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To engineer synthetic gene circuits, molecular building blocks are developed which can

modulate gene expression without interference, mutually or with the host’s cell machinery.

As the complexity of gene circuits increases, automated design tools and tailored building

blocks to ensure perfect tuning of all components in the network are required. Despite the

efforts to develop prediction tools that allow forward engineering of promoter transcription

initiation frequency (TIF), such a tool is still lacking. Here, we use promoter libraries of E. coli

sigma factor 70 (σ70)- and B. subtilis σB-, σF- and σW-dependent promoters to construct

prediction models, capable of both predicting promoter TIF and orthogonality of the σ-
specific promoters. This is achieved by training a convolutional neural network with high-

throughput DNA sequencing data from fluorescence-activated cell sorted promoter libraries.

This model functions as the base of the online promoter design tool (ProD), providing tailored

promoters for tailored genetic systems.
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The flux through a metabolic pathway is not the result of
multiple individual enzymatic reactions, with a single rate-
limiting step determining the production rate. In con-

cordance with these findings since the late 1990s, the emphasis of
metabolic engineering shifted from overexpressing single genes to
a more integrated approach that recognizes the importance of
gene expression fine-tuning to balance all reactions in a multigene
pathway1–3. Therefore, enhancing the performance of microbial
cell factories, by simultaneously varying genetic parts that
determine the expression profile of the heterologous production
pathway, has proven a successful strategy4–7. More recently, the
ability for precise and reliable gene expression fine-tuning has
become even more important with the emergence of genetic
circuit engineering. Here, whole synthetic biological systems with
artificial programs for controlling gene expression are engineered,
for which the ability to precisely tune the expression levels of all
components in the network is a requisite for functional signal
transfer8–10.

The degree of active enzyme in a cell can be tuned on multiple
levels of control, i.e., transcriptional, translational, and enzymatic
levels. Numerous genetic building blocks have been developed to
adjust these levels by taking advantage of different properties of
the cell’s machinery9. In prokaryotes, the synthesis rate of RNA
and subsequent protein can be directly regulated by altering the
DNA sequence of the promoter and ribosome binding site (RBS),
which determine their affinity for, respectively, the RNA poly-
merase and ribosome11,12. Also, synthesis rates can be modulated
by using various (transacting) transcriptional and translational
activators or repressors, such as LacI variants, STARs, dCas9/
gRNAs, and sRNAs13–16. Other strategies include controlling the
degradation rates of RNA and protein, e.g., by targeting their
stability, or enhancing the pathway’s catalytic efficiency by
building synthetic scaffolds17–19.

The rapidly expanding toolbox of characterized expression
control elements contributes to the continuous extension of
engineering possibilities and allows the computational design of
genetic networks20–22. However, a defined set of parts inherently
limits the flexibility with which genetic designs can be created.
The ability for exact fine-tuning, imposing user-defined part
sequence constraints or building functional degenerated part
libraries requires a deeper sequence—function relationship
understanding and tools to predict the parts’ behavior. Various in
silico models that facilitate the de novo design of different
expression control elements have been developed. These include
methods to achieve tailored gene expression directly, such as
promoter transcription initiation frequency (TIF)
engineering11,23–31 and tuning of the RBS properties12,32–36.
Indirect approaches include the engineering of mRNA stability
through transcriptional terminators37 and the synthetic regula-
tion using dCas938 or various riboregulators39–42. Furthermore,
the built models are the basis for the development of several
(online) tools allowing user-specific de novo sequence
design12,35,41–44. The synthetic biology community’s demand for
readily applicable forward engineering tools is, for example,
expressed by the success of the RBS sequence design tools created
by the Salis Lab. Up to October 2020, their algorithms have been
used to design over 620,000 genetic sequences by over 9100 users
worldwide, including 24 industrial licensees45.

To date, despite the abundance of work on promoter engi-
neering and modeling, a standardized and readily applicable tool
is not available for de novo promoter design. However, tran-
scription being the first step in gene expression, promoter tuning
is most essential. It allows e.g., the tuning of noncoding RNA
abundance, which can fulfill various regulatory functions, or plays
an important role in combination with RBS strength in the
economy of gene expression46,47.

A prokaryotic promoter can generally be subdivided in several
defined parts that determine the interaction with the RNA
polymerase (RNAP), and thus its promoter functioning, offering
multiple strategies for promoter engineering48–50. Change in
promoter TIF has been generated by modifying (i) the conserved
−35 and −10 regions, which actuate the selective recognition and
interaction by the sigma factor (σ) RNAP subunit30,51–53, (ii) the
UP element, situated upstream of the −35 conserved region and
interacting with the αCTD RNAP subunits29,54, (iii) the spacer
sequences, spanning the region between −35 and −10 elements
and upstream of the −10 element55–58, or (iv) a combination of
multiple, or all, of these elements in a random11,27,59,60, or
modular manner24,53,61.

Previous attempts to model promoter strength in function of
its DNA sequence have often targeted multiple of these promoter
regions simultaneously, severely underestimating the complexity
of interplay between regions, and/or employed modeling methods
that assume independence between mutations (e.g., position
weight matrix), practically limiting their predictability to single
nucleotide variations11,23,25–28,30,31. These factors, and a sub-
stantial lack of data to grasp the promoter’s structural complexity
or support more complex models, often resulted in weak corre-
lations or low promoter strength discrimination resolution.
Conversely, some work indicates that the promoter’s −35 and
−10 conserved regions are the greatest determinants of promoter
TIF and could lead to predictions with high accuracy24. However,
these relatively short sequences offer small sequence flexibility,
resulting in large sequence repeats when using multiple pro-
moters. More importantly, changes in these regions abolish the
promoter’s ability to selectively bind specific σ RNAP subunits. As
the orthogonality of gene expression in synthetic genetic systems
becomes increasingly important, the −35 and −10 conserved
regions are to be left unchanged to ensure this property in the
design of genetic circuits50,56.

In previous work56, to preserve orthogonality of the promoter
sequence with specific σs, promoter libraries were constructed by
randomizing the promoter spacer nucleotides spanning between
the −35 and −10 conserved regions, resulting in a five log range
of promoter TIFs. Here, we build upon this work by combining
the use of fluorescence-activated cell sorting (FACS) on these
libraries and targeted high-throughput DNA sequencing to obtain
considerably large data sets (250,000–400,000 unique sequences
per setting) holding promoter sequence–function relationship
information in view of predicting promoter TIFs, and designing
promoter sequences with a specific TIF. A computational model
was trained on these newly created data, to develop the first
in vivo validated Escherichia coli (E. coli) σ70 Promoter TIF
Designer tool, named ProD. Our tool is able to output the pro-
moter spacer sequence, constituting 17 variable consecutive
nucleotides. Additionally, albeit lacking in vivo validation, pre-
dictive models for promoter strength and orthogonality have been
trained and evaluated to expand such a tool with three different
promoter architectures with specificities toward heterologous
Bacillus subtilis (B. subtilis) sigma factors B, F, and W. This is
achieved by the unprecedented size of the characterized promoter
libraries and the use of convolutional neural networks, a machine
learning methodology achieving state-of-the-art performances on
motif detection tasks62. The neural network was adapted for
ordinal regression, a classification problem for values with a
meaningful ordering (i.e., ordinal values), by applying constraints
to the output nodes of the model.

Results
Promoter TIF pooling and genotyping. In previous work, we
have demonstrated the use of chimera RNA polymerases based
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on heterologous σs from B. subtilis, that recognize specific pro-
moter sequences to create a functional and orthogonal expression
system in E. coli. To this end, the spacer sequence between the
conserved −35 and −10 σ recognition sites of E. coli σ70 and B.
subtilis σB, σF, and σW-specific promoter sequences (17 bp, 12 bp,
15 bp, and 16 bp, respectively) was engineered, to introduce
variability in promoter TIF while preserving the orthogonal fea-
tures toward specific σs56. A vector (pLibrary) was constructed for
each σ-specific promoter, consisting of a promoter library site in a
red fluorescent protein (mKate263) expressing operon, and a
second operon, constitutively expressing sfGFP64 as an internal
reference for normalization (Fig. 1a). In this work, to define the
spacer sequence–function relationship, first, FACS was used to
sort cells, in accordance to cellular fluorescence (proxying pro-
moter TIF), into 12 sorting bins on all four promoter libraries.
Next, high-throughput DNA sequencing of each bin was per-
formed for promoter genotyping (Fig. 1a). Additionally, the
vectors containing the different promoter libraries were cloned
into strains containing their noncognate σs in the genome. These
cells were sorted into a nonfluorescent and fluorescent sub-
population, indicating conservation or loss of orthogonality,
respectively. Similarly, through the use of high-throughput DNA
sequencing, genotypic data was acquired. For cell sorting, con-
stitutive sfGFP expression was taken into account to exclude

artefacts or cells showing aberrant expression. Also, to reduce the
overlap between different levels of promoter TIF, considering the
inherent Gaussian character of the expression profile of a single
promoter sequence, buffer regions have been included between
adjacent bins. The different bins account for a maximum of 20%
to under 0.01% of the population size, ensuring the acquisition of
genetic information of underrepresented promoter TIFs, such as
seen for the lowest and highest rates of all libraries (see Fig. 2). All
cell sorting schemes are depicted in Supplementary Figs. 1–4.
Sorted bins were cultured and the plasmid DNA was isolated. The
promoter region was amplified and tagged with bin-specific
indexes for subsequent high-throughput sequencing, resulting in
a total of ca. 9,000,000 reads, holding information to link pro-
moter sequences to their expression level.

Data selection methods to map ambiguous read sequences. For
our E. coli σ70 specific promoter library, a total of 1,386,614 reads
were obtained, covering 321,575 (23.19%) unique sequences.
From the unique sequences, 211,772 (65.85%) have more than
one read, with 117,249 (36.46%) instances having reads
sequenced in multiple bins. To identify possible inconsistencies
within the data, several data properties (see “Materials and
methods” section) have been derived from sequences featuring
multiple reads: the total amount of reads, the number of bins with
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Fig. 1 Illustrative overview of the workflow to create our Promoter transcription initiation frequency (TIF) Designer tool, ProD. a Multiple promoter
libraries were created, driving mKate2 expression, by engineering the promoter spacer DNA sequence to maintain the sigma factor recognition specificity.
Cells were sorted by fluorescence-activated cell sorting in 12 separate bins, according to the level of red fluorescent protein expression. Subsequently,
plasmid DNA was extracted and the promoter regions were amplified and barcoded uniquely for each bin. High-throughput DNA sequencing was used for
genotyping. b The architecture of the neural network for ordinal regression trained on the created data sets for promoter TIF. Seventeen nucleotide
sequences are processed by four 1 × 1, 16 1 × 4, and 32 1 × 2 convolutions and two fully connected layers of 128 and 64 nodes. A latent variable, correlated
to the TIF of the promoter, is obtained through a single linear combination of weights (w) with the 64 output nodes (x). A vector of ordered biases b,
optimized during training, outputs ten shifted values relative to the latent variable. The sigmoid transform of these outputs represents the probability of the
TIF of the sequence being greater than a given class y. c The model with a minimum loss on the validation set is selected and evaluated on the test set,
showing the ordinal correlation between its predictions and the true classes. By random sampling, a set of promoter sequences is generated and a selection
is made, as predicted to display a range of promoter TIF levels covering the different classes (0–10), for in vivo validation (only performed for the E. coli σ70

promoter TIF model).
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the highest amount of reads and their relative distances. A ple-
thora of sequences have reads present in bins that provide
incompatible properties, such as the presence of reads in distant
bins constituting both low and high expression rates. Therefore,
in order to exclude aberrations in the data, promoter sequences
with outliers (5% highest values) on any of the data properties
were removed. Furthermore, reads recovered from bin 0 (for
promoter libraries sorted in presence of their cognate sigma
factor) have not been considered for training. This bin covers all
sequences with background levels of red fluorescence. Absence of
functional mKate2 expression might be caused by a variety of
factors, such as mutations outside the promoter region or other
cell defects. A preliminary analysis showed the exclusion of this
bin to result in better accuracy of the model on the test set. This is
not surprising, as the relative small sequence count and marginal
position of the bin results in a high impact on the loss function of
the ordinal regression setting, as a result of weighing the loss in
function of the bin size (see “Materials and methods” section).
The E. coli σ70 promoter TIF prediction model was trained on
284,421 (88.45% of total) unique sequences covering 938,863
(67.70% of total) reads. For training purposes, the label assigned
to each sequence is the bin with the most reads. As bin 0 has not
been included to train the model, sequences from bin 1 through
11 are adopted as classes 0 through 10. An overview of the

amount of labeled sequences for each class before and after data
filtering is depicted in Fig. 2. An extended overview of the
recovered data is given in Supplementary Table 1.

Exploratory sequence analysis. In previous studies attempting to
model promoter TIF in function of its DNA sequence, one or
more nucleotides at specific positions could often be identified as
significant determinants of the TIF11,23,25–27,30,31. Prior to model
building, we created sequence motifs of the promoter spacers, for
every class (~promoter TIF), to detect potential single nucleotides
that dominantly determine promoter TIF. The motifs are depic-
ted in Fig. 3.

In general, the majority of the motifs do not show any specific
nucleotides with higher occurrence frequencies, indicating an
equal distribution of the four nucleotides at any given sequence
position. The motifs that do show up, comprising half the spacer
(σB, σF, σW) or the three-nucleotide sequence “TCG” (σ70),
adjacent to either the −35 or −10 conserved regions, can be
explained by the architecture of the libraries56. Given motifs are
overrepresented as an effect of the blueprint used for the
randomized sequences, thereby showing a substantial presence in
the data sets. These specific motifs, with an increased presence in
bins representing either higher or lower promoter TIF, resemble
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Fig. 2 An overview of the data available for each setting in relation to the labeled sequences used for the prediction task. For each setting is given: the
total number of sequences and the part used for model training after exclusion of the outliers. For each promoter library the genotypic background is given:
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each setting is listed in Supplementary Table 1. Source data are provided as a Source Data file.
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the observations made in our previous work, where the different
libraries were characterized using flow cytometry56. With respect
to the σB library, the higher presence of the “A” and “T”
nucleotides near the −10 conserved region, with exception of the
base pair most adjacent to this region, indicate the importance of
a local low GC% in enhancing promoter TIF. In case of σF

libraries, libraries were constructed allowing a “G” nucleotide
besides the original “T” in the −10 conserved region most
adjacent to the spacer. An increased presence of “G” in the bins
representing stronger promoters is observed, confirming litera-
ture stating the G-16 strongly facilitates σF recognition56,65–67. The
strong sequence motif for bin 11 of the σF library is most likely
due to the relatively small number of unique sequences in the
data set (486 sequences).

Sequence motifs were also created for the libraries sorted in
presence of their noncognate sigma factors, indicating the
promoters’ state of orthogonality (Supplementary Fig. 5). No
indications of single nucleotide positions significantly contribut-
ing to orthogonality could be detected.

In contrast to the −35/−10 conserved regions and the UP-/
extended −10-element, no studies have been published on the
interactions of specific base pairs within the spacer with the cell’s
transcription machinery to this day. The contribution of spacer
DNA to promoter TIF is most likely owed to structural features.
For example, the length of the spacer is believed to be of
importance to correctly align the −35 and −10 conserved
promoter regions with RNAP for an efficient recognition68. Also,
both Liu et al.57 and Urtecho et al.24 determined a negative
correlation between spacer GC content and promoter TIF. The
GC content of our libraries was analyzed for the ten promoter
TIF classes in this study (Supplementary Fig. 6). With no linear

correlations found, these previous findings are not supported for
the four studied promoter chassis.

Ordinal regression successfully maps the promoter TIF to a
latent variable. To maintain practical feasibility while exploring
an enormous sequence space, organisms containing engineered
promoters with differing sequences but generating a similar
fluorescent signal were grouped together using FACS. Given the
amount of data and the ordinal nature of the prediction task, a
shallow convolutional neural network adapted for ordinal
regression has been created and trained for each sigma factor/
promoter data set (Fig. 1b, c). See “Materials and methods” sec-
tion for a full description of the model architecture and training.
The model performances are given in Table 1. Weighted per-
formance metrics are used to make up for the imbalance of
sequence counts between the classes, thereby ensuring the
importance of each class independent of the total amount of
samples it contains. This equals to the unweighted results in the
case of a balanced sample distribution. For each class separately,
the mean absolute error is given, revealing the uncertainty of the
model on class level. This is visually expanded upon in Fig. 4,
where the fraction of predicted labels for the samples of each class
are given.

Results are shown on the training and test set. The ordinal
nature of the model, adapting the use of a single latent variable to
distinguish between classes, results for the σ70 and σB libraries in
a clear ordinal correlation between the true and false positives, the
latter of which are distributed around the former. The overlap of
predicted classes for neighboring labeled samples is an expected
effect of the noise on the labels, introduced by the overlapping
ranges of the promoter expression profiles. Models predicting the

Table 1 Performance metrics of the models on the test sets.

σ70 specific promoters σB specific promoters σF specific promoters σW specific promoters

WT genotype σB genotype σF genotype σW genotype

Mean Std. Mean Std. Mean Std. Mean Std.

Spearman’s rho 0.574 0.003 0.565 0.002 0.497 0.002 0.234 0.050
Weighted ACC 0.230 0.005 0.230 0.005 0.210 0.004 0.136 0.015
Weighted MAE 1.609 0.007 1.652 0.017 1.919 0.052 2.504 0.100
MAE
y = 0 2.866 0.150 2.397 0.068 2.891 0.107 4.797 0.240
y = 1 1.845 0.105 1.630 0.070 2.097 0.117 4.022 0.141
y = 2 1.372 0.054 1.071 0.028 1.507 0.101 2.739 0.287
y = 3 1.284 0.058 1.197 0.035 1.294 0.056 1.613 0.329
y = 4 1.241 0.045 1.368 0.058 1.324 0.095 1.090 0.122
y = 5 1.324 0.023 1.407 0.055 1.357 0.049 0.587 0.480
y = 6 1.401 0.038 1.333 0.036 1.258 0.068 0.951 0.111
y = 7 1.362 0.045 1.315 0.051 1.572 0.119 1.790 0.189
y = 8 1.316 0.055 1.507 0.065 2.102 0.146 2.711 0.246
y = 9 1.533 0.032 1.730 0.116 4.010 0.135 3.774 0.205
y = 10 2.158 0.047 3.224 0.165 1.704 0.320 4.646 0.298

σF genotype σB genotype σB genotype

ROC AUC 0.694 0.004 0.652 0.004 0.615 0.010

σW genotype σW genotype σF genotype

ROC AUC 0.691 0.002 0.643 0.004 0.635 0.006

WT genotype WT genotype WT genotype

ROC AUC 0.665 0.004 0.632 0.003 0.635 0.006

Weighted metrics are used for accuracy and mean absolute error to account for class imbalance. For each performance, the mean and standard deviation (Std.) are given obtained by training multiple
models in a five-fold set-up for the test set. Mean absolute errors for each of the sample classes (y= 0–10) are given. ROC/PR AUC is used for the binary classification problem. ROC AUC represent a
perfect model at AUC = 1. (ACC accuracy, MAE mean absolute error, AUC area under the curve, ROC receiver operating characteristic, WT wild-type, σ sigma factor). Source data are provided as a
Source Data file.
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promoter TIF of σF-specific and especially σW-specific promoters
have relatively low performances (Table 1), resulting in a less
clear ordinal character of the data, with a higher overlap between
the distributions of the predicted labels from different classes.
Using DeepLIFT69, a sensitivity analysis of the input as a function
of the output was performed on the trained model of each σ-
specific promoter library (Supplementary Figs. 8–11). This is
done on all sequences in the test set. Attribution scores are
calculated based on the gradient (backpropagated from the target
class) and signify the relevance of the input nucleotides on the
output class prediction.

In vivo validation of the promoter designer tool (ProD) for the
prediction of promoter TIF. The model that is trained to predict
TIFs of σ70-specific promoters in ordinal classes was subsequently
subjected to in vivo validation. The σ70 model was selected due to
its relevance for the scientific community. A list of random
promoter spacer sequences was generated via randomized
sequences and ordered using the trained model. A subselection of
54 promoter sequences was made, predicted to cover the whole
library expression range (class 0–10). An additional class was
created (denoted as “high”) that includes the sequences predicted
as class 10 with the highest probabilities in the randomly gen-
erated set. Generated spacer sequences were selected to not be
present in the original data set, and range from 2 to 5 single
nucleotide mutations from the nearest sequence (hamming dis-
tance70). Supplementary Table 2 lists all the selected spacer
sequences with their predicted class and hamming distance
towards the closest match in the original data. These were cloned
in the pLibrary vector by insertion in the promoter chassis used
for library creation. The 54 strains, each containing one of the
promoters, were grown in eight biological replicates. After
reaching the stationary growth phase, the OD and the fluores-
cence generated by mKate2 and the constitutively expressed
sfGFP were measured and the corrected fluorescence (see

“Materials and methods” section) was calculated. These calculated
values are depicted in Fig. 5 as log-transformed values, normal-
ized between 0 and 1. An overview of all measured data is
represented in a barplot in Supplementary Fig. 7. The corrected
fluorescence values are additionally listed in Supplementary
Table 2. The Spearman’s rank correlation factor is 0.909 (p-value
< 2.2e−16), indicating the ordinal character of the observations
with respect to the predicted class. Figure 5 also shows the linear
regression fit (R2= 0.876), together with the 95% confidence
interval (shaded area) for the class means and a 50% prediction
interval (red dashed line).

Additionally, as a preliminary indication of the in vivo
performance of model predictions for σB, σF, and σW-specific
promoters, we predicted the TIF class and orthogonality of a
limited set of library promoters were constructed and character-
ized in our previous study56. The tested promoters do show an
ordinal relation between measured expression level and predicted
class, especially for the sigmaB-specific promoters, though the
number of observations is small and a fraction of the sequences
was also present in the model training sets (Fig. 6). Also, the
promoters with loss of orthogonality in vivo showed high
probability values for predicted loss of orthogonality. An
overview of the promoter sequences and predicted data is
presented in Supplementary Table 3.

Discussion
Despite the development of protein–DNA interaction models
enabling the prediction of transcription factors’ affinity for DNA
(e.g., FeatureREDUCE71), or the abundance of studies on corre-
lating sequence features to the rate of transcription, a thorough
understanding of the promoter sequence is absent. Furthermore,
a promoter TIF prediction tool supporting the de novo design of
complete promoters remains absent from the synthetic biologist’s
toolbox. The progress made on computational methods for motif
detection tasks joined with the construction of promoter libraries
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Fig. 4 Distributions of the predicted class labels for each promoter library on the train (left) and test (right) set. Different distributions are separated by
the true class labels of the sequences. For the test sets, the weighted mean absolute error, weighted accuracy and Spearman correlation are given in
Table 1. The distributions, which are centered around the true class labels, demonstrate the advantage of using a model for ordinal regression. The overlap
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Source data are provided as a Source Data file.
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of unprecedented size empowered us to take a large step forward
in meeting this need. In this work, four models were created to
enable forward engineering of E. coli σ70 and B. subtilis σB, σF,
and σW-specific promoters based on their TIF and and mutual
orthogonal functioning in E. coli. Moreover, the E. coli σ70 model
was validated in vivo to create the first Promoter TIF Designer
tool, named ProD, allowing 17 degrees of freedom, encompassing

the complete spacer that spans the region between the −35 and
−10 conserved promoter elements.

The promoter libraries were designed by randomizing only the
spacer DNA sequence delimited by the conserved −35 and −10
regions to preserve specific σ recognition, an essential feature in
orthogonal genetic circuits56. Considering the vastness of the
entire sequence space (e.g., 417 sequences for the σ70 promoter
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Fig. 5 Promoter transcription initiation frequency (TIF) of 54 forward engineered sigma factor 70 (σ70) promoters in function of their predicted class.
Values are corrected fluorescence measurements (fluorescenceC), logarithmic transformed and normalized between 0 and 1. Data are represented as
mean values +/− the standard deviation derived from eight biological replicates. The linear regression line (R2 = 0.876) is depicted together with the 95%
confidence interval (shaded area) and the 50% prediction interval (red dashed lines). Source data are provided as a Source Data file.
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spacer), which is practically unfeasible to fully characterize,
library promoter sequences displaying similar promoter TIFs
were pooled using FACS for subsequent genotyping. The appli-
cation of a custom built convolutional neural network for ordinal
regression proved succesful in capturing the complex interactions,
within the promoter spacer sequence in function of promoter
TIF. The σ70 model achieved a Spearman correlation of 0.56 with
a mean error of 1.6 classes on predictions. However, in vivo
validation on 54 forward engineered promoters resulted in a
Spearman correlation of 0.91, indicating a strong ordinal rela-
tionship between predicted an measured promoter TIFs.

A notable difference exists between the performance on the test
and in vivo validation set. This difference can be explained by the
noise present in the FACS data used to train and validate the
model. Importantly, binning is performed solely in correlation to
the fluorescence of the expressed mKate2 protein, given a mini-
mal expression of sGFP (Supplementary Figs. 1–4), and does not
account for extrinsic noise46,72. This includes the variability in the
expression profile introduced by the environment, where the
normalization of the constitutively expressed fluorescence protein
accounts for factors such as plasmid copy number and cell size.
The presence of both extrinsic and intrinsic noise negatively
impact accuracy on the test set. In contrast, measured expression
rates of the in vivo validation promoters have been adjusted for
extrinsic noise, and performances obtained are therefore expected
to better represent the capability of the model.

A higher complexity between the classes is possible for models
where no ordinal regression between the classes is enforced. An
ordinal relationship of the predicted output is expected, as out-
lined by the applied FACS procedure. However, due to the high
capacity of neural networks and the aforementioned noise present
within the data, predictions of given models can result in non-
sensible and impractical predictions, such as similar probabilities
for distant classes and dissimilar probabilities for bordering ones.
Introduction of a single latent variable to project all classes offers
an elegant solution at the cost of a lower complexity of the output
class. Nonetheless, the substantial increase of the spearman rho
between the test and in vivo validation set support the pre-
sumption that both the ordinal layer and early stopping (using
the validation set) regulates the model against overfitting
on noise.

Compared to the σ70 model, the σW model substantially
underperforms and the distributions of the predicted classes for
the sequences of each assigned class (Fig. 4) display a clearly less
ordinal character, with multiple assigned classes showing the
majority of their predictions in the same prediction class. This
can be aligned with the observation made in previous work56,
indicating that the capability of introducing TIF variability
through spacer sequence engineering is limited, probably due to
the structural differences of extracytoplasmic function (ECF) σs to
which class of sigma factors σW belongs. The model might cor-
rectly predict the true mean expression of promoters found in
different bins, to be similar. An in vivo validation experiment is
essential to support this hypothesis.

In case of the models predicting orthogonality between non-
cognate promoter–sigma factor pairs, the performance is pre-
sumably limited by the quality of the data present in bin 0, which
covers all sequences with either minimal or lack of expression.
The abscence of functional mKate2 expression might be caused
by a variety of factors that are not related to the promoter
sequence, such as cell defects or genomic alteration through
random mutations. Data from the bin covering this expression
space was excluded to build the promoter TIF models for
aforementioned reasons, resulting in a substantial increase in
performance. However, this bin is essential in solving the binary
classification problem. We made observations indicating that

models for prediction of orthogonality could be enhanced by
improving the selection of the lower bins, ensuring the exclusion
of aberrant cells, but more in depth research is required to assess
the potential reduction of robustness of the model performances.
Nevertheless, the predictions on the orthogonality provided by
the models on the previously-created set of library promoters56

are very promising, as the sequences with the highest probability
for loss of orthogonality have been reviewed as such (B9 and F8-9
in Supplementary Table 3).

Determination of the features playing the most important role
in promoter TIF remains unsolved. Sequence motifs for the dif-
ferent classes of TIF were created to detect contributing nucleo-
tide positions for each class. The absence of pronounced
occurrence frequencies of specific nucleotides in the sequence
motifs clearly shows that more complex interactions between base
pairs are responsible for the observed TIF. Essentially, this is
demonstrated by the effectiveness of neural networks, capable of
complex higher-order interactions, to evaluate and classify
sequences. In contrast, PWM represent the relative frequencies of
the nucleotides at every position of the genome, and are therefore
incapable of capturing higher order interactions. This also indi-
cates that caution should be exercised with models predicting the
effect of single base mutations on promoter TIF (e.g., Meng
et al.31). Insights from reported observations presumably apply
solely to the promoter (spacer) under study and cannot be
extended to other base promoters. Rather than by specific
nucleotides, it is believed that the spacer sequence influence on
promoter TIF is determined on a structural level48. We therefore
analyzed the correlation between the GC-content of the spacer
and promoter TIF, previously established as an inverse correla-
tion, and found our results do not support these observations (see
“Exploratory sequence analysis” section). The geometry of base
pair steps and shaping of the DNA 3D-structure of a specific
sequence is further characterized by a large set of properties (e.g.,
shift, slide, tilt, and roll). The development of methodologies to
study these structural properties for big data could be the key to
provide fundamental understanding of the role of the promoter
spacer.

Moving beyond the promoter’s spacer, the UP element, span-
ning the region from −40 to −60 and the further upstream
promoter background sequence are important factors to take into
account regarding promoter TIF. Rhodius et al.29 showed that the
contribution of the core promoter and UP elements to the pro-
moter TIF can be scored independently and combined in a single
model to predict full-length promoter TIF. Extending the models
developed in this study with UP sequence predictions could
create an opportunity to further increase the sequence flexibility
to avoid unwanted sequence repetitions when engineering mul-
tiple operons. Further, Urtecho et al.24 assessed how all individual
promoter elements affect transcription and suggested that pro-
moter background sequence considerably contributes to overall
promoter expression through nonlinear interactions. Predicting
how a promoter will perform regarding the larger genetic context,
however, remains a tricky task. Besides the sequence of the pro-
moter itself, e.g., DNA supercoiling, adjacent transcription factor
binding sites, and competition between transcription factors
impacts transcription. To eliminate potential unwanted adjacent
genetic elements affecting transcription initiation and promoter
escape, our promoter chassis was inserted in an insulator
sequence spanning the −105 to +55 promoter region (previous
work)56,73. Therefore, it is expected that the developed tool per-
forms equally well for the transcription of different open reading
frames. Also, by insulating the promoter region from nearby
transcription factor binding sites, impact from environmental
context, other than general changes in the expression of the cell’s
shared transcription machinery, is minimized. However,
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changing the genetic context outside of the modeled region, and
especially in the −105 to +55 region, would still jeopardize the
robustness of any promoter TIF prediction model available.

In conclusion, a highly practical tool to predict the promoter
TIF of σ70 promoters is developed and validated, as a valuable
addition to the synthetic biology toolbox, providing the ability to
engineer custom promoters and defined libraries. Based on the
95% confidence interval of the in vivo validation set, promoters
can be reliably constructed spanning distinct ordinal catagories.
This was enabled by both the construction of promoter libraries
with randomized spacer sequences in E. coli, leading to data sets
of an unprecedented size for this setting, and the recent devel-
opments in deep learning methods, which have been proven
successful in topics involving big data. In addition, this tool can
be further developed into a complete orthogonal expression
toolbox by assembling the power of multiple prediction models
for the TIF and orthogonality of multiple sigma factor specific
promoters, boosting the potential of orthogonal genetic circuit
design. Finally, the developed methodology will be useful in
similar sequence-dependent ordinal problems, and the created
data sets might contribute in revealing the essential spacer fea-
tures contributing to transcriptional performance.

Methods
Media, strains, and plasmid construction. All products were purchased from
Sigma-Aldrich (Diegem, Belgium) unless otherwise stated. Agarose and ethidium
bromide were purchased from Thermo Fisher Scientific (Erembodegem, Belgium).
Standard molecular biology procedures were conducted as described by Sambrook
et al.74. All DNA fragments were amplified using PrimeSTAR HS DNA polymerase
(Takara, Westburg, Leusden, The Netherlands) and purified using the innuPREP
PCRpure Kit (Analytik Jena AG, Jena, Germany).

Lysogeny broth (LB) was used for cloning purposes. Complex medium (853)
was used for all further experiments. LB medium was composed of 10 g bacto-
tryptone, 5 g yeast extract and 5 g NaCl in 1 L water. Eight hundred and fifty-three
medium was composed of 10 g bacto-tryptone, 5 g yeast extract, 0.1% glucose, 5 g
NaCl, 0.7 g K2HPO4 and 0.3 g KH2PO4 in 1 L water. Kanamycin (60 µg/mL) was
added to all media for selection.

E. coli Top10 cells (Invitrogen, Carlsbad, USA) were used for cloning purposes.
E. coli K12 MG1655 was used for all further experiments requiring promoter TIF
measurements.

The construction of the promoter library expression vector (pLibrary), and its
complete annotated DNA sequence, is described in detail in Bervoets et. al.56, as
well as the construction of all (heterologous) sigma factor specific promoter
libraries.

The used σ70-specific promoter (library) sequences in pLibrary are derivatives
of the insulated proD promoter, constructed by Davis et. al.73:

TTCTAGAGCACAGCTAACACCACGTCGTCCCTATCTGCTGCCC-
TAGGTCTATGAGTGGTTGCTGGATAACTTTACG – 17 bp spacer –
TATAATATATTCAGGGAGAGCACAACGGTTTCCCTCTACAAA-
TAATTTTGTTTAACTTT, with promoter sequence −60 to +1 in bold, and
conserved −35 and −10 regions underlined. To insert forward engineered spacer
sequences for the in vivo model validation, first a cloning vector was created,
replacing the promoter region partially by an operon expressing the chromoprotein
aeBlue75 for visual selection (and later counterselection), flanked by restriction
enzyme recognition sites for Golden Gate (GG) assembly76. Oligonucleotides and
their reverse complements (IDT, Leuven, Belgium) of 60 basepairs, containing the
engineered spacer sequences and GG restriction enzyme sites matching with the
cloning vector, were duplexed as described by the manufacturer. The general
duplexed DNA sequence is:

5′-TTACGGGTCTCGTTACG-17 bp spacer—
TATAATATATTCAGTGAGACCAGCCA-3′, with restriction enzyme recognition
sites underlined and the restriction sites in bold. The DNA sequences surrounding
the recognition sites (italic) are designed with a custom script using the
ViennaRNA, RNAcofold package77 to minimize homodimer/monomer formation,
to facilitate duplexing and the following GG assembly. All forward engineered 17
bp spacer sequences are given in Supplementary Table 2. Cloning vector containing
aeBlue and subsequent forward engineered mKate2 expressing operons were
sequence verified by Sanger sequencing (Macrogen Inc., Amsterdam, The
Netherlands).

Promoter TIF—sequence data acquisition. The preparation of cells for
fluorescence-activated cell sorting (FACS) is described in Bervoets et al.56. In short,
a BD Influx Cell Sorter utilizing the BD FACS sortware sorter software (FACS core
facility, cmpg, Leuven) and calibrated with Rainbow Calibration Particles (eight
peaks, 3.0–3.4 µm) (BD), was used for cell sorting to split the promoter libraries in

presence of their cognate sigma factor into 12 separate bins, covering the entire
expression range, to gather the genetic information of different promoter TIF
levels. With a focus on the practical application, the ability to construct a promoter
library with 12 levels of TIFs were deemed adequate. Additionally, further increase
of the resolution becomes more obsolete as an effect of the normal distribution of
the cellular fluorescence. Nonuniform bins are used to account for the variability in
the distribution of the cells along the expression level. To account for the varying
expression ranges of the bins, the predictive model was given an ordinal design.
Also, the B. subtilis σB, σF, and σW-specific promoter libraries in presence of their
noncognate sigma factors, were sorted in two bins to gather information about
sequences resulting in conservation or loss of orthogonality. Constitutive sfGFP
expression was taken into account for bin selection to exclude artifacts. A visual
representation of the bin selection, the size of all population fractions and the
number of sorted cells is given in Supplementary Figs. 1–4.

Sorted cells were collected in collection tubes with 1 mL 853 medium
supplemented with kanamycin. Subsequently, sorted cells were added to 5 mL fresh
853 medium supplemented with kanamycin in 50 mL tubes and incubated
overnight at 30 °C while shaking. Plasmid DNA was isolated for all individual bins
with a Qiagen Plasmid Mini Kit (Qiagen, Venlo, The Netherlands) to prepare for
DNA sequencing.

The followed sample preparation workflow for sequencing of the sorted
libraries, is adapted from the “16S Metagenomic Sequencing Library Preparation”
protocol (Illumina Inc.)78. The two-step PCR workflow creates amplicons of the
region of interest in a first PCR reaction and includes a primer binding site for a
second PCR reaction, adding sample-specific indexes and sequencer flow cell
binding sites for subsequent sequencing.

Plasmid template concentrations were determined using a Quant-iT™
PicoGreen™ dsDNA Assay Kit (ThermoFisher Scientific). 0.7 ng template
(≈maximum recommended template concentration) and 0.15 µM of each primer
was added to 40 µL PrimeSTAR® HS (Takara Bio Inc.) PCR reactions to produce
amplicons of 270–275 bp. The promoter region-specific primers are given in
Supplementary Table 4. A DNA Clean & Concentrator Kit (Zymo Research) was
used for DNA purification after the first PCR, and amplicons were analyzed on a
LabChip GX (PerkinElmer Inc.). PCR conditions were optimized for each primer
pair to ensure a DNA yield of minimum 1 ng/µL.

For index PCR reactions, a Nextera XT Index Kit (Illumina Inc.) and the KAPA
HiFi HotStart ReadyMix (F. Hoffmann-La Roche Ltd) were used. Each of the
66 samples (12 bins × 4 libraries + 2 bins × 3 libraries × 3 different genetic
backgrounds) was tagged with a unique pair of indexes. Subsequent DNA
purification was performed using AMPure XP beads (Beckman Coulter Inc.),
followed by LabChip analysis to determine amplicon concentrations. Samples were
pooled together proportionally with the number of sorted cells for each bin
(Supplementary Figs. 1–4). and taking into account the theoretical maximum
amount of unique sequences for each library (= #transformants during library
construction). To remove potential excess index primers and off-target amplicons,
a DNA size-specific gel purification was performed (Zymoclean Gel DNA Recovery
Kit, Zymo Research). Finally, quality control and sequencing (dual-index, single-
read 50 bp sequencing, MiSeq, Illumina) was performed by the NXTGNT lab
(Faculty of Pharmaceutical Sciences, UGent).

Characterization of forward engineered promoters. To characterize the forward
engineered promoters, plasmid DNA was introduced in the cells on microtiter
plate (MTP)-scale by adding 2 µL of DNA to 10 µL chemically competent cells
prepared in TSS buffer79,80 (5 g PEG 8000, 1.5 mL 1M MgCl2 and 2.5 mL DMSO
supplemented with LB to 50 mL total) and a 45 s heat shock. Pre-cultures for
analysis (eight biological replicates) (150 µL 853 medium with kanamycin) were
grown for 24 h in sterile 96-well flat-bottomed black MTPs (Greiner Bio-One,
Vilvoorde, Belgium), enclosed by a Breath-Easy® sealing membrane (Sigma-
Aldrich), at 30 °C while shaking (800 rpm in a Compact Digital Microplate Shaker,
ThermoFisher Scientific). Cultures were then diluted 300-fold (by serial dilution) in
150 µL fresh medium with kanamycin and cultured similarly to the precultures.
Optical density at 600 nm (OD600), mKate2 fluorescence (FL) (excitation: 588 nm,
emission: 633 nm, gain: 115) and sfGFP FL (excitation: 480 nm, emission: 520 nm,
gain: 80) were measured after reaching stationary phase in a Tecan Infinite m200
Pro plate reader (Tecan, Mechelen, Belgium). Management of the hardware and
processing of the data is achieved using Tecan i-control and Magellan software. FL
measurements were processed by first correcting mKate2 and sfGFP FL for growth
media (blank) and subsequently, calculating the ratio of mKate2 over sfGFP FL
(FluorescenceC).

FluorescenceC ¼ FLðmKate2Þ � FLðmKate2Þmedium

FLðsfGFPÞ � FLðsfGFPÞmedium

: ð1Þ

Reported values were obtained by a logarithmic transformation and normalization
between 0 and 1, according to the following formula:

x ¼ log Pð Þ � logðPminÞ
log Pmaxð Þ � logðPminÞ

; ð2Þ

with x the transformed data and Pmin and Pmax the fluorescenceC value of the
promoter displaying the lowest and highest TIF, respectively. Linear regression,
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Spearman’s rank correlation test and confidence and prediction intervals calcula-
tion is performed with a custom written R-script.

Model building. Data was processed using Python (NumPy, Pandas packages).
Read samples containing mutations within the nonspacer region of the sequenced
51 bp were removed from the database, as well as sequence samples present in bin 0
(for sorted promoter libraries in presence of their cognate sigma factor), covering
the sequences resulting in background levels of red FL. Several properties were
described in order to better identify the relationship between a unique sequence
and its distribution of reads r throughout the observed bins. These are the total
amount of reads present in all bins rtot ¼

P
rið Þ; the amount of local maxima M

with similar heights (rbinM�1 < rbinM > rbinMþ1 with rbinM2
=rbinM1

> 0:66 and
rbinM1

> rbinM2
> 0), and the largest distance between the local maxima (binM1−-

binM2). Sequences containing outliers (exceeding 95th percentile) on given prop-
erties were removed from the data. The target label given to each sequence is
defined as the bin with the highest count of reads.

The PyTorch library81 was used for the purposes of building and using a
shallow neural network model. Convolutions were applied in the first layers, having
shown to be optimal for feature extraction (motifs) of DNA-protein interaction62.
Several networks were evaluated before selecting the final model architecture. The
structure and performances of several of the less complex networks are listed in
Supplementary Table 5. The final network, schematically depicted in Figure 1b,
first processes the sparse one-hot encoded input sequence by four sequential
convolutions with 4 (1 × 1), 16 (1 × 4), and 32 (1 × 2) kernels, respectively. The
processed features are successively sent through a dropout layer (p= 0.3) and two
fully connected layers with sizes 128 and 64.

In order to perform ordinal regression, for which a latent variable exists that is
correlated to the promoter TIF represented by the eleven classes, a single linear
combination of the output vector x with a set of weights w is taken. A final sigmoid
transformation returns values between 0 and 1:

ôi ¼ Sigmoidðwx þ biÞ; ð3Þ
where

oiðyÞ ¼ 0; if i ≥ y

1; if i < y

�

; i 2 0; 9½ �:

To ensure a prediction loss correlated to the distance of the predicted label with the
ground truth, multilabel classification is performed. The sample loss equals

ζout ¼ wn

XK

i¼0

BCE ôi; oið Þ ¼ wn

XK

i¼0

½oi � logðôiÞ þ ð1� oiÞ � logð1� ôiÞ�; ð4Þ

where K = number of classes.
The sum of the binary cross entropy (BCE) from the individual outputs thereby

obtains the prediction loss ζout. Importantly, a weight wn, having a negative
correlation to the abundance of the sequence class label in the training data, is
assigned to the loss of each sample, ensuring the importance of sequences from
every class n in an imbalanced setting.

To enforce the strict ordering of ôi , an auxiliary loss is calculated from the
vector of biases b that serve as the delimiter of the classes. Specifically, the auxiliary
training loss ζaux enforces the condition bi > bi+1 or ôi > ôiþ1:

ζaux ¼
XK�1

i¼0

Softplusðbiþ1 � biÞ ¼
X

ln 1þ ebiþ1�bi
� �

:

ζ ¼ ζout þ ζaux: ð5Þ
the softplus function is a smoothed version of the rectified linear unit. This loss is
minimal when the condition is met, albeit greater than zero to prevent oscillating
behavior in the internal order of b during training. The total loss ζ of the network
equals the sum of ζout and ζaux.

Based on the target label and loss, the model is optimized for the output to
approach ôi ¼ Pr y > ijxð Þ. As such, we can deduce that a sample belongs to a given
class as:

Pr y ¼ ijxð Þ ¼ Prðy > ijxÞ � Prðy > iþ 1jxÞ; ð6Þ
with

Pr y > 10jxð Þ ¼ 0:

The architecture of the binary classification model predicting promoter
orthogonality follows the same architecture, albeit without the specialized final
layer and loss function. The training, validation and test data are created through
randomized stratified sampling, ensuring equal class proportions for the three sets,
and exist out of 70%, 10%, and 20% of the data, respectively. The model with a
minimum in loss on the validation set is used for evaluation on the test set. For a
given model architecture, multiple performance metrics on are obtained by
evaluating five trained models using a 5-fold cross-validation scheme.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data in this study is deposited on ArrayExpress (accession E-MTAB-8734). Source
data are provided with this paper. All other relevant data are available from the authors
upon reasonable request.

Code availability
The proD tool and user guide is accessible to all and can be found at https://github.com/
MEMO-group/ProD82, with zenodo https://doi.org/10.5281/zenodo.4019340.
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