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ScienceDirect
Cytochrome P450 monooxygenases (P450s) play a key role in

the detoxification of phytochemicals in arthropod herbivores.

We present here an overview of recent progress in

understanding the breadth and specificity of gene expression

plasticity of P450s in response to phytochemicals. We discuss

experimental setups and new findings in mechanisms of P450

regulation. Whole genome transcriptomic analysis of arthropod

herbivores, either after direct administration of phytochemicals

or after host plant shifts, allowed to integrate various levels of

chemical complexity and lead to the unbiased identification of

responsive P450 genes. However, despite progress in

identification of inducible P450s, the link between induction

and metabolism is still largely unexplored, and to what extent

the overall response is biologically functional should be further

investigated. In the near future, such studies will be more

straightforward as forward and reverse genetic tools become

more readily available.
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Introduction
The interplay between phytophagous arthropods and

their host plants is often seen as a text-book example

of co-evolution and the driver of species diversification

[1], although this concept is sometimes also criticized [2].

Nevertheless, it is clear that an important part of the

interactions between arthropods and plants relies on the

recognition and response to phytochemicals (allelochem-

icals) produced by the plant to defend itself against

herbivory [1–3]. Gene expression changes in response

to phytochemicals and host shifts have been studied both

on the short-term, within a generation (induction), as well
www.sciencedirect.com 
as on the long-term (adaptation, genetic accommodation)

[4��]. Surprisingly, only few studies characterized gene

expression patterns both upon initial exposure and after

adaptation to new host plants [5,6,7�,8,9], with the current

consensus that, upon adaptation, mainly genes with

unknown function or genes involved in core metabolic

pathways show constitutive changes in expression,

whereas many detoxification-related genes exhibit

within-generation environmental plasticity [4��,5].
Therefore, there is little evidence that genes induced

upon initial exposure, become constitutively overex-

pressed after adaption, and thus overall patterns of

genetic accommodation in arthropod-plant interactions

are rare. The majority of transcriptome studies, however,

have only focused on induction and phenotypic plasticity,

that is, to what extent gene expression levels change in

direct response to phytochemicals, either by a complete

host shift, or by a more controlled direct exposure [4��].

The induction of P450 monooxygenases (P450s), a key

detoxification enzyme family, has been historically best

studied in this context [10], as it is known to metabolize

and detoxify a wide range of allelochemicals [11�]. Nev-

ertheless, compared to pesticide resistance, the functional

role of induction in adaptation is far less studied. Here, we

focus on recent findings and complement earlier work

investigating the response of P450s to phytochemicals, in

the light of currently available methodologies and with

special reference to experimental setup.

P450 transcriptional responses to
phytochemicals
The breadth and specificity of arthropod transcriptional

responses upon exposure to phytochemicals have been

investigated using either, (1) controlled administration (e.

g. via fumigation, artificial diet or leaf dip (Table 1), (2)

complete host plant shifts or (3) shifts between transgenic

or natural mutant plants differing in only a few allelo-

chemicals (overview per species is shown in Table 2,

while an overview and visualization of experimental set-

ups is given in Figure 1). These studies use different

technologies like RT-qPCR, microarray hybridization

and next-generation RNA sequencing (RNA-seq). The

experimental set-up overview in Table 2 indicates that

although RT-qPCR remains a popular tool for expression

validation, genome-wide transcriptomics using next-gen-

eration RNA-seq is now the method of choice, as it

became much more affordable. This allows to study
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Table 1

Phytochemical inducers of CYP genes in insects

Inducer P450s induced Reference

Alkaloids

Tomatine CYP6(AB60, AE14, B7)3, CYP4(L4, G75)4, CYP340AB14, CYP339A1M [13,40,67]

Nicotine CYP4(M1, M3)4

CYP6-like 53, CYP6CY33 [14,15,68]

Caffeine CYP6(A2, A8)3 + 9 Drosophila genes
CYP6-like 43, CYP6(A8, D5)3, CYP12D1M [68,69]

senita/saguaro cactus

alkaloids

CYP28(A1, A2, A3)3, CYP4D104

Chromenes

Precocene CYP15H12, CYP6(FD2, FE1, HL1)3, CYP409A13, CYP4C694 [28]

Derived from phenylpropanoid pathway

Cinnamic acid CYP6AE143

CYP9A403 [70]

Chlorogenic acid CYP6(B8, B9, B27, B28)3

Salicylic acid CYP6(B8, B9, B27, B28)3, CYP321A13

Tannic acid CYP6AE143

CYP6(CY19, CY22, DA1)3 [45]

Flavonoids

Flavone CYP6(B8, B9, B27, B28)3, CYP321A13

CYP6-like(2, 5)3, CYP6AB143, EE600001 [68,71]

Quercetin CYP6B83

CYP15H22, CYP6-like(1, 5)3, CYP6(AE10, B6, CY19, CY22)3, CYP9(A11, A40)3,

CYP321A83, CYP337B13, CYP4C804, CYP301A1M
[28,38,45,68,70,72]

Rutin CYP6(B8, B27, B28)3

CYP6(AB5, K1)3, CYP9E13 [27,73]

B-naphtoflavone CYP6B83, CYP321A13

Coumarins

Coumarin CYP6B83, CYP321A13

CYP6(AB14, AB60)3 [40,71]

Furanocoumarin CYP6(AE14, B1, B3, B4, B8, B9, B17, B27, B28)3, CYP9A(2, 4, 5)3, CYP321A13

CYP15H12, CYP18A12, CYP6(AB14, AB60, AE, AE9, AE14, AE89, B7, B29, B39, B40,

FD1, FE1, FG1, HL1, HN1, HQ1)3, CYP9(A, A27, A31, A32, AQ2)3, CYP337(A1, A2)3,

CYP321(A7, A8, A9, B1)3, CYP4(AA1, C84)4, CYP301A1M, CYP404D1M, CYP333B4M

[13,28,37,39,40,47,60�,71]

Lectin

Ricin CYP6(AE9, B29)3, CYP9A3, CYP321B13, CYP337(A1,A2)3 [39]

Phorbol ester

Tetradecanoyl-phorbol-13-

acetate

CYP6BD63, CYP9(A17, A21)3 [17]

Terpenoids

a-pinene CYP6(B2, B7)3

CYP6(BX1, DJ2)3, CYP345E43 [19]

b-pinene CYP6(BX1, DJ2)3, CYP345E43 [19]

3-carene CYP6(BX1, DJ2)3, CYP345E43 [19]

Turpentine-oil CYP6(BX1, DJ2)3, CYP345E43 [19]

Limonene CYP6A23

Melaleuca alternifolia

essential oil (terpinen-4-ol)

CYP6(BQ36, BW1, BW2, BW3, BW4, BX1, DJ1, DJ2, DJ3, DG1)3, CYP345E23, CYP4

(BH1,G56)4, CYP412A14
[16]

Menthol CYP6B23

Monoterpenes (peppermint

oil)

CYP6B23

Gossypol CYP6(A12, A17, AE14, B27)3

CYP18B12, CYP6(AB9, AE11, AE12 AE14, B7, CY19, CY22, DA1)3, CYP4L114 [12,13,35,45,60�]
Other phytochemicals

Ethanol CYP6(A1, A8)3

CYP6A83, CYP4E34 [74]

2-phenylethanol CYP6(A2, A8, D5)3, CYP4E34 [74]

Indole CYP6(B39, B40)3, CYP9A313, CYP321(A7, A8, A9)3, CYP332A13 [47]

Indole-3-carabinol CYP6(B8, B9, B27, B283)3, CYP9A23, CYP321A13

CYP6B393, CYP321(A7, A8, A9)3 [47]

Jasmonic acid CYP6(B8, B9, B27, B28)3, CYP321A13

2-tridecanone CYP6(A2, B6)3, CYP4M34

CYP15(H1, H2)2, CYP6(AE, B39, CY19, CY22, DA1, FD1, FE1, FF1, FG1, HL1, HN1,

HQ1)3, CYP9(AQ1, AQ2)3, CYP408B13, CYP409A13, CYP4(C69, C73, C79, C80, C84,

DH1, FD1, L13)4, CYP3117C14, CYP3118(A1, A2)M, CYP404D1M

[28,45,47,60�]
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Table 1 (Continued )

Inducer P450s induced Reference

Glucosinolates CYP392(A1, A16, D8)2 and several members of Clan 3 (CYP6 and CYP9) [6,31�,75]
Piperamides 6 drosophila genes

Pyrethrum CYP9F23, CYP12D1/2M

The original data of Feyereisen (2012) is indicated in bold font while newly (since 2012) discovered CYP�inducing phytochemicals or induced CYP

genes that were identified via controlled administration (fumigation, artificial diet or leaf dip/spray) are indicated in normal font. Not all CYP gene

names follow the official CYP nomenclature (David Nelson, University of Tennesee), but are based on the CYP name of their best BLAST hits. CYP

genes are grouped per family and their respective clan is displayed in superscript: (2) Clan2, (3) Clan3, (4) Clan4, (M)Mitochondrial.
the effect of phytochemicals in the complex context of

gene expression and regulation more completely and

accurately. In the near future, the newest generation

sequencing technologies that offer single molecule

sequencing, and thus complete transcripts, will not only

allow to drastically improve annotation but will also

facilitate the identification of splice variants and measur-

ing allele-specific induction by phytochemicals.

Historically, most studies aimed at understanding P450

induction by specific phytochemicals via controlled

administration ([10], Tables 1 and 2). The ease of testing

single or selected mixes of phytochemicals and its con-

venience for dosage control and reproducibility, still

makes it one of the most commonly used experimental

setups today (Table 2). In 2012, Feyereisen presented an

overview of phytochemicals that are known to induce

P450 genes [10] and in Table 1 an update of this overview

is presented. Recent data underpins the earlier trends

towards high diversity at two levels. Not only can P450

genes be induced by a wide variety of chemical classes,

but also the induced P450 families and clans they belong

to appear to be very diverse. As seen in Table 1, induction

of P450s by a certain phytochemical is not even limited to

only one clan. Nevertheless, we can clearly notice an

enrichment of CYP genes belonging to Clan 3 and 4 in

insects and Clan 2 in mites due to numerical dominance

in their CYPomes [11�]. Not surprisingly, especially the

notorious CYP6 family is strongly represented as every

phytochemical present in Table 1 induces expression of

at least one CYP6 gene in insects. In particular the list of

phytochemicals inducing the CYP6AE subfamily has

expanded (Table 1), as next to gossypol, cinnamic acid,

tannic acid and furanocoumarins we can now add com-

pounds such as tomatine, quercetin, ricin and 2-trideca-

none. The last decade, efforts have been made in more

accurately determining dose-responsiveness to phyto-

chemicals whereas this was already common in investi-

gating transcriptional responses to synthetic chemicals

like insecticides. In particular, dose-dependent responses

of one or more CYP genes to gossypol [12,13], nicotine

[14,15], terpinen-4-ol [16], tomatine, xanthotoxin [13],

TPA [17], z-ligustilide [18] and several terpenoids [19]

were established recently.

Although the above setup of controlled administration is

the most precise in terms of direct molecular interactions
www.sciencedirect.com 
that lead to induction of a precise number of genes, a

potentially important drawback is that the chemical com-

plexity of the whole plant is often not taken into account

which complicates and prevents a complete biological

interpretation of results. Therefore, it is also crucial to

study transcriptional responses after short-term host-plant

shifts, and a number of recent studies have quantified

genome-wide responses to the biological mix of allelo-

chemicals in planta (Table 2). Transfer of phytophagous

arthropods to plants rich in alkaloids or polyphenolic

compounds results in induction of several Clan 3

(CYP6) P450 genes [20–25,26�]. In some cases, the pat-

terns after host-shift were further investigated by con-

trolled administration. For example, rutin is a flavonoid

present in Artemisia and RNA-seq expression analysis

revealed the upregulation of Clan 3 (CYP6) P450 genes

when the grasshopper Oedaleus asiaticus was switched

from feeding on grasses to Artemisia [23]. In a follow-

up experiment, artificially administering of rutin to O.
asiaticus larvae resulted in a similar response of CYP6

genes, suggesting that rutin in Artemisia lies at the basis of

the P450 response upon transfer to Artemisia [23,27].

An ideal compromise consists of a set-up where the

complexity of the host is preserved while at the same

time the specific responses against a certain (set of)

phytochemicals can be studied. A convenient method

to achieve this for chewing insects like grasshoppers and

locusts, relies on direct administration of the chemical on

the plant via leaf-dip or spray [27,28] (Tables 1 and 2,

Figure 1). However, this method is not suitable to study

interactions in species with piercing-sucking mouthparts,

as the chemical is only present on the plant-surface and

will thus not be ingested by these insects. Transgenic

plants that are deficient/enriched in given secondary

metabolite pathway circumvent this problem, making it

a universal method to achieve the above-mentioned

goals. Arabidopsis thaliana allows efficient and high-

throughput transformation [29] and is an ideal model,

at least for those arthropods than can feed on it. Zhurov

et al. used this system to study reciprocal genome-wide

transcriptional responses in both A. thaliana and the

polyphagous spider mite Tetranychus urticae as a model

for host-herbivore interactions. At least 40 genes showed a

significant dose-dependent response to glucosinolates,

mainly consisting of detoxification enzymes, including

P450s and glycosyltransferases [30]. A follow-up study
Current Opinion in Insect Science 2021, 43:117–127
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Table 2

P450 transcriptional responses per species, presented by experimental setup, gene identity and level of validation

Species (order) Diet

breadth

Phytochemicals/hosts/

pathway

Differential

expression

method

P450 genes or families of interest Validation technique? Ref

Artificial administration

Aphis gossypii

(Hemiptera)

P Gossypol, 2-Tridecanone,

Quercetin, Tannic acid

RT-qPCR CYP6(CY19, CY22, DA1)3 / [45]

Depressaria

pastinacella

(Lepidoptera)

O Bergapten, Sphondin,

Xanthotoxin

RT-qPCR CYP6AE893 Functional expression [37]

Drosophila

melanogaster

(Diptera)

P Acetic acid, Ethanol, 2-

Phenylethanol

(Fumigation)

RNA-seq

(Illumina HiSeq

4000)

RT-qPCRa

CYP6(A2, A8, D5)3, CYP4E34 / [74]

Helicoverpa

armigera

(Lepidoptera)

P Gossypol RT-qPCR CYP18B12, CYP6(AB9, AE14)3,

CYP4L114
RNAi [35]

Helicoverpa

armigera

(Lepidoptera)

P Xanthotoxin, 2-Tridecanone,

Gossypol

RT-qPCR CYP6AE3 (e.g. CYP6AE(14, 19, 20)) CRISPR-Cas9

Functional expression

[60�]

Hyles

euphorbiae

(Lepidoptera)

M 12-Tetradecanoyl-phorbol-13-

acetate (TPA)

RNA-seq

(Illumina HiSeq

2000)b

DeepSuperSAGE

CYP6BD63, CYP9(A17, A21)3 / [17]

Locusta

migratoria

(Orthoptera)

P 12 phytochemicals, model

inducers and common

insecticides

(Leaf-dip)

RNA-seq

(Illumina HiSeq

4000)b

RT-qPCR

43 genes of CYP2, CYP3, CYP4

and mitochondrial clan

/ [28]

Nilaparvata

lugens

(Hemiptera)

M Rice leaf sheath extracts RT-qPCR CYP6(AX1, AY1)3, CYP4C614 RNAi [76]

Sitophilus

zeamais

(Coleoptera)

P Terpinen-4-ol

(Fumigation)

RNA-seq

(BGISEQ-500)

RT-qPCRa

11 members of CYP63,

CYP345E23, CYP4(BH1, G56)4,

CYP412A14

/ [16]

Oedaleus

asiaticus

(Orthoptera)

O Rutin

(Leaf-dip)

RNA-seq

(Illumina HiSeq

4000)

RT-qPCRa

CYP6K13, CYP9E13 / [27]

Spodoptera

exigua

(Lepidoptera)

P Quercetin RT-qPCR CYP6AE103 CYP9A113,

CYP321A83
RNAi [38]

Spodoptera

litura

(Lepidoptera)

P Xanthotoxin, Ricin RNA-seq

(Illumina HiSeq

4000)

RT-qPCRa

CYP6(AE9, B29)3, CYP9A3

CYP321B13, CYP337(A1, A2)3
RNAi [39]

Spodoptera

litura

(Lepidoptera)

P Coumarin, Tomatine,

Xanthotoxin

RT-qPCR CYP6AB603 RNAi [40]

Spodoptera

litura

(Lepidoptera)

P Tomatine RNA-seq

(Illumina HiSeq

2000)

RT-qPCRa

CYP4(G75, L4)4, CYP340AB14,

CYP339A1M
/ [67]

Spodoptera

litura

(Lepidoptera)

P z-ligustilide RT-PCR (semi-

quantitative)

CYP4(M14, S9)4 / [18]

Complete host plant shift

Bactrocera oleae

(Diptera)

M Green and black olive Microarray

RT-qPCRa
2 B. oleae P450 contigs

(contig03604, contig10157)

/ [20]

Bemisia tabaci

(Hemiptera)

P Eggplant, Pepper, Cassava,

Kale

NextSeq 500

RT-qPCRa
24 P450 s most related to Clan

3 and Clan 4

/ [26�

]

Danaus

plexippus

(Lepidoptera)

O Milkweed (2 species) RNA-seq

(BGIseq-500)

e.g. CYP6AB43 / [34]

Current Opinion in Insect Science 2021, 43:117–127 www.sciencedirect.com
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Table 2 (Continued )

Species (order) Diet

breadth

Phytochemicals/hosts/

pathway

Differential

expression

method

P450 genes or families of interest Validation technique? Ref

Helicoverpa

armigera

(Lepidoptera)

P Chili, Cotton, Corn, Soybean RNA-seq

(Illumina HiSeq

2000)

RT-qPCRa

CYP18B12, CYP6(AB9, AE14)3,

CYP4L114
RNAi [35]

Oedaleus

asiaticus

(Orthoptera)

O Grasses (3 common species),

A.frigida

RNA-seq

(Illumina HiSeq

2000)

RT-qPCRa

CYP6K13 / [23]

Phaedon

cochleariae

(Coleoptera)

O Chinese cabbae, Watercress,

White mustard

RNA-seq

(Illumina HiSeq

2000)b

Microarray

A lot of not-specified P450 s

differentially expressed

/ [7�]

Sitobion avenae

(Hemiptera)

O Barley, Wheat RNA-seq

(Illumina HiSeq

2500)

RT-qPCRa

CYP6(A13, K1-1, K1-2)3, CYP4(C1,

G15)4
/ [21]

Sitobion avenae

(Hemiptera)

O Barley, Wheat RNA-seq

(Illumina HiSeq

2500)

RT-qPCRa

e.g. CYP6A133, CYP4C14 / [22]

Spodoptera

exigua

(Lepidoptera)

P Cabbage, Maize, Tobacco RNA-seq

(Illumina HiSeq

4000)

e.g. CYP6AE, CYP321 and more

Clan 3, Clan 4 P450s

/ [25]

Spodoptera

frugiperda

(Lepidoptera)

P Corn, Rice RNA-seq

(Illumina HiSeq

2500)

e.g. CYP6(AB4, AE9)3, CYP332A13,

CYP4(L6, M5)4
/ [77]

Tetranychus

cinnabarinus

(Trombidiformes)

P Cowpea, Cotton RNA-seq

(Illumina HiSeq

2000)

RT-qPCRa

CYP392A43 RNAi (transgenic

cotton expressing

dsRNA)

[9]

Tetranychus

urticae

(Trombidiformes)

P Bean, Tomato Microarray CYP392(A1, A3, B1, B2, B3, D3)2,

CYP385(C2, C3, C4)3, CYP381A2M
/ [5]

Transgenic host-plants

Heliothis

virescens

(Lepidoptera)

Pieris brassicae

(Lepidoptera)

P

O

Glucosinolates (Arabidopsis) RNA-seq

(Illumina HiSeq

2500)

Several members of Clan 3 (CYP6

and CYP9)

/ [31�

]

Tetranychus

urticae

(Trombidiformes)

P Glucosinolates (Arabidopsis) RT-qPCR CYP392(A1, A16, D8)2 RNAi of Tu-CPR [6]

Tupiocoris

notatus

(Hemiptera)

O Jasmonic acid (Nicotiana

attenuata)

RNA-seq

(Illumina HiSeq

2000)

RT-qPCR

Several members of Clan 3 and

Clan 4

/ [75]

The studies reported in this table were published between 2017 and 2020, except for key studies on transgenic host shifts and those with the spider

mite T.urticae, representative for chelicerates. This table categorizes recent research (partly) focusing on short-term transcriptional responses to of

P450s to phytochemicals based on arbitrarily chosen experimental set-up categories. The P450s of interest in these studies are CYP genes actually

responding to the host-shift or phytochemical administered. Not all CYP gene names do follow the official CYP nomenclature (David Nelson,

University of Tennesee) but were based on the CYP name of their best BLAST hits. The feeding column indicates the feeding patterns of the

respective species (P: polyphagous, O: oligophagous, M: monophagous). CYP genes are grouped per family and their respective clan is displayed in

superscript: (2) Clan2, (3) Clan3, (4) Clan4, (M)Mitochondrial. Extra comments on the differential expression methods is indicated as followed: (a) RT-

qPCR used for verification of differential gene expression, (b) Used for reference transcriptome assembly.
focused on whether these expression changes are indeed

associated with host-plant adaptation or whether they are

general stress responses [6]. Interestingly, none of three

selected P450s (CYP392A1, CYP392A16, CYP392D8)

that were initially highly upregulated upon short-term

host shift [30] showed a constitutively higher expression
www.sciencedirect.com 
after long-term adaptation relative to the non-adapted

lines [6], a pattern that was also found by Wybouw et al.
for the same mite species and tomato [5]. A. thaliana
mutants were also used to compare glucosinolate-induced

transcriptomic responses between the generalist Heliothis
virescens and Pieris brassicae, a specialist feeding on
Current Opinion in Insect Science 2021, 43:117–127
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Figure 1

Current Opinion in Insect Science 

Visual overview of experimental setups presented in Table 2.

The starting point, experimental procedures and end point are represented from top to bottom. Artificial administration of a phytochemical can be

achieved via fumigation, addition to artificial diet or via leaf-dipping/spraying. Upon fumigation the volatile phytochemical is added to a sealed

container that contains the insect or mite. For administration via artificial diet, the phytochemical is added to/poured on the (semi)artificial diet.

Administration via the leaf is realized by spraying the phytochemical-solution on the leaf or by dipping the complete leaf in a phytochemical-

solution. For host-transfer experiments, insect and mites are transferred to a new plant species. For transgenic host experiments, P450 induction

by phytochemicals in insects and mites is investigated by interfering with the secondary metabolism pathways of the plant, most often by A.

tumefaciens or CRISPR-Cas9 based gene knock-out.
glucosinolate-rich diets. P450s were significantly

enriched in the set of upregulated genes of H. virescens,
whereas this was not the case for P. brassicae. [31�].
Unfortunately, the genetic toolkit of A. thaliana is not

yet available for other host plants, limiting the use of the

transgenic plants for investigating other insect-plant sys-

tems. However, as the CRISPR-Cas9 technology is rap-

idly advancing, the availability of mutant non-reference

host plants will most likely improve in the near future

[32]. Also, not only transgenic plants but also natural

mutants/cultivars enriched/lacking specific compounds

could be valuable in this approach [33,34].

Of particular note, many factors in the experimental design

of host-shift experiments in the above studies vary, which

makes them hard to compare. For example, there is no

consensus on what the optimal time-point is for studying

short-term transcriptional response after induction/host

transfer. Also, some studies focus on whole-insect RNA-
Current Opinion in Insect Science 2021, 43:117–127 
sequencing [20,35], others only on responses in certain

tissues involved in detoxification [17,34,36–40]. There is

also a significant amount of variability with respect to

transcriptome completeness, coverage, differential expres-

sion analysis methods and annotation [41]. Hence, these

studies only allow us to identify potential candidate P450

genes, providing working hypotheses for further research,

and validation of these candidate genes for their role in

detoxification remains essential.

Finally, Figure 2 and Table 2 indicate that most studies

cover transcriptional responses of polyphagous species of

which the majority belong to the Lepidoptera. However,

complete host shifts or transgenic plants are now also

being used to investigate transcriptional plasticity in

oligo- or monophagous species. When more studies

become available, it will be interested to compare more

thoroughly the P450 transcriptional induction patterns in

relation to diet breadth.
www.sciencedirect.com
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Figure 2
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Graphical representation of the number of studies (represented in

Table 2) categorized based on feeding preference of investigated

species between different experimental set-ups. The majority of recent

studies use administration of phytochemicals via the diet and study

polyphagous insects and mites.
Regulation of P450 expression in arthropods
P450 transcriptional responses to phytochemicals have

been widely documented, however, the mechanisms of

induction, especially the first steps in the signaling cas-

cade, remain a black box. The upregulation of Papilio
polyxenes P450 genes in response to xanthotoxin is proba-

bly the best case studied so far. In the promoter region of

Papilio polyxenes CYP6B1, xenobiotic response elements

(XREs, including a XRE to xanthotoxin (XRE-Xan) and

XRE to aryl hydrocarbon receptor (XRE-AhR)) were

discovered that are responsible for basal and xantho-

toxin-inducible expression of CYP6B1. Further, it was

shown that binding of a Drosophila heterodimer - consist-

ing of the transcription factor spineless (ortholog of the

mammalian AhR) and Tango (ortholog of the mammalian

AhR nuclear translocator (ARNT)) - on XRE-AhR,

enhanced basal expression of P. polyxenes CYP6B1 [42].

XREs to xanthotoxin and other allelochemicals such as

flavones, gossypol and 2-tridecanone, were also identified

in the promoter region of aphid and Helicoverpa P450s

[43–45] (and references therein), while recent studies

showed that RNAi knockdown of AhR/ARNT signifi-

cantly reduced the expression of the nicotine metaboliz-

ing CYP6C3 in Myzus persicae [46], or dramatically

repressed the expression of CYP6DA2, a P450 strongly

associated with tolerance of Aphis gossypii to gossypol [44].

Nevertheless, some elements of this P450 regulatory

pathway still await elucidation. For example, why there

is no correlation between the occurrence of XRE-Xan
www.sciencedirect.com 
elements and the xanthotoxin induction profile of Spo-
doptera frugiperda P450s [47]? What is the identity of the

xanthotoxin receptor and how is it connected to the AhR/

ARNT complex [42]? In fact, with the exception of

phytoecdysteroids [48], direct binding of phytochemicals

to insect receptors has not yet been demonstrated while

such cases have been reported for vertebrates (e.g. the

flavonoid luteolin binding to the nuclear receptor HNF4

[49]).

The Cap “n” collar:Muscle Aponeurosis Fibromatosis

(CncC:Maf) is another well-known P450 regulatory path-

way. Under normal conditions, the mammalian ortholog

of CncC, Nrf2, is present in the cytoplasm and bound to

the Kelch-like ECH associated protein 1 (Keap1), while

under stress conditions (e.g. oxidative stress caused by

exposure to xenobiotic compounds) Nrf2 translocates to

the nucleus, forms a complex with Maf, binds to antioxi-

dant responsive elements (AREs) upstream of detoxifica-

tion genes such as P450s and initiates transcription.

However, this pathway has been mainly studied for its

role in overexpression of arthropod detoxification genes

involved in pesticide resistance (recently reviewed in

Refs. [50,51] and, to our knowledge, only two studies

have examined its role in upregulation of P450s in

response to allelochemicals [52,53��]). Both studies

showed that RNAi knockdown of CnCC resulted in

decreased expression of P450 gene(s), but while in Kalsi

and Palli the investigated Leptinotarsa decemlineata P450s

were strongly associated with detoxification of potato leaf

allelochemicals [53��], Peng et al. 2016 examined the

overexpression of A. gossypii CYP6DA2, implicated in

gossypol tolerance [52].

Finally, many alternative P450 regulatory pathways have

recently been uncovered, including roles for nuclear

hormone receptor 96 (HR96), Hepatocyte Nuclear Fac-

tors (HNF-1A and HNF-3/FOXA), bZIP transcription

factor CREB, nuclear protein P8 (containing the

PFAM10195 domain) and nuclear receptor FTZ-F1 in

overexpression of P450s associated with insecticide resis-

tance [54–58]. Future studies should not only focus on

further unraveling existing regulatory pathways (AhR/

ARNT, CncC:Maf) but use unbiased approaches to

uncover new regulatory mechanisms involved in P450

response to phytochemicals.

Functional validation of induced P450 genes
In contrast to P450s involved in resistance to pesticides,

only few recent studies have functionally expressed P450

s to test whether they can metabolize the inducing

phytochemical (Table 2) [37,59,60�]. It was shown that

(amongst others) gossypol could induce CYP6AE gene

expression in H. armigera [60�], but a subsequent study

could not show in vitro metabolism by any of the candi-

date CYP6AEs after being functionally expressed in

insect cells [59]. This example clearly indicates that
Current Opinion in Insect Science 2021, 43:117–127
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carefulness is necessary when drawing conclusions based

solely on the induction of a given P450, as the organism

might react in a general stress response upon exposure.

Thus, not all or only few of the induced genes might be

functionally important and able to metabolize the chemi-

cal. On the other hand, in vitro findings of metabolism

should also be complemented with in vivo experiments,

for example using reverse-genetics based approaches

such as RNAi and CRISPR-Cas9 knock-out or knock-

down.

However, these genetic tools first need to be tailored for

the species under investigation. A variety of dsRNA

delivery systems exist, going from direct feeding to

dsRNA expressing transgenic plants and microinjection,

each with a different efficiency depending on the species

[61–64]. When designing RNAi experiments it is also

important to keep in mind that in some species CYP

genes can be duplicated and that silencing all paralogs

with RNAi is practically unfeasible. In addition, specific

silencing of a single P450 always needs to be confirmed, as

this might be harder to achieve for members of recent

P450 ‘blooms’ by cross-silencing. Silencing the gene

encoding cytochrome P450 reductase, an obligatory co-

enzyme of P450s, is another strategy that has been

explored recently with T. urticae P450s [6,65], although

this does not allow to study the effect of a single P450 and

may result in pleiotropic effects unrelated to detoxifica-

tion genes. In vivo validation of the role of P450 induction

by RNAi is also complicated by uncertainties in timing of

both the induction and the silencing, when quantifying

the phenotypic effect. Lastly, RNAi might be straight-

forward for several coleopteran and orthopteran insects,

but is not yet an easy option for all insects and mites. Even

if Table 2 indicates many examples of RNAi in Lepidop-

tera, care should still be taken as other studies indicate

difficulties in silencing genes by dsRNA in this insect

order [64].

The CRISPR-Cas9 technique might be a valuable alter-

native for RNAi and can be used for gene knock-out of

candidate loci. Although CRISPR-Cas9 is increasingly

being used in the field of pesticide mode of action and

elucidation of resistance mechanisms [66], only few stud-

ies have targeted P450 s involved in insect-plant interac-

tions. In addition, gene knock-out might have more

complex consequences compared to lack of induction,

which makes this tool possibly too strong to look at subtle

effects. Nevertheless, Wang et al. used the CRISPR-Cas9

system to successfully generate a CYP6AE cluster knock-

out in H. armigera. Although no effects in viability under

rearing conditions could be noted, a clearly increased

susceptibility to plant toxins and insecticides was

observed. Whether this phenotype is the result of the

absence of constitutive expression, and/or lack of induc-

tion of this CYP6AE cluster is however hard to determine

[60�].
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Conclusions
Today, P450s still remain one of the most studied detox-

ification genes families. The last decade revealed that

virtually all tested phytochemicals induced the transcrip-

tion of some P450s, and the known number of P450s

induced by phytochemicals has been drastically

expanded, as more and more insect and mite species

are studied by the availability of new technologies. Espe-

cially Clan 3 P450s and more specifically CYP6 family

genes seem to respond to every phytochemical class

presented in this review and most likely represent a core

P450 family important in adaptation. Whereas studies

using controlled administration provide strong insights

in the specific responses to certain (sets of) phytochem-

icals, research that uses complete host-shifts preserves the

hosts’ biological complexity. Thus, the use of transgenic

plants with altered phytochemical content, might help to

study induction in a biological relevant setup. Transcrip-

tomes after short-term exposure to phytochemicals pro-

vide a powerful tool for identifying candidate genes and

regulatory pathways involved in diet breadth, but unbi-

ased validation of their causal role in detoxification in vivo
remains important. As powerful reverse-genetic tools like

RNAi and CRISPR-Cas9 are more and more available for

non-model organisms, they will soon further dissect the

specific role of P450 induction in plant interactions.

Finally, most studies focus on P450 induction in polyph-

agous insects, while comparing both short- and long-term

responses after host shifts of arthropods with different

diet breath will allow to more completely study the

evolutionary mechanisms of arthropod-plant interactions.
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