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ABSRACT 

The discontinuous growth model is a variant of a growth model that uses a block of time-related 

covariates to capture (1) immediate change and (2) changes in growth trajectories associated 

with one or more discrete events.  Events might be planned such as adding a trust violation to a 

longitudinal study of trust or unplanned such as examining the effects of the great recession on 

firm performance.  In this chapter, we describe the discontinuous growth model and provide 

examples of research questions that can be tested using the models.  We also provide detailed 

code in R to help researchers estimate the models.  Throughout the chapter we give practical 

advice based on our experience estimating these models in different research contexts.  Finally, 

we introduce an R function to help researchers set up the design matrix in situations where 

events occur at different points for the higher-level entities.  
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The discontinuous growth model or DGM1 is a variant of a mixed-effects growth model 

that provides considerable opportunity for researchers to propose and test hypotheses involving 

change associated with a discrete event or multiple events. For instance, a researcher interested 

in examining how trust develops over 10 trials might include an “event” of a trust violation on 

the third trial to see whether the event (a) impacts trust immediately and/or (b) alters future 

trajectories of trust development. Furthermore, the researcher might investigate individual 

differences to see whether participants react uniformly to the event and then potentially model 

characteristics of the individual that predict the nature of the reactions. 

In this chapter, we provide a brief overview of mixed-effect models, growth models and 

the DGM using small, simulated datasets involving trust. After this introductory material, we 

provide a detailed step-by-step analysis of how the event of the great recession in 2008 was 

related to gross domestic product (GDP) trajectory changes for US States. In addition to 

illustrating the DGM, we also introduce and describe an R-based tool designed to help 

researchers set up the design matrix for both simple and complex DGMs. Finally, throughout the 

chapter, we provide practical advice for using the DGM based on our experiences applying the 

approach to different types of research questions. 

 

BACKGROUND ON MIXED-EFFECTS MODELS AND GROWTH MODELS 

The DGM is a form of a growth model estimated in a linear mixed-effect modeling program such 

as the R packages nlme (Pinheiro & Bates, 2000), lme4 (Bates, Mächler, Bolker, & Walker, 

2015 ) and  MCMCglmm (Hadfield, 2010). Other programs include Proc Mixed in SAS (Littell, 

Milliken, Stroup, Wolfinger & Schabenberger, 2006; Singer, 1998) or mixed in STATA (Rabe-

 
1 The DGM is also referred to as the piecewise hierarchical linear model (Hernández-Lloreda et al. 2004, 
Raudenbush & Bryk 2002) and multiphase mixed-effects model (Cudeck & Klebe, 2002). 
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Hesketh & Skrondal, 2005). Nomenclature tends to differ across fields. For instance, mixed 

effects models are sometimes referred to as random coefficient models (RCM), random effects 

models (RE) or hierarchical linear models (HLM), but the term “mixed-effect models” is broadly 

recognized within the statistical community. We therefore use the term “mixed-effect models” to 

refer to the larger class of models. 

Growth models are a specific type of mixed-effect model applied to panel data. In panel 

data, higher-level entities (typically persons) provide numerous responses over time. Data with 

this structure are also referred to as longitudinal or multilevel data. Mixed-effects models are 

well-suited for use with panel data because the models allow users to specify and model two 

specific forms of variance. First, mixed-effects models estimate a variance term associated with a 

random intercept for each of the higher-level entities (00). To understand the nature of 00, it is 

helpful to consider the most basic form of the mixed-effects model: the intercept-only model. 

The intercept-only model – also called the null model – does not yet include a time variable. 

Rather, the intercept-only model reflects a unit- or person-specific deviation from the average 

intercept. Specifically, this model provides estimates of the random intercept (u0j) and its 

associated variance (00) along with the residuals (eij) and the residual variance (σ²). The 

resulting model formula is Ytj = γ00 + u0j + etj, where u0j   ~  N (0, 00) and etj   ~  N (0, σ²).  

In practical terms, by estimating 00, the models allow each higher-level entity to differ in 

terms of average responses across time. In most panel data, the assumption of a random intercept 

is warranted. For example, in a study of trusting behavior over time, we would expect some 
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respondents to display relatively high average levels of trusting behavior while other respondents 

would be expected to display relatively low levels of trusting behavior.2  

The intercept variance from a null model can be used to estimate the ICC(1) (Bliese, 

2000; Raudenbush & Bryk, 2002). The ICC(1) provides an index of how much of the total 

variance is associated with the higher-level entity. The ICC(1) can be estimated from a null 

mixed-effect model using the formula 00/(00+σ2) (Raudenbush & Bryk, 2002). In our 

experience, ICC(1) values routinely exceed .40 in panel data from persons. In other words, 40% 

or more of the total variance can be attributed to between-person differences (e.g., individual-

level factors such as personality traits), meaning that the remaining variance is due to within-

person differences. In contexts involving outcomes from different types of higher-level entities 

(e.g., teams or firms) ICC(1) values may be much higher or much lower. Regardless of the 

specific value, ICC(1) is informative because it summarizes whether most of the variance occurs 

within higher-level entities over time or between higher-level entities.  

The second form of variance that can be estimated in mixed-effects models of panel data 

is the variance associated with the slopes of level-1 or time-varying predictors (11).3 This 

variance term is included after the addition of the time-varying predictor to the null model and is 

optional in the sense that models can “fix” the time slope to be consistent across higher-level 

entities (i.e., not estimate 11) or allow variation in slopes across higher-level entities (i.e., 

estimate 11). The resulting basic model formula allowing slope variation takes the form Ytj = γ00 

 
2 The logic underlying a random intercept model is captured in various ways by a number of alternative statistical 
approaches. For instance, a random-effects one-way ANOVA also partitions variance into a within and between 
component. Likewise, a generalized estimation equation (GEE) model with an exchangeable error structure 
estimates a model similar to the random intercept mixed-effects model. McNeish, Stapleton, & Silverman (2017) 
provide details on alternative ways other than mixed-effects models to statistically account for differences across 
higher-level entities in panel and other multilevel data. 
3 For clarity, we are simplifying by using the subscripts 11 here. These subscripts only apply if we had one predictor 
and one random slope which is fine for illustrative purposes but would change with more complex models. 
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+ u0j+ (γ10 + u1j)TIMEt+ etj. In the education and management literature, this model is frequently 

written in a somewhat more elaborate form that assigns the model components to their respective 

level of analysis as follows:  

Level-1: Ytij = β00j + β10jTIMEt+ etij      

Level-2:  β0j = γ00 + u0j 

β1j = γ10 + u1j 

The model makes the following assumptions on the distribution and nature of the 

variance components.  

etj  ~  N (0, σ²)    

u0j  0          τ00    τ01   

  ~  N       , 

u1j  0          τ01     τ11 

 

To a large degree, the ability to feasibly estimate the 11 variance term is what 

differentiates mixed-effect models from other analytic approaches used with panel data such as 

econometric fixed-effects models (Bailey, 2016) or generalized estimation equations (Zeger & 

Liang, 1986). That is, relatively few other analytic approaches allow one to estimate and 

subsequently model variance associated with the slopes of the level-1 predictors.  

In the context of growth models, being able to estimate variance associated with a time-

varying predictor plays a key role in testing theory and understanding how level-1 entities 

change over time. In a growth model, the primary time-varying predictor is TIME (in the most 

basic form, TIME is represented as a vector of sequentially increasing numbers starting from 0). 

Thus, the variance associated with the time-varying predictor of TIME provides important 
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information about whether higher-level entities show different trajectories of change over time. 

That is, some higher-level entities might increase, others might decrease and still others might 

remain relatively flat. These differences are captured by 11. In typical growth models, the time-

varying predictors focus on the change trajectory while characteristics of the 

units/persons/entities are used as predictors to explain differences in trajectories. More complex 

forms of the growth model are possible, but they are built upon this basic concept.  

Basic Example Data and Illustration 

To illustrate the basic structure of the growth model and the logic behind estimating both 

intercept variance and slope variance, we provide example data in Table 25.1. While somewhat 

subtle, notice that male subjects tend to decrease, and female subjects tend to increase. With 

respect to intercept variance, each of the Subjects differ in terms of average trust over the four 

measurement occasions. The mean ratings for Subjects 1 through 4 are 2.650, 2.275, 2.700, and 

2.975, respectively. The variance of the vector [2.650, 2.275, 2.700, 2.975] is 0.083. If we 

estimate a mixed-effects model using the lme function in the nlme package in R, the intercept 

variance (00) based on a restricted maximum likelihood (REML) algorithm is 0.077 which is 

similar to the estimate obtained simply by calculating the variance of the three means.4 

In our example data in Table 25.1, most of the variance is between the three subjects, so 

the residual variance, or σ2, is 0.025 and the resulting ICC(1) estimate is 0.75 [00/(00+σ2)]. The 

 
4 Note that this is an extreme example so the raw estimate of the variance from the means is close to the estimate 
from the mixed-effect model. In almost all situations, the estimate based on the variance of the means (0.083 
here) will be upwardly biased relative to the estimate from the mixed-effects model.  The mixed-effects model 
estimate “removes” the part of the raw group-mean variance that can be attributed to the variance of the raw 
variable. In other words, some part of the 0.92 variance has been “inherited” from the combination of the raw 
variance and the group size. The mixed-effect model removes this inherited variance. This core idea of group-mean 
inheriting variance from the raw variable is a foundation of the ANOVA model where an F-Value of 1 indicates that 
the group-mean variance equals the expected inherited variance, suggesting that nothing meaningful is going on 
within groups. 
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ICC(1) value indicates that three-fourths of the total variance is a function of between-entity 

differences. Or stated otherwise, one-quarter of the total variance is associated with changes over 

time. 

 

Table 25.1. Example panel data 

SUBJECT GENDER TIME TRUST 

1 F 0 2.5 

1 F 1 2.6 

1 F 2 2.7 

1 F 3 2.8 

2 M 0 2.5 

2 M 1 2.3 

2 M 2 2.2 

2 M 3 2.1 

3 F 0 2.6 

3 F 1 2.7 

3 F 2 2.7 

3 F 3 2.8 

4 M 0 3.2 

4 M 1 3.1 

4 M 2 2.9 

4 M 3 2.7 
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In Table 25.1, TIME represents the only time-varying covariate and would capture 

whether subjects (as a whole) showed linear change in TRUST. In these data, the estimated slope 

for TIME in a mixed-effects model is -0.035 (p=0.35) which is not surprising given that the trust 

of the two male subjects is decreasing while trust for the two female subjects is increasing.  

Where mixed-effects models are particularly unique, though, is that we can formally test 

whether the variance associated with the TIME slope (11) is significant. Significant variation in 

11 is an indication that individual linear trajectories differ more than would be expected by 

chance. In our example, the estimate of 11 is .018 which is significant in a log likelihood test 

contrasting (a) the model with a random intercept with (b) the model with a random intercept and 

random slope (likelihood ratio = 22.10, p<.001). 

Significant slope variability can be modeled in a cross-level interaction by examining 

whether person-level characteristics are related to differences in slopes. For example, we can 

formally test whether females display a positive linear increase in trust and males show a 

negative linear relationship. The cross-level interaction term between GENDER and TIME is 

significant (t-value = -8.132, p<.001). Importantly, while finding significant slope variability is 

helpful for understanding patterns of variability in data, authors such as Snijders and Bosker 

(1999) and others discourage using tests of slope variability as a reason to stop subsequent tests 

of cross-level interactions. In other words, even if our estimate of 11 had not been significant, 

Snijders and Bosker recommend proceeding with an examination of the cross-level interaction if 

there is a strong theoretical reason to examine the moderation (it is possible to include a cross-

level interaction term in the model even if the level-1 slope is fixed). Our key point is that 

thinking about and modeling slope variability associated with TIME provides the foundation for 
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understanding differences in how higher-level entities change over time and provide the basis for 

answering important questions in growth models. 

Our short overview of growth models provided here is meant to lay the foundation for 

discussing the DGM, as the DGM is a growth model that simultaneously includes several 

variants of TIME in ways that allow the model to capture discontinuities. Further details about 

estimating basic growth models are provided in Bliese and Ployhart (2002), Singer and Willett 

(2003), Raudenbush and Bryk (2002) and Snijders and Bosker (1999) among other sources.  

 

DISCONTINUOUS GROWTH MODEL OVERVIEW 

DGM Time Trajectories 

In terms of theory development, the ability to introduce a discontinuity in a growth model can be 

highly informative because the discontinuity provides an opportunity to examine the impact of a 

discrete event (Morgeson, Mitchell, & Liu, 2015) on an outcome of interest. Morgeson et al., 

(2015) define and describe “Event System Theory” where they argue that discrete events play a 

key role in organizational processes. Analytically, the DGM provides a way to examine the 

impact of events by modeling trajectories before and after events. Events associated with 

discontinuities may be planned or unplanned. For instance, designing a research study that 

unexpectedly changes the performance task mid-way through a series of trials represents a 

planned discontinuity. Such a design might be used to test hypotheses about individual 

adaptation to unexpected change (e.g., Lang & Bliese, 2009). Other areas where events are 

planned within a longitudinal design is within trust research to examine how participants react to 

trust violations (Korsgaard, Kautz, Bliese, Samson, & Kostyszyn, 2018; Fulmer & Gelfand, 
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2015) and sleep research where sleep restriction is followed by recovery sleep (e.g., Rupp, 

Wesensten, Bliese, & Balkin, 2009).  

In other cases, events associated with the discontinuity are un-planned. For instance, Kim 

and Ployhart (2014) examined the impact of the great recession on firm performance specifically 

focusing on how firm differences in human capital practices were related to the immediate 

response and subsequent recovery associated with the great recession. Other examples include 

individual responses to events such as unemployment (Lucas, Clark, Georgellis, & Diener, 

2004), long-term disability (Lucas, 2007), or change in marital status (Lucas, Clark, Georgellis, 

& Diener, 2003).  

The DGM provides a way to specify precise theoretical hypotheses about how a 

dependent variable of interest changes in response to one or more events. What we refer to as the 

basic DGM is a growth model where TIME is sub-divided into three different components: 

TIME, TRANS and POST.  

Level-1: Ytij = β0j + β1jTIMEt+ β2jTRANSt+ β3jPOSTt+ etij      

Level-2:  β0j = γ00 + u0j 

β1j = γ10  

β2j = γ20  

β3j = γ30  

The TIME parameter captures the linear trajectory prior to the event. The TRANS 

parameter captures the immediate reaction to the event, and the POST parameter captures the 

linear trajectory following the event. In other sources, the “POST” trajectory is referred to as 

“RECOV” (e.g., Bliese, Adler & Flynn, 2016; Bliese & Lang, 2016; Lang & Bliese, 2009); 
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however, “RECOV” implies a response to a negative event with subsequent recovery to pre-

event levels. Because the post-event trajectory can take numerous forms (some of which would 

not in any way resemble recovery) we use the more neutral term “POST”. Likewise, TIME is 

occasionally referred to as SA for skill acquisition (Lang & Bliese, 2009) in the specific situation 

that the dependent variable refers to performance in a newly acquired task. The basic form of the 

model shown above does not yet include random slopes parameters for TIME, TRANS, and 

POST (u1j, u2j, and u3j) but a key aspect of specifying these models centers on determining 

whether the variance components should be added to the model. 

Table 25.2 provides example data and variable set-up for TIME, TRANS, and POST. The 

table also includes a variable called TIME.A which we will discuss in more detail later. The 

dependent variable is TRUST and is presented in a way that illustrates discontinuities and 

changes in trajectories for SUBJECT 1. Notice, specifically, that ratings of trust increase by 1-

point increments from TIME 0 to TIME 2 (first 3 occasions). Between TIME 2 and TIME 3 (the 

third and fourth occasions), trust increases by 3 points going from a TRUST value of 3 at TIME 

2 to a TRUST value of 6 at TIME 3. Following this increase, TRUST increases at a rate of 2-

point increments per time. The other two subjects in Table 25.2 follow a similar pattern with 

some random error added to facilitate model estimation (mixed-effect models have difficulty 

converging when variance terms are zero which would occur if we directly copied the same 

pattern for all subjects). 

 

Table 25.2. Basic set-up for discontinuous growth model 

SUBJECT TIME.A TIME TRANS POST TRUST 

1 0 0 0 0 1.00 
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1 1 1 0 0 2.00 

1 2 2 0 0 3.00 

1 2 3 1 0 6.00 

1 2 4 1 1 8.00 

1 2 5 1 2 10.00 

2 0 0 0 0 0.95 

2 1 1 0 0 1.95 

2 2 2 0 0 2.85 

2 2 3 1 0 5.92 

2 2 4 1 1 7.96 

2 2 5 1 2 10.12 

3 0 0 0 0 1.08 

3 1 1 0 0 1.97 

3 2 2 0 0 3.03 

3 2 3 1 0 6.01 

3 2 4 1 1 8.00 

3 2 5 1 2 10.05 

 

Table 25.3 presents the results from a basic DGM applied to the data in Table 25.2. Notice that 

in this specification of the model, all subsequent terms (TRANS and POST) are interpreted 

relative to the TIME trajectory. More specifically, the estimate for TIME in Table 25.3 shows 

that TRUST increased by a 0.97-point increment prior to TRANS (also clear from raw Table 

25.2 data). The relative nature of the results is apparent in the value of 2.04 for TRANS – recall 
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from Table 25.2 that TRUST increased 3 points, not 2 as implied by Table 25.3. The Table 25.3 

value of 2.04 reflects the fact that TIME is already increasing by 1, so the total increase is, in 

fact, 3 points. The value of 2.04 is testing whether the increase is different from what would be 

expected based on the TIME trajectory. The same relative interpretation is clear in the POST 

term in Table 25.3. Based on Table 25.2 we expect to see TRUST increasing by 2-point 

increments following the transition event, but Table 25.3 returns a value of 1.07, which 

represents the difference between the TIME and POST slopes. The total slope associated with 

POST is, thus, 0.97 + 1.07 (approximately 2). 

 

Table 25.3. Results from basic discontinuous growth model (relative) 

  Value Std.Error DF t-value p-value 

(Intercept) 1.01 0.03 12 32.98 0.00 

TIME 0.97 0.02 12 47.20 0.00 

TRANS 2.04 0.05 12 39.15 0.00 

POST 1.07 0.03 12 36.45 0.00 

 

Understanding the relative nature of the tests is important for theoretical clarity and 

hypothesis formulation. That is, when specifying hypotheses, researchers should be clear that 

they are testing whether the event produces change relative to pre-event trajectories. For 

instance, a hypothesis should state that “a trust violation will lead to a post-event trajectory that 

significantly differs from the pre-violation trajectory”. A hypothesis that stated “a trust violation 

will lead to a significant positive or negative post-event trajectory” implies a different model and 

is not actually tested in Table 25.3. 
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In our experience, understanding absolute change in trajectories often helps make sense 

of non-simulated data. That is, in practice we have found that it can be challenging to understand 

what is occurring with respect to both TRANS and POST parameters in response to events using 

just the relative coding. Therefore, we provide an alternative model specification using TIME.A 

(for absolute) in Table 25.2. Notice how TIME.A takes the TIME value immediately before 

TRANS (in this case, 2) and then holds the effect constant over the remaining observations for 

that subject. Substituting TIME.A for TIME in the DGM allows us to assess if the transition 

(TRANS) and the post-event slope (POST) are significantly different from zero. Table 25.4 

provides the estimates replacing TIME with TIME.A. In Table 25.4, the parameter estimates 

represent absolute effects. TRANS now has a value of 3.01, reflecting the increase of trust by 3 

points, and POST now has a value of 2.04, which reflects the post-event 2-point increment 

trajectory of the post-event occasions.  

 

Table 25.4. Results from basic discontinuous growth model (absolute) 

  Value Std.Error DF t-value p-value 

(Intercept) 1.01 0.03 12 32.98 0.00 

TIME.A 0.98 0.02 12 47.20 0.00 

TRANS 3.01 0.04 12 79.82 0.00 

POST 2.04 0.02 12 98.75 0.00 

 

DGM slope differences and interactions 

As with the basic growth model, the DGM often relies heavily on being able to test for slope 

variance associated with the time-varying covariates (u1j, u2j, and u3j). In the DGM, it is possible 
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to ask whether level-2 entities have different trajectories prior to the event – an examination of 

whether the TIME trajectory varies across higher-level entities. The DGM also allows a test of 

whether higher-level entities have different immediate responses to the event. In our example in 

Table 25.2, all subjects increased trust by 3 points at TRANS, but in practice we would expect 

some subjects to have more extreme reactions and other subjects to have fewer extreme 

reactions. Finally, the DGM allows testing whether post-event trajectories (POST) vary across 

higher-level entities. Again, in our example all subjects had a rate of change in trust of 2 

increments per occasion, but in practice higher-level entities may differ in trajectories. 

 Finally, the main strength of the DGM involves being able to add entity-level predictors 

of the time-based covariates to answer questions such as “do males have a larger immediate 

reaction to a trust violation than females?” or “following a trust violation, do the trajectories of 

males and females differ?”. For instance, a DGM with gender as a level-2 predictor would look 

like this. 

Level-1: Ytij = β0j + β1jTIMEt+ β2jTRANSt+ β3jPOSTt+ etij      

Level-2:  β0j = γ00 + γ01GENDERj + u0j 

β1j = γ10 + γ11GENDERj + u1j 

β2j = γ20 + γ21GENDERj + u2j 

β3j = γ30 + γ31GENDERj + u3j 

In an experimental design, the condition also becomes an entity-level predictor. So, for 

instance, if subjects were randomly assigned to a training condition (primed towards aggression) 

versus a control condition (primed towards a neutral response), we could examine how the 

experimental condition impacted the transition and/or the post-event trajectory. 
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As highlighted in Bliese and Lang (2016), researchers have to carefully consider the 

absolute versus relative nature of the model specification when testing interactions. For example, 

to most cleanly test the hypothesis “following a trust violation, the trajectories of males and 

females will differ”, we would recommend using TIME.A (absolute) coding because the 

hypothesis is only considering the post-event trajectory differences between males and females. 

Using TIME (relative coding) is testing a hypothesis of “are the differences between pre and post 

event trajectories the same for males and females?” In other words, the relative coding (TIME) is 

effectively asking a three-way interaction (see Bliese & Lang, 2016). We provide more 

elaboration of this point in our detailed example. 

A challenge in the analyses of the DGM is the fact that a fully specified DGM can 

include a lot of “moving parts” and numerous variants. For instance, variants of the model can 

include absolute and relative change, and extensions with quadratic change (see Bliese & Lang, 

2016; Lang & Bliese, 2009). A successful analytical strategy typically requires researchers to 

make informed decision about which model components to include. In so doing, it is possible to 

err by either including too much complexity or not enough. In other words, an overly complex 

model will burry any meaningful real-life effect or may even discover effects that do not really 

exist (see Gelman & Imbens, 2018). Conversely, an overly simplistic model may not adequately 

describe the patterns in the dataset. There is also a continuum between entirely a-priori defined 

analytical strategies and so-called model building approaches. The mixed-effects modeling 

literature typically recommends performing a decent amount of model building to ensure that the 

model is not fundamentally misspecified (Bates et al., 2015; Matuschek, Kliegl, Vasishth, 

Baayen & Bates, 2017; Pinheiro & Bates, 2000, however also see Barr, Levy, Scheepers & Tily, 

2013). However, it is important to avoid model building that goes beyond the basic nature of the 
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design. In experimental studies, in particular, we recommend using a relatively fixed design 

relying on a-priori theoretical assumptions about where variance should be occurring.  

A basic model examination strategy (Bliese & Lang, 2016) involves first studying the 

overall nature of the fixed change effects TIME, TRANS, and POST with a model that only 

included a random intercept. Step 1 can be performed by studying the size of these effects and 

examining, graphically, whether these effects adequately capture the overall pattern. Note that it 

is crucial to leave components in the model for which there are potential hypotheses of group 

differences even when they are not substantial in this first basic step.  

In a second step (Step 2), we recommend examining the slope random effects. A 

challenge in doing so is that including all random effects and their interactions may lead to an 

overly complex model that is over-specified, overly conservative and cannot meaningfully be 

estimated by software. For instance, a researcher adding all possible random effects and their 

correlations would end up with the following 4x4 random effects matrix after adding random 

slopes parameters for TIME, TRANS, and POST (u1j, u2j, and u3j) and all random effects 

correlations:  

u0j  0         τ00 τ01 τ02 τ03  

 u1j ~  N  0   ,     τ01 τ11 τ12 τ13  

u2j  0         τ02 τ12 τ22 τ23  

u3j  0         τ03 τ13 τ23 τ33  

 

One strategy we recommend is to use a model with an orthogonal matrix in which all 

random effects are uncorrelated (τ01, τ02, τ03, τ12, τ13, and τ23 set to 0).5 An alternative (Bates et 

 
5In lme this can be achieved by specifying random=list(UNIT=pdDiag(~TIME+TRANS+POST))instead of 
specifying random=~TIME+TRANS+POST|UNIT which is equivalent to specifying 
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al., 2015) is to start with such a matrix and to then only retain those random effects that differ 

from zero in this model. On the basis of those random effects that exist in an orthogonal model 

the researcher can then test for meaningful random effects covariances. Both strategies will 

typically ensure that the random effects matrix can meaningfully be estimated. Another 

recommended strategy, especially for experimental studies with a clear a-prior design, is to only 

include random effects that are theoretically assumed or important. In many cases it may be 

feasible to assume that participants in a laboratory study all react in the same way to 

manipulation and stimuli after accounting for basic individual differences with a random 

intercept so that a basic DGM without random slopes may be acceptable.  

The final step in studying DGMs is to add level-2 predictors. While the typical strategy is 

to add each predictor to the intercept and all change slopes in correlational data, the strategy for 

experimental design is usually more specific and targeted. In experimental designs, we 

recommend adding the predictor to the a-priori targeted or manipulated effects because adding 

too many effects can easily conceal a true underlying experimental effect. For instance, when a 

researcher uses a DGM where there is an intervention after an initial skill acquisition period, the 

researcher would commonly only include a dichotomous predictor of TRANS as the groups did 

not theoretically differ before the intervention and because there is not necessarily theory 

suggesting that the intervention would change both the level and the trajectory after the change. 

Likewise, an intervention that only starts at a defined point in time would require one to predict 

the POST trajectory with a predictor but not the TRANS change term. While it is important to 

account for potential a-priori differences in DGMs, it is also important to not statistically 

 
random=list(UNIT=pdLogChol(~TIME+TRANS+POST)). In lmer, it is possible by simply using 
(TIME+TRANS+POST||UNIT) instead of (TIME+TRANS+POST|UNIT).  
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distribute the effect of one predictor among several competing predictors as the later strategy 

may conceal an effect that is expected by design through separating it into several non-

significant effects that are not all expected by design.  

In conclusion, it is important to carefully weigh model complexity and model parsimony 

and a-prior and post-hoc assumptions in modeling DGMs. In our experience, and also in the 

experience of other authors, organizational researchers and reviewers have a tendency to 

recommend additional model complexity out of a desire to be conservative. It is important for 

researchers to be aware that this approach is not a cure for the complexity of DGMs. In many 

cases, a more parsimonious model with fewer random effects may be more solid and lead to 

more replicable results and findings.  

With this background, we now provide a step-by-step analysis and R based code for a 

dataset containing a discontinuity involving US State-level GDP and the great recession. 

Following the illustration, we expand our coverage of the DGM by describe an R-based tool 

designed to help researchers set up the design matrix for both simple and complex DGMs. 

Throughout our detailed illustrating we provide practical advice for using the DGM based on our 

experiences. 

 

DETAILED DGM EXAMPLE 

Illustrative Data6 

To provide a detailed illustration of the DGM, we use data obtained from the US Department of 

Commerce, Bureau of Economic Analysis (http://www.bea.gov). The data represent Gross 

Domestic Product (GPD) for the 50 US States and the District of Columbia for the years 2004 to 

 
6 The data and the R Code are available on  https://osf.io/d4xmw/ 
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2011. The event on which we focus is the “great recession” associated with the economic 

downturn in 2008. Table 25.5 presents a subset of the data containing the unemployment rate for 

2003 (eventually used as a level-2 or state-level predictor) and annual GDP data for 10 US States 

(the complete data is available from the lead author). The data in Table 25.5 have been modified 

to facilitate the subsequent interpretation of model parameters. Specifically, each GDP value has 

been divided by 1,000 to avoid having very small parameter estimates and standard errors that 

require rounding tables to five or six decimal places to see differences. 
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Table 25.5. Yearly GDP data from first ten states for detailed example 

STATE UNEMP03 Y2004 Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 

Alabama 5.8 142 151 159 166 170 165 170 173 

Alaska 7.7 34 38 42 45 50 45 48 51 

Arizona 5.7 201 223 246 259 261 246 250 258 

Arkansas 5.9 84 89 94 97 100 99 102 106 

California 6.8 1570 1689 1798 1871 1900 1829 1878 1959 

Colorado 6.2 202 217 230 243 252 244 253 264 

Connecticut 5.5 188 196 209 221 219 214 221 230 

Delaware 4.0 51 54 56 60 58 60 64 66 

District of Columbia 7.2 78 82 87 92 97 98 104 108 

Florida 5.3 621 681 731 761 748 726 736 754 
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To guide our illustrative example, we provide a set of specific hypotheses on which to focus the 

analyses and overlay the results. Our specific hypotheses are: 

1. As a whole, GDP will increase between 2004 and 2008. 

2. The great recession as indexed by the year 2008 will be associated with a significant 

discontinuity in GDP. The specific form of the discontinuity will be a drop in 

absolute terms. 

3. The rate of GDP growth post 2008 will be lower than the rate of GDP growth prior to 

2008. 

4. The level-2 units (US States) will significantly differ in terms of all model 

parameters. That is, States will significantly differ in terms of (a) pre-2008 growth 

trajectories, (b) the drop associated with 2008 and (c) growth trajectories following 

2008. 

5. Rates of unemployment in 2003 will be related to average levels of GDP. 

6. In the post 2008 trajectories, States with lower levels of unemployment in 2003 will 

show a stronger increase in GDP than States with higher levels of unemployment in 

2003. 

Note that both our second and our sixth hypotheses are presented in absolute terms. With respect 

to the sixth hypothesis, we expect differences in the post 2008 trajectories as a function of 2003 

unemployment rates, but we are not taking into consideration the pattern that existed prior to 

2008. That is, we are not hypothesizing that interactive patterns involving unemployment 

observed prior to 2008 will be significantly different from interactive patterns observed post 

2008 (a hypothesis involving a relative test).  

Data Set-Up: Create Time-Related Covariates 
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Estimating growth models requires transforming data from wide or multivariate form to long or 

univariate form. Here we use the make.univ function from the multilevel library (Bliese, 2016). 

Help files provide details on using the function, but briefly two arguments are provided – one 

argument to specify the full wide or univariate dataset (Table 25.5 data, but for all States) and 

another argument to specify the columns representing the time-varying outcome in the correct 

chronological order (columns 3:10 in our example). An optional parameter allows us to name the 

new DV (named “GDP” in our example). The code and the output for the first state in the 

sample, Alabama, are presented below. 

> library(multilevel) 

> names(gdp) 

 [1] "STATE"   "UNEMP03" "Y2004"   "Y2005"   "Y2006"   "Y2007"   

 [7] "Y2008"   "Y2009"   "Y2010"   "Y2011"   

> gdp.univ<-make.univ(gdp,gdp[,3:10],outname="GDP") 

> gdp.univ[1:8,c(1,2,11:12)] 

      STATE UNEMP03 TIME GDP 

1   Alabama     5.8    0 142 

1.1 Alabama     5.8    1 151 

1.2 Alabama     5.8    2 159 

1.3 Alabama     5.8    3 166 

1.4 Alabama     5.8    4 170 

1.5 Alabama     5.8    5 165 

1.6 Alabama     5.8    6 170 

1.7 Alabama     5.8    7 173 
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In the transformed data set (gdp.univ) TIME is indexed from 0 (2004) to 7 (2011) with a GDP 

value for each year. In this specification, 2008 (the year of the discontinuity) occurs at TIME 4. 

The level-2 variable of State-level unemployment in 2003 is consistent across values of TIME, 

but varies across States. To estimate the DGM, we create the TRANS, POST and TIME.A 

variables using the following code and again present the data for Alabama. 

> gdp.univ$TRANS<-ifelse(gdp.univ$TIME>3,1,0) 

> gdp.univ$POST<-ifelse(gdp.univ$TIME>4,gdp.univ$TIME-4,0) 

> gdp.univ$TIME.A<-ifelse(gdp.univ$TIME<4,gdp.univ$TIME,3) 

> gdp.univ[1:8,c(1,2,11:15)] 

      STATE UNEMP03 TIME GDP TRANS POST TIME.A 

1   Alabama     5.8    0 142     0    0      0 

1.1 Alabama     5.8    1 151     0    0      1 

1.2 Alabama     5.8    2 159     0    0      2 

1.3 Alabama     5.8    3 166     0    0      3 

1.4 Alabama     5.8    4 170     1    0      3 

1.5 Alabama     5.8    5 165     1    1      3 

1.6 Alabama     5.8    6 170     1    2      3 

1.7 Alabama     5.8    7 173     1    3      3 

Notice with the data from Alabama that there is no immediately clear discontinuity when 

TRANS changes from 0 to 1 nor is there any obviously clear change in trajectory associated with 

POST. There does appear to be an overall increase in GDP. Other States would show more 
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pronounced changes associated with the great recession, which goes back to the importance of 

being able to model differences across higher-level entities. 

Step 1: Estimate the ICC 

The first step in analyzing discontinuous growth data is to estimate the ICC from the null model. 

In the nlme package, the lme (linear mixed-effects) function is used to estimate the mixed-effects 

model and the corresponding ICC(1) value. The term, control=list(opt="optim"), is optional and 

changes the optimization program from the default nlimb optimizer to the optim optimizer. The 

optim optimizer is the standard optimization procedure in R. In its default setting, it uses the 

popular Nelder-Mead method (Nelder & Mead, 1965) and was initially used in the Pinheiro and 

Bates (2000) publication of the nlme library. More recent versions of nlme use another optimizer 

– the nlminb optimizer based on the port library by Gay (1990). Typically, both optimization 

procedures converge and give comparable results. In our experience, the optim optimizer tends 

to be somewhat more likely to converge on complex models with the standard parametrization of 

the random effects matrix in lme. When nlminb has convergence problems, a simple fix is 

therefore to change the optimizer to opt=”optim”.7  

> null.mod<-lme(GDP~1,random=~1|STATE,gdp.univ,control=list(opt="optim")) 

> VarCorr(null.mod) 

STATE = pdLogChol(1)  

 
7 Another alternative is to specify a general-positive random effects matrix instead of the standard general-positive 
matrix with Log-Cholesky parametrization for the random effects matrix in lme when the model has random slopes 
(see subsequent examples). The Log-Cholesky parametrization ensures that there are no correlations of 1 in the 
random effects matrix and is thus preferred by some authors even though newer programs tend to use symmetric 
matrices explicitly allowing for random effects correlations of 1. This is borne out of the philosophy that authors 
should use this information to reduce model complexity (e.g. Bates at al., 2015). In lme, it is possible to specify a 
general positive matrix by using random=list(STATE=pdSymm(~TIME+TRANS+POST))instead of 
specifying random=~TIME+TRANS+POST|STATE which is equivalent to specifying 
random=list(STATE=pdLogChol(~TIME+TRANS+POST)).  
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            Variance   StdDev    

(Intercept) 104309.498 322.96981 

Residual      1156.165  34.00243 

 

> 104309.498/(104309.498+1156.165) 

[1] 0.9890375 

The ICC(1) of .99 associated with GDP within States is much larger than would typically be 

observed with repeated measures data from persons. With these types of economic data, 

however, the value is not that surprising given the large differences among states. For instance, 

the GDP of California is roughly 46 times the GDP of Alaska (see Table 25.5). As we show, 

however, the DGM can still identify discontinuities in trajectories when the ICC(1) value is this 

large. In practice, a value this large would be problematic as it suggests that only 1% of the total 

variance can be explained by the time-related covariates in the DGM. We strongly suggest that 

researchers report the ICC(1) value because doing so informs readers where the major sources of 

variance reside (Bliese, Schepker, Essman, & Ployhart, in review). That is, a balanced discussion 

of the within-entity findings (e.g., the DGM) should mention that most of the differences in the 

panel data exist between higher-level entities and therefore the results of the DGM may be 

significant but at the same time explain a small amount of the total variance.  

In terms of providing practical advice, if we observed an ICC(1) value this high on a 

substantive research variable (rather than an illustration of an approach) we would not proceed 

with subsequent analyses. We would also be unwilling to use the DGM on a variable with a 

distribution that is far from being normally distributed as is raw State-level GDP. Nonetheless, 
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even with these flaws, these data provide interesting results that illustrate the utility of the DGM 

so we proceed with analyzing the data in the DGM framework.  

Step 2: Model Relative and Absolute Time Effects 

As previously noted, the core predictors in the DGM are TIME, TRANS and POST. These 

predictors are entered as a block and the results describe the overall trajectory patterns. We begin 

by estimating a model with a random intercept for State. This model allows States to vary in 

terms of overall levels of GDP, but fixes parameter estimates across States for the pre-

discontinuity slope (TIME), the transition (TRANS), and the recovery slope (POST). In other 

words, the model assumes that the parameter estimates for TIME, TRANS and POST describe 

every State (an unlikely scenario, but a logical starting place). 

> mod.base<-lme(GDP~TIME+TRANS+POST,random=~1|STATE,gdp.univ, 

+               control=list(opt="optim")) 

> round(summary(mod.base)$tTable,dig=3) 

              Value Std.Error  DF t-value p-value 

(Intercept) 231.402    45.350 354   5.103   0.000 

TIME         14.167     1.723 354   8.220   0.000 

TRANS       -15.276     5.716 354  -2.673   0.008 

POST         -8.365     2.437 354  -3.432   0.001 

In this model, all three variables are significant. The model indicates that in 2004, the 

average level of GDP across the 51 States was 231,402 (231.402*1000) and that GDP increased 

by 14,167 each year. Results show that GDP dropped by 15,276 in 2008 relative to the expected 

14,167 yearly increase (an absolute drop of -1,109). Finally, the negative parameter for POST 

indicates a decline in GDP slope of 8,365 relative to the pre-recession increase of 14,167, for an 
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absolute slope of 5,802. We can recover the absolute values by using TIME.A instead of TIME 

(with a slight rounding difference of -1,110 instead of -1,109 for TRANS). 

> mod.absol<-lme(GDP~TIME.A+TRANS+POST,random=~1|STATE,gdp.univ, 

+               control=list(opt="optim")) 

> round(summary(mod.absol)$tTable,dig=3) 

              Value Std.Error  DF t-value p-value 

(Intercept) 231.402    45.350 354   5.103   0.000 

TIME.A       14.167     1.723 354   8.220   0.000 

TRANS        -1.110     4.560 354  -0.243   0.808 

POST          5.802     1.723 354   3.366   0.001 

Notice that the t-tests for TRANS and POST now determine whether the absolute change 

is significantly different from zero rather than different from the expected values associated with 

TIME. We see, for instance, that the decrease of -1,110 in GDP associated with the great 

recession is not large enough to statistically differ from zero; however, an absolute slope of 

5,802 for the post-event phase is significantly different from zero. 

 In describing these data, we had hypothesized the great recession as indexed by the year 

2008 would produce a significant discontinuity in GDP in absolute terms. Given the specificity 

of our hypothesis, we would fail to reject the null because the drop in absolute terms was not 

significant even though it was significant in relative terms. We remain agnostic as to whether 

theories to which the DGM will be applied will support relative change or absolute change for 

hypotheses, but we want to emphasize that hypotheses should be precise. We also offer that if 

theory is not sufficiently precise, it may be informative to present DGM results from both an 

absolute and relative model specification. 
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With respect to the post-event trajectory (POST), we had hypothesized that the rate of 

GDP growth post 2008 will be lower than the rate of GDP growth prior to 2008. Thus, the test 

for this hypothesis is based on a model using TIME (relative effects) rather than a model using 

TIME.A (absolute effects). Our hypothesis would be supported, as a 8,365 decline relative to the 

pre-recession increase of 14,167 was statistically significant. Note that if we had failed to specify 

the hypotheses as we had (an absolute effect for TRANS and a relative effect for POST), we 

would have had to run and interpret two different DGM models (one with TIME and one with 

TIME.A). 

Step 3: Model Variability in Time Effects 

Often a key reason to conduct a DGM is because theory suggests that the time-based covariates 

will differ among higher-level entities and that these differences can be explained by attributes of 

the higher-level entity. To test whether the time-based covariates differ, we contrast models with 

and without random slopes for the level-1 time covariates. For clarity we repeat the base model 

and then update the model before conducting -2log likelihood tests of the models. When adding 

complexity to the model in terms of random effects we are interested in determining at what 

point the complexity no longer increases model fit (as indexed by the -2log likelihood test). 

When complexity no longer increases model fit, we select the last best fitting model. 

> mod.base<-lme(GDP~TIME+TRANS+POST,random=~1|STATE,gdp.univ, 

+           control=list(opt="optim")) 

> mod.t<-update(mod.base,random=~TIME|STATE) 

> mod.tt<-update(mod.base,random=~TIME+TRANS|STATE) 

> mod.ttp<-update(mod.base,random=~TIME+TRANS+POST|STATE) 

> anova(mod.base,mod.t,mod.tt,mod.ttp) 
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      Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

mod.base     1  6 4209.018 4233.027 -2098.509                         

mod.t     2  8 3754.137 3786.148 -1869.069 1 vs 2 458.8811  <.0001 

mod.tt    3 11 3721.302 3765.318 -1849.651 2 vs 3  38.8347  <.0001 

mod.ttp   4 15 3545.679 3605.700 -1757.839 3 vs 4 183.6237  <.0001 

The results of the model comparisons indicate that allowing each higher-level entity to 

have a different trajectory for TIME, TRANS and POST improves the overall fit. To make 

explicit what is being contrasted, we provide the empirical Bayes estimate for the base model for 

the first 5 states and the estimates of the variance components for the base model followed by the 

empirical Bayes estimates and variance components for the final model. 

> coef(mod.base)[1:5,] #Empirical Bayes estimates for base model 

           (Intercept)     TIME     TRANS      POST 

Alabama     126.423673 14.16667 -15.27647 -8.364706 

Alaska        8.655518 14.16667 -15.27647 -8.364706 

Arizona     207.350252 14.16667 -15.27647 -8.364706 

Arkansas     60.858157 14.16667 -15.27647 -8.364706 

California 1774.678296 14.16667 -15.27647 -8.364706 

> var(coef(mod.base)[,1]) #Illustrative estimate of variance 

[1] 104264.7 

> VarCorr(mod.base) #Variance components for base model 

STATE = pdLogChol(1)  

            Variance   StdDev    

(Intercept) 104359.339 323.04696 



DGM Models 32 
 

Residual       757.439  27.52161 

> coef(mod.ttp)[1:5,] #Empirical Bayes for model with 3 random slopes 

           (Intercept)      TIME        TRANS        POST 

Alabama      143.41757  7.431306   -8.5211039  -4.2051836 

Alaska        37.35557  1.750592    0.7534417   0.4637427 

Arizona      213.18077 12.240521  -14.2976316  -7.6055818 

Arkansas      84.84063  4.130082   -3.4486017  -1.5661432 

California  1582.12679 98.855295 -128.0656844 -70.0628491 

> apply(coef(mod.ttp),2,var) #Illustrative estimate of variance 

(Intercept)        TIME       TRANS        POST  

 77468.5200    364.3460    515.2555    166.2434  

> VarCorr(mod.ttp) #Variance components for model with 3 random slope 

STATE = pdLogChol(TIME + TRANS + POST)  

            Variance    StdDev     Corr                 

(Intercept) 77499.63414 278.387561 (Intr) TIME   TRANS  

TIME          365.78272  19.125447  0.978               

TRANS         517.05656  22.738878 -0.996 -0.958        

POST          166.78921  12.914690 -0.997 -0.986  0.990 

Residual       82.25159   9.069266  

In the base model, each State has a different intercept value, but the slopes for each 

parameter are identical and match the values provided in the initial t-table and previously 

discussed. In the base model, there is only one parameter randomly varying (the intercept), so we 

obtain a variance estimate of 104359.339 for the intercept. The code above shows that we obtain 
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a similar estimate if we simply take the variance of the empirical Bayes estimates of the 

intercepts (the value then is 104264.7). We do not recommend estimating or reporting variance 

terms from the empirical Bayes estimates as these estimates often differ from the correct 

estimates returned by VarCorr. We provide the variance estimates based on the empirical Bayes 

to conceptually illustrate how variance estimates are calculated.   

The model with random slopes for TIME, TRANS and POST (mod.ttp) provides the best 

fit to the data and in this model each State has a different value for all intercept and all the slope 

parameters. Again, because all the parameters differ, we could calculate the variance associated 

with each column of empirical Bayes estimates and obtain rough estimates of the variance for 

each term (see the apply command above). In practice, though we use the estimates from the 

VarCorr command. Notice that VarCorr command also estimates correlations between random 

effects, which is why we progressively use one more DF in the model contrasts. For instance, 

mod.ttp uses 4 DF relative to mod.tt – one variance term of 166.8 for POST and three for 

correlations. As noted, models often fail to converge when numerous random effects are 

included in part because an increasing number of covariance terms are also estimated, so while 

we were able to include random effects for TIME, TRANS and POST here, users should expect 

to run a series of models to identify exactly where the variance differs across higher-level 

entities. 

 In sum, the model contrasting results and the variance estimates indicate that States 

significantly vary in terms of (a) the change in GDP between 2004 and 2008, (b) the degree to 

which GDP changed in 2008, and (c) the degree to which GDP increased after 2008. 

Parenthetically, while there is no ambiguity about the significance of the -2log likelihood tests in 

this example, it is important to keep in mind that these tests are widely known to be conservative 
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(Pinheiro & Bates, 2000), so a generally acceptable practice is to halve the p-values as though 

the tests were one-tailed (LaHuis & Ferguson, 2009). 

Step 4: Level-2 Predictors 

The final step (and generally the most interesting) is to include level-2 predictors of the 

parameters previously identified to randomly vary among higher-level entities. In our example, 

we explore whether unemployment levels in 2003 are related to (a) overall levels of GDP, and 

(b) GDP growth following the 2008 decline. Our two specific hypotheses were: 

5. Rates of unemployment in 2003 will be related to average levels of GDP. 

6. In the post 2008 trajectories, States with lower levels of unemployment in 2003 will 

show a stronger increase in GDP than States with high unemployment in 2003. 

The test of hypothesis 5 involves adding unemployment in 2003 as a main effect. The results are 

provided below. Notice that the DF associated with UNEMP03 reflect the number of level-2 

entities indicating that the model is testing whether unemployment in 2003 is related to average 

levels of GDP across the entire time period (see Bliese, Maltarich, & Hendricks, 2018; Preacher, 

Zyphur, & Zhang, 2010). The results indicate that State-level unemployment rates in 2003 are 

unrelated to average levels of GDP across the subsequent eight years. 

> mod.main<-lme(GDP~UNEMP03+TIME+TRANS+POST, 

+            random=~TIME+TRANS+POST|STATE,gdp.univ, 

+            control=list(opt="optim")) 

> round(summary(mod.main)$tTable,dig=3) 

              Value Std.Error  DF t-value p-value 

(Intercept) 171.725    74.327 354   2.310   0.021 

UNEMP03      10.672    11.364  49   0.939   0.352 
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TIME         14.167     2.741 354   5.169   0.000 

TRANS       -15.276     3.697 354  -4.133   0.000 

POST         -8.365     1.983 354  -4.219   0.000 

To better illustrate how to interpret the level-2 variable of unemployment, we contrast a 

mixed-effects model that only includes a level-2 predictor of the unemployment rate in 2003 

(UNEMP03) of GDP with a simple OLS regression model where GDP has been averaged across 

the eight measurement occasions. The OLS model is based on average GDP for each of the 51 

higher-level entities (States) in the sample. 

> mod.temp<-lme(GDP~UNEMP03, 

+               random=~1|STATE,gdp.univ, 

+               control=list(opt="optim")) 

> round(summary(mod.temp)$tTable,dig=3) 

               Value Std.Error  DF t-value p-value 

(Intercept) -304.227   232.026 357  -1.311   0.191 

UNEMP03      102.161    40.771  49   2.506   0.016 

> TDAT<-aggregate(gdp.univ[,c("UNEMP03","GDP")], 

+                 list(gdp.univ$STATE),mean) 

> names(TDAT) 

[1] "Group.1" "UNEMP03" "GDP"     

> nrow(TDAT) 

[1] 51 

> mod.ols<-lm(GDP~UNEMP03,TDAT) 

> round(summary(mod.ols)$coef,dig=3) 
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            Estimate Std. Error t value Pr(>|t|) 

(Intercept) -304.227    232.026  -1.311    0.196 

UNEMP03      102.161     40.771   2.506    0.016 

When we omit TIME, TRANS and POST, we see that States with higher unemployment 

in 2003 also had higher average GDP when we collapse across all eight measurement occasions. 

The important point in interpreting the mixed-effect model, however, is that the estimates and 

standard errors are identical to a simple OLS regression model based on 51 observations where 

we explicitly averaged GDP over time using the aggregate function. 

Hypothesis 6 states that unemployment in 2003 will be related to the post-2008 slopes. In 

the DGM, this phase of the analysis tends to be most complex and to require estimating multiple 

comparative models. We provide several alternative ideas for how to approach this phase. 

Given the nature of our hypothesis, a logical starting point would be to estimate a simple 

growth model using only POST and restricting the model to the last four observations. 

> mod.post<-lme(GDP~POST*UNEMP03, 

+               random=~POST|STATE,gdp.univ, 

+               control=list(opt="optim"),subset=TIME>=4) 

> round(summary(mod.post)$tTable,dig=3) 

                Value Std.Error  DF t-value p-value 

(Intercept)  -310.690   237.936 151  -1.306   0.194 

POST           -7.149     5.969 151  -1.198   0.233 

UNEMP03       104.339    41.810  49   2.496   0.016 

POST:UNEMP03    2.316     1.049 151   2.208   0.029 
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Notice the use of the subset option and the significant interaction between the POST 

trajectory and unemployment. Figure 1 suggests a finding opposite our hypothesis showing that 

States with high unemployment in 2003 (one SD above the mean at 6.66) actually increase 

slightly faster in terms of GDP post 2008 than states with low unemployment (one SD below the 

mean at 4.53). Figure 1 also shows a surprisingly large difference between States 1 SD below the 

mean relative to States 1 SD above the mean on unemployment (over 200). This large difference, 

given the non-significant main effect parameter estimate of 10.7 (from a main effect model), is 

an artifact of the non-normally distributed dependent variable and is further indication that these 

raw data violate assumptions of the mixed-effects model. 

 

 

 

 

Figure 25.1. Interaction with unemployment post-event only 
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The advantage to estimating a partial model based on only the data associated with the 

POST event period is that the results provide a way to evaluate the findings using all the data and 

the full specification of the DGM. Below we estimate a model based on all time points, but 

which includes only one two-way interaction term involving POST:UNEMP03. Notice that the 

interaction is non-significant. The fact that the interaction is significant when based only on the 

subset of the last four time periods, but is non-significant when based on the full data suggests 

that the model with the full data is miss-specified. Note that we use TIME.A to estimate absolute 

effects because our hypothesis centers on whether the unemployment and post-event trajectory 

interaction is significant not whether it differs from the pre-event estimates in any relative way. 

> mod.post.2<-lme(GDP~UNEMP03+TIME.A+TRANS+POST*UNEMP03, 

+            random=~TIME.A+TRANS+POST|STATE,gdp.univ, 

+            control=list(opt="optim")) 

> round(summary(mod.post.2)$tTable,dig=3) 
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               Value Std.Error  DF t-value p-value 

(Intercept)  177.267    74.641 353   2.375   0.018 

UNEMP03        9.680    11.426  49   0.847   0.401 

TIME.A        14.167     2.739 353   5.171   0.000 

TRANS         -1.110     1.789 353  -0.620   0.535 

POST           3.003     3.700 353   0.812   0.418 

UNEMP03:POST   0.501     0.633 353   0.791   0.429 

An alternative model includes all two-way interactions involving time-varying covariates 

and unemployment. In this model we recover the estimate for the interaction slope (2.316) 

identified when we focused only on the post-event slope. 

> mod.full.a<-lme(GDP~UNEMP03+TIME.A*UNEMP03+TRANS*UNEMP03+POST*UNEM

P03, 

+            random=~TIME.A+TRANS+POST|STATE,gdp.univ, 

+            control=list(opt="optim")) 

> round(summary(mod.full.a)$tTable,dig=3) 

                  Value Std.Error  DF t-value p-value 

(Intercept)    -259.271   200.092 351  -1.296   0.196 

UNEMP03          87.743    35.160  49   2.496   0.016 

TIME.A          -18.513    14.136 351  -1.310   0.191 

TRANS             4.120     9.708 351   0.424   0.672 

POST             -7.149     5.687 351  -1.257   0.210 

UNEMP03:TIME.A    5.844     2.484 351   2.353   0.019 

UNEMP03:TRANS    -0.935     1.706 351  -0.548   0.584 
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UNEMP03:POST      2.316     0.999 351   2.318   0.021 

We might consider dropping the interaction between TRANS and unemployment to 

simplify the model leaving two 2-way interactions in the model. As shown in a variant of the 

model that omits the interaction involving TRANS, the other two interactions remain significant 

with slightly altered estimates. 

> tmod<-lme(GDP~TIME.A*UNEMP03+TRANS+POST*UNEMP03, 

+            random=~TIME.A+TRANS+POST|STATE,gdp.univ, 

+            control=list(opt="optim")) 

> round(summary(tmod)$tTable,dig=3) 

                  Value Std.Error  DF t-value p-value 

(Intercept)    -227.512   190.965 352  -1.191   0.234 

TIME.A          -16.280    13.511 352  -1.205   0.229 

UNEMP03          82.064    33.502  49   2.449   0.018 

TRANS            -1.110     1.778 352  -0.624   0.533 

POST             -6.314     5.494 352  -1.149   0.251 

TIME.A:UNEMP03    5.445     2.370 352   2.297   0.022 

UNEMP03:POST      2.167     0.964 352   2.247   0.025 

 Finally, it is worth reviewing the model based on TIME.A versus the models based on 

TIME in the context of the two-way interactions. A model based on TIME provides a test of 

whether the form of the interaction involving POST:UNEMP03 differs from the form of the 

interaction involving TIME:UNEMP03. In the output below, we repeat the model based on 

TIME.A followed by the model based on TIME. 
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> mod.full.a<-lme(GDP~UNEMP03+TIME.A*UNEMP03+TRANS*UNEMP03+POST*UNEM

P03, 

+            random=~TIME.A+TRANS+POST|STATE,gdp.univ, 

+            control=list(opt="optim")) 

> round(summary(mod.full.a)$tTable,dig=3) 

                  Value Std.Error  DF t-value p-value 

(Intercept)    -259.271   200.092 351  -1.296   0.196 

UNEMP03          87.743    35.160  49   2.496   0.016 

TIME.A          -18.513    14.136 351  -1.310   0.191 

TRANS             4.120     9.708 351   0.424   0.672 

POST             -7.149     5.687 351  -1.257   0.210 

UNEMP03:TIME.A    5.844     2.484 351   2.353   0.019 

UNEMP03:TRANS    -0.935     1.706 351  -0.548   0.584 

UNEMP03:POST      2.316     0.999 351   2.318   0.021 

> mod.full<-lme(GDP~UNEMP03+TIME*UNEMP03+TRANS*UNEMP03+POST*UNEMP03

, +            random=~TIME+TRANS+POST|STATE,gdp.univ, 

+            control=list(opt="optim")) 

> round(summary(mod.full)$tTable,dig=3) 

                 Value Std.Error  DF t-value p-value 

(Intercept)   -259.271   199.955 351  -1.297   0.196 

UNEMP03         87.743    35.136  49   2.497   0.016 

TIME           -18.513    14.133 351  -1.310   0.191 

TRANS           22.633    19.343 351   1.170   0.243 
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POST            11.364    10.386 351   1.094   0.275 

UNEMP03:TIME     5.844     2.483 351   2.353   0.019 

UNEMP03:TRANS   -6.779     3.399 351  -1.995   0.047 

UNEMP03:POST    -3.528     1.825 351  -1.933   0.054 

Notice that the interaction value for UNEMP03:TIME is the same in both models at 

5.844. In contrast, the estimate for UNEMP03:POST is -3.528 in the model based on TIME 

instead of TIME.A, representing the difference between 5.844 and 2.316 from the absolute 

model. When using TIME, we are testing whether the form of the two-way interaction differs pre 

and post event (see also Bliese & Lang, 2016). In Figure 2 we can see that the interaction 

between TIME and UNEMP03 is more pronounced than the interaction between POST and 

UNEMP03 and this difference between the interactions is captured in the relative test. 

 

Figure 25.2. Predicted values and interactions full model 
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Alternative Models and Practical Advice 

We conclude this section by discussing some alternative models and offering practical advice on 

identifying models. First, as noted in Bliese and Lang (2016) and Singer and Willett (2003) 

different forms of discontinuity may be captured by using combinations of two time-varying 

covariates (TIME and TRANS or TIME and POST) rather than all three time-varying covariates. 

Using just TIME and TRANS estimates a model where the pre and post event slopes are held 

constant but where a distinct increase or decrease occurs at the transition point. Using just TIME 

and POST specifies a model where the slope changes at the transition point, but where no 

immediate increase or decrease occurs. Often one of these two alternatives may be as good as or 

better than the model with all three time-varying covariates. We have found, for instance, that 

models based on TIME and POST often fit the data well and are conceptually logical (an event 

starts changing a trajectory but does not immediately cause a change). Bliese and Lang (2016) 

0

100

200

300

400

500

1 2 3 4 5 6 7 8

G
D

P

TIME

Interactions Full Model

High Unemployment
Low Unemployment



DGM Models 44 
 

provide some suggestions on how to compare models with and without the full set of time-

varying covariates, but the decision ultimately comes down to whether one of the alternatives 

can be supported on theoretical grounds and knowledge about the underlying change process. 

Second, as previously discussed we have found that it is often difficult to determine the 

exact nature of the random variability in the time-varying covariates. In our example, the 

comparison of -2log likelihood tests clearly suggested that data contained random variability in 

TIME, TRANS and POST. In our experience with other data sets, however, this type of clarity is 

rare because terms tend to be confounded with each other. For instance, a large variance estimate 

for TRANS suggests that some entities responded quite differently to the event than did other 

entities. A large change at TRANS, though, is then likely to cause the initial value of POST to 

begin at different places for each higher-level entity which can then lead to large differences in 

the POST slope.  

We want to again emphasize that we often estimate several alternative models to 

determine which time-related covariates need to be specified as random effects. There are 

multiple options for specifying random effects to include or omit in the correlations among 

random terms that can help uncover the nature of the random variability. We reiterate that a 

guiding principal is to attempt to minimize the number of terms in the random statement. That is, 

it can be tempting to include as many random effects as possible, but our experience is that fewer 

is better. At a practical level, we also sometimes simply revert back to the random intercept 

model even when running interactions involving TIME, TRANS or POST with the idea that 

effects should be robust to various model specifications. 

Third, we find that identifying cross-level interactions is often challenging. As we 

showed, even if a research hypothesis only centers on an interaction involving POST, it may be 
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necessary to include other interactions to avoid a miss-specified model. One solution we offer is 

to break the sample into segments and test smaller models to ensure that the final model is 

congruent with the subset model. Sub-setting the full dataset works fine for trends and could be 

used in our example for both TIME and POST. We do not have a strategy on how to estimate a 

subset model for TRANS as this term is highly influenced by TIME and POST trends and 

therefore hard to isolate. 

Fourth, we encourage researchers to plot model-based estimates. Plots may be 

particularly informative with respect to TRANS to show whether a clear change occurs at the 

time of the event. Plots can be created in R, but we often simply copy predicted values to 

EXCEL. For example, the code below was used to obtain high and low values for unemployment 

and plot values for Figure 2. The last line of code writes the predicted values to the Windows 

clipboard so they can be pasted into EXCEL. 

> mod.full<-lme(GDP~UNEMP03+TIME*UNEMP03+TRANS*UNEMP03+POST*UNEMP03

, +               random=~TIME+TRANS+POST|STATE,gdp.univ, 

+               control=list(opt="optim")) 

> #Create dataframe with high unemployment 

> TDAT.H<-gdp.univ[1:8,c("TIME","TIME.A","TRANS","POST")] 

> TDAT.H$UNEMP03<-mean(gdp$UNEMP03)+sd(gdp$UNEMP03) 

> TDAT.H 

    TIME TIME.A TRANS POST  UNEMP03 

1      0      0     0    0 6.658336 

1.1    1      1     0    0 6.658336 

1.2    2      2     0    0 6.658336 
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1.3    3      3     0    0 6.658336 

1.4    4      3     1    0 6.658336 

1.5    5      3     1    1 6.658336 

1.6    6      3     1    2 6.658336 

1.7    7      3     1    3 6.658336 

> #Create dataframe with low unemployment 

> TDAT.L<-gdp.univ[1:8,c("TIME","TIME.A","TRANS","POST")] 

> TDAT.L$UNEMP03<-mean(gdp$UNEMP03)-sd(gdp$UNEMP03) 

> TDAT.L 

    TIME TIME.A TRANS POST  UNEMP03 

1      0      0     0    0 4.525978 

1.1    1      1     0    0 4.525978 

1.2    2      2     0    0 4.525978 

1.3    3      3     0    0 4.525978 

1.4    4      3     1    0 4.525978 

1.5    5      3     1    1 4.525978 

1.6    6      3     1    2 4.525978 

1.7    7      3     1    3 4.525978 

> PRED.VALS<-data.frame(TIME=1:8,HI.UNEMP=predict(mod.full,TDAT.H,level=0), 

+                       LO.UNEMP=predict(mod.full,TDAT.L,level=0)) 

> PRED.VALS 

  TIME HI.UNEMP LO.UNEMP 

1    1 324.9518 137.8522 
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2    2 345.3490 145.7882 

3    3 365.7463 153.7243 

4    4 386.1436 161.6604 

5    5 384.0367 161.5476 

6    6 392.3078 164.8804 

7    7 400.5790 168.2132 

8    8 408.8502 171.5459 

> write.table(PRED.VALS,file="clipboard",sep="\t",col.names=NA) 

Finally, with respect to practical advice, we emphasize the integration of theory with 

analytics. That is, carefully consider whether an included term or interaction term is theoretically 

necessary. For instance, if a randomized trial collects four waves of baseline data prior to 

randomly assigning participants to condition, then it may not make theoretical sense to include a 

TIME*Condition interaction because TIME precedes the random assignment and, thus, the 

initial slope cannot be caused by differences in condition. While it may seem prudent and 

conservative to include this interaction term (as a way to help ensure equivalence in random 

assignment), we have tended to find that the inclusion of this term produces a misspecified 

model. In short, our experience is that models provide the most clarity when random slopes and 

interactions involving time-varying covariates are kept to a minimum.  

 

AN R BASED TOOL FOR CREATING THE MODEL MATRIX 

In the examples provide up to this point, and in many situation where the DGM is used, setting 

up the design matrix of TIME, TRANS and POST is a simple programming exercise: we showed 

that researchers can start with TIME and program conditional statements to obtain TRANS and 
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POST. Unfortunately, there are many situations where the DGM might be useful but where the 

data is not uniformly organized around an event. For instance, if we are examining turnover and 

team-level data over 6 years, we would fully expect that the event (turnover) would not occur at 

the same time for each team. In this case, we need to set up a design matrix where TIME, 

TRANS and POST potentially differ for each higher-level entity. An example of such data is 

presented in Table 25.6. Notice that turnover occurs at TIME 3 for TEAM 1, at TIME 1 for 

TEAM 2, and at TIME 4 for TEAM 3. 

 

Table 25.6. Discontinuous events at different times 

TEAM TIME TURNOVER PERF 

1 0 0 1.00 

1 1 0 2.00 

1 2 0 3.00 

1 3 1 2.00 

1 4 0 4.00 

1 5 0 5.00 

2 0 0 0.95 

2 1 1 0.00 

2 2 0 2.05 

2 3 0 2.92 

2 4 0 3.96 

2 5 0 5.06 

3 0 0 1.08 
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3 1 0 1.97 

3 2 0 3.03 

3 3 0 4.01 

3 4 1 3.00 

3 5 0 5.01 

The Appendix provides an R code function (dgm.code) to automate creating the design 

matrix. At a minimum, three parameters are provided to the function: the higher-level entity 

(grp), the time variable (time) and a vector of 0’s and 1’s for when the event occurs. In the data 

provided in Table 25.6, the call to dgm.code would be: 

> dgm.matrix<-with(TABLE6.DAT,dgm.code(TEAM, TIME, TURNOVER)) 

> dgm.matrix 

   grp time event trans1 post1 time.a tot.events event.first 

1    1    0     0      0     0      0          1           0 

2    1    1     0      0     0      1          1           0 

3    1    2     0      0     0      2          1           0 

4    1    3     1      1     0      2          1           0 

5    1    4     0      1     1      2          1           0 

6    1    5     0      1     2      2          1           0 

7    2    0     0      0     0      0          1           0 

8    2    1     1      1     0      0          1           0 

9    2    2     0      1     1      0          1           0 

10   2    3     0      1     2      0          1           0 

11   2    4     0      1     3      0          1           0 
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12   2    5     0      1     4      0          1           0 

13   3    0     0      0     0      0          1           0 

14   3    1     0      0     0      1          1           0 

15   3    2     0      0     0      2          1           0 

16   3    3     0      0     0      3          1           0 

17   3    4     1      1     0      3          1           0 

18   3    5     0      1     1      3          1           0 

In the current version of the dgm.code the variable names will always be those listed 

above (e.g., “grp”, “time”, “event”, etc.). Notice that trans1 and post1 differ for each of the 

groups. Also notice that the code provides a column for tot.events (total count of events) and 

event.first (which returns a 1 if the event at the first time point). Additional options to the 

dgm.code allow users to restrict the total number of events to the first set number of occurrences 

and/or to ignore the event if it occurs at the first time period. If multiple events occur and are of 

interest, the dgm.code will create transN and postN matrices to correspond to the multiple events 

based on the specifications presented in Bliese and Lang (2016). Interested readers can refer to 

the Open Science Foundation site ( https://osf.io/d4xmw/) for the function and additional 

examples of how to use the dgm.code options. 

 For the purposes of creating a dataset to run substantive modeling, the dgm.matrix object 

needs to be merged back with the original dataset (TABLE6.DAT) in this case. The merge code 

is: 

> TABLE6.FINAL<-merge(TABLE6.DAT,dgm.matrix,by.x=c("TEAM","TIME"), 

+                     by.y=c("grp","time")) 
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In this example, as long as the dgm.matrix is the second object in the merge command, 

the by.y=c("grp","time")option will remain the same and users only need to change the names of 

the grouping variable and the time variable in the original dataset. 

 Ultimately, no automated tool should be used without a thorough understanding of the 

data. Even with the use of this tool, users will have to check the data. That said, users may decide 

on a specific set of principles (e.g., only examine patterns in higher level entities where the at 

least 3 time periods proceeded the event and where at least 3 time periods follow an event and/or 

only model up to 2 event occurrences). If these types of principles are established, then the 

subset of data meeting the criteria can be provided to the dgm.code function and the automated 

creation of the necessary time variants should still facilitate data analyses. 

 

CONCLUSIONS 

In this chapter we have provided details and practical advice related to estimating the DGM. We 

believe that the DGM represents a valuable tool for researchers interested in understanding 

change over time when some type of event potentially disrupts the change process. In our minds, 

one of the strengths of the DGM approach is that the components of the model allow for clear 

and precise theoretical specification about how events impact change over time (immediate 

impact associated with the transition or a change in slope following the event or both). The 

models also provide a way to specify whether change is considered relative to pre-event 

trajectories or absolute. As noted elsewhere, the precision associated with the DGM has the 

potential to help advance theory on many important topics such as adaptability and resilience 

(Bliese, et al., 2017). 
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 While the basic form of the DGM is relatively simple to specify in terms of adding more 

time-varying covariates, we have also shown that researchers need to carefully approach model 

building and model testing. The ability to add random slopes for numerous time-varying 

covariates is a strength of the approach but can quickly produce models that are over-fit and 

miss-specified. At the same time, including unnecessary interaction terms or conversely omitting 

terms that should be included can lead to model misspecification. The issues we raise with 

respect to fitting models are not specifically unique to the DGM because all relatively complex 

statistical models risk being over-fit or miss-specified. With respect to the DGM, however, we 

have attempted to provide numerous alternatives and recommendations for helping users fit 

models. Our overall recommendations are to (a) specify models that use fewer (rather than more) 

random terms, (b) test alternative models by potentially sub-setting parts of the temporal 

sequence to determine the robustness of findings, and (c) to plot out predicted values from the 

models to help understand the nature of change over time. 
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APPENDIX: R CODE FOR DGM DESIGN MATRIX 

 

dgm.code<-function(grp,time,event,n.events=FALSE,first.obs=FALSE){ 

#ensure data structure is correct 

  newdata<-data.frame(grp=grp,time=time,event=event) 

  newdata<-na.exclude(newdata) 

  newdata<-newdata[order(newdata$grp,newdata$time),] 

  

#If first observation is an event and first.obs is TRUE 

#change the first observation to a non-event 

  if(first.obs){ 

  fobs.grps<-newdata$grp[!duplicated(newdata$grp)&(newdata$event==1)] 

  #print(fobs.grps) 

  newdata$event[!duplicated(newdata$grp)&(newdata$event==1)]<-0 

  } 

  

#Check to see if first observation is an event 

  s.event<-nrow(newdata[!duplicated(newdata$grp)&(newdata$event==1),]) 

  if(s.event>0){ 

  print("The following groups start with an event") 

  print(newdata[!duplicated(newdata$grp)&(newdata$event==1),]) 

  print("Drop the groups or use the first.obs=TRUE option") 

  stop()  
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} 

  

#count the maximum number of events for any group 

  max.events<-max(with(newdata,tapply(event,grp,sum))) 

  n.grps<-length(unique(newdata$grp)) 

  

#adjust the maximum number of events to a specified level 

if(n.events){ 

  max.events=n.events 

  } 

  

# Set up the structure for the output 

  ANS<-matrix(0,nrow(newdata),ncol=max.events*2) 

  ANS<-data.frame(ANS) 

  names(ANS)<-c(paste0("trans",c(1:max.events)),paste0("post",c(1:max.events))) 

  ANS<-data.frame(ANS,grp=newdata$grp,time=newdata$time,event=newdata$event) 

  g.size<-tapply(newdata$grp,newdata$grp,length) 

#  ANS$cum.event<-unlist(tapply(ANS$event,ANS$grp,cumsum)) 

  ANS$time.a<-ANS$time 

  ANS$cum.event<-do.call(c, tapply(ANS$event, ANS$grp, FUN=cumsum)) 

  ANS$num.grp<-rep(1:n.grps,times=g.size) #create a numeric group for loops 

  

# Add two check variables for total events and whether an event 
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# occured on the first occasion 

  ANS$tot.events<-NA 

  ANS$event.first<-0 

 

if(first.obs){ 

  ANS$event.first[ANS$grp%in%fobs.grps]<-1 

  } 

 

#collapse the number of events to a specified level 

if(n.events){ 

  ANS$cum.event<-ifelse(ANS$cum.event>n.events,n.events,ANS$cum.event) 

} 

  

# Set up a factor outside of the loop to get all levels 

  ANS$cum.event.f<-factor(ANS$cum.event,levels=c(0:max.events)) 

  

# Set up a loop to put values in trans and post variables 

# First skip groups with no events 

for(i in 1:n.grps){ 

  if(sum(ANS$event[ANS$num.grp==i])==0){ 

  ANS$tot.events[ANS$num.grp==i]<-0 

  next(i) 

} 
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# Use model.matrix to set up dummy codes for trans and post 

  ANS[ANS$num.grp==i,1:max.events]<-

model.matrix(~C(cum.event.f,contr.treatment),data=ANS[ANS$num.grp==i,])[,2:(max.events+1

)] 

  ANS[ANS$num.grp==i,(max.events+1):(2*max.events)]<-

model.matrix(~C(cum.event.f,contr.treatment),data=ANS[ANS$num.grp==i,])[,2:(max.events+1

)] 

if(max.events==1){ 

  ANS[ANS$num.grp==i,2]<-cumsum(ANS[ANS$num.grp==i,2])-1 

} 

if(max.events>1){ 

  ANS[ANS$num.grp==i,(max.events+1):(2*max.events)]<-

apply(ANS[ANS$num.grp==i,(max.events+1):(2*max.events)],2,cumsum)-1 

} 

  ANS$time.a[ANS$num.grp==i]<-

ifelse(ANS$cum.event[ANS$num.grp==i]==0,ANS$time[ANS$num.grp==i],NA) 

  ANS$time.a[is.na(ANS$time.a)&ANS$num.grp==i]<-

max(ANS$time.a[!is.na(ANS$time.a)&ANS$num.grp==i]) 

  ANS$tot.events[ANS$num.grp==i]<-sum(ANS$event[ANS$num.grp==i]) 

next(i) 

} 

# Clean up the ANS matrix column by column 

# print(ANS) to see the structure of the previous loop 
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for(j in 1:max.events){ 

  ANS[,max.events+j]<-ifelse(ANS[,j]==0,0,ANS[,max.events+j]) 

  next(j) 

  } 

  

#rearrange the ANS matrix for output 

#print(ANS[1:30,]) to see the first 30 rows of complete data 

ANS[,c((max.events*2)+1:3,1:(max.events*2),(max.events*2)+c(4,7,8))] 

} 

 


