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Biofilms are extremely difficult to eradicate due to their decreased antibiotic susceptibility. Inducing biofilm
dispersion could be a potential strategy to help combat biofilm-related infections. Mechanisms of biofilm
dispersion can basically be divided into two groups, i.e. active and passive dispersion. Active dispersion depends
on a decrease in the intracellular c-di-GMP levels, leading to the production of enzymes that degrade the biofilm
matrix and promote dispersion. In contrast, passive dispersion relies on triggers that directly release cells from the
biofilm. In the present review, several active and passive dispersion strategies are discussed. In addition, the
disadvantages and possible consequences of using dispersion as a treatment approach for biofilm-related in-
fections are also reviewed.
Biofilms: the microbial fortress

Biofilms are multicellular structures of microorganisms in which cells
are encapsulated in a self-produced matrix. These biofilms can be formed
on biotic and abiotic surfaces, and can also exist as non-surface-attached
aggregates [1–4]. In biofilms, microorganisms are protected from the
environment and for example, the concentration of antibiotics needed to
eradicate a biofilm are up to a 1000-fold higher than the concentration
needed to kill planktonic cells [5–8]. Reduced susceptibility in biofilms is
due to both resistance and tolerance against antimicrobial agents and
often results in treatment failure [5,9].

A potential approach to combat biofilm-related infections, is to
induce biofilm dispersion, as dispersed cells and remaining biofilm cells
have been shown to be more susceptible [10]. Two main mechanisms
have been described for cells to ‘escape’ the biofilm [11]. Detachment
typically refers to the release of individual cells or cell clusters from the
surface of the biofilm and various mechanisms of biofilm detachment
have been described, including abrasion (removal of cells due to collision
with particles), grazing (removal due to activity of eukaryotic predators),
erosion (removal due to fluid shear) and sloughing (removal of larger
pieces of the biofilm by fluid shear) [11]. The term dispersion historically
refers to the escape of cells from the inside of the biofilm as a regulated
response to internal or external stimuli and is considered the last stage in
the developmental life cycle of the biofilm [11]. However, it has
more-recently become clear that the process of biofilm formation does
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not always follow such a fixed developmental cycle, and that not all
biofilms are surface-attached [4,12,13] and the term dispersion is now
more broadly used to describe the process of cells leaving the biofilm.

Biofilm dispersion: the two mechanisms

Depending on the trigger, two forms of biofilm dispersion can be
distinguished [10]. During active dispersion, the bacteria actively initiate
mechanisms in response to a(n) (external) trigger, usually an environ-
mental change, which results in the release of cells into the environment
(Fig. 1) [13]. One of the mechanisms is the active degradation of the
secondary messenger cyclic di-guanosine monophosphate (c-di-GMP),
also called cyclic diguanylate [14]. The dispersion trigger activates
phosphodiesterases (PDEs) which decrease the c-di-GMP concentration
and this results in the production of matrix degrading enzymes, causing
dispersal (Fig. 1) [15–18].

Passive biofilm dispersion or biofilm detachment relies on external
triggers that result in the release of single cells or clumps of biofilms [11].
Passive biofilm dispersion triggers include enzymatic degradation of the
biofilm matrix and physical triggers [11,15].

Active biofilm dispersion
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y 2020

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:Tom.Coenye@UGent.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bioflm.2020.100027&domain=pdf
www.sciencedirect.com/science/journal/25902075
www.elsevier.com/locate/bioflm
https://doi.org/10.1016/j.bioflm.2020.100027
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.bioflm.2020.100027


Fig. 1. General overview of active biofilm dispersion During active biofilm dispersion, a dispersion trigger activates phosphodiesterases (PDEs) that hydrolyze c-di-
GMP. The decreased intracellular c-di-GMP concentration leads to production of matrix degrading enzymes, resulting in dispersion.
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Komagataeibacter xylinus (formerly known as Acetobacter xylinum) [19].
The secondary messenger c-di-GMP is considered to be a universal
messenger, and c-di-GMP producing and degrading enzymes have been
detected in all major phyla (a list containing all known enzymes involved
in production and degradation of c-di-GMP can be found on https://www
.ncbi.nlm.nih.gov/Complete_Genomes/c-di-GMP.html) [18]. C-di-GMP
is a major regulatory component in both biofilm development and
dispersion [18]. Low intracellular c-di-GMP concentrations promote the
planktonic lifestyle, while high concentrations stimulate life as a biofilm
[18]. The c-di-GMP concentration is regulated by diguanylate cyclases
(DGCs) and PDEs [18]. During active biofilm dispersion, the dispersion
trigger leads to c-di-GMP hydrolysis by PDEs (Fig. 1) [10,15,18]. This
decrease in c-di-GMP concentration activates the expression of genes
involved in motility and genes involved in matrix degradation [15].
Active biofilm dispersion is induced by an environmental change. These
changes can be a sudden increase or decrease in the concentration of a
carbon source, an increase in the concentration of the nitrogen source,
oxygen depletion, elevated levels of nitric oxide (NO), or increased heavy
metal concentrations [20–23]. Cells that disperse from the biofilm
spontaneously are triggered by a lack of oxygen and nutrients in the
center of the biofilm due to the matrix, which serves as a diffusion barrier
[24,25]. For example, the diffusion rate of oxygen through a biofilm is
only 60% of the diffusion rate through water [24] and oxygen and nu-
trients are actively consumed while diffusing through the biofilm,
creating microenvironments [25]. In addition, oxygen is consumed by
the polymorphonuclear leukocytes that attack the biofilm [26,27]. Cells
near the liquid-biofilm interphase are metabolically very active due to
the abundance of nutrients and oxygen, while the cells deeper in the
biofilm are metabolically inactive due to reduced oxygen levels [25].
Also in biofilm aggregates an oxygen gradient is present [2]. The hypoxia
is detected by sensory domains of PDEs, including PAC, PAS and H-NOX
domains, which actively hydrolyze c-di-GMP [14,28,29]. The decrease in
c-di-GMP concentration leads to the production and activation of matrix
degrading enzymes, which results in the release of biofilm cells into the
immediate surroundings [15].

Although c-di-GMP plays a major role in biofilm dispersion, lowering
the c-di-GMP concentration by itself does not necessarily result in biofilm
dispersion. For instance, the anti-cancer drug doxorubicin is reducing the
intracellular c-di-GMP concentration in P. aeruginosa biofilms, while it is
increasing biofilm formation by stimulating the release of extracellular
DNA (eDNA) [30]. Likewise, the upregulation of PDEs does not neces-
sarily result in biofilm dispersion [31]. For example, inducing the
expression of the PDEs DipA and PA2133 does not lead to biofilm
dispersion, although this induced expression does lead to lower c-di-GMP
concentrations [31].

Nitric oxide
One of the first molecules that was identified as a biofilm dispersing

agent was NO. NO is produced by macrophages in order to kill bacteria
like Mycobacterium tuberculosis and Salmonella Typhimurium [32].
Although NO is toxic, it induces biofilm dispersion at low concentrations
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[20]. The NO-donor sodium nitroprusside (SNP) has been described to
induce Pseudomonas aeruginosa biofilm dispersion. At a concentration of
500 nM, a reduction of approximately 80% of the biofilm biomass was
obtained [20]. Most of the dispersion experiments have been performed
with the laboratory-adapted strain P. aeruginosa PAO1. However, NO has
also been used successfully on clinical P. aeruginosa isolates [33]. In order
to study the role of NO in dispersal in vivo, ex vivo sputum of a cystic
fibrosis (CF) patient that contained P. aeruginosa aggregates was used
[33]. Also in these circumstances NO induced dispersal, and the mean
cluster diameter of aggregates was reduced after the treatment [33].

The effect of NO on biofilms is mostly studied in P. aeruginosa;
however, it also induces dispersion of biofilms formed by other species as
well. 500 nM of SNP was able to reduce Bacillus licheniformis biofilmmass
by 90%, while 10 μM SNP resulted in a 60% biomass reduction of a
Staphylococcus epidermidis biofilm [34]. Besides P. aeruginosa, other
Gram-negative bacteria such as Escherichia coli, Fusobacterium nucleatum,
Serratia marcescens and Vibrio cholerae are also responsive to NO; with
reductions in biofilm biomass varying from 38% for E. coli to 72% for
V. cholerae [34]. NO induced dispersion is not limited to bacterial bio-
films as NO application leads to a 60% reduction of a biofilm of the
fungus Candida albicans [34]. In addition to monospecies biofilms, NO
was also able to induce biofilm dispersion in a multispecies biofilm
derived from a water-recycling plant, reducing the biofilm mass by 47%
[34].

NO activates PDEs which results in the decrease of the c-di-GMP
concentration. The c-di-GMP signaling pathway in P. aeruginosa has been
studied intensively, and in this organism NO is sensed by chemotaxis
sensor BdlA, which activates the PDEs DipA and RbdA (Fig. 2) [28,35,
36]. In addition, NO is sensed by an unknown sensor that activates the
expression of the PDE NbdA [37]. These PDEs (DipA, RbdA and NbdA)
actively hydrolyze c-di-GMP into pGpG, resulting in a decrease of the
intracellular c-di-GMP concentration. Low c-di-GMP concentrations lead
to a conformational change in LapD and as a consequence the periplasmic
proteinase LapG is released from LapD, and degrades the matrix bound
proteins LapA and CdrA [38–42]. In addition, the expression of matrix
degrading enzymes is increased due to the decreased c-di-GMP concen-
tration. These enzymes, like the endonuclease EndA, actively degrade
matrix components, resulting in biofilm dispersion [43].

The biofilm remaining after NO induced dispersion is more suscep-
tible to an antibiotic treatment than the original non-dispersed. However,
it remains unclear whether this is due to an altered biofilm morphology,
resulting in increased diffusion rate or due to the reduced biofilm
biomass. In P. aeruginosa, for example, NO in combination with antimi-
crobial compound such as hydrogen peroxide, tobramycin or sodium
dodecyl sulphate (SDS), improved the biofilm removal [20]. Further-
more, a combined exposure of aggregates in ex vivo sputum to NO and
tobramycin, resulted in a significantly improved biofilm clearance
compared to exposure to tobramycin alone [33]. The effect of combined
treatment of ex vivo sputum with ceftazidime and tobramycin was also
improved when dispersion was induced with NO [33]. A clinical trial,
using NO gas, has been performed in CF patients. These patients had to
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Fig. 2. Biofilm dispersion c-di-GMP signaling in P. aeruginosa Dispersion triggers such as NO, increased glutamate concentrations and HgCl2 are sensed by the
chemotaxis sensor BdlA. BdlA then activates the PDEs DipA and RbdA. In addition, NO increases the production of the PDE NbdA. These PDEs hydrolyze c-di-GMP
resulting in a decrease of the c-di-GMP concentration. Consequently, c-di-GMP dissociates from LapD, which results in the release of the periplasmatic proteinase LapG.
LapG then cleaves the Psl-bound CdrA and the surface-bound LapA, resulting in biofilm dispersion. The decrease of the c-di-GMP concentration also results in an
increased production of matrix degrading enzymes such as the endonuclease EndA. The secreted matrix degrading enzymes consume the matrix components, causing
cells to disperse from the biofilm. Black arrows indicate direct links, gray dashed arrows are partly unknown links.
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inhale a mixture of air and NO gas (10 ppm), while antibiotics (tobra-
mycin and ceftazidime) were administered intravenously. This resulted
in a size reduction of P. aeruginosa clusters [33]. However, after the
cessation of the test, the clusters increased to the same size as in the
placebo group [33].

The combined therapy of NO and an antibiotic was not only effective
against P. aeruginosa biofilms. NO was able of reducing a V. cholerae
biofilm by 60%, while tetracycline reduced the biofilm biomass by 21%
[34]. When tetracycline and NO were combined, the V. cholerae biofilm
biomass was reduced by 90% [34]. NO in combination with chlorine
reduced a multispecies biofilm from a waste water plant by 85–90% [34].

These data indicate that NO is a promising candidate to help eradi-
cating biofilms both in clinical and industrial settings. However, treat-
ment with NO in clinics, can potentially lead to systemic cytotoxicity,
resulting in an increased blood pressure, pulmonary edema and even
cardiac arrest [44,45]. In order to avoid this, prodrugs that release NO
only at the infection site, have been developed. In contrast to NO gas and
NO producing molecules (e.g. SNP), the release of NO by prodrugs is
dependent on an enzymatic cleavage. For example, cephalospor-
in-30-diazeniumdiolates (C3D) are cephalosporins that release NO after
interactions with β-lactamases [46,47]. This was shown to actively
disperse P. aeruginosa, non-typable Haemophilus influenzae and Strepto-
coccus pneumoniae biofilms [46,48,49]. P. aeruginosa biofilms responded
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rapidly to C3D, resulting in a biomass reduction and an increased optical
density in the effluent of a flow-cell, indicating biofilm dispersion [46].
Biofilms of H. influenzae, which produce β-lactamase, dispersed upon
C3D administration [48]. In contrast, biofilms of H. influenzae without
β-lactamase activity were unresponsive, indicating the importance of the
β-lactamase-activity during C3D triggered biofilm dispersion [48].
However, in the case of S. pneumoniae, the presence of β-lactamases is not
mandatory for C3D-mediated dispersal. S. pneumoniae contains
transpeptidase/penicillin-binding proteins, which are able to cleave a
C3D NO-donor (PYRRO-C3D) into an active cephalosporin and NO,
which then disperses the biofilm [49]. Although C3D is a cephalosporin,
the β-lactamase activity of β-lactamases like penicillinase, which is
responsible for the release of NO, inactivates the cephalosporin [46,48].
Therefore the C3D induced dispersion, requires an additional antibiotic
to achieve biofilm eradication. In the case of P. aeruginosa, a C3D treat-
ment combined with tobramycin or ciprofloxacin, improved the biofilm
clearance by at least 10-fold compared to the antibiotic treatment alone
[46]. The number of H. influenzae biofilm cells, grown on epithelial cells,
was reduced by one log during azithromycin treatment, whereas the
combined therapy resulted in a 2 log reduction of the biofilm cells [48].

Introducing feast or famine conditions to induce biofilm dispersion
Fluctuations in nutrient concentrations have been shown to provoke
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biofilm dispersion. In 2004, it was demonstrated that sudden increases in
the concentration of several carbon sources and a nitrogen source
(NH4Cl) led to P. aeruginosa biofilm dispersal [21]. The obtained biofilm
reduction varied for different carbon sources, with succinate being the
most effective biofilm dispersion trigger (80% biofilm removal) [21].
Additionally, a sudden increase in the concentration of the carbon source
also led to dispersal in S. pneumoniae and C. albicans biofilms [50,51].
Indeed, glucose induced dispersion in a S. pneumoniae biofilm that was
grown on epithelial cells and in vivo in the nasopharynx of mice [50],
while C. albicans biofilms could be dispersed by increasing the glucose or
maltose concentration [51,52]. The c-di-GMP signaling pathway which
was induced by the increase of the concentration of glutamate has been
elucidated in P. aeruginosa. This pathway is similar to the NO induced
signaling pathway (Fig. 2). The increase in the concentration of gluta-
mate is sensed by the chemotaxis sensor BdlA, which activates the PDEs
DipA and RbdA [28]. In contrast to NO-induced dispersion, nbdA
expression is not activated during glutamate induced dispersion. Gluta-
mate dispersion, in combination with H2O2 treatment resulted in killing
of approx. 99% of P. aeruginosa biofilm cells, while a bdlA knock-out
mutant (unable to disperse) remained unaffected by the H2O2 treat-
ment [53]. In addition, the remaining biofilm after citrate or succinate
dispersion had an increased susceptibility to amikacin, colistin, eryth-
romycin and tobramycin [54].

Besides a sudden increase of nutrients, nutrient depletion also induces
biofilm dispersion in vitro. A complete nutrient depletion results in
dispersion of Pseudomonas putida biofilms [55]. In addition, dispersal is
also observed in P. putida biofilms when only the carbon source is
depleted [55]. Also, biofilm dispersion of P. aeruginosa biofilms was
induced when glucose starvation was introduced. This resulted in a 60%
reduction of biofilm biomass after 24 h of glucose depletion [56]. In
V. cholerae biofilms, dispersal is induced when glucose or oxygen are
depleted, with dispersion being more pronounced in the case of glucose
depletion [57]. Also in Staphylococcus aureus complete glucose depletion
leads to dispersion, and the remaining biofilm was more susceptible to
rifampicin than a biofilm that was not dispersed [23]. Nutrient depletion
can also be initiated by enzymes and might be useful in a clinical setting.
For example, it was recently demonstrated that the enzyme pyruvate
dehydrogenase (PDH) was able to induce P. aeruginosa biofilm disper-
sion, resulting in a 2.9-fold biofilm mass reduction [58]. In addition,
biofilms of S. aureus biofilms also responded to a PDH treatment leading
to a reduction of the biofilm biomass by 40% [58]. In contrast to NO and
glutamate dispersion, PDH-induced biofilm dispersion was independent
of common biofilm dispersion pathway in P. aeruginosa (via BdlA and the
PDEs DipA and RbdA), since mutants in which these genes were
knocked-out were still able to disperse [22,28,36,58]. Pyruvate depletion
mediated biofilm dispersal relies on lactate dehydrogenase (LdhA) and
microcolony formation regulator (MirF), since mutants in which these
genes are knocked out, do not respond to PDH [58]. PDH-induced
dispersion increases tobramycin-mediated killing of P. aeruginosa bio-
films, resulting in a 5.9 log biofilm cell killing, compared to a 2.5 log
killing of biofilm cells by tobramycin alone [58]. In vivo experiments on
porcine burn wounds also demonstrated that the tobramycin suscepti-
bility of P. aeruginosawas increased when the biofilm was simultaneously
exposed to pyruvate dehydrogenase [58].

Heavy metals induce dispersion
Heavy metals also actively induce dispersion. For example, mercury

chloride, silver nitrate and sodium arsenate, disperse P. aeruginosa PAO1
biofilms at a concentration of 2 mM [53]. The heavy metal induced
biofilm dispersion signal pathway is the same as in dispersion by
increased glutamate concentration (Fig. 2). While the applicability of
some of these compounds (like mercury chloride and sodium arsenate) in
healthcare is questionable due to their high toxicity [59] others like silver
nitrate are currently being used (e.g. for the treatment of infected
wounds) [60].
4

Passive biofilm dispersion

Passive dispersion refers to the direct removal of cells from the bio-
film, independent from bacterial responses such as the decrease in the c-
di-GMP concentration [10,11,15]. In 1988, Breyers proposed four
mechanisms of detachment that result in the release of cells from the
biofilm: abrasion, shear-related removal and sloughing [61]. During
abrasion, the collision of particles with the biofilm, results in the release
of cells or biofilm clumps [61]. Shear-related removal is due to the
continuous shear of a liquid over the biofilm which results in the erosion
of single cells or aggregates from the biofilm [61]. Sloughing is the pe-
riodical release of biofilm clumps, independent from the fluid shear [61].
Finally, grazing by eukaryotic organisms like protozoa also leads to
biofilm detachment [61]. Besides these natural occurring passive modes
of dispersion, several techniques have been developed to induce passive
dispersion. These can basically be divided into two groups: chemical
(enzymatic) and physical biofilm disruption [10].

Enzymes consume the matrix
The biofilm matrix is composed out of three building-blocks: extra-

cellular polysaccharides, DNA and proteins. During active dispersion,
biofilm cells produce enzymes that degrade the matrix [10].

During a transposon analysis in the Gram-negative periodontal
pathogen Actinobacillus actinomycetemcomitans, one transposon mutant
was identified that showed increased biofilm thickness and failed to form
satellite communities [62]. The gene which was disrupted by the trans-
poson was dspB, which codes for the N-acetylglucosamine bond breaking
enzyme dispersin B [62]. When purified dispersin B was added to the
transposonmutant, the wild type phenotype was restored, indicating that
dispersin B is secreted by the organism and plays an important role in
dispersion of A. actinomycetemcomitans [62]. The exogeneous adminis-
tration of dispersin B to a wild-type A. actinomycetemcomitans biofilm, led
to an 85% reduction of the biofilm mass [62]. Characterization of the
enzyme showed that it breaks the 1→ 4 glycosidic bonds of β-substituted
N-acetylglucosamine [62]. Dispersin B also disperses S. epidermidis bio-
films grown in various in vitro systems [63]. When dispersin B was used as
a pretreatment against A. actinomycetemcomitans biofilms, the SDS sus-
ceptibility of the remaining biofilm was higher than without pretreat-
ment [64]. A combined treatment with dispersin B and cefamandole
naftate or triclosan, resulted in an improved biofilm eradication of
S. aureus and S. epidermidis in comparison to the antibiotic alone [65,66].
Moreover, triclosan in combination with dispersin B also improved
eradication of E. coli and C. albicans biofilms [66]. A combined treatment
with dispersin B and tobramycin reduced the number of bacteria in a
S. aureus biofilm by a 7500-fold, whereas tobramycin alone could only
reduce the number of cells 40-fold [67]. Dispersin B also increased the
antimicrobial activity of the peptide KSL-W against biofilms of methi-
cillin resistant S. aureus (MRSA), coagulase-negative staphylococci
(CoNS), S. epidermidis, Acinetobacter baumannii, Klebsiella pneumoniae and
P. aeruginosa [68]. In vivo, dispersin B was able to eradicate a MRSA
biofilm by decreasing the bioburden by 80% in combination with a silver
wound dressing, whereas the silver wound dressing itself reduced the
bioburden by just 14% [69].

The P. aeruginosa glycoside hydrolases PelA is produced when
dispersion is induced [70] and. the exogenous administration of PelA and
PslG induces biofilm dispersion and prevents biofilm formation. How-
ever, the dispersion capabilities of PelA and PslG are dependent on the
P. aeruginosa biofilm composition [71–73]. The matrix composition of
P. aeruginosa can be divided into four different classes, based on the
extracellular polysaccharide (EPS) concentrations [73]. Class I strains
form biofilms in which Pel is the dominant extracellular polysaccharide
[73]. In biofilms formed by class II strains Psl is the dominant poly-
saccharide [73]. Strains belonging to class III and class IV are defined
based upon the quantity of Pel and Psl polysaccharides in the biofilm
matrix. Class III biofilm strains are redundant EPS users, since they
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produce relatively low amounts of Pel and Psl polysaccharides [73]. In
contrast, strains in class IV are overproducing EPS [73]. Although four
classes of P. aeruginosa strains exist based on their EPS quantity, not all
strains can be divided into one class based on phenotypic characteristics
[73]. PelA is more effective against class I biofilms, whereas PslG is the
most efficient in removing biofilms formed by class II strains [71,72]. In
addition, PslG is also more effective against biofilms of class III and class
IV strains, as Psl is more abundant than Pel in their matrix [71]. Both
hydrolases were able to improve the antibiotic mediated biofilm clear-
ance of the remaining P. aeruginosa biofilms [71,72]. An in vivo experi-
ment in mice was performed in which PslG showed synergistic
anti-biofilm activity with tobramycin [72].

When DNA was discovered to be part of the biofilm matrix, it became
clear that biofilms are potentially susceptible to the action of DNases such
as the human (recombinant) DNase I [74] and indeed DNase I induced
biofilm dispersion inA. baumannii, Bordetella bronchiseptica, Bordetella
pertussis, E. coli, Gardnerella vaginalis, H. influenzae, K. pneumoniae,
P. aeruginosa, S. aureus, S. pneumoniae and Streptococcus pyogenes [74–79].
In P. aeruginosa dispersion by DNAse I appears limited to young biofilms,
while mature biofilms are not affected [74]. DNase I not only induces
biofilm dispersion, but it also enhances the biofilm eradication by anti-
biotics and biocides. DNase I enhanced the killing of S. aureus biofilm
cells by biocides such as benzalkonium chloride, chlorhexidine and
povidone iodide significantly [75] and in combination with DNase I, the
antibiofilm activity of ampicillin, azithromycin, cefotaxime, levofloxacin
and rifampin against A. baumannii, E. coli, H. influenzae, K. pneumoniae,
P. aeruginosa, S. aureus and S. pyogenes biofilms was considerably
increased [77,80]. DNase I has been tested in various in vivo models
against biofilms of S. aureus, B. bronchiseptica, B. pertussis and G. vaginalis
[75,78,79]. In Caenorhabditis elegans, the addition of DNase I in combi-
nation with tobramycin increased nematode survival following S. aureus
infection [75]. DNase I treatment of B. bronchiseptica and B. pertussis
biofilms formed on mice nasal septa reduced the biofilm drastically [78].
Finally, the biofilm of G. vaginalis, grown in mice, was reduced 10-fold in
cell number when dispersed with DNase I [79]. One clinical trial has been
performed in which DNase I was aerosolized in the lungs of CF patients,
in combination with their routine antibiotic treatment and the preva-
lence of several pathogens (especially S. aureus) was drastically reduced
[81].

There is also an interest in other DNases including those produced by
bacteria. For example the DNase NucB produced by B. licheniformis EI-34-
6 dispersed the biofilms of B. licheniformis, Bacillus subtilis, E. coli,
Micrococcus luteus and Pseudomonas species, and did so more efficiently
than DNase I [82].

Proteins in the biofilm matrix make the biofilm susceptible to the
action of proteinases. Proteinase K dispersed a biofilm associated protein
(Bap) positive S. aureus, while a Bap negative S. aureus biofilm remained
unaffected [83]. In addition, the antibiotic mediated biofilm clearance
increased upon proteinase K dispersion [83]. Moreover, the enzyme was
also able to disperse the biofilm of Listeria monocytogenes within 5 min
[84]. At concentrations higher than 1.6 μg/mL proteinase K, the entire
biofilm was removed in 60 min [84]. Other proteinases such as papain
and bromelain also can disperse S. aureus and L. monocytogenes biofilms
[85].

Physical biofilm disruption
In many physiological conditions biofilms are exposed to fluid shear

which erodes single cells from the biofilm surface as well as biofilm ag-
gregates [15]. Moreover, sudden changes in the flow-rate results in
dispersion. For instance, a sudden increase of the shear stress, results in
an immediate release of cells from the biofilm [86]. For example, a
ten-fold increase of the shear forces results in a 85% reduction of the
biofilm biomass of a 67 h old Streptococcus mutans biofilm [87]. However,
the influence of the shear force on biofilm dispersal is dependent on the
biofilm age and the nutrient availability. An older S. mutans biofilm (115
h old) required a higher shear force than a younger S. mutans (67 h old)
5

biofilm in order to remove 50% of the total biofilm biomass within 10
min [87]. In addition, the concentration of the carbon source also in-
fluences the shear-force induced biofilm dispersion [88]. For example,
medium containing 1% sucrose results in a thicker S. mutans biofilm than
medium containing 0.1% sucrose and the force needed to detach the
biofilm was higher for the biofilm grown in the presence of higher su-
crose concentrations [88].

Applications based on increased shear forces have been developed in
order to improve the biofilm eradication. One example of such an
approach that is currently used is hydro-debridement of (chronic)
wounds [89,90]. During hydro-debridement, a water-jet is applied at the
infection site, which removes biofilm and necrotic tissue from the wound,
improving wound healing [89,90]. In dental care shear fluids are also
used to remove biofilms. Dental water jets (i.e. high-pressure pulsating
water) can be used to remove dental plaque; manual brushing combined
with a dental water jet is up to 6 times more efficient in removing dental
plaque than manual brushing alone [91]. Also in other in vitro and ex vivo
studies, the value of such water jets to disperse oral biofilms was
demonstrated [90,91]. During a 3 s treatment, the dental water jet is able
to remove up to 99.99% of saliva biofilm biomass, which was grown
ex-vivo on dental slices [92].

Other techniques, such as ultrasound, laser induced shockwaves and
electrical currents, have been developed in order to passively disperse
biofilms. Ultrasound induced biofilm dispersion relies on two events that
disrupt the biofilm: the motion of water resulting in shear forces and the
formation of cavitation bubbles [93,94]. Ultrasound treatment signifi-
cantly reduced E. coli and S. aureus biofilms on stainless steel [93,94] and
although ultrasound itself is not harmful to the bacteria, the ultrasound
treatment alters the biofilm morphology and increases the antibiotic
susceptibility [95–97]. In vivo experiments using E. coli biofilms, grown
on polyethylene disks and on bone cement in rabbits, showed that ul-
trasound treatment enhanced the efficacy of gentamicin, while no
bacteremia was observed [98,99]. Furthermore, an in vivo test using
S. epidermidis biofilms grown on polyethylene, showed an increased
susceptibility to vancomycin after ultrasound treatment in rabbits;
septicemia was also in this case not observed [100]. Ultrasound is
currently being used to improve the treatment of a dental root canal
infections [101,102]. The eradication of a biofilm in the isthmus, a small
channel between two dental roots, is extremely difficult but ultrasound
was able to significantly reduce the biofilm biomass in the isthmus
compared to the conventional needle irrigation technique [102].

Generating laser induced shockwaves is another approach to reduce
biofilm biomass by generating liquid shear forces. Several methods to
generate laser-induced shockwaves have been described. For instance,
when a laser is pulsing on titanium, plasma generated shockwaves are
produced [103]. These shockwaves are able to disrupt biofilms grown on
different kinds of medical devices [104]. Biofilms remaining after
exposure to shockwaves are more susceptible to antibiotics than biofilms
not exposed to shockwaves [105]. Another method used a black poly-
styrene cover, which was placed over a prosthetic graft with an antibiotic
solution between the cover and the graft [106]. When the laser light hits
the polystyrene cover, the light energy is absorbed by the material,
causing an thermal expansion resulting in a shockwave which disrupts
the biofilm [106]. This shockwave was not harmful for the bacteria, but
resulted in a significant decrease in S. aureus and S. epidermidis cells in
combined therapy with antibiotics [106]. In order to make this method
more applicable for clinical use, the transfer of laser energy to mechan-
ical energy of different materials was determined and it was shown that
polycarbonate and polyester are the best materials to generate these
shockwaves [107]. When a S. epidermidis biofilm formed in an ex vivo
pigskin model was treated with laser generated shockwaves and poly-
carbonate as the energy transferring medium, the biofilm was reduced by
52% [108]. Additionally, when the polycarbonate was coated with a ti-
tanium layer, the biofilm disrupting effect of the shockwave was
improved and resulted in a biofilm reduction of 80%; in addition the
anti-biofilm effect of gentamicin was potentiated by these laser generated
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shockwaves [109,110]. Laser induced shockwaves are currently also
used in dental care, where they are induced by the rapid energy ab-
sorption which creates water vapor bubbles that upon implosion disrupt
the biofilm [102,111,112].

Similarly, laser induced vapor nanobubbles (VNB) can be used to
disrupt biofilms. In order to induce VNBs in a biofilm, gold nanoparticles
(AuNPs) are added and after penetration through the biofilm they are
excited with a green pulsing laser (Fig. 3) [113]. The heat generated in
the excited AuNPs is subsequently transferred to the surrounding water,
that evaporates, leading to the formation of VNBs. The expansion of the
water vapor, followed by the implosion of the bubble, generates small
fluidic frictions that disrupt the biofilm [113]. VNB treated Burkholderia
multivorans, P. aeruginosa or S. aureus biofilms showed an increased
susceptibility to antibiotics compared to an untreated biofilm and
increasing the number of laser pulses leads to the formation of multiple
VNBs, which increased the antibiotic susceptibility of the remaining
biofilm [113]. Besides increasing the antibiotic susceptibility, VNBs also
improve the biofilm eradication by disinfectants [114]. P. aeruginosa
biofilms were more susceptible to benzalkonium chloride after VNB
treatment, while for S. aureus biofilm eradication by cetrimide or
mupirocin was improved [114].

Another method to passively disrupt biofilms is by applying a low
electrical current which causes the biofilm to detach from the surface
[115–117]. The application of an electric current on stainless steel studs
resulted in a 10-fold reduction in the number of P. aeruginosa biofilm cells
[115]. The electric current was also able to induce S. epidermidis biofilm
dispersion from stainless steel [116,117]. Due to the electrolysis of water,
hydrogen gas is produced at the cathode, while oxygen gas is produced at
the anode and the formation of these gas bubbles disrupts the biofilm
[117]. The remaining biofilm cells are more susceptible to biocides and
antibiotics and in fact, during the exposure to the electric current, the
antibiotic efficacy is increased due to the bioelectric effect [118–120].
This bioelectric effect is not fully understood yet, although several factors
potentially contributing to the increased efficacy have been described.
The oxygen and reactive oxygen species (ROS) that are produced dur-
ingthe electrolysis of water contribute to the increased susceptibility
[121,122]. In addition, the electric current reduces the antibiotic binding
capabilities of the matrix and increases permeability of biofilm cells
(electroporation), leading to an increased antibiotic uptake in the cells
[122]. The effect of a low electric current has also been evaluated in vivo
using rabbits [123]. A spinal coupling device containing 106 CFU
S. aureus was implanted, and the electric current in the implant was
generated by introducing a magnetic field over the skin of the animal. In
combination with systemically administered ceftriaxone this led to a
significant reduction in the number of bacteria on the implant, while
there was no difference in microbial load in the surrounding tissue,
indicating that the electric current only induces biofilm dispersion on the
device in which the electric current is applied [123].
Fig. 3. Schematic overview of VNB-formation Prior to VNB formation, 70 nm AuN
the biofilm is submitted to a 561 nm laser pulse (7 ns), which is heating up the AuN
AuNP. The expansion of the VNBs is, followed by the implosion of the bubble, alter

6

Biofilm dispersal: opening Pandora’s box?

Both active and passive biofilm dispersion result in a reduction of
biofilm biomass and the remaining biofilm cells are more susceptible to
antibiotics than cells in an undispersed biofilm. However, it remains
unclear whether this increased antibiotic susceptibility is due to a loss of
biofilm biomass or a modification of the biofilm morphology, allowing a
better penetration of antimicrobial compounds through the biofilm.
While biofilm dispersion is considered a potentially useful strategy to
improve antibiotic treatment of biofilm infections both active and passive
dispersion methods have disadvantages. Although it has been suggested
that dispersed cells return to the bulk as planktonic cells, it was shown in
2014 that dispersed P. aeruginosa cells are distinct from biofilm cells and
from planktonic cells [124]. For example, the transcriptome of dispersed
cells differs from that of both biofilm and planktonic cells [124]. In
addition, dispersed cells have lower c-di-GMP concentrations in com-
parison to planktonic cells. Lower c-di-GMP concentrations have been
linked with increased virulence, suggesting that dispersed cells are more
virulent compared to planktonic cells [125]. Indeed, virulence assays
confirmed that dispersed cells were more effective in penetrating and
killing macrophages, than their planktonic counterparts [124]. More-
over, the dispersed cells appeared to be more effective in killing C. elegans
than planktonic cells [124]. These results indicate that the dispersed
cells, which have the potential to disseminate through the body, can
worsen the clinical outcome. Indeed, in vivo studies have described a
spreading of the infection after dispersal events [50,126]. While naso-
pharyngeal colonization of S. pneumoniae is common and is usually
asymptomatic [127], a secondary infection with an influenza A virus
leads to biofilm dispersal of S. pneumoniae [50]. This results in a colo-
nization of the lung, causing pneumonia, and colonization of the middle
ear, leading to acute otitis media [50]. Moreover, these dispersed cells
indicated to be hypervirulent, killing the mice via bacteremia [50]. Also
S. aureus can asymptomatically colonize the nasopharynx [128] and in
vitro and in vivo assays have demonstrated that S. aureus biofilm disper-
sion was also induced upon an influenza A virus infection of the
epithelium cells [129]. Interestingly, when S. aureus and S. pneumoniae
were cocultured on epithelial cells, a secondary influenza A infection was
able to induce dispersion of S. pneumoniae, but not of S. aureus, clearly
indicating that induction and regulation of dispersion are complex [130].

A recent study in mice using P. aeruginosa and S. aureus biofilms
showed that in infected wounds induction of dispersion by glycoside
hydrolases leads to a fatal septicemia and bacteria could be detected in
the blood of the mice within 5 h after the biofilm dispersal trigger was
given [126]. However, the administration of meropenem, both systemic
and topical in combination with the dispersion trigger, prevented the
septicemia and resulted eventually in biofilm eradication and wound
healing [126]. While meropenem was able to prevent bacteremia in this
study, the antibiotic susceptibility of the dispersed cells depends on the
biofilm dispersion trigger [31]. P. aeruginosa cells that were dispersed by
Ps are added to the biofilm, which will penetrate through biofilm. Subsequently,
Ps rapidly leading to the formation of water vapor bubbles or VNBs around the
ing the biofilm density and biofilm morphology.
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a sudden increase of the concentration of NO had a similar susceptibility
to tobramycin and colistin as planktonic cells [31]. However, cells that
were dispersed by an increased glutamate concentration were less sus-
ceptible to colistin than SNP dispersed cells and planktonic cells [31].
This indicates that successful prevention of septicemia by the use of an-
tibiotics, will dependent on both the biofilm dispersion trigger and the
antibiotic.

There are other questions that need to be addressed before active
and/or passive dispersion can be applied in the treatment of biofilm in-
fections, including timing and concentration. For example, during active
biofilm dispersion, the actual moment when cells detach from the biofilm
is 10–15 min after the biofilm dispersion trigger is given [31]. In addi-
tion, concentrations of the active biofilm dispersion trigger below a
certain threshold can actually prevent biofilm dispersion by the bacteria.
E.g. low NO concentrations lead to the production of flavohemoglobins
by P. aeruginosa and when the NO concentrations are subsequently
increased, the NO is scavenged by these flavohemoglobins, preventing
biofilm dispersion [131]. In contrast to active dispersion, passive
dispersion triggers only require short contact times (up to 3 min) to
significantly reduce the biofilm biomass but these passive dispersion
triggers can also cause more harm to the surrounding tissue [98,
132–135]. However, in vivo studies in which passive biofilm dispersion
was used have so far not reported any form of septicemia [98–100].

Concluding remarks

Is biofilm dispersion the key to biofilm eradication or is it opening
Pandora’s box? Both active and passive biofilm dispersion are promising
approaches as they reduce the biofilm biomass and increase the suscep-
tibility of the remaining biofilm cells. However, dispersed biofilm cells
are still not well studied, although that they potentially can cause
bacteremia [126]. It is anticipated that these dispersed biofilm cells can
be prevented from causing septicemia by the use of antibiotics [126]
although it should be noted that the nature of the biofilm dispersion
trigger plays a role in determining the antibiotic susceptibility of the
dispersed cells [31]. Combined the available data suggest that care
should be taken to use biofilm dispersal as part of anti-biofilm strategies
and that data about susceptibility of the dispersed cells is required before
this approach is introduced in clinical practice.
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