.54 (1H, m), 7.66–7.71 (2H, m), 7.98–8.00 (1H, m), 8.01 (1H, s). ¹³C NMR (100 MHz, CDCl₃): δ 23.7, 28.5, 33.5, 45.2, 48.4, 50.9, 51.1, 55.1, 61.8, 70.9, 73.5, 117.2, 127.0, 127.35, 127.41, 127.5, 127.8, 128.19, 128.24, 129.8, 132.1, 135.7, 136.9, 139.1, 146.7, 150.6. **IR** (cm⁻¹): $\nu_{\text{max}} = 2951$, 2868, 1460, 1327, 1030, 914. **MS** (70 eV): m/z (%) = 464/466 ([M+H]⁺, 100). Yellow oil. Yield after automated column chromatography (C18, gradient MeOH/H₂O 30/70 to 100/0 with slow gradient of 0.625% per CV between 70 and 100% MeOH): 15%. 4.1.7.7. *N*-[(1-Allyl-3,3-dimethylpiperidin-4-yl)methyl]-1-(2-chloroquinolin-3-yl)methanamine 17g. ¹H NMR (400 MHz, CDCl₃): δ 0.89 (3H, s), 0.90 (3H, s), 1.21–1.30 (1H, m), 1.42–1.54 (1H, m), 1.64 (1H, d, J = 11.2 Hz), 1.82–1.93 (2H, m), 2.37 (1H, dd, J = 10.3, 10.1 Hz), 2.44 (1H, dd, J = 11.2, 1.6 Hz), 2.83 (1H, dd, J = 13.9, 7.6 Hz), 2.85–2.96 (2H, m), 3.01 (1H, dd, J = 13.9, 5.4 Hz), 3.98 (1H, d, J_{AB} = 15.2 Hz), 4.04 (1H, d, J_{AB} = 15.2 Hz), 5.08–5.19 (2H, m), 5.78–5.89 (1H, m), 7.56 (1H, ddd, J = 8.0, 7.0, 1.1 Hz), 7.71 (1H, ddd, J = 8.4, 7.0, 1.4 Hz), 7.82 (1H, d, J = 8.0 Hz), 8.01 (1H, d, J = 8.4 Hz), 8.20 (1H, s). ¹³C NMR (100 MHz, CDCl₃): δ 20.4, 27.4, 27.5, 33.2, 45.5, 50.3, 51.2, 54.8, 62.0, 67.7, 117.0, 127.1, 127.36, 127.44, 128.2, 130.0, 132.1, 135.9, 137.2, 146.8, 150.6. IR (cm⁻¹): $\nu_{\rm max}$ = 2945, 2778, 1329, 1134, 1034, 914, 752. MS (70 eV): m/z (%): 358/360 ([M+H]⁺, 100), 446 (30). HRMS (ESI) calcd for $C_{21}H_{28}$ ClN₃ [M+H]⁺ 358.2045, found 358.2049. Mp = 50 °C. White-yellow powder. Yield after automated column chromatography (C18, gradient MeOH/H₂O 30/70 to 100/0 with slow gradient of 0.625% per CV between 70 and 100% MeOH): 9%. 4.1.7.8. N-[(cis-1-Allyl-5-methoxy-3,3-dimethylpiperidin-4-yl) methyl]-1-(quinolin-4-yl)methanamine 17h. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (3H, s), 1.01 (3H, s), 1.38–1.42 (1H, m), 1.78 (1H, d, J = 9.6 Hz, 1.97–2.03 (1H, m), 2.34 (1H, d, J = 9.6 Hz), 2.78 (1H, dd, J = 11.3, 4.1 Hz), 2.91–3.05 (4H, m), 3.31 (3H, s), 3.58 (1H, q, J = 3.6 Hz), 4.26 (1H, d, $J_{AB} = 14.9$ Hz), 4.28 (1H, d, $J_{AB} = 14.9$ Hz), 5.11-5.20 (2H, m), 5.84-5.94 (1H, m), 7.47 (1H, d, J = 4.4 Hz), 7.56(1H, ddd, J = 8.7, 7.0, 1.0 Hz), 7.71 (1H, ddd, J = 8.4, 7.0, 1.1 Hz), 8.10(1H, dd, J = 8.7, 1.1 Hz), 8.13 (1H, dd, J = 8.4, 1.0 Hz), 8.87 (1H, d,J = 4.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 23.6, 28.5, 33.4, 45.8, 48.4, 50.6, 54.7, 57.3, 61.9, 66.3, 76.1, 117.4, 119.8, 123.3, 126.4, 127.1, 129.1, 130.2, 135.5, 146.0, 148.2, 150.4. **IR** (cm $^{-1}$): $\nu_{\text{max}} = 2928$, 2868, 1593, 1508, 1462, 1364, 1111, 1082, 754. **MS** (70 eV): m/z (%) = 354 $([M+H]^+, 100)$. **HRMS** (ESI) calcd for $C_{22}H_{31}N_3O$ $[M+H]^+$ 354.2540, found 354.2538. Yellow oil. Yield after automated column chromatography (C18, gradient ACN/H₂O 30/70 to 100/0): 6%. ### 4.2. Biological evaluation ### 4.2.1. In vitro antiplasmodium assay The test samples were prepared to a 20 mg/ml stock solution in 100% DMSO. Stock solutions were stored at $-20~^{\circ}\text{C}$. Further dilutions were prepared in complete medium on the day of the experiment. Chloroquine (CQ) was used as the reference drug. A full dose-response was performed to determine the concentration inhibiting 50% of parasite growth (IC50 value). Test samples were tested at a starting concentration of 10 µg/ml (or 1 µg/ml), which was then serially diluted 2-fold in complete medium to give 10 concentrations, with the lowest concentration being 20 ng/ml (or 2 ng/ml). The same dilution technique was used for all samples. The highest concentration of solvent to which the parasites were exposed to had no measurable effect on the parasite viability (data not shown). The 50% inhibitory concentration (IC50) values were obtained from full dose-response curves, using a non-linear dose-response curve fitting analysis via GraphPad Prism v.4 software. ### 4.2.2. In vitro assay for the evaluation of cytotoxic activity The same stock solutions prepared for antiplasmodium testing were used for cytotoxicity testing. Test compounds were stored at $-20~^\circ\text{C}$ until use. Dilutions were prepared on the day of the experiment. Emetine was used as the reference drug in all experiments. The initial concentration of emetine was 100 µg/ml, which was serially diluted in complete medium with 10-fold dilutions to give 6 concentrations, the
lowest being 0.001 µg/ml. The same dilution technique was applied to all the test samples. The highest concentration of solvent to which the cells were exposed to had no measurable effect on the cell viability (data not shown). The 50% inhibitory concentration (IC50) values were obtained from full doseresponse curves, using a non-linear dose-response curve fitting analysis via GraphPad Prism v.4 software. ### **Declaration of competing interest** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ### Acknowledgements The authors are indebted to the Special Research Fund (BOF) of Ghent University for financial support. The University of Cape Town, South African Medical Research Council, and South African Research Chairs Initiative of the Department of Science and Technology, administered through the South African National Research Foundation are gratefully acknowledged for support (K.C.). This work was supported by the Wellcome Trust [203135/Z/16/Z]. ### Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejmech.2020.112330. #### References - N.J. White, S. Pukrittayakamee, T.T. Hien, M.A. Faiz, O.A. Mokuolu, A.M. Dondorp, Malaria, Lancet 383 (2014) 723-735, https://doi.org/10.1016/ S0140-6736(13)60024-0. - [2] World Health Organization, World Malaria Report 2019, 2019. Geneva. - [3] A.K. Narula, C.S. Azad, L.M. Nainwal, New dimensions in the field of antimalarial research against malaria resurgence, Eur. J. Med. Chem. 181 (2019), 111353, https://doi.org/10.1016/j.ejmech.2019.05.043. - [4] V.V. Kouznetsov, A. Gómez-Barrio, Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation, Eur. J. Med. Chem. 44 (2009) 3091–3113, https:// doi.org/10.1016/j.ejmech.2009.02.024. - [5] D.C. Smithson, W.A. Guiguemde, R.K. Guy, Antimalarials, in: D.J. Abraham (Ed.), Burger's Medicinal Chemistry and Drug Discovery, 2010, https://doi.org/ 10.1002/0471266949.bmc234. - [6] N.K. Shah, N. Valecha, Antimalarial drug resistance, in: D. Gaur, D.E. Chitnis, V.S. Chauhan (Eds.), Advances in Malaria Research, 2016, pp. 383–407, https://doi.org/10.1002/9781118493816.ch14. - [7] N.J. White, W. Pongtavornpinyo, The de novo selection of drug-resistant malaria parasites, Proc. R. Soc. B Biol. Sci. 270 (2003) 545–554, https:// doi.org/10.1098/rspb.2002.2241. - [8] L. Tilley, J. Straimer, N.F. Gnädig, S.A. Ralph, D.A. Fidock, Artemisinin action and resistance in Plasmodium falciparum, Trends Parasitol. 32 (2016) 682–696, https://doi.org/10.1016/j.pt.2016.05.010. - [9] A.M. Dondorp, F. Nosten, P. Yi, D. Das, A.P. Phyo, J. Tarning, K.M. Lwin, F. Ariey, W. Hanpithakpong, S.J. Lee, P. Ringwald, K. Silamut, M. Imwong, K. Chotivanich, P. Lim, T. Herdman, S.S. An, S. Yeung, P. Singhasivanon, N.P.J. Day, N. Lindegardh, D. Socheat, N.J. White, Artemisinin resistance in, N. Engl. J. Med. 361 (2009) 455–467, https://doi.org/10.1056/NEIMoa0808859. - [10] M. Enserink, Malaria's drug miracle in danger, Science 328 (2010) 844–846, https://doi.org/10.1126/science.328.5980.844. - [11] J. Recht, E.A. Ashley, N.J. White, Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: divergent policies and practices in malaria endemic countries, PLoS Neglected Trop. Dis. 12 (2018) 1–27, https:// doi.org/10.1371/journal.pntd.0006230. - [12] S. Vandekerckhove, M. D'hooghe, Quinoline-based antimalarial hybrid compounds, Bioorg. Med. Chem. 23 (2015) 5098–5119, https://doi.org/10.1016/j.bmc.2014.12.018. - [13] M. Mushtaque, Shahjahan, Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: a review, Eur. J. Med. Chem. 90 (2015) 280–295, https://doi.org/10.1016/j.ejmech.2014.11.022. - [14] K. Kaur, M. Jain, R.P. Reddy, R. Jain, Quinolines and structurally related heterocycles as antimalarials, Eur. J. Med. Chem. 45 (2010) 3245—3264, https://doi.org/10.1016/j.ejmech.2010.04.011. - [15] M. Mungthin, P.G. Bray, R.G. Ridley, S.A. Ward, Central role of hemoglobin degradation in mechanisms of action of 4- aminoquinolines, quinoline methanols, and phenanthrene methanols, Antimicrob. Agents Chemother. 42 (1998) 2973–2977, https://doi.org/10.1128/aac.42.11.2973. - [16] T.J. Egan, Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation, J. Inorg. Biochem. 102 (2008) 1288–1299, https://doi.org/10.1016/j.jinorgbio.2007.12.004. - [17] R.L. Summers, M.N. Nash, R.E. Martin, Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics, Cell, Mol. Life Sci. 69 (2012) 1967–1995, https://doi.org/10.1007/s00018-011-0906-0. - [18] C.A. Homewood, D.C. Warhurst, W. Peters, V.C. Baggaley, Lysosomes, pH and the anti-malarial action of chloroquine, Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions Japan Soc. Mech. Eng. Part B. 235 (1972) 50–52, https:// doi.org/10.1038/235050a0. - [19] P.G. Bray, M. Mungthin, I.M. Hastings, G.A. Biagini, D.K. Saidu, V. Lakshmanan, D.J. Johnson, R.H. Hughes, P.A. Stocks, P.M. O'Neill, D.A. Fidock, D.C. Warhurst, S.A. Ward, PfCRT and the trans-vacuolar proton electrochemical gradient: regulating the access of chloroquine to ferriprotoporphyrin IX, Mol. Microbiol. 62 (2006) 238–251, https://doi.org/10.1111/j.1365-2958.2006.05368.x. - [20] D.J. Sullivan, I.Y. Gluzman, D.G. Russell, D.E. Goldberg, On the molecular mechanism of chloroquine's antimalarial action, Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 11865–11870, https://doi.org/10.1073/pnas.93.21.11865. - [21] J. Le Bras, R. Durand, The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum, Fundam. Clin. Pharmacol. 17 (2003) 147–153, https://doi.org/10.1046/j.1472-8206.2003.00164.x. - [22] I. Petersen, R. Eastman, M. Lanzer, Drug-resistant malaria: molecular mechanisms and implications for public health, FEBS Lett. 585 (2011) 1551–1562, https://doi.org/10.1016/j.febslet.2011.04.042. - [23] A.B. Singh Sidhu, D. Verdier-Pinard, D.A. Fidock, Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations, Science 298 (2002) 210–213, https://doi.org/10.1126/science.1074045. - [24] M.B. Reed, K.J. Saliba, S.R. Caruana, K. Kirk, A.F. Cowman, Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum, Nature 403 (2000) 906–909, https://doi.org/10.1038/35002615. - [25] M.T. Duraisingh, A.F. Cowman, Contribution of the pfmdr1 gene to antimalarial drug-resistance, Acta Trop. 94 (2005) 181–190, https://doi.org/10.1016/ i.actatropica.2005.04.008. - [26] P.G. Bray, M. Mungthin, R.G. Ridley, S.A. Ward, Access to hematin: the basis of chloroquine resistance, Mol. Pharmacol. 54 (1998) 170–179, https://doi.org/ 10.1124/mol.54.1.170. - [27] R.E. Martin, R.V. Marchetti, A.I. Cowan, S.M. Howitt, S. Bröer, K. Kirk, Chloroquine transport via the malaria parasite's chloroquine resistance transporter, Science 325 (2009) 1680–1682, https://doi.org/10.1126/science.1175667. - [28] P.A. Stocks, K.J. Raynes, S.A. Ward, Novel quinoline antimalarials, in: P.J. Rosenthal (Ed.), Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery, 2001, pp. 235–254. - [29] P.B. Madrid, A.P. Liou, J.L. DeRisi, R.K. Guy, Incorporation of an intramolecular hydrogen-bonding motif in the side chain of 4-aminoquinolines enhances activity against drug-resistant P. falciparum, J. Med. Chem. 49 (2006) 4535—4543, https://doi.org/10.1021/jm0600951. - [30] T.J. Egan, R. Hunter, C.H. Kaschula, H.M. Marques, A. Misplon, J. Walden, Structure-function relationships in aminoquinolines: effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of β- hematin formation, and antiplasmodial activity, J. Med. Chem. 43 (2000) 283–291, https://doi.org/10.1021/jm9904371. - [31] S. Deshpande, B. Kuppast, 4-aminoquinolines: an overview of antimalarial chemotherapy, Med. Chem. 6 (2016), https://doi.org/10.4172/2161-0444.1000315, 1-11. - [32] M. D'hooghe, K. Vervisch, K.W. Törnroos, T. Verhaeghe, T. Desmet, C. Lategan, P.J. Smith, K. Chibale, N. De Kimpe, Synthesis of 2-aminomethyl-4-phenyl-1-azabicyclo[2.2.1]heptanes via LiAlH4-induced reductive cyclization of 2-(4-chloro-2-cyano-2- phenylbutyl)aziridines and evaluation of their antimalarial activity, Bioorg. Med. Chem. Lett 23 (2013) 1507–1510, https://doi.org/10.1016/j.bmcl.2012.12.029. - [33] N. De Kimpe, R. Jolie, D. De Smaele, Sonochemical cleavage of 2-(bromomethyl)aziridines by a zinc-copper couple, J. Chem. Soc., Chem. Commun. (1994) 1221–1222, https://doi.org/10.1039/C39940001221. - [34] N. De Kimpe, D. De Smaele, Z. Sakonyi, A new synthesis of 2-methyleneaziridines, J. Org. Chem. 62 (1997) 2448–2452, https://doi.org/10.1021/io962351v. - [35] M. D'hooghe, A. Waterinckx, N. De Kimpe, A novel entry toward 2-imino-1,3-thiazolidines and 2-imino-1,3-thiazolines by ring transformation of 2-(thio-cyanomethyl)aziridines, J. Org. Chem. 70 (2005) 227–232, https://doi.org/10.1021/jio048486f. - [36] K. Vervisch, M. D'hooghe, K.W. Törnroos, N. De Kimpe, Synthesis of stereo-defined piperidines from aziridines and their transformation into conformationally constrained amino acids, amino alcohols and 2,7-diazabicyclo[3.3.1] nonanes, J. Org. Chem. 75 (2010) 7734–7744, https://doi.org/10.1021/jo101646u. - [37] M. Casagrande, A. Barteselli, N. Basilico, S. Parapini, D. Taramelli, A. Sparatore, Synthesis and antiplasmodial activity of new heteroaryl derivatives of 7chloro-4-aminoquinoline, Bioorg. Med. Chem. 20 (2012) 5965–5979, https://doi.org/10.1016/j.bmc.2012.07.040. - [38] M.V.N. de Souza, K.C. Pais, C.R. Kaiser, M.A. Peralta, M. de L. Ferreira, M.C.S. Lourenço, Synthesis and in vitro antitubercular activity of a series of quinoline derivatives, Bioorg. Med. Chem. 17 (2009) 1474–1480, https:// doi.org/10.1016/j.bmc.2009.01.013. -
[39] S. Vandekerckhove, S. De Moor, D. Segers, C. De Kock, P.J. Smith, K. Chibale, N. De Kimpe, M. D'hooghe, Synthesis and antiplasmodial evaluation of aziridine-(iso)quinoline hybrids and their ring-opening products, Medchemcomm 4 (2013) 724-730. https://doi.org/10.1039/c3md20377h. - [40] Y. Dejaegher, N. De Kimpe, Rearrangement of 4-(1-haloalkyl)- and 4-(2-haloalkyl)-2-azetidinones into methyl ω-alkylaminopentenoates via transient aziridines and azetidines, J. Org. Chem. 69 (2004) 5974–5985, https://doi.org/10.1021/jo040161b. - [41] W. Van Brabandt, R. Van Landeghem, N. De Kimpe, Ring transformation of 2-(haloalkyl)azetidines into 3,4-disubstituted pyrrolidines and piperidines, Org. Lett. 8 (2006) 1105–1108, https://doi.org/10.1021/ol0530676. - [42] P. Sulmon, N. De Kimpe, N. Schamp, Preparation of piperidines from δ-chloroimines, Tetrahedron 45 (1989) 3907–3922, https://doi.org/10.1016/S0040-4020(01)89250-4. - [43] N. De Kimpe, M. Boelens, J. Contreras, Rearrangement of 5-(bromomethyl)-1-pyrrolinium salts into functionalized piperidines, Tetrahedron Lett. 37 (1996) 3171–3174, https://doi.org/10.1016/0040-4039(96)00487-X. - [44] W. Trager, J.B. Jensen, Human malaria parasites in continuous culture, Science 193 (1976) 673–675, https://doi.org/10.1126/science.781840. - [45] M.T. Makler, J.M. Ries, J.A. Williams, J.E. Bancroft, R.C. Piper, B.L. Gibbins, D.J. Hinrichs, Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity, Am. J. Trop. Med. Hyg. 48 (1993) 739–741, https://doi.org/10.4269/ajtmh.1993.48.739. - [46] L.V. Rubinstein, R.H. Shoemaker, K.D. Paull, R.M. Simon, S. Tosini, P. Skehan, D.A. Scudiero, A. Monks, M.R. Boyd, Comparison of in vitro anticancer-drugscreening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines, J. Natl. Cancer Inst. 82 (1990) 1113–1117, https://doi.org/10.1093/jnci/82.13.1113. - [47] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65 (1983) 55–63, https://doi.org/10.1016/0022-1759(83)90303-4.