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Recently, pedestrian detection using visible-thermal pairs plays a key role in around-the-clock applications,
such as public surveillance and autonomous driving. However, the performance of a well-trained pedestrian
detector may drop significantly when it is applied to a new scenario. Normally, to achieve a good performance
on the new scenario, manual annotation of the dataset is necessary, while it is costly and unscalable. In this
work, an unsupervised transfer learning framework is proposed for visible-thermal pedestrian detection tasks.
Given well-trained detectors from a source dataset, the proposed framework utilizes an iterative process to
generate and fuse training labels automatically, with the help of two auxiliary single-modality detectors (visible
and thermal). To achieve label fusion, the knowledge of daytime and nighttime is adopted to assign priorities
to labels according to their illumination, which improves the quality of generated training labels. After each
iteration, the existing detectors are updated using new training labels. Experimental results demonstrate that
the proposed method obtains state-of-the-art performance without any manual training labels on the target
dataset.
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→ Neural networks.

Additional Key Words and Phrases: Pedestrian detection, Unsupervised transfer learning, Domain adaption,
Deep neural networks

ACM Reference Format:
Chengjin Lyu, Patrick Heyer, Asad Munir, Ljiljana Platisa, Christian Micheloni, Bart Goossens, and Wilfried
Philips. 2021. Visible-Thermal Pedestrian Detection via Unsupervised Transfer Learning. In 2021 the 5th
International Conference on Innovation in Artificial Intelligence (ICIAI 2021), March 5–8, 2021, Xia men, China.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3461353.3461369

1 INTRODUCTION
Pedestrian detection, known as a sub-problem of general object detection, has attracted great
attention in recent years. Meanwhile, it has been widely used in various applications, such as video
surveillance [20], care for the elderly [19] and autonomous driving [22]. Despite the achievements of
deep convolutional neural networks (DCNNs) [1, 8], a pedestrian detector built on a single camera
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might fail to work in some challenging real-world scenarios, where there are various illumination
situations, shadows and weather conditions.

To overcome the limitation of a single camera, it is useful to adopt dual-camera systems where
a visible and thermal camera pair could supply multimodal complementary information for bet-
ter detection performance [10]. In particular, a visible camera could capture the detailed visual
appearances of pedestrians under good illumination situations. Nevertheless, a detector built for
visible images is easy to fail when the illumination level is low. Different from visible cameras
which are similar to human eyes, thermal cameras are specially designed to sense infrared radiation.
The nature of thermal imaging makes it possible to measure the temperature differences in the
sensing range. For pedestrian detection, thermal images could provide robust shape information of
a pedestrian against various illumination conditions, by distinguishing it from the background’s
thermal emission. However, compared to visible cameras, thermal cameras usually provide fewer
details and are more sensitive to the environment’s temperature. By combining the advantages of
both visible and thermal cameras, visible-thermal fused pedestrian detectors are able to achieve
better around-the-clock applications, under various illumination and weather conditions.

Although well-trained detectors based on DCNNs have already obtained significant performance
[11, 12, 14], it is still very challenging to deploy an existing detector directly to new scenarios.
Technically speaking, an ideal detector is supposed to have a good generalization ability and perform
well across different datasets. However, well-generalizing detectors are not always available in
real practice, where the camera sensors and locations of deployment might affect the properties
of acquired data. There is still a performance gap between detectors trained on the target dataset
and those trained on the source without transfer [4]. Therefore, human annotation of a dataset
on the new scenario is always necessary for visible-thermal pedestrian detection, while it is both
time-consuming and labor-intensive.

To tackle this issue, we propose an unsupervised transfer learning framework for visible-thermal
pedestrian detection. The framework is designed to transfer well-trained detectors from a source
dataset to the target without any manual annotations, without much performance loss. Thus, an
existing detector can be easily inserted into the framework and realize a quick deployment in a
new scenario. Our main contributions in this work are as follows:

(1) An iterative process is proposed to transfer an existing visible-thermal detector automatically
with the help of two single-modality (visible and thermal) auxiliary detectors. During the
iteration, pseudo training labels from different modalities are fused and the detectors are
updated based on the generated labels.

(2) A label fusion strategy is presented, where the knowledge of daytime and nighttime is utilized
to determine the fusion priorities of the labels from different modalities under different
illumination situations.

(3) Experimental evaluation is conducted on the large-scale KAIST dataset [10]. The results show
that our proposed method outperforms the existing state-of-the-art method and does not
drop too much compared with detectors trained on manual annotations.

2 RELATEDWORK
In this section, we review the related researches in the areas of visible-thermal pedestrian detection
and unsupervised transfer learning.

Visible-thermal pedestrian detection. Similar to many tasks in computer vision, the research
of visible-thermal pedestrian detection is data-driven. An early dataset in this area is OSU Color-
Thermal Database [3], where background subtraction is used to generate region proposals for
moving pedestrians. With the release of large-scale datasets (e.g., KAIST [10] and CVC-14 [5]) and
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a great success of DCNNs, research on visible-thermal pedestrian detection dramatically increases.
Faster R-CNN [16] is one of the most popular DCNN-based object detection methods and has
become the widely used basis of visible-thermal pedestrian detectors. Liu et al. [14] first adapted
Faster R-CNN and designed four architectures to fuse visible and thermal modalities in different
stages. Among the four methods, Halfway Fusion provides the best performance. König et al.
[11] replaced the classification network in Faster R-CNN with a Boosted Decision Trees (BDT)
classifier to reduce the number of false positives. Illumination-aware weighting mechanism and
semantic segmentation for visible-thermal pedestrian detection are explored in [6, 12], which could
supervise the training progress in a more explicit way. Recently, to achieve a more fine-grained
fusion, attention mechanisms that build connections between two modalities at multiple layers are
investigated in [24, 25]. Most recently, Zhang et al. [23] proposed a new fusion method that could
cyclically assign features from each modality as residuals for refinement. It is worth mentioning
that the method is implemented on the single stage detector FSSD [13] rather than Faster R-CNN
and trained with an auxiliary semantic segmentation layer.

Unsupervised transfer learning. Similar to traditional machine learning approaches, DCNN-
based methods are sensitive to the difference between the source and target data. Generally, the
need for transfer learning occurs when there is a limited supply of labeled target training data,
due to the data being expensive to label or easy to leak privacy [21]. In this paper, unsupervised
transfer learning is defined as the case of having no labeled training target data. Although there
are numerous applications of unsupervised transfer learning in image classification [15], it is still
quite challenging to perform unsupervised transfer learning on object detection, which is a more
complicated task consisting of both localization and classification [9]. Specially, in the area of
visible-thermal pedestrian detection, there are usually significant gaps between the source and
target domain, owing to illumination, weather and camera sensor differences. Cao et al. [2] proposed
an auto-annotation framework to generate pseudo training labels iteratively. Their framework could
adapt a generic pedestrian detector to visible-thermal scenes without human annotation. Recently,
Guan et al. [7] designed an unsupervised method to transfer a visible-thermal detector trained on a
source dataset to the target. The method applies a special design of joint training of pedestrian
detection and semantic segmentation, and the final outputs are full-size heat maps instead of
regular bounding boxes. Motivated by these two works, we propose a unified framework to perform
unsupervised transfer learning for visible-thermal pedestrian detection in this paper. With the help
of single-modality auxiliary detectors and daytime/nighttime information, an existing multimodal
detector could be easily adapted to a new scenario. A detailed description of the framework could
be found in Section 3.

3 METHODOLOGY
3.1 Framework Overview
Let 𝐷𝑠 denote a source domain with data and annotations (𝑋𝑠 , 𝑌𝑠 ) and 𝐷𝑡 denote the target domain
with only data 𝑋𝑡 , where manual annotations 𝑌𝑡 on 𝑋𝑡 are unavailable. Specifically, source data
from visible and thermal cameras are denoted as 𝑋𝑉

𝑠 and 𝑋𝑇
𝑠 , respectively. Our task in this work is

to transfer a fusion detector Θ𝐹 well-trained on a source domain 𝐷𝑠 to the target 𝐷𝑡 without 𝑌𝑡 ,
leveraged by single-modality auxiliary (i.e., visibleΘ𝑉 and thermalΘ𝑇 ) detectors and the knowledge
of daytime and nighttime.

The overview of our proposed framework is shown in Fig. 1. Firstly, visible and thermal detectors
are trained on source visible data 𝑋𝑉

𝑠 and thermal data 𝑋𝑇
𝑠 , respectively, while visible-thermal

fusion detector is trained on multimodal data 𝑋𝑠 = {𝑋𝑉
𝑠 , 𝑋

𝑇
𝑠 }. Then, the initial pseudo training

labels 𝑌 0
𝑡 on 𝐷𝑡 are generated by directly applying Θ𝑉

𝑠 and Θ𝑇
𝑠 on target data 𝑋𝑉

𝑡 and 𝑋𝑇
𝑡 , where
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Fig. 1. Illustration of the proposed transfer learning framework. Two single-modality auxiliary detectors,
i.e., visible and thermal detectors, are firstly used to generate pseudo training labels on the target dataset.
With the help of daytime and nighttime information, the framework disables the visible detector when the
illumination level is low (nighttime). Then fused labels are utilized to update all the existing detectors (fusion
and auxiliary detectors), and the new training labels are generated iteratively.

the visible detector Θ𝑉
𝑠 only contributes pseudo labels on images captured in daytime where the

illumination is enough. Based on the initial labels𝑌 0
𝑡 on data𝑋𝑡 , detectors {Θ𝑉

𝑠 ,Θ
𝑇
𝑠 ,Θ

𝐹
𝑠 } are updated

to {Θ𝑉
𝑡 ,Θ

𝑇
𝑡 ,Θ

𝐹
𝑡 } to fit into the new scenario. Afterward, all these three detectors are utilized to

generate new training labels and themselves are updated iteratively. During the iterative process,
illumination information is also used to determine the fusion priorities of labels from different
modalities.
In this work, two visible-thermal fusion detectors are adopted, which are illustrated in Section

3.2. The label fusion operation is described in Section 3.3. The detailed information about how the
iterative process works is given in Section 3.4.

3.2 Fusion Detectors
Here, two visible-thermal fusion detectors are adopted to fuse complementary information from
two modalities, which could obtain better pedestrian detection performances compared to single-
modality methods. Specifically, the widely used Faster R-CNN [16] based on the VGG16 architecture
[18] is used to construct fusion detectors. An illustration of the detectors is given in Fig. 2.
Similar to Halfway Fusion [14], Feature-Map Fusion concatenates feature maps from visible

and thermal modalities, where a 1 × 1 convolutional layer named Network-in-Network (NIN) is
applied to reduce the dimension. Different from Halfway Fusion which fuses features after conv4
layers, Feature-Map Fusion is built on top of conv5 layers. It is straightforward that the fusion of
independent feature maps of two modalities could make the detector focus on a bit more high-level
features. The experimental results in Section 4.2 validate its effectiveness.

3.3 Label Fusion
Generally, a visible camera is sensitive to the illumination of the sensed environment and a visible-
only detector always fails when the illumination is not good. According to the [12], fusion detectors
could generate better results than any single-modality detectors during daytime, while the visible
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Fig. 2. Architectures of two fusion networks used in this paper. Feature-Map Fusion has a similar fusion
strategy to Halfway Fusion [14], where the features from different modalities are concatenated and Network-
in-Network (NIN) is used to reduce the dimension. The difference is that the fusion operation in Feature-Map
Fusion happens after the extraction of single-modality feature maps.

detector outperforms the thermal slightly. As for the nighttime, they found that the visible detector
becomes unreliable and the thermal detector surpasses the tested fusion detectors slightly.

Motivated by the above findings, a label fusion strategy based on the knowledge of illumination
is adopted to generate the best fused labels from different modalities. Considering the ambiguous
definition of illumination for pedestrian detection, we simply take the daytime/nighttime informa-
tion as the binary classes of illumination, where images captured in daytime are treated as having a
good illumination level. When the candidate labels from different modalities have bounding boxes
with an Intersection Over Union (IoU) greater than 0.5, their priorities decide which bounding box
can be kept as the final one. For images captured in daytime, labels from the fusion detector have
the highest priority and those from the thermal detector are assigned with the lowest priority, By
contrast, the visible detector gets blocked by the framework and labels from the thermal detector
take a higher priority with nighttime images whose illumination level is low.

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =

{
𝐹 > 𝑉 > 𝑇 in daytime
𝑇 > 𝐹 in nighttime

(1)

Specially, in the initialization phase to be mentioned in Section 3.4, the fusion detector does not
take part in the generation of training labels. Thus, labels from the visible detector take a higher
priority than those from the thermal detector for daytime images, and only the thermal detector
generates labels for nighttime images.

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =

{
𝑉 > 𝑇 in daytime
𝑇 in nighttime

(2)

3.4 Iterative Process
In order to transfer from a source visible-thermal dataset𝑋𝑠 = {𝑋𝑉

𝑠 , 𝑋
𝑇
𝑠 } to the target𝑋𝑡 = {𝑋𝑉

𝑡 , 𝑋
𝑇
𝑡 },

auxiliary detectors {Θ𝑉
𝑠 ,Θ

𝑇
𝑠 } that specialize on single modalities are adopted to generate pseudo
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initial training labels, while the adapted fusion detector Θ𝐹
𝑡 also contributes after the initialization.

In particular, the source dataset used in this work is CVC-14 [5] and the target is KAIST [10], which
are two large-scale visible-thermal pedestrian detection datasets. The reason for not using Θ𝐹

𝑠 in
the initialization is that the image pairs in CVC-14 suffer from the weakly alignments of the two
modalities which lead to many problematic detection results of a fusion detector. Thus, Θ𝐹

𝑠 is not
adopted in the initialization phase to avoid its unexpected false detection.
During the initialization and iteration phases, a detector Θ applied to the target training data

generates a set of detection results 𝑌 with confidence score 𝑃 . Only results with high confidence
scores are selected as candidate training labels:

𝑌 = {𝑦 ∈ 𝑌 : 𝑝 > 𝑝𝑡ℎ𝑟 } (3)

where 𝑝𝑡ℎ𝑟 is a confidence threshold. For example, in the initialization phase, we get two sets of
candidate labels: 𝑌𝑉 0

𝑡 and 𝑌𝑇 0
𝑡 . After the label fusion operation based on priorities (see Section 3.3),

the existing detectors are updated based on the generated training labels. In this work, we apply
the early stopping mechanism to avoid overfitting and save the computation time. The maximum
number of iterations is set to 2 empirically.

4 EXPERIMENTS
In this section, two public large-scale datasets KAIST [10] and CVC-14 [5] are used to conduct
experiments. Fusion detectors pre-trained on CVC-14 are transferred to KAIST without using any
manual annotations.

4.1 Experimental Setup
4.1.1 Dataset. KAIST is one ofmost popular visible-thermal pedestrian detection datasets covering
both daytime and nighttime scenarios, which contains well-aligned image pairs with a resolution
of 640 × 512. Following the setting in [12], a training set with 7,601 color-thermal image pairs
including both non-occluded and partially-occluded instances is adopted. During unsupervised
transfer learning, the manual annotations of training set are abandoned. The test set contains 2,252
images pairs sampled every 20th frame from videos, and its improved annotations provided by [14]
are used in this experiment to avoid unfair comparison due to problematic and missing bounding
boxes in the original test set. CVC-14 is another large-scale dataset containing visible-thermal
image pairs with a resolution of 640 × 480. The training set consists of 7,085 frames, while the
test set contains 1,433 frames. It is worth mentioning that the annotations are provided separately
in visible and thermal modalities, for the camera pair in CVC-14 is not well calibrated. In our
experiment, individual annotations are used to train the auxiliary single-modality detectors, and
the fusion detectors are trained with the annotations from thermal modality.

4.1.2 Implementation Details. All the detectors are implemented on Faster R-CNN [16] using
VGG16 [18] pre-trained on ImageNet dataset [17] to extract features in this experiment. We re-
implement Halfway Fusion [14] and insert it into the proposed framework. During the training
phase, horizontal flipping is adopted to perform data augmentation. The parameters of detectors
are optimized using stochastic gradient descent (SGD). For supervised training of detectors, we
train the networks with a learning rate (LR) of 0.001 for 4 epochs and decay it by 0.1 for another
2 epochs. In the unsupervised transfer learning phase, all the models are fine-tuned for the first
epoch with LR 0.001 and one more epoch with LR 0.0001. The confidence threshold 𝑝𝑡ℎ𝑟 is set to
0.9 in order to select the most confident labels into candidate training set.
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Table 1. Ablation Study of Fusion Detectors

Methods Miss Rate (lower, better)
All Daytime Nighttime

Pre-trained on CVC-14 without transfer:
Halfway Fusion 66.59% 63.76% 61.72%
Feature-Map Fusion 51.94% 53.83% 44.76%

Supervised training with original annotations:
Halfway Fusion 26.14% 24.08% 29.01%
Feature-Map Fusion 21.27% 18.63% 26.17%

Table 2. Ablation Study of Daytime/Nighttime Knowledge

Methods Miss Rate (lower, better)
All Daytime Nighttime

Without daytime/nighttime 34.50% 39.21% 24.49%
With daytime/nighttime 23.09% 24.55% 17.74%

4.1.3 Evaluation Metric. The detection performances are reported using log-average miss rate
(MR) over the range of [10−2, 100] false positive per image (FPPI). All the detection performances
demonstrated in this work are tested on KAIST dataset.

4.2 Ablation Study
Here, we first compare the performance of Halfway Fusion and Feature-Map Fusion and the
experimental results are given in Table 1. It shows that Feature-Map Fusion outperforms the
classic Halfway Fusion method no matter supervised trained on KAIST or pre-trained on CVC-14
without transfer, which validates the effectiveness of fusing individual feature maps from different
modalities. Next, an analytic experiment is carried out to investigate the influence of auxiliary
illumination information, using Feature-Map Fusion. Firstly, only fusion detector is used to generate
pseudo labels and update itself based on the generated annotations, which is the common way of
transferring a generic detector. Secondly, ground-truth daytime/nighttime knowledge is given, and
the iteration goes as Section 3.4 describes. In Table 2, the reported miss rate drops significantly in
both daytime and nighttime scenes.

4.3 Comparison with State-of-the-art
We compare the proposed method to the state-of-the-art unsupervised transfer learning method
U-TS-RPN [2], and report the supervised trained results of the widely used baseline Halfway
Fusion [14]. For U-TS-RPN, the pseudo training labels are provided by the original authors and the
results reported are fine-tuned with these labels using Feature-Map Fusion as the detector. The
experimental results in Table 3 show our framework is superior to the existing state-of-the-art.
What is more, compared to the detectors trained with manual annotations, the performance of
detectors via unsupervised transfer learning does not drop a lot. In particular, for nighttime images,
the performances of our method are significantly better (e.g., 17.74% vs 26.17% using Feature-Map
Fusion, 18.10% vs 29.01% using Halfway Fusion). Whereas, supervised trained detectors surpass
our method in the subset of daytime images. It is natural that human annotators are familiar with
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Table 3. Comparison With State-of-the-Art

Methods Miss Rate (lower, better)
All Daytime Nighttime

Supervised training with original annotations:
Halfway Fusion [14] 26.14% 24.08% 29.01%
Feature-Map Fusion 21.27% 18.63% 26.17%

Unsupervised transfer learning:
U-TS-RPN [2] 30.07% 31.59% 26.78%
Ours(Halfway Fusion) 27.44% 29.28% 18.10%
Ours(Feature-Map Fusion) 23.09% 24.55% 17.74%

(a) (b) (c) (d)

Fig. 3. Examples of pedestrian detection results on KAIST in daytime and nighttime conditions. (a) The
ground-truth bounding boxes. Detection results of (b) the detector pre-trained on CVC-14, (c) the detector
updated on KAIST using our proposed unsupervised transfer learning method and (d) the supervised training
detector on KAIST, where Feature-Map Fusion detector is adopted in all the three experiments.

daytime images and might pay more attention on visible images, leading to high-quality annotations
of daytime images. However, the labeling of nighttime scenes needs a knowledge of thermal spectral
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which is not inborn. In the improved test set [14] of KAIST used in this experiment, extra efforts
are made to solve the inaccurate annotation and missing labels under challenging situations,
resulting in a high-quality and fair test set. Thus, the comparison with detectors trained with
manual annotations of training test really validates the effectiveness of the proposed framework.
Example of some pedestrian detection results are shown in Fig. 3.

5 CONCLUSION
In this paper, a unified framework to perform unsupervised transfer learning for visible-thermal
pedestrian detection is proposed. With the help of auxiliary single-modality detectors and the
daytime/nighttime information, pseudo training labels from different modalities are fused to
generate high-quality training labels and the detectors are updated iteratively. An existing detector
could be inserted into this framework without any modifications, which makes it scalable and easy
to deploy. Experimental results on KAIST dataset demonstrate the effectiveness of our framework.
For the future work, an intermediate domain between the source and target domains generated by
adversarial learning methods could be used to reduce the distribution gap.
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