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Abstract

As approximations to the wave functions governing quantum chemical systems are
becoming more and more complex, it is becoming increasingly important to devise
descriptors that help understand the practical results of those approximations by
condensing information in insightful ways. Quantum chemical descriptors that are able to
capture the statistical signatures of quantum chemical interactions provide such conceptual
building blocks. Central to an understanding of these descriptors is the concept of a
‘domain occupation number operator’, which allows the so-called ‘real space’ and Hilbert
space partitionings to be treated on the same footing. Many of the existing descriptors can
be expressed as the (central) densities and density cumulants associated with the domain
operators. These densities can be obtained by successive differentiation of generating
functions, effectively structuring domain associated densities into hierarchies. Not only do
the resulting hierarchies indicate how many of the previously reported descriptors are
related, they also show which areas have not yet been explored.

∗Department of Chemistry, Ghent University, Ghent, Belgium
†Department of Chemistry, University of New Brunswick, Fredericton, Canada
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Figure 1: The statistics of (domain) occupation numbers operators induces a hierarchy of

quantum chemical descriptors.

INTRODUCTION

The field of quantum chemistry continues to make important advances in devising increas-

ingly accurate approximations to the wave functions of ever larger systems. These approxi-

mations are aimed at modeling as accurately as possible the joint behavior of all electrons.

However, as these approximations become more complex, it has become more difficult to gain

insight into the wave functions that arise from actual computations. As the approximate

wave functions are constantly being loaded with more and more information, it is increas-

ingly important to devise descriptors that condense information and in this way provide

conceptual building blocks that can be used in ‘chemical reasoning’.

In this review we demonstrate that a large part of the existing quantum chemical de-

scriptors are based on the concepts of ‘domains’ and ‘occupation numbers’. A ‘domain’ is

defined as a collection of orbitals. This definition allows domains defined in position space

(also called ‘real space’), domains defined on non-orthogonal orbitals (leading to e.g. Mul-

liken descriptions) and domains defined in terms of orthogonal orbitals (for e.g. the abstract
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Hubbard model) to be described on the same footing. ‘Occupation numbers’ indicate to

what extent a given single-particle subspace, be it an orbital or a domain, is filled by parti-

cles of a quantum-chemical system consisting of many identical particles. By extending the

occupation numbers to domain occupation numbers, one can describe to what extent do-

mains are filled with particles. By treating the resulting occupation as a statistical random

variable, one can use generating functions to generate (central) ‘moments’ and ‘cumulants’.

It are these statistical quantities that provide insightful interpretations of wave functions.

As a result, the generating functions establish a natural hierarchy or framework into which

many reported quantum chemical descriptors fit. Furthermore, this framework provides a

structure that offers a consistent interpretation while also pointing to those descriptors that

have not yet been explored.

ORBITAL AND DOMAIN OCCUPATION

Many quantum chemical descriptors are based on the premise that chemical knowledge is

encoded in the extent to which domains are filled by electrons. Among others, this is the

basis behind a plethora of population analysis methods that will be discussed below. In order

to elucidate the framework behind these descriptors, we first have to introduce operators

that probe the occupation of domains. For this, we start from operators that probe the

occupation of a single orbital. These operators are most efficiently formulated in terms

of second quantized operators. A short recapitulation of the necessary second quantized

machinery is provided in the appendix.

Orbital occupation

The occupation number of a single orbital indicates to what extent that orbital is filled

by particles of the quantum chemical system consisting of many identical particles. In

an orthonormal spin-orbital basis, the second quantized occupation-number operator n̂(I)

associated with the occupation of the spin-orbital φI is given by

n̂(I) := φ̂+
I φ̂
−
I , (1)
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where φ̂+
I and φ̂−I are respectively the creation and annihilation operators associated with

that spin-orbital. By acting on the antisymmetric many-particle state |φk1 . . . φkN 〉 = |k〉,

with k = {k1, . . . , kN} a unique set of spin-orbital indices, the occupation-number operator

n̂(I) determines to what extent the orbital φI is filled in |φk1 . . . φkN 〉

n̂(I) |φk1 . . . φkN 〉 = φ̂+
I φ̂
−
I |φk1 . . . φkN 〉

= kI |φk1 . . . φkN 〉

=

0 |φk1 . . . φkN 〉 if I not in k

1 |φk1 . . . φkN 〉 if I in k

. (2)

where kI is the eigenvalue associated with the eigenvector |φk1 . . . φkN 〉.

For a multi-determinant wave function |Ψ〉 =
∑
k

ck |k〉, this reduces to

n̂(I)
∑
k

ck |k〉 =
∑
k

ckn̂(I) |k〉 =
∑
k

ckkI |k〉 , (3)

in which those states |k〉 in which spin-orbital φI is unoccupied are projected out.

In the specific case of the orthonormal spin-position orbital basis |x〉 = |r, σ〉, the

occupation-number operator can be written in terms of field operators

n̂(x) = ψ̂+(x)ψ̂−(x) =
∑
IJ

φ∗I(x)φJ(x)φ̂+
I φ̂
−
J . (4)

In a non-orthogonal basis χI , the occupation-number operator can be written as (Surján,

1989)

n̂(χI) = χ̂+
I ϕ̂
−
I =

∑
J

ϕ̂+
I ϕ̂
−
J ΣIJ , (5)

where ΣIJ is the overlap matrix for that non-orthogonal spin-orbital basis and ϕI is the

bi-orthogonal basis for which the usual anticommutation rules are valid (see appendix)[
χ̂+
I , ϕ̂

−
J

]
+

= δIJ . (6)

Domain occupation

If we consider a domain to be a weighted collection of orbitals, then we can construct an

associated domain occupation-number operator as

n̂(Ω) =
∑
I

wΩ(I)n̂(I) , (7)
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where wΩ(I) is the weight factor of domain Ω associated with spin-orbital I. This approach

is a second quantized application of the ‘atomic decomposition of the identity’, which was

introduced by Mayer (Mayer & Hamza, 2005; Mayer, 2016). In spin-position space, this

definition reduces to

n̂(Ω) =

∫
wΩ(x)n̂(x)dx , (8)

and for a non-orthogonal spin-orbital basis to (Mayer, 1983, 1985)

n̂(Ω) =
∑
I

wΩ(χI)n̂(χI) =
∑
IJ

wΩ(χI)χ̂
+
I ϕ̂
−
I =

∑
IJ

wΩ(χI)ϕ̂
+
I ϕ̂
−
J ΣIJ . (9)

In practice, the domain itself is mostly defined on the spin-independent part of the basis.

In this case, the domain occupation-number operator n̂(Ω) associated with a domain Ω

is given by a weighted summation over all spin-independent occupation-number operators

associated with a spin-independent single particle basis {|i〉}

n̂(Ω) =
∑
i

wΩ(i)n̂(i) =
∑
i

wΩ(i) [n̂(i, α) + n̂(i, β)] . (10)

If we take multiple domains into consideration, we can define domain operators associated

with an exhaustive d domain partition Ω = (Ω1, . . . ,Ωd), which consists of d domains

∀a ≤ d : n̂(Ωa) =
∑
i

wΩa(i)n̂(i) , (11)

where the following relations are obeyed

d∑
a=1

wΩa(i) = 1 (12)

wΩa(i) ≥ 0 . (13)

As such, a domain partition ensures that every orbital is included in at least one domain.

We note that even if we only take one domain Ω in account, we are in fact describing a

domain partition as we also implicitly consider the complement Ω of the domain Ω.

An important subclass of these domain operators are those for which the weights are

equal to generalized Dirac delta type functions, such as

n̂(Ωa) =
∑
I

δ(I ∈ Ωa)n̂(I) . (14)
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An application of these Dirac delta type domains is that of the non-orthogonal Mulliken

partitioning scheme. In this scheme, a domain is associated with a given nucleus A and

contains all spin-orbitals centered on that nucleus

n̂(ΩA) =
∑
IJ

δ(I ∈ ΩA)n̂(χI)ΣIJ . (15)

In spin-position space, Dirac delta type weight functions wΩa(i) = δ(i ∈ Ωa) lead to the

domain operators proposed by Ziesche (Ziesche, 2000)

n̂(Ω) =
∑
σ

∫
δ(r ∈ Ω)ψ̂+(r, σ)ψ̂−(r, σ)dr , (16)

which are the second quantized analogs of the population operators as introduced by Diner

and Claverie (Diner & Claverie, 1975). The domains obtained by topological analysis of

the electron density (the ‘Quantum Theory of Atoms in Molecules’) (R. F. Bader, 1990;

Popelier, 2000; Matta & Boyd, 2007) belong to this category, as do the domains obtained

from a topological analysis of any other quantum chemical scalar field such as the ‘Electron

Localization Function’ (Becke & Edgecombe, 1990; Silvi, 2004).

Other partitions are obtained by optimizing the shape of domains with respect to a cer-

tain objective function. In the ‘loge’ theory, developed by Daudel and coworkers (Aslangul,

Constanciel, Daudel, & Kottis, 1972), that objective function is a missing information func-

tion (Aslangul, Constanciel, Daudel, Esnault, & Ludena, 1974). In the theory of ‘Maximum

Probability Domains’, devised by Savin (Savin, 2001), the resulting domains maximize the

probability to find ν and only ν electrons inside themselves.

A domain partition that deviates from these Dirac delta type weights is the Hirshfeld

domain partition (Hirshfeld, 1977; Bultinck, Van Alsenoy, Ayers, & Carbó-Dorca, 2007). In

this partition, the weights wΩa(r) are associated with ‘atomic’ domains and are determined

by reference to a promolecule constructed from superimposing the isolated density functions

ρpro
a of the M atoms that comprise the molecule

wΩa(r) =
ρpro
a (r)

M∑
i

ρpro
i (r)

. (17)

As in principle the weight function is non-zero over the entire position space, such domain

partitions are also called ‘fuzzy’.
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ORBITAL AND DOMAIN DENSITIES

The domains formulated above are ‘Open Quantum Systems’ (Breuer & Petruccione, 2002;

Mart́ın Pendás & Francisco, 2018b). These open systems interact with an external environ-

ment, which can be its complement or a collection of other domains. As the wave function

is in general not an eigenfunction of the corresponding domain occupation number operator,

this forces the occupation to fluctuate. As such, we have to resort to a statistical analysis

of this occupation number operator. In this section, we focus on the average values of these

operators, as they determine the resulting average occupations or densities.

Orbital densities

In the classical theory of statistics, the first moment (also called the average or the expecta-

tion value) 〈X〉 of a stochastic variable X is given by

〈X〉 :=

∫
xP (X = x)dx , (18)

and the d-th order moment by 〈
Xd
〉

:=

∫
xdP (X = x)dx , (19)

where P (X) is the continuous probability distribution associated with the stochastic variable

X (Wasserman, 2013).

In quantum statistics, the first moment of an operator is the expectation value of that

operator. As such, the first moment 〈n̂(I)〉 of the occupation-number operator n̂(I) = φ̂+
I φ̂
−
I

is given by

〈n̂(I)〉 = 〈Ψ | n̂(I) |Ψ〉 (20)

As shown by Kong and Valeev (Kong & Valeev, 2011) and Hanauer and Köhn (Hanauer

& Köhn, 2012), we can assign an interpretation to these moments of occupation-number

operators by first considering the moment of the orbital occupation-number operator n̂(I)

for an expansion |Ψ〉 =
∑
k

ck |k〉, where |k〉 denotes an antisymmetric many-particle state.

The first moment is then given by

〈n̂(I)〉 =
∑
k,l

c∗kcl 〈k | n̂(I) | l〉 =
∑
k,l

c∗kcl 〈k |kI | l〉 =
∑
k

kI |ck|2 . (21)
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As |ck|2 is the statistical weight or probability of the single Slater determinant |k〉 (with∑
k

|ck|2 = 1), 〈n̂(I)〉 represents the average occupation-number of orbital φI . As pointed

out by Hanauer (Hanauer & Köhn, 2012), this is equivalent to regarding the occupation

numbers kI as stochastic variables, which can only take two values, one or zero. We can

attach the same interpretation to 〈n̂(r)〉: for the position-space orbital |r〉, 〈n̂(r)〉 represents

the average occupation of that position-space orbital.

The first moment 〈n̂(r)〉 of the occupation-number operator n̂(r) is also called the ‘elec-

tron density’ ρ(1)(r) of orbital |r〉. Not only does this descriptor form the main crux behind

Density Functional Theory (Parr & Yang, 1989; Engel & Dreizler, 2011), its response to

changes in number of electrons and/or external potential forms the basis of Conceptual Den-

sity Functional Theory (Geerlings, De Proft, & Langenaeker, 2003) and its analysis in terms

of itself and its gradient leads to descriptors such as the Electron Localization Function

(Savin, Nesper, Wengert, & Fässler, 1997; Silvi & Savin, 1994), the Electron Localizability

Indicator (Kohout, 2004), the Non-Covalent Interactions index (Johnson et al., 2010) and

the Density Overlap Region Indicator (De Silva & Corminboeuf, 2014).

The corresponding d-th moments of the occupation-number operators are then given by

ρ(d)(r1, . . . , rd) =
〈
N̂ n̂(r1) . . . n̂(rd)

〉
=

〈
N̂

d∏
i=1

n̂(ri)

〉
=
〈
ψ̂+(r1) . . . ψ̂+(rd)ψ̂

−(rd) . . . ψ̂
−(r1)

〉
, (22)

where we have used the operator N̂ ensure normal order (Ziesche, 2000) (see the appendix

for more details). This normal operator ensures that products of d occupation-number

operators actually describe simultaneous occupation of d orbitals. Indeed, this normal-

ordering operator allows us to reorder the respective creation and annihilation operators to

the form needed by the d-th order density. At the same time, this normal ordering also

removes same site elements

N̂ n̂(r)n̂(r) |Ψ〉 = ψ̂+(r)ψ̂+(r)ψ̂−(r)ψ̂−(r) |Ψ〉 = 0 , (23)

instead of allowing for effective removal of occupation-number operators due to their idem-
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potency

n̂(r)n̂(r) |Ψ〉 = n̂(r) |Ψ〉 . (24)

As such, the respective d-th moments describe the average occupation-number of a set of d

orbitals (Kong & Valeev, 2011)

ρ(d)(I, . . . , L) =

〈
N̂ n̂(I) . . . n̂(L)︸ ︷︷ ︸

d terms

〉
=
∑
k

kI . . . kL︸ ︷︷ ︸
d terms

|ck|2 . (25)

We note that this normal operator often is neglected (Diner & Claverie, 1975; Silvi, 2004).

This introduces spurious single orbital occupation number operators n̂(r1)

n̂(r1)n̂(r2) = N̂ n̂(r1)n̂(r2) + δ(r1 − r2)n̂(r1) , (26)

for which one has to correct if one is to describe occupancy statistics. The far-reaching

conceptual problems associated with introducing such ‘unphysical self-pairing’ have been

discussed in detail by Kutzelnigg (Kutzelnigg, 2003).

Starting from the N -th order reduced density ρ(N), we can obtain lower order densities

by taking normalized partial traces

p
q↓ :=

(N − p)!
(N − q)!

trq+1,...,p , (27)

such that

p
q↓ρ(p)(r1, . . . , rq, . . . , rp) = ρ(q)(r1, . . . , rq) . (28)

This corresponds to the McWeeny normalization convention (McWeeny, 1960), where each

d-th order reduced density is normalized to N !
(N−d)!

. Note the contrast with the Löwdin

normalization convention (Löwdin, 1955c, 1955b, 1955a), where the p-th order density matrix

is normalized to the number of unique combinations
(
N
p

)
. The latter convention leads to

an easier notation for energetic expectation values, but is less suited for elucidating the

underlying statistics. Hence, we will exclusively use the McWeeny normalization convention

in this review.
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Domain densities

In the case of the domain occupation-number operator n̂(Ωa), the first moment ρ(1)(Ωa) is

given by

ρ(1)(Ωa) = 〈n̂(Ωa)〉 =

∫
wΩa(r)ρ(1)(r)dr , (29)

and is equal to the average number of electrons in the domain Ωa (also called its population).

The second moments ρ(2)(Ωa,Ωa) and ρ(2)(Ωa,Ωb) are then given by

ρ(2)(Ωa,Ωa) =
〈
N̂ n̂(Ωa)

2
〉

=

∫ ∫
wΩa(r1)wΩa(r2)ρ(2)(r1, r2)dr1dr2 (30)

ρ(2)(Ωa,Ωb) =
〈
N̂ n̂(Ωa)n̂(Ωb)

〉
=

∫ ∫
wΩa(r1)wΩb

(r2)ρ(2)(r1, r2)dr1dr2 , (31)

where ρ(2)(Ωa,Ωa) is the average number of electron pairs in Ωa and ρ(2)(Ωa,Ωb) is the

average number of pairs that can be formed between the electrons in Ωa and Ωb (R. Bader

& Stephens, 1975).

We note that there exists a widespread confusion between reduced densities and prob-

abilities, which leads to questionable interpretations when generalized to domains. Indeed,

McWeeny (McWeeny, 1960) states that

“ρ(1)(x1) is the probability of finding a particle with variables in the range dx1

at point x1 in configuration space.”

although he immediately adds

“It should be noted that ρ(1)(x1) integrates to N (not 1), and that it is therefore

the ‘number density’.”

As pointed out by Diner and Claverie (Claverie & Diner, 1975) and restated by Savin (Savin,

2004) many years later, this distinction becomes particularly relevant when considering prob-

abilities defined over domains for systems containing more than one electron:

“The belief that the probability of finding one electron in a given region Ω,

p(1, N − 1), is given by the population of this region, or the average number of

electrons in Ω, ρ(1)(Ω) is wrong, however, when the total number of electrons in
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the system, N > 1. This can be seen most easily when considering the case when

Ω corresponds to the whole space yielding
∫
ρ(1)(r)dr = N ; this is impossible as

the probability must lie between 0 and 1.”

Quantities p(d)(r1, . . . , rd) that integrate to one can be obtained by forcing normalization

upon ρ(d)(r1, . . . , rd)

p(d)(r1, . . . , rd) =
(N − d)!

N !
ρ(d)(r1, . . . , rd) . (32)

These normalized quantities should then be interpreted as the probability that at least d

electrons are at the positions r1, r2, . . . , rd and not as the probability that d electrons are

at the positions r1, r2, . . . , rd. However, in most cases this normalization factor is neglected.

As such, contrary to widespread perception,

ρ(2)(r1, r2) = ρ(1)(r1)ρ(1)(r2) (33)

does not indicate that the constituent electrons can be considered as statistically independent

(Kutzelnigg, 2003). Furthermore, as we will show later, even if this normalization is taken

into account, the statistics of these normalized quantities are frequently dealt with too freely,

which results in questionable interpretations.

Reduced density generating function

We can define the moment generating function M(t) of the stochastic variable X as the

moment of the stochastic variable etX with t ∈ R

M(t) := 〈etX〉 =

〈
1 + tX +

t2X2

2!
+ . . .

〉
. (34)

Since the generating function gathers all moments as coefficients of a series expansion, all

orders of moments can be obtained by successive differentiation of this generating function

〈Xn〉 = lim
t→0

dnM(t)

dtn
. (35)

The variable t acts as a ‘probe’ variable, in the sense that this variable only appears as a

dummy variable for the differentiation and does not appear in the final expression for the

moments, which is obtained formally in the limit of t going to zero.
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By considering occupation numbers as random variables (Hanauer & Köhn, 2012), we

can construct an associated generating function. If we take d domains into account, this

generating function is given by (Ziesche, 2000)

M [g, t] :=

〈
N̂ exp

(∫
g(r)n̂(r)dr +

d∑
a=1

tan̂(Ωa)

)〉
, (36)

where g(r) is a function that gathers all probe variables related to orbitals and t = [ta, . . . , td]

is a vector that gathers all probe variables related to domains. As such, the partial derivative

with respect to the probe variable g(r1) leads to the first-order reduced density of orbital

|r1〉

lim
g→0
t→0

∂M [g, t]

∂g(r1)
= lim

g→0
t→0

〈
N̂
(∫

n̂(r)δ(r − r1)dr

)
exp

(∫
g(r)n̂(r)dr +

d∑
a=1

tan̂(Ωa)

)〉
=
〈
N̂ n̂(r1)

〉
= ρ(1)(r1) , (37)

where g → 0 is used to denote ∀r : g(r) → 0 and t → 0 is used to denote ∀a : ta → 0. In

general, we can obtain the d-th order reduced density ρ(d) by successive differentiation

ρ(d)(r1, . . . , rd) = lim
g→0
t→0

∂dM[g, t]

∂g(rd) . . . ∂g(r1)
. (38)

In the case of domains, taking the partial derivative with respect to ta leads to moments

associated with domains. As such, the first partial derivative leads to the population of

domain Ωa

lim
g→0
t→0

∂M[g, t]

∂ta
= lim

g→0
t→0

〈
N̂ n̂(Ωa)

〉
= ρ(1)(Ωa) . (39)

Taking two partial derivatives leads to the average number of pairs inside domains

lim
g→0
t→0

∂2M[g, t]

∂t2a
=
〈
N̂ n̂(Ωa)

2
〉

= ρ(2)(Ωa,Ωa) (40)

lim
g→0
t→0

∂2M[g, t]

∂tb∂ta
=
〈
N̂ n̂(Ωa)n̂(Ωb)

〉
= ρ(2)(Ωa,Ωb) . (41)

In general, we can obtain the d-th order reduced density ρ(d) over domains by successive

differentiation

ρ(d)(Ω1, . . . ,Ωd) = lim
g→0
t→0

∂dM [g, t]

∂t1 . . . ∂td
. (42)
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We can also define an average over k-sites and l-domains by taking the following partial

derivatives

ρ(d)(r1, . . . , rk,Ω1, . . . ,Ωd) = lim
g→0
t→0

∂k+lM[g, t]

∂g(r1) . . . ∂g(rk)∂t1 . . . ∂tl
. (43)

In position space, these quantities have been coined the ‘Coarse-Grained Densities’ (Mart́ın Pendás,

Francisco, & Blanco, 2007c), where the indices that are not associated with domains are also

called ‘free’.

We again reiterate the importance of including normal ordering into the definitions of the

respective moments. If the normal ordering operator N̂ is not used to project out diagonal

elements (Silvi, 2004; Poater, Duran, Solá, & Silvi, 2005), one does not always determine the

occupations of the intended number of orbitals/domains. Indeed, the corresponding moment

generating function is then given by

M
��̂N

[g, t] =

〈
exp

(∫
g(r)n̂(r)dr +

d∑
a=1

tan̂(Ωa)

)〉
, (44)

so the second order domain averaged density becomes

lim
g→0
t→0

∂2M
��̂N

[g, t]

∂ta∂tb
= 〈n̂(Ωa)n̂(Ωb)〉 =

∫ ∫
wΩa(x1)wΩb

(x2) 〈n̂(x1)n̂(x2)〉 dx1dx2

=

∫ ∫
wΩa(x1)wΩb

(x2)
〈
ψ̂+(x1)ψ̂−(x1)ψ̂+(x2)ψ̂−(x2)

〉
dx1dx2

=

∫ ∫
wΩa(x1)wΩb

(x2)〈
ψ̂+(x1)ψ̂+(x2)ψ̂−(x2)ψ̂−(x2)− δ(x1 − x2)ψ̂+(x1)ψ̂−(x2)

〉
dx1dx2

= lim
g→0
t→0

∂2M[t]

∂ta∂tb
−
∫
wΩa(x1)wΩb

(x1)ρ(1)(x1)dx1 . (45)

Only in the case where an idempotent (Dirac delta type) weight factor is used, does this

reduce to the form proposed by Silvi (Silvi, 2004)

〈n̂(Ωa)n̂(Ωb)〉 =
〈
N̂ n̂(Ωa)n̂(Ωb)

〉
+ 〈δabn̂(Ωa)〉 . (46)

From a statistical point of view, the addition of this spurious one-site operator has little to

do with determining the pair occupation of two orbitals/domains and is a direct consequence

of not imposing normal ordering on the operator string.
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M[g, t]

ρ(1)(r1) ρ(1)(Ωa)

ρ(2)(r1, r2) ρ(2)(r1,Ωa) ρ(2)(Ωa,Ωb)

ρ(N)(r1, . . . , rN) ρ(N)(Ωa, . . . ,Ωk)

electron density

pair density

N-th order density

domain population

domain pair population

EDF and MPDs

∂
∂g(r1)

∂
∂ta

∂
∂g(r2)

∂
∂ta

∂
∂g(r1)

∂
∂tb

∂N−2

∂g(r3)...∂g(rN ) CGDs CGDs
∂N−2

∂tl...∂tk

Figure 2: Overview of the k + l-th order orbital and domain densities

ρ(k+l)(r1, . . . , rk,Ωa, . . . ,Ωl) that can be derived from the reduced density generating

function M[g, t]. Solid arrows indicate successive differentiations of that generating

function, whereas dotted arrows indicate multiple successive differentiations. The respective

successive differentiation is listed next to these arrows. Curly lines are used to indicate

commonly used names for the resulting descriptors.

As all moments can be generated from M [g, t], this generating function forms the basis

for many quantum chemical descriptors. Successive differentiations of the reduced density

generating function generate a hierarchy of descriptors that characterize the average occupa-

tions of domains and orbitals (see Figure 2). On the bottom layer of this hierarchy we find

quantities where there are as many occupation number operators as there are electrons. As

such, these quantities can be normalized to probabilities of finding all electrons at certain

positions or domains, whereas quantities on a higher level can only be interpreted in terms of

finding at least a given number of electrons. As the former descriptors have seen significant

advancements in recent years, we will discuss these probabilities further in the next section.

DOMAIN PROBABILITIES

In the previous section, we defined the probability of finding at least d electrons in a domain.

In this section, we define the probability of finding exactly d electrons in a domain or a

partition of electrons (ν1, . . . , νd) over a partition of domains. Such partitions can be specified

14



as

[ν,Ω] = [(ν1, . . . , νd) , (Ω1, . . . ,Ωd)] . (47)

The collection of all probabilities p [(ν1, . . . , νd),Ω] associated with a domain partition Ω

has been called the ‘Electron number Distribution Function’ or EDF. This EDF has a rich

history in conceptual quantum chemistry. Already in the 1950s, Daudel and coworkers tried

to ‘localize’ electrons - that are physically inherently delocalized - by deforming domains

(Daudel, Brion, & Odiot, 1955; Daudel, Bader, Stephens, & Borrett, 1974). Daudel et al.

argued that in view of the success of Lewis’s model, there should be some molecule-dependent

‘best’ decomposition in regions (also called ‘loges’). They proposed a minimization of the

missing information function I by deforming the domain Ω (and necessarily, its complement

Ω)

I(ν,Ω) = −
∑
ν

p[(ν,N − ν), (Ω,Ω)] ln p[(ν,N − ν), (Ω,Ω)] , (48)

The best ‘loges’, meaning those domains that minimize the missing information function,

exhibit a high degree of similarity with the structures that follow from Lewis’s theory (Daudel

et al., 1955). Unfortunately, these partitions are computationally very difficult to obtain

(Aslangul et al., 1972) and the method remains applicable only to the smallest model systems.

However, many years later Savin (Savin, 2001) was able to show that chemical inter-

pretations can be given to a single domain whose shape has been optimized so that the

probability of finding ν and only ν electrons inside it (with ν typically chosen to be equal

to two, as a reference to the electron pair proposed by Lewis) is maximal. The resulting

domains were coined ‘Maximum Probability Domains’ or MPDs (Savin, 2001). Thanks to

further theoretical work by Cancès (Cancès, Keriven, Lodier, & Savin, 2004), obtaining

MPDs in position space for general quantum chemical methods became a possibility. Un-

fortunately, the development of actual implementations has been severely hampered by the

sheer complexity of the shape optimization algorithms needed for such a program. Despite

numerous efforts (Scemama, Caffarel, & Savin, 2007; Causà & Savin, 2011; Causà & Savin,

2011; Lopes Jr, Bräıda, Causa, & Savin, 2012; Causà, D’Amore, Garzillo, Gentile, & Savin,

2013; Menéndez & Mart́ın Pendás, 2014; Menéndez, Mart́ın Pendás, Bräıda, & Savin, 2015;

Agostini, Ciccotti, Savin, & Vuilleumier, 2015; Causà, D’Amore, Gentile, Menéndez, & Ca-
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latayud, 2015; Acke et al., 2016; Turek, Bräıda, & De Proft, 2017), the question of whether

MPDs provide a mathematical bridge between chemical concepts and quantum mechanics

remains unanswered to this day.

Simultaneously, the interpretative power behind the EDF for a given set of domains Ω

has been used to provide a probabilistic view of chemical bonds in position space (Savin,

2001; Cancès et al., 2004; Savin, 2005; Gallegos, Carbó-Dorca, Lodier, Cancès, & Savin,

2005; Bochicchio, Ponec, Lain, & Torre, 2000; Bochicchio, Ponec, Torre, & Lain, 2001;

Mart́ın Pendás et al., 2007c; Francisco, Mart́ın Pendás, & Blanco, 2007; Mart́ın Pendás,

Francisco, & Blanco, 2007d, 2007b, 2007a; Francisco, Mart́ın Pendás, & Blanco, 2008, 2011;

Francisco & Mart́ın Pendás, 2014). This view is based on ‘resonance structures’, where each

resonance structure is a localization of N electrons in position space domains. As such,

concepts such as electron pair shairing, polarity, charge transfer, and multiple bonding have

been shown to be recovered from the statistical properties of p[ν,Ω]. However, we must stress

that this approach uses ‘precomputed’ domains and in no way optimizes those domains to

obtain optimal probabilistic descriptions.

Probability operators

We can define domain probabilities as those probabilities that can be obtained by associat-

ing all electrons with certain domains. If we focus exclusively on domains, the generating

function M [g, t] reduces to

M [t] :=

〈
N̂ exp

(
d∑
a=1

tan̂(Ωa)

)〉
. (49)

The probabilities detailed above can then be obtained by selecting only those terms con-

taining N occupation-number operators from the generating functionM[t]. This is done by

using the operator N̂N , which ensures normal ordering and destroys operator strings with
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an occupation number operator count different than N〈
N̂N exp

(
d∑
a=1

tan̂(Ωa)

)〉
=

〈
N̂N

d∏
a=1

exp (tan̂(Ωa))

〉

=

〈
N̂N

d∏
a=1

∞∑
νa=0

tνaa
νa!

n̂(Ωa)
νa

〉

=
∞∑

ν1,...,νd
d∑

a=1
νa=N

〈
N̂

d∏
a=1

tνaa
νa!

n̂(Ωa)
νa

〉

=
∑
ν`N

〈
N̂

d∏
a=1

tνaa
νa!

n̂(Ωa)
νa

〉
, (50)

where we have used ν ` N as a shorthand for the summation over all partitions of N

electrons over the domains (Andrews, 1998). Based on the form of the generating function,

we can postulate that the probability operators p̂ [(ν1, . . . , νd),Ω] associated with a domain

partition Ω = (Ω1, . . . ,Ωd) are given by

p̂ [(ν1, . . . , νd),Ω] := N̂
d∏
a=1

n̂(Ωa)
νa

νa!
, (51)

and reformulate the moment generating function as〈
N̂N exp

(
d∑
a=1

tan̂(Ωa)

)〉
=
∑
ν`N

〈p̂ [(ν1, . . . , νd),Ω]〉 tν11 . . . tνdd . (52)

If we use the following notation for a multinomial coefficient(
N

ν1 . . . νd

)
=

N !

ν1! . . . νd!
, (53)

we can show that the moments of the probability operators p̂ [(ν1, . . . , νd),Ω] are equivalent

to the original probability expressions as used by Bader (R. Bader & Stephens, 1975) and
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Savin (Savin, 2001)

〈p̂ [(ν1, . . . , νd),Ω]〉 =

〈
N̂

d∏
a=1

n̂(Ωa)
νa

νa!

〉
=

1

ν1! . . . νd!

∫
. . .

∫
︸ ︷︷ ︸

N

wΩ1(x1) . . . wΩ1(xν1) . . .
〈
N̂ n̂(x1) . . . n̂(xN)

〉
dx1 . . . dxN

=

(
N

ν1 . . . νd

)∫
. . .

∫
︸ ︷︷ ︸

N

wΩ1(x1) . . . wΩ1(xν1) . . . |Ψ(x1, . . . ,xN)|2 dx1 . . . dxN

= p [(ν1, . . . , νd),Ω] . (54)

As such, our interpretation of p̂ [(ν1, . . . , νd),Ω] as a domain probability operator is correct.

We note that, as we have defined the probability operators solely in terms of occupation-

number operators, the framework derived above is valid for any underlying one-electron

spin-basis, with the generating function M[t] representing a compact codification of the

information contained in the EDF. As such, the EDF framework is not restricted to the

most commonly used position space perspective and can also be applied to e.g. the abstract

site basis of the Hubbard model (Acke et al., 2016).

Procedure to calculate domain probabilities

In spin-position space, the domain associated number operator (for a domain defined in

position space) is given by

n̂(Ωa) =

∫
wΩa(r)ψ̂+(x)ψ̂−(x)dx =

∑
IJ

(∫
φ∗I(x)wΩa(r)φJ(x)dx

)
φ̂+
I φ̂
−
J , (55)

where we have used the transformations of field operators that are discussed in the appendix.

If we define the spin-orbital domain overlap matrix ΣΩa over the domain Ωa as

ΣΩa
IJ :=

∫
φ∗I(x)wΩa(r)φJ(x)dx , (56)

and a matrix of generalized occupation-number operators n̂ as

n̂IJ = φ̂+
J φ̂
−
I , (57)
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then the domain associated number operators n̂(Ωa) can be expressed as

n̂(Ωa) = tr
(
ΣΩan̂

)
. (58)

As such, we obtain the following form of the probability generating function∑
ν`N

p [(ν1, . . . , νd),Ω] tν11 . . . tνdd =

〈
N̂N exp

[
tr

((
d∑
a=1

taΣ
Ωa

)
n̂

)]〉
. (59)

Since the trace is linear and

exp (tr(X)) = det (exp(X)) , (60)

we obtain that∑
ν`N

p [(ν1, . . . , νd),Ω] tν11 . . . tνdd =

〈
N̂N det

[
exp

((
d∑
a=1

taΣ
Ωa

)
n̂

)]〉

=

〈
N̂N det

 ∞∑
k=0

1

k!

(
d∑
a=1

taΣ
Ωa

)k

n̂k

〉

=

〈
N̂N det

[
I +

(
d∑
a=1

taΣ
Ωa

)
n̂

]〉
, (61)

where in the last step we have used the fact that the N̂N operator destroys all operator

strings with an occupation number operator count different than N. The moment of the

matrix n̂ is determined by which orbitals are occupied in the respective Slater determinants

in which the wave function can be expanded. As such, if we want to compute the moment

between two Slater determinants |k〉 and |l〉, the above expression reduces to∑
ν`N

pkl [(ν1, . . . , νd),Ω] tν11 . . . tνdd = det

(
d∑
a=1

taΣ
′kl,Ωa

)
, (62)

where Σ′kl,Ωa contains only those domain overlaps between the orbitals that are occupied

in the respective Slater determinants. Although this connection has previously been deter-

mined by an explicit Slater determinant decomposition in first quantization (Francisco et

al., 2007, 2008; Francisco, Mart́ın Pendás, & Costales, 2014), the current derivation clearly

illustrates the power of the generating function perspective. Indeed, the complicated explicit

decomposition can be replaced by the easier second quantized algebraic rules, allowing one

to focus more on the statistical ideas behind such a derivation, as will be shown in the case

of two domains.
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The special case of two domains

If one considers only one domain Ω, one is also implicitly taking its complement Ω into

account. As this situation allows for far-reaching simplifications, we focus on the theory

behind partitions consisting of two domains in this section. If we have only two domains Ωa

and Ωb, then necessarily Ωb is the complement of Ωa and the following relation is valid

n̂(Ωa) = n̂− n̂(Ωb) . (63)

If we presume that the wave function is an eigenfunction of the number operator with

eigenvalue N

n̂ |Ψ〉 = N |Ψ〉 , (64)

we can focus solely on the action of one domain associated number-operator, say n̂(Ωa),

which we will write as n̂(Ω) (with n̂(Ωb) equal to n̂(Ω)). In this case, the generating function

is given by

N̂N exp [tΩn̂Ω + tΩn̂Ω] =
N∑
ν=0

p̂
[
(ν,N − ν), (Ω,Ω)

]
tνΩt

N−ν
Ω

, (65)

with

p̂
[
(ν,N − ν), (Ω,Ω)

]
=

1

ν!(N − ν)!
N̂ n̂(Ω)νn̂(Ω)N−ν . (66)

The m-th order domain condensed density matrix can be expressed in terms of the associated

probability distribution as (Ziesche, 2000)

ρ(m)(Ω, . . . ,Ω) =
N∑

ν=m

ν!

(ν −m)!
p
[
(ν,N − ν), (Ω,Ω)

]
. (67)
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In turn, the ν-th probability can be expressed in terms of the domain condensed density

matrices (Ziesche, 2000)

p
[
(ν,N − ν), (Ω,Ω)

]
=
〈
p̂
[
(ν,N − ν), (Ω,Ω)

]〉
=

〈
1

ν!(N − ν)!
N̂ n̂(Ω)ν (n̂− n̂(Ω))N−ν

〉
=

〈
1

ν!(N − ν)!
N̂

N−ν∑
k=0

(
N − ν
k

)
(−1)kn̂(Ω)k+νn̂N−(k+ν)

〉

=

〈
1

ν!
N̂

N−ν∑
k=0

1

k!(N − (k + ν))!
(−1)kn̂(Ω)k+νn̂N−(k+ν)

〉

=

〈
N̂

N∑
k=ν

1

ν!(k − ν)!
(−1)k−νn̂(Ω)k

1

(N − k)!
n̂N−k

〉

=

〈
N̂

N∑
k=ν

1

ν!(k − ν)!
(−1)k−νn̂(Ω)k

〉

=
N∑
k=ν

(−1)k−ν

ν!(k − ν)!
ρ(k)(Ω, . . . ,Ω) . (68)

This equation shows how one can formally obtain p
[
(ν,N − ν), (Ω,Ω)

]
by “eliminating those

contributions that can be attributed to intrusion of more than ν particles in the domain Ω”

(Savin, 2001, 2004).

However, note that the above relationship was already derived in the 1970s in the context

of fluctuation theorems for statistical mechanical purposes (equation 13b in (Vezzetti, 1975)).

This derivation was based on the fact that the probability that a domain of ‘space’ contains

exactly ν particles can be expressed in terms of distribution functions (the reduced densities,

also called Janossy probability densities (Daley & Vere-Jones, 2002)). A few years later,

Truskett (Truskett, Torquato, & Debenedetti, 1998) realized that the underlying framework

is essentially that of a ‘stochastic spatial point process’ (in our case ‘stochastic site process’

would be a better designation). A point process is a type of stochastic process, for which any

realization consists of a set of elements in the relevant space (in our case, the space of sites)

(Daley & Vere-Jones, 2002, 2008). This interpretation will have important consequences for

the single determinant case.

If there are only two domains Ω and Ω and the one-electron spin-basis is orthonormal,
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then

ΣΩ + ΣΩ = I , (69)

from which follows that

ΣΩ = I −ΣΩ . (70)

This connection allows all probabilities to be expressed in terms of quantities that are only

related to the domain Ω. Again, we can express the domain associated number operators in

the one-electron spin-basis

n̂(Ω) =

∫
wΩ(r)ψ̂+(x)ψ̂−(x)dx =

N∑
IJ

(∫
φ∗I(x)wΩ(x)φJ(x)dx

)
φ̂+
I φ̂
−
J

=
N∑
IJ

φ̂+
I ΣΩ

IJ φ̂
−
J , (71)

n̂(Ω) =
N∑
IJ

φ̂+
I

(
I −ΣΩ

IJ

)
φ̂−J . (72)

Given that ΣΩ is Hermitian, we can diagonalize the matrix

ΣΩ = XΛX† (73)

and use the eigenvectors to rotate the creation and annihilation operators unitarily, both for

the domain Ω

n̂(Ω) =
N∑
IJ

φ̂+
I (XΛXᵀ)IJ φ̂

−
J =

N∑
I=1

λI
ˆ̃φ+
I

ˆ̃φ−I =
N∑
I=1

λI n̂(Ĩ) , (74)

and its complement Ω

n̂(Ω) =
N∑
I=1

(1− λI)n̂(Ĩ) , (75)

where we have used the notation Ĩ to distinguish between the original basis and the rotated

basis.

Hence, the probability generating function for two domains becomes

N∑
ν=0

p
[
(ν,N − ν), (Ω,Ω)

]
tνΩt

N−ν
Ω

=

〈
N̂N exp

(
N∑
I=1

[tΩλI + tΩ(1− λI)] n̂(Ĩ)

)〉
. (76)

22



Because the N̂N operator automatically destroys operator strings with an occupation number

operator count different than N , we can simplify this expression by setting tΩ = 1 and tΩ = t

N∑
ν=0

p
[
(ν,N − ν), (Ω,Ω)

]
tν =

〈
N̂N exp

(
N∑
I=1

[tλI + (1− λI)]n̂(Ĩ)

)〉

=

〈
N̂N

N∏
I=1

exp
(

[(t− 1)λI + 1]n̂(Ĩ)
)〉

=

〈
N̂

N∏
I=1

(
[(t− 1)λI + 1]n̂(Ĩ)

)〉
(77)

In the last expression, we have used the fact that only first-order terms of the exponential

can survive due to the action of N̂N (since this operator removes diagonal elements and only

retains terms with in total N occupation-number operators). As the occupation numbers of

the molecular orbitals of a single Slater determinant are invariant under unitary rotations,

we obtain the following for a single Slater determinant

N∑
ν=0

p
[
(ν,N − ν), (Ω,Ω)

]
tν =

N∏
I=1

[(t− 1)λI + 1]

= det[I + (t− 1)Λ]

= det(X) det[I + (t− 1)Λ] det(X†)

= det
[
I + (t− 1)ΣΩ

]
. (78)

This result is equivalent to what was obtained by an explicit determinant decomposition by

Cancès (Cancès et al., 2004). Again, in our approach no such decomposition is needed and

the link with the original work of Ziesche (Ziesche, 2000) that allowed Savin to propose the

theory of MPDs (Savin, 2001) is clear.

Note that one can interpret the associated eigenvalues by recognizing the domains as

‘Open Quantum Systems’ (Breuer & Petruccione, 2002; Mart́ın Pendás & Francisco, 2018b).

As an Open Quantum System, the domains interact with an external environment, which

can be its complement or a collection of other domains. As a complete description of the

domain is only possible by recognizing that it is embedded into its environment, the resulting

description can be framed in the terminology of the ‘Density Matrix Embedding Theory’ or

DMET (Knizia & Chan, 2013). In this theory, for a single Slater determinant, the overlap
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matrix ΣΩ, which is defined as the overlap of the orbitals projected onto the fragment Ω, is

diagonalized. The eigenvectors of ΣΩ define a rotation of the orbitals that divides them in

three sets, depending on their eigenvalues. Eigenvalues of one and zero are associated with

‘pure fragment orbitals’ (in our case ‘pure domain’) and ‘pure environment orbitals’ (in our

case ‘pure complementary domain’) respectively. Eigenvalues in between zero and one are

called ‘entangled orbitals’ (in our case ‘shared orbitals’).

Cancès et al. also noted that the probabilities can be expressed as (Cancès et al., 2004),

p
[
(ν,N − ν), (Ω,Ω)

]
= aNν , (79)

where the aNν are defined by the recursion

a0
0 = 1

ak0 = αka
k−1
0

akj = βka
k−1
j−1 + αka

k−1
j , 1 ≤ j < k − 1

akk = βka
k−1
k−1

(80)

with

αk = 1− λk (81)

βk = λk . (82)

On the one hand, this allows for an efficient computation of the probabilities in the case

of a single Slater determinant and two domains. On the other hand, this recursive scheme

indicates that in the case of a single determinant wave function, the underlying framework is

that of a determinantal point process (Macchi, 1975; Soshnikov, 2000). In a determinantal

point process, the distribution of the number of points is equal to the distribution of the

sum of independent Bernoulli(λj) random variables (a Poisson binomial distribution), where

0 < λj ≤ 1 are the nonzero eigenvalues of the ‘kernel’ of the determinantal process (in our

case ΣΩ) (Gottlieb, 2005).

Note that the interpretation as a determinantal point process is different from the in-

terpretation of Francisco et al. (Francisco, Mart́ın Pendás, & Blanco, 2009), where each

electron is considered to be statistically independent from the others, lying either inside Ω
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or its complement with respective probabilities λk or 1− λk. The latter interpretation is at

odds with the standard interpretation of statistical independence as a factorization of the

probability density |Ψ(x1, . . . ,xN)|2, which can never be achieved when using a single Slater

determinant (Kutzelnigg, 2003). Indeed, according to the interpretation presented above,

the statistical independence is related to the process of counting the number of particles in

a domain, and not to the behavior of the particles themselves in spin-position space.

ORBITAL AND DOMAIN DENSITY FLUCTUATIONS

In the previous sections, we showed how the moment generating function can be used to

generate moments of the (domain) occupation number operator. In a similar way, we can

generate the ‘central moments’ of this (domain) occupation number operator, where the

central moment is the moment of a random variable around its mean. By defining an

occupation number fluctuation operator δn̂(r) (Fulde, 2012)

δn̂(r) := n̂(r)− 〈n̂(r)〉 , (83)

we can center the occupation-number operator n̂(r) around its mean 〈n̂(r)〉 (Yamasaki

& Goddard, 1998; Yamasaki, Mainz, & Goddard, 2000). In analogy with the moment

generating function M [g, t], we can then construct a ‘central moment’ generating function

M′ [g, t]

M′ [g, t] :=

〈
N̂ exp

(∫
g(r)δn̂(r)dr +

d∑
a=1

taδn̂(Ωa)

)〉
, (84)

where

δn̂(Ωa) := n̂(Ωa)− 〈n̂(Ωa)〉 . (85)

The first three central moments ρ′(1)(r), ρ′(2)(r1, r2) and ρ′(3)(r1, r2, r3) are then given by the

derivatives of M′ with respect to g(r)

ρ′(1)(r) = lim
g→0
t→0

∂M′[g, t]

∂g(r)
= 〈δn̂(r)〉 = 0 (86)
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ρ′(2)(r1, r2) = lim
g→0
t→0

∂M′[g, t]

∂g(r1)∂g(r2)
=
〈
N̂ δn̂(r1)δn̂(r2)

〉
=
〈
N̂ (n̂(r1)− 〈n̂(r1)〉)(n̂(r2)− 〈n̂(r2)〉)

〉
=
〈
N̂ n̂(r1)n̂(r2)

〉
− 〈n̂(r1)〉 〈n̂(r2)〉

= ρ(2)(r1, r2)− ρ(1)(r1)ρ(1)(r2) (87)

ρ′(3)(r1, r2, r3) = ρ(3)(r1, r2, r3)− Ŝρ(1)(r1)ρ(2)(r2, r3) + 2ρ(1)(r1)ρ(1)(r2)ρ(1)(r3) , (88)

where Ŝ is a symmetrizer (Ziesche, 2000).

While the reduced densities describe the average occupation numbers of the relevant po-

sition space orbitals, the reduced central densities describe the statistical correlation between

the fluctuations of the occupation numbers. For instance, the second-order reduced central

density ρ′(2)(i, j) defined in the orbital basis {φi} describes the covariance between the orbital

occupation numbers n(i) and n(j) (Kong & Valeev, 2011). Due to the fact that the above

derivations are solely based on the concept of occupation-number operators, independent of

the underlying orbital basis, a similar statement is valid for the position basis.

ρ′(2) is also called the exchange-correlation hole (Slater, 1951) and has been studied

extensively in Density Functional Theory (Parr & Yang, 1989). However, we note that

the central moments treat occupied and non-occupied sites on the same footing (Hanauer &

Köhn, 2012): all fluctuations of the site occupations are taken into account. This implies that

the central density ρ′(2)(I, J) does not really describe “the hole associated with a reference

electron in spin-orbital I” , but rather describes all correlations between the occupation-

number fluctuations that occur at the given orbitals. If we assume that the wave function

can be written as |Ψ〉 =
∑
k

ck |k〉, we can see this more clearly as follows

ρ′(2)(I, J) =
〈
N̂ δn̂(I)δn̂(J)

〉
=
〈
N̂ n̂(I)n̂(J)

〉
− 〈n̂(I)〉 〈n̂(J)〉

=
∑
k

|ck|2
(〈
k
∣∣∣ N̂ n̂(I)n̂(J)

∣∣∣k〉− 〈n̂(I)〉 〈n̂(J)〉
)
. (89)
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Hence, even an Slater determinant |l〉 in which neither I nor J are occupied (i.e. there is no

‘reference electron’ as such) contributes a term − |cl|2 ρ(1)(I)ρ(1)(J) to the central density.

The second-order domain central densities ρ′(2)(Ωa,Ωa) and ρ′(2)(Ωa,Ωb) are given by

ρ′(2)(Ωa,Ωa) = ρ(2)(Ωa,Ωa)− ρ(1)(Ωa)ρ
(1)(Ωa) (90)

ρ′(2)(Ωa,Ωb) = ρ(2)(Ωa,Ωb)− ρ(1)(Ωa)ρ
(1)(Ωb) (91)

and are also called the ‘localization’ and the ‘delocalization’ indices respectively (R. F. Bader

& Stephens, 1974; Angyan, Loos, & Mayer, 1994; Fradera, Austen, & Bader, 1999; Fradera,

Poater, Simon, Duran, & Solà, 2002; Baranov & Kohout, 2011). By interpreting the domain

indices a and b as indices of a matrix ρ′2(Ωa,Ωb), we obtain the ‘Localization-Delocalization

Matrix’ or LDM (Matta, Sumar, Cook, & Ayers, 2016). Taking further derivatives with

respect to t leads to M -th order central densities, which also have been called ‘multicenter

bonding indices’ (Giambiagi, de Giambiagi, & Mundim, 1990). These quantities and deriva-

tives thereof have been used extensively to quantify aromaticity (Ponec, Bultinck, & Saliner,

2005; Bultinck, Ponec, & Van Damme, 2005; Feixas, Matito, Poater, & Solà, 2015).

Descriptors that ‘mix’ the orbital and domain perspective have also received significant

attention from the conceptual quantum chemistry community. As such, the second-order

orbital and domain central density ρ′(2)(r,Ω)

ρ′(2)(r,Ω) = ρ(2)(r,Ω)− ρ(1)(r)ρ(1)(Ωa) (92)

is also called the ‘Domain Averaged Fermi Hole’ or DAFH (Ponec, 1997, 1998; Poater, Sola,

Duran, & Fradera, 2002; Ponec, Cooper, & Savin, 2008; Cooper & Ponec, 2008; Ponec &

Feixas, 2009; Bultinck, Cooper, & Ponec, 2010). In position space, n̂(Ω) can be expressed

in terms of orbitals that have been unitarily rotated by the eigenvectors of the domain

overlap matrix SΩ. As such, for a single Slater determinant wave function, we can reduce
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the second-order central density ρ′(2)(r,Ω) to

ρ′(2)(r,Ω) =
〈
N̂ n̂(r)n̂(Ω)

〉
− 〈n̂(r)〉 〈n̂(Ω)〉

=
∑
ijk

λkφ̃
∗
i (r)φ̃j(r)

[〈
ˆ̃φ+
i

ˆ̃φ+
k

ˆ̃φ−k
ˆ̃φ−j

〉
−
〈

ˆ̃φ+
i

ˆ̃φ−j

〉〈
ˆ̃φ+
k

ˆ̃φ−k

〉]
=
∑
ijk

λkφ̃
∗
i (r)φ̃j(r) [δij − δikδjk − δij]

= −
∑
k

λk

∣∣∣φ̃k(r)
∣∣∣2 , (93)

where we have used the fact that n̂(r) can be expressed in the basis of the rotated orbitals{
φ̃j

}
as

n̂(r) =
∑
ij

φ̃∗i (r)φ̃j(r) ˆ̃φ+
i

ˆ̃φ−j , (94)

and the fact that the occupation-numbers of a single Slater determinant are invariant under

unitary rotations. As such, for a single Slater determinant wave function, the orbitals that

have been rotated according to the domain orbital overlap matrix SΩ are also called the

‘DAFH orbitals’ or ‘Domain Natural Orbitals’ (DNOs) and the eigenvalues of SΩ the ‘DAFH

orbital occupation number’ (Francisco et al., 2009). Furthermore, if we define the first-order

conditional density ρ(1)(r1|r2) as

ρ(1)(r1|r2) =
ρ(2)(r1, r2)

ρ(1)(r2)
, (95)

we can express ρ′(2)(r,Ω) for multi-determinant wave function as

ρ′(2)(r,Ω) =
〈
N̂ n̂(r)n̂(Ω)

〉
− ρ(1)(r) 〈n̂(Ω)〉

=
M∑
j=1

λj

[〈
N̂ n̂(r)n̂(j̃)

〉
− ρ(1)(r)

〈
n̂(j̃)

〉]
=

M∑
j=1

λjρ
(1)(j̃)

[
ρ(2)(r, j̃)

ρ(1)(j̃)
− ρ(1)(r)

]

= −
M∑
j=1

λjρ
(1)(j̃)

[
ρ(1)(r)− ρ(1)(r|j̃)

]
, (96)

As such, ρ′(2)(r,Ω) provides a decomposition of the excluded density lying in the region over

which the central moment is calculated (Francisco et al., 2014).
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In a similar way as can be done for the moment generating function, we can generate a

hierarchy of descriptors by taking successive derivatives of the central moment generating

function (see Figure 3). We note that most of the higher order quantities in this hierarchy

are still left largely unexplored. In view of the insights that have already been gleaned

from lower order descriptors, we believe that many more important chemical insights can be

revealed by using the currently unexplored descriptors in this hierarchy.

However, we must note that one has to be careful in assigning additional chemical in-

terpretations to these central densities, beyond their statistical meaning. For example, ac-

cording to Mayer (Mayer, 2007), the second-order central density is inadequate for defining

bond orders as it leads to results that are not chemical. Bochicchio et al. (Bochicchio, Lain,

& Torre, 2003) point out that bond orders that are defined on the fluctuation of electron

populations should be restricted to uncorrelated wave functions. In further support of both

findings, we have recently shown that increased covalent contributions lead to reductions in

the second-order domain central density (Acke & Bultinck, 2018; Mart́ın Pendás & Fran-

cisco, 2018a). As such, we believe that many of the additional ‘chemical interpretations’

that have been historically associated with central densities – such as ‘bonds’, ‘bond orders’

and related terms – are worth revisiting.

ORBITAL AND DOMAIN DENSITY CUMULANTS

Next to (central) moments, we can also generate the so-called ‘cumulants’. Many theoretical

problems are simpler to tackle when formulated in terms of cumulants. In particular, the

cumulant of two random variables gives an indication of their mutual statistical dependence,

with completely independent variables resulting in a zero cumulant.

In classical statistics, the cumulants 〈Xn〉c of a stochastic variable X are obtained through

successive differentiation of the cumulant-generating function C(t), which is defined as the

logarithm of the moment generating function M(t)

C(t) = lnM(t) = ln
〈
etX
〉
. (97)
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M′[g, t]

ρ′(1)(r1) = 0 ρ′(1)(Ωa) = 0
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Figure 3: Overview of the k + l-th order fluctuation densities ρ′(k+l)(r1, . . . , rk,Ωa, . . . ,Ωl)

that can be derived from the reduced central density generating function M′[g, t]. Solid

arrows indicate successive differentiations of that generating function, whereas dotted arrows

indicate multiple successive differentiations. The respective successive differentiation is listed

next to these arrows. Curly lines are used to indicate commonly used names for the resulting

descriptors.

For instance, the second cumulant of X is given by

〈X2〉c = lim
t→0

d2C(t)
dt2

= lim
t→0

d2 lnM(t)

dt2

= lim
t→0

d

dt

(
1

M(t)

dM(t)

dt

)
= lim

t→0

(
− 1

M(t)2

dM(t)

dt

dM(t)

dt
+

1

M(t)

d2M(t)

dt2

)
= 〈X2〉 − 〈X〉2 , (98)

and is also called the variance of X or var(X). We can also generate multi-variable cumulants

from C(tX , tY ), which depend on the multi-variable moment generating functionM(tX , tY )

M(tX , tY ) =
〈
etXX+tY Y

〉
. (99)
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As such, the second ‘mixed’ cumulant of X and Y is given by

C(tX , tY ) = lim
tX ,tY→0

d2C(tX , tY )

dtXdtY

= lim
tX ,tY→0

(
− 1

M(tX , tY )2

dM(tX , tY )

dtX

dM(tX , tY )

dtY
+

1

M(tX , tY )

d2M(tX , tY )

dtXdtY

)
= 〈XY 〉 − 〈X〉 〈Y 〉 , (100)

and is also called the covariance of X and Y or cov(X, Y ). A related quantity is the Pearson

correlation coefficient ρX,Y

ρX,Y =
cov(X, Y )√

var(X)
√

var(Y )
. (101)

Here, ρX,Y = 1 or ρX,Y = −1 indicates perfect positive or negative statistical correlation,

while ρX,Y = 0 indicates an absence of statistical correlation between X and Y (which does

not necessarily equate to the statistical independence of X and Y ) (Wasserman, 2013).

As was initially shown by Kubo (Kubo, 1962), we can construct a quantum statistical

cumulant generating function C [g, t] from the moment generating function

M[g, t] :=

〈
N̂ exp

(∫
g(r)n̂(r)dr +

d∑
a=1

tan̂(Ωa)

)〉
, (102)

as follows

C [g, t] = ln (M [g, t]) . (103)

As such, the first order cumulant k(1)(r1) for the position space orbital basis is equal to the

first moment

κ(1)(r1) = ρ(1)(r1) , (104)

while the second and third order cumulants κ(2)(r1, r2) and κ(3)(r1, r2, r3) are equal to the

central moments

κ(2)(r1, r2) = ρ(2)(r1, r2)− ρ(1)(r1)ρ(1)(r2) = ρ′(2)(r1, r2) (105)

κ(3)(r1, r2, r3) = ρ(3)(r1, r2, r3)−Ŝρ(1)(r1)ρ(2)(r2, r3)+
1

2
ρ(1)(r1)ρ(1)(r2)ρ(1)(r3) = ρ′(3)(r1, r2, r3) ,

(106)
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C[g, t] = ln (M[g, t])

κ(1)(r1) = ρ(1)(r1) κ(1)(Ωa) = ρ(1)(Ωa)

κ(2)(r1, r2) κ(2)(r1,Ωa) κ(2)(Ωa,Ωb)

κ(N)(r1,Ωa, . . . ,Ωk)
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Figure 4: Overview of the k + l-th order density cumulants κ(k+l)(r1, . . . , rk,Ωa, . . . ,Ωl)

that can be derived from the reduced density cumulant generating function C[g, t]. Solid

arrows indicate successive differentiations of that generating function, whereas dotted arrows

indicate multiple successive differentiations. The respective successive differentiation is listed

next to these arrows. Curly lines are used to indicate commonly used names for the resulting

descriptors.

with Ŝ a symmetrizer (Ziesche, 2000). Although fourth and higher order cumulants are not

equal to (central) moments, they can be constructed from them (Ziesche, 2000).

We can obtain the k + l-order reduced density cumulant by successive differentiations of

the cumulant generating function

κk+l (r1, . . . , rk,Ω1, . . . ,Ωl) = lim
g→0
t→0

∂k+lC [g, t]

∂g(r1) . . . ∂g(rk)∂t1 . . . ∂tl
, (107)

with k the number of derivatives with respect to g(r) and l the number of derivatives with

respect to t. In this way, the cumulant generating function can be used to generate a

hierarchy of descriptors, as visualized in Figure 4.

Of particular interest in this hierarchy are the quantities obtained by differentiating only

once with respect to g(r) and l times with respect to t. They provide an effective one-electron

description of a l-domain integrated cumulant density. In position space, these quantities

have been coined the ‘Natural Adaptive Orbitals’ or NAdOs by Francisco et al. (Francisco,
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Mart́ın Pendás, Garćıa-Revilla, & Álvarez Boto, 2013; Menéndez, Álvarez Boto, Francisco,

& Mart́ın Pendás, 2015), as they can be used to extend the applicability of concepts based

on orbital models to correlated levels of theory. In this theory, the resulting one-electron

functions are considered to provide at each point in spin-position space an indication of the

interaction of domains with that position. These one-electron functions are contained inside

those domains, if no (l+ 1)-center interactions exist (Menéndez, Álvarez Boto, et al., 2015).

We note that most of the hierarchy detailed in Figure 4 is still largely unexplored. In

view of the insights that have already been gained through the use of NAdOs (Casals-Sainz,

Jiménez-Grávalos, Costales, Francisco, & Mart́ın Pendás, 2018; Menéndez-Crespo, Costales,

Francisco, & Mart́ın Pendás, 2018; Casals-Sainz, Jara-Cortés, Hernández-Trujillo, Francisco,

& Mart́ın Pendás, 2019), we believe that more chemical insights can be revealed by using

these currently underutilized descriptors.

As cumulants are equal to zero for independent occupations, the l-th order cumulant

κ(l)(Ωa, . . . ,Ωl) measures the dependencies in the occupations that are genuinely of l-body

type. For instance, if κ(2)(Ωa,Ωb) = 0, then

ρ(2)(Ωa,Ωb) = ρ(1)(Ωa)ρ
(1)(Ωb) . (108)

In this case, there is no genuine 2-body type dependency that contributes to the pair occu-

pation. As such, the pair occupation is entirely determined by the single occupations of the

respective domains. We must note that, as already stated in the section on reduced densities,

a probabilistic interpretation of reduced densities can lead to erroneous interpretations of

the derived cumulants. As stated by McWeeny (McWeeny, 1960):

“To a first approximation it would be expected that the motion of one electron

would be independent of the instantaneous positions of the others, though the

form of ρ(1) would certainly reflect the average effect of the N − 1 electrons. In

this case, where the particles might be described as quasi-independent, we should

have ρ(2)(r1, r2) = ρ(1)(r1)ρ(1)(r2).”

However, as indicated by Bader and Kutzelnigg (R. F. Bader & Stephens, 1974; Kutzelnigg,

2003), a pair density can never be equal to a product of one electron densities and in a

33



probabilistic interpretation this quasi-independence should be reflected by

ρ
(2)
ind(r1, r2) =

N − 1

N
ρ(1)(r1)ρ(1)(r2) , (109)

where the prefactor can at best be justifiably neglected for extended systems. This renor-

malization factor is related to the fact that the electrons are countable particles and is inde-

pendent of the particle statistics (Kutzelnigg, 1973). As such, assuming that the cumulant

is the difference between a correlated second-order reduced density and (quasi)-independent

first-order reduced densities does not lead to consistent interpretations.

CONCLUSIONS

We have reviewed the statistical theory of occupancy by constructing (domain) occupation

number operators and determining their (central) moments and cumulants through a suit-

able generating function. Many of the existing quantum chemical descriptors can be matched

to a statistical quantity in the resulting hierarchy. This hierarchy connects seemingly unre-

lated concepts and provides a unified interpretation for all these descriptors. Furthermore, it

points to quantum chemical concepts that have not yet been explored. The resulting frame-

work also provides a ‘common language’ for conceptual quantum chemists and theoretical

quantum physicists. We hope that by elucidating this language, the present review will stim-

ulate further research into these quantum chemical descriptors through such interdisciplinary

collaborations.

APPENDIX: SECOND QUANTIZED MACHINERY

Creation and annihilation operators

The quantum chemistry of electrons is described more succinctly when allowing for varying

particle number (Helgaker, Jørgensen, & Olsen, 2000; Surján, 1989). Relations between

states of varying particle number can be described in Fock space F , which is the direct sum
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of the i = 0- to i =∞-particle Hilbert spaces

F =
∞⊕
i=0

Hi . (110)

We can define a creation operator in F by its action on an antisymmetric N -particle state

(which is essentially equivalent to a single Slater determinant)

φ̂+
I |φ1 . . . φN〉 :=

(
N∏
J=1

(1− δIJ)

)
|φIφ1 . . . φN〉 . (111)

in which an electron is ‘created’ in orbital φI . The factors (1− δIJ) make sure that a particle

cannot be created more than once. The associated annihilation operator can be defined as

φ̂−I |φIφ1 . . . φN〉 := |φ1 . . . φN〉 , (112)

and ‘annihilates’ the electron in orbital φI . Whenever there is no electron in orbital φI , the

operator φ̂−I annihilates the state altogether

φ̂−I |φ1 . . . φN〉 := 0 . (113)

In this review, we will employ Longuet-Higgins notation (Longuet-Higgins, 1966), which

explicitly incorporates the identity of the underlying single-particle basis in the notation of

the operators. In particular, we will employ the following notations

χ̂+
I |0〉 = |χI〉 finite, non-orthogonal spin-orbital basis (114)

φ̂+
I |0〉 = |φI〉 = |I〉 finite, orthonormal spin-orbital basis (115)

ψ̂+(x) |0〉 = |x〉 spin-position orbital creation operator (field operator) , (116)

where an orthonormal spin-orbital basis is characterized by

〈φI |φJ〉 =

∫
φ∗I(x)φJ(x)dx = δIJ , (117)

and a non-orthogonal spin-orbital basis by (Surján, 1989)

〈χI |χJ〉 =

∫
χ∗I(x)χJ(x)dx = ΣIJ 6= δIJ , (118)

with Σ the spin-orbital overlap matrix. For an orthonormal single-particle basis, the associ-

ated annihilation operator is also the Hermitian conjugate of the creation operator

φ̂−I = (φ̂+
I )† , (119)
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and can hence be used to create particles in the dual vector. The creation and annihila-

tion operators codify the Pauli antisymmetry principle into their anticommutation relations

(where [Â, B̂]+ = ÂB̂ + B̂Â)

[φ̂+
I , φ̂

+
J ]+ = 0 (120)

[φ̂−I , φ̂
−
J ]+ = 0 (121)

[φ̂+
I , φ̂

−
J ]+ = δIJ = [φ̂−J , φ̂

+
I ]+ . (122)

For non-orthogonal spin-orbitals, these anticommutation relations are replaced by

[χ̂+
I , χ̂

+
J ]+ = 0 (123)

[χ̂−I , χ̂
−
J ]+ = 0 (124)

[χ̂+
I , χ̂

−
J ]+ = ΣIJ . (125)

We can restore the usual anticommutation relations by constructing a bi-orthogonal basis

{ϕI} (Surján, 1989) as

ϕ̂−I =
∑
J

Σ−1
IJ χ̂

−
J (126)

for which [
χ̂+
I , ϕ̂

−
J

]
+

= δIJ . (127)

Although this condition allows us to use any result derived for the orthogonal case (Surján,

1989), it does not solve the problem that the annihilation operator χ̂−I is no longer the

Hermitian conjugate of the creation operator χ̂+
I . As such, the construction of bra wave

functions is only possible by means of the inverse transformation

χ̂−I =
∑
J

ΣIJ ϕ̂
−
J , (128)

which reintroduces the need to take the overlap matrix Σ explicitly into account when using

non-orthogonal orbitals.

In non-relativistic theory, spin-orbitals {φI} are commonly of the following form (Helgaker

et al., 2000)

φiσ(r,ms) = φi(r)σ(ms) . (129)

36



Hence, we may separate out spin from spatial parts of the creation and annihilation operators,

giving

[φ̂+
iσ, φ̂

+
jσ′ ]+ = 0 (130)

[φ̂−iσ, φ̂
−
jσ′ ]+ = 0 (131)

[φ̂+
iσ, φ̂

−
jσ′ ]+ = δijδσσ′ , (132)

where the M spin-orbitals {φI} can be expressed in terms of m spatial orbitals {φi}.

Field operators

Given a certain basis, we can express this basis in an alternative basis with the aid of the

single-particle completeness relations. If we start from the complete set of eigenvectors of

the operator x̂

x̂ |x〉 = x |x〉 , (133)

the corresponding basis transformations are given by

|φI〉 =

∫
|x〉 〈x|φI〉 dx =

∫
φI(x) |x〉 dx (134)

|x〉 =
∑
I

|φI〉 〈φI |x〉 =
∑
I

φ∗I(x) |φI〉 . (135)

From this, we can derive the transformation for the associated creation operator

ψ̂+(x) |0〉 = |x〉 =
∑
I

|φI〉 〈φI |x〉 =
∑
I

φ∗I(x) |φI〉 =
∑
I

φ∗I(x)φ̂+
I |0〉 (136)

In a similar way, the inverse transformation is given by

φ̂+
I =

∫
φI(x)ψ̂+(x)dx , (137)

and the following transformation rules for annihilation operators can be derived

ψ̂−(x) =
∑
I

φI(x)φ̂−I (138)

φ̂−I =

∫
φ∗I(x)ψ̂−(x)dx . (139)

The operator ψ̂+(x) is called a ‘field operator’ and acts as a hybrid between first and second

quantization (Fetter & Walecka, 2003; Engel & Dreizler, 2011; Lancaster & Blundell, 2014).

As such, it is very convenient for porting first quantized expressions into second quantization.
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Normal ordering

Given a sequence of second quantized operators Ô, the normal ordered form N̂ Ô with respect

to the vacuum state |0〉 corresponds to moving all creation operators to the left and all

annihilation operators to the right as if they all anticommuted (Saue, 2015). Hence,

N̂ φ̂−I φ̂
−
J = φ̂−I φ̂

−
J (140)

N̂ φ̂+
I φ̂

+
J = φ̂+

I φ̂
+
J (141)

N̂ φ̂+
I φ̂
−
J = φ̂+

I φ̂
−
J (142)

N̂ φ̂−I φ̂
+
J = −φ̂+

I φ̂
−
J (143)

Note that the action of the normal ordered form of a collection of operators Ô that contains

duplicate creation or annihilation operators on an arbitrary state |K〉 is such that the state

is annihilated

N̂ φ̂+
I φ̂
−
I φ̂

+
I φ̂
−
I |K〉 = −φ̂+

I φ̂
+
I φ̂
−
I φ̂
−
I |K〉 = 0 . (144)

A term related to the idea of normal ordering, is a ‘contraction’. This contraction is defined

as the difference between the operator string itself and its normal ordered form

φ̂+
I φ̂
−
J = φ̂+

I φ̂
−
J − N̂ φ̂

+
I φ̂
−
J . (145)

This difference can only give rise to zero or a complex number times the identity (Fetter &

Walecka, 2003). As such, these contractions play a central role in Wick’s theorem, which

states that any operator string can be written as a linear combination of normal-ordered

strings, where only fully contracted terms contribute to expectation values with respect to

vacuum |0〉.
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Francisco, E., Mart́ın Pendás, Á., & Blanco, M. A. (2011). Generalized electron number dis-

tribution functions: real space versus orbital space descriptions. Theoretical Chemistry

Accounts , 128 (4-6), 433–444.
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Hanauer, M., & Köhn, A. (2012). Meaning and magnitude of the reduced density matrix

cumulants. Chemical Physics , 401 , 50–61.

Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular Electronic-Structure Theory.

John Wiley & Sons.

Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities.

Theoretica Chimica Acta, 44 (2), 129–138.

Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-Garćıa, J., Cohen, A. J., & Yang,
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