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ABSTRACT 

There is accumulating evidence for auditory dysfunctions in patients with Parkinson’s disease 

(PD). Moreover, a possible relationship has been suggested between altered auditory intensity 

processing and the hypophonic speech characteristics in PD. Nonetheless, further insight into the 

neurophysiological correlates of auditory intensity processing in patients with PD is needed primarily.  

In the present study, high-density EEG recordings were used to investigate intensity 

dependence of auditory evoked potentials (IDAEPs) in 14 patients with PD and 14 age- and gender-

matched healthy control participants (HCs). Patients with PD were evaluated in both the on- and off-

medication states. HCs were also evaluated twice.  

Significantly increased IDAEP of the N1/P2 was demonstrated in patients with PD evaluated in 

the on-medication state compared to HCs. Distinctive results were found for the N1 and P2 

component. Regarding the N1 component, no differences in latency or amplitude were shown 

between patients with PD and HCs regardless of the medication state. In contrast, increased P2 

amplitude was demonstrated in patients with PD evaluated in the on-medication state compared to 

the off-medication state and HCs. 

In addition to a dopaminergic deficiency, deficits in serotonergic neurotransmission in PD were 

shown based on increased IDAEP. Due to specific alterations of the N1-P2 complex, the current results 

suggest deficiencies in early-attentive inhibitory processing of auditory input in PD. This interpretation 

is consistent with the involvement of the basal ganglia and the role of dopaminergic and serotonergic 

neurotransmission in auditory gating. 
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1. INTRODUCTION 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by an 

alpha-synuclein pathology and the loss of dopaminergic neurons in the substantia nigra pars compacta 

(SNc). The neurodegeneration causes a dopamine deficiency in the striatum and leads to a dysfunction 

of the basal ganglia (BG) circuitry (Bartels and Leenders 2009; Rietdijk et al. 2017). Whereas 

dysfunctions of the cortico-BG-thalamo-cortical circuitry give rise to the motor symptoms 

characteristic of PD, the presence of non-motor symptoms, such as autonomic dysfunctions, cognitive 

deficits, depression, sleep disorders, and sensory-perceptual alterations, has been increasingly 

recognized (Chaudhuri et al. 2006; Jankovic 2008; Park and Stacy 2009). Accordingly, recent research 

has drawn attention to auditory dysfunctions in patients with PD (De Groote et al. 2020; Jafari et al. 

2020). 

In addition to an age-related decline affecting peripheral and central auditory processes, as 

well as general cognitive abilities (Alain et al. 2004; Getzmann et al. 2014), altered auditory processing 

has been demonstrated in patients with PD compared to age-matched healthy control participants 

(HCs) along the various stages of the auditory pathway (De Groote et al. 2020; Jafari et al. 2020). 

Moreover, the importance of investigating auditory processing in patients with PD has been 

emphasized based on the suggestion that dysfunctions in auditory perception could be a possible 

factor contributing to the motor speech disorder in PD (Kwan and Whitehill 2011; Sapir 2014). The 

hypothesis seems in line with a central role of the BG in sensorimotor integration (Dubbioso et al. 

2019). Hereby, the gating of sensory input for motor control has been considered a key concept 

(Boecker et al. 1999; Dubbioso et al. 2019; Kaji et al. 2005; Lidsky et al. 1985). 

Auditory gating refers to the neurophysiological process by which repetitive incoming auditory 

information is filtered and stimulus overload of higher-order cognitive functioning can be avoided 

(Freedman et al. 1991; Lijffijt et al. 2009; Thwaites et al. 2013; Venables 1964). Whereas auditory gating 

has been predominantly regarded as a bottom-up filter mechanism, the involvement of top-down 
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attentive modulations has also been suggested, making the process a multi-component and multi-

stage concept (Boutros et al. 1999; Golubic et al. 2019; Lijffijt et al. 2009).  

One research technique that may be of specific interest to investigate this specialized aspect 

of central auditory processing in patients with PD, is the recording of auditory event-related potentials 

(ERPs) (Alain and Tremblay 2007; Duncan et al. 2009; Fritz et al. 2007; Luck 2014; Picton et al. 1971; 

Shinn-Cunningham 2017). Auditory ERPs represent voltage fluctuations in the ongoing 

electroencephalogram (EEG) that are time-locked to an auditory event with a millisecond temporal 

resolution (Kappenman and Luck 2012). More specifically, the auditory P1-N1-P2 complex has been 

considered an ERP correlate of sound detection (Alain and Tremblay 2007; Lightfoot 2016). Its 

waveform consists of three deflections, namely P1, N1, and P2 that reach their maximal amplitude at 

around 50, 100, and 160 ms respectively, each component representing at least partially independent 

auditory processes (Arnott et al. 2011; Crowley and Colrain 2004; Paiva et al. 2016). Although the P1-

N1-P2 complex has been acknowledged an ‘obligatory’ exogenous response (Alain and Tremblay 2007; 

Arnott et al. 2011), its neurophysiology may be influenced in a top-down manner by the level of 

arousal, alertness, and attention of the participant (Lightfoot 2016; Woldorff et al. 1993). In this regard, 

investigation of the P1-N1-P2 complex could help us to understand auditory gating as an interface 

between the bottom-up and top-down aspects of auditory processing in patients with PD. 

A paired-click paradigm in which the suppression of the response to the second stimulus is 

measured, has been widely used to evaluate pre-attentive auditory gating of the P1 component (Adler 

et al. 1982; Mayer et al. 2009). Following this method, decreased auditory gating was found in patients 

with PD evaluated in the on-medication state compared to HCs (Teo et al. 1997; Teo et al. 1998). 

However, significant differences between groups were only evident for patients with PD at the higher 

disease stages (Hoehn and Yahr stage IV - V), suggesting that alterations in pre-attentive bottom-up 

auditory gating are evident further in disease progression. Nonetheless, since auditory gating has been 

considered a multi-stage concept, gating mechanisms in PD have also been investigated at the later 
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stages of information processing based on the auditory N1 and P2 components (Rosburg et al. 2009). 

Using a variety of methodological approaches, decreased auditory gating of the P1/N1 complex, N1 

component, and N1/P2 complex was reported in the studies of Gulberti et al. (2015), Annanmaki et al. 

(2017), and Lukhanina et al. (2009) respectively. Nevertheless, further research is needed as a limited 

number of studies have investigated auditory gating in PD and neurophysiological mechanisms are far 

from clear. 

Since a reduced speech intensity or hypophonia has been considered a prominent feature of 

the motor speech disorder in PD (Darley et al. 1969; Duffy 2005) and behavioral evidence has been 

found for altered speech intensity perception (Clark et al. 2014; De Keyser et al. 2016; Ho et al. 2000; 

Kwan and Whitehill 2011), intensity dependence of auditory evoked potentials (IDAEP) may be of 

specific interest to study in patients with PD. Considering IDAEP, an increased auditory stimulus 

intensity generally results in an increased N1/P2 amplitude (Mulert et al. 2005; Paiva et al. 2016). 

Accordingly, IDAEP represents a linear N1/P2 amplitude change in response to different stimulus 

intensities measured as a slope function at the fronto-central and central scalp electrodes (Hegerl and 

Juckel 1993; Hensch et al. 2008; Juckel et al. 2008). The IDAEP amplitude stimulus intensity function 

has been specifically related to serotonergic neurotransmission as increased IDAEP has been 

associated with reduced serotonin functioning and vice versa (Beauducel et al. 2000; Beucke et al. 

2010; Hegerl et al. 2001; Hegerl and Juckel 1993; Juckel et al. 2003; Juckel et al. 1999; O'Neill et al. 

2006).  

To our knowledge, only two studies have investigated IDAEP in patients with PD. In the study 

of Beucke et al. (2010), altered IDAEP was found in nine early stage unmedicated patients with PD. 

Patients with PD demonstrated a significantly increased IDAEP of the N1/P2 amplitude compared to 

HCs (p = 0.05). After 12 weeks of dopaminergic treatment, IDAEP values did no longer differ between 

patients with PD and HCs (Beucke et al. 2010). Likewise, the effect of 12 weeks of dopaminergic 

medication on IDAEP was investigated in 30 initially unmedicated patients with PD in the study of Park 
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et al. (2020). The main finding of their study was related to a decreased IDAEP of the N1 component 

in the post- compared to the pre-treatment condition. Although the pilot study of Beucke et al. (2010) 

and the study of Park et al. (2020), yield interesting results regarding altered IDAEP in de-novo PD, no 

study has investigated the intensity dependence of the P1-N1-P2 complex in long-term L-dopa treated 

patients with PD.  

In order to gain further insight into stimulus-related central auditory intensity processing in 

PD, the goal of the present study is to compare IDAEP between L-dopa treated patients with PD and 

matched HCs, differentiating the P1, N1 and P2 component, and the IDAEP slope function. In addition, 

the effect of dopaminergic medication on IDAEP in PD will be investigated by evaluating patients with 

PD in both the on- and off-medication states. As serotonergic dysfunctions have been demonstrated 

in PD, increased IDAEP could be hypothesized in patients with PD compared to HCs, possibly affecting 

the partially independent subcomponents differently. Considering the opponent interactions between 

the serotonergic and dopaminergic neurotransmitter systems (Daw et al. 2002; Kapur and Remington 

1996; Seo et al. 2008), altered IDAEP could be most evident based on additional serotonergic 

suppression when patients with PD are evaluated in the on-medication state. Taken together, this will 

be the first study that addresses IDAEP in patients with PD to further explore the neurophysiological 

mechanisms that could be involved in altered auditory intensity processing in PD. The findings may 

provide future directions into research on the possible relationship between speech perception and 

production deficits in patients with PD in both a fundamental and a clinically relevant way. 
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2. METHOD 

2.1  Participants 

Fourteen non-demented patients with idiopathic PD participated in the study. The PD group 

included 11 men and 3 women, mean age 63.0 years (SD = 7.78; range 51-73 years) and mean disease 

duration 8.7 years (SD = 3.22; range 3-14 years). PD severity was evaluated with the commonly used 

Hoehn and Yahr (H&Y) scale. Patients with a H&Y scale ≤ 3 were included whereas patients with deep 

brain stimulation were excluded. The HC group was matched for age and gender, and included 11 men 

and 3 women, mean age 62.9 years (SD = 7.64; range 49-73 years). All participants were right-handed 

(except for 1 HC). Table 1 represents the demographic and clinical data of the patients with PD and 

HCs.  

Table 1 Demographic and clinical data of the patients with PD and HCs. 

Note. PD, patients with Parkinson’s disease evaluated in the on-medication state; HC, healthy control 

participants; P, p-value based on the independent Student’s t-test between PD and HC; M, mean; SD, 

standard deviation; y, years; MoCA, Montreal Cognitive Assessment; BDI - II, Beck Depression 

Inventory - II; PTA, pure tone average; LEDD, levodopa equivalent daily dose (Tomlinson et al. 2010); 

 PD HC  

Participant characteristics M SD M SD P 

Age (y) 63.0 7.78 62.9 7.64 0.961 

Education (y) 13.3 3.24 13.4 3.37 0.910 

MoCA 28.4 1.45 27.6 1.50 0.137 

BDI - II 12.0 6.86 3.3 3.65 < 0.001 

PTA (dB HL) 17.9 8.86 18.5 9.15 0.866 

Disease duration (y) 8.7 3.22 NA NA 

LEDD (mg) 816.1 359.26 NA NA 

UPDRS-III (on) 22.9 11.70 NA NA 

H&Y (on) 1.9 0.79 NA NA 
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UPDRS-III, Unified Parkinson’s Disease Rating Scale – Part III; H&Y, Hoehn and Yahr stage; NA, not 

applicable. 

2.2  Procedure 

Almost all participants took part in a previous study (De Keyser et al. 2019), in which they 

underwent an audiological screening, cognitive screening and a self-scored depression inventory. 

More specifically, participants were screened for age-related normal hearing. Pure-tone hearing 

thresholds were measured at conventional octave frequencies under headphone (TDH39 headphones, 

Interacoustics, Assens, Denmark) using a AA222 audiometer (AA222 Audio Traveller, Interacoustics, 

Assens, Denmark). The pure-tone average (PTA) threshold was calculated as the average air conduction 

hearing thresholds at 0.5, 1.0, 2.0, and 4.0 kHz. In addition, the Montreal Cognitive Assessment (MoCA; 

Nasreddine et al. 2005) was used for cognitive screening. Symptoms of depression and related severity 

were measured with the Beck Depression Inventory - II (BDI - II; Beck et al. 1961, 1996; Smarr 2003). 

Finally, patients with PD underwent a clinical and neurological evaluation that included part III of the 

Unified Parkinson’s Disease Rating Scale (UPDRS - III; Goetz et al. 2007) and H&Y staging scale (Goetz 

et al. 2004; Hoehn and Yahr 1967) in both medication states. 

In the current study, all participants participated in two EEG-sessions in which both exogenous 

(i.e. IDAEP) and endogenous (i.e. mismatch negativity and P3) auditory ERPs were investigated. In 

patients with PD, one session was performed in the on- and one in the off-medication state with the 

order of medication states counterbalanced across participants. To induce a practically defined off-

medication state, patients with PD were tested at least 12 hours after not taking their regular anti-

parkinson medication (CAPSIT-protocol, Core Assessment Program for Surgical Interventional 

Therapies in Parkinson’s disease protocol; Defer et al. 1999). HCs performed the same procedure twice. 

The results of the exogenous auditory ERP components are discussed in the present article. 

The study was performed in accordance with the Declaration of Helsinki. All participants signed 

a written informed consent approved by the Ethics Committee of the Ghent University Hospital. 
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2.3  IDAEP paradigm 

Stimulus presentation was generated by E-Prime 2.0 software (Psychology Software Tools, 

Pittsburgh, PA) and delivered binaurally by ER1 insert earphones (Etymotic Research). Stimuli were 

calibrated using a Brüel & Kjaer head and torso simulator (Type 4128C – Brüel & Kjaer, Naerum, 

Denmark) and PULSE LabShop software (Version 15.1.0 – Brüel & Kjaer, Naerum, Denmark). The IDAEP 

paradigm consisted of 500 pure tones (1000 Hz, 80 ms stimulus duration, 10 ms rise/fall time) 

presented at five intensity levels of 60, 70, 80, 90, and 100 dB SPL in a randomized order. A variable 

stimulus-onset-interval of 1200-1800 ms was used. Stimulus presentation was divided into four blocks 

of 125 stimuli each, offering participants the possibility to take a break between blocks. During stimulus 

presentation, participants watched a silent video.  

Fig. 1 Paradigm for recording of the intensity dependence of auditory evoked potentials. Participants 

watched a silent video during stimulus presentation. 

2.4  EEG recording 

The EEG was recorded from 126 electrode sites using an EasyCap electrode cap (Brain 

Products, Munich, Germany). The online reference electrode was FCz. Ground electrode impedance 

was maintained below 10 kOhm. Data were collected with a BrainVision BrainAmp amplifier (Brain 

Products, Munich, Germany) and were continuously digitized with a sampling frequency of 500 Hz. 

BrainVision Recorder was used as recording software (Brain Products, Munich, Germany). 

2.5  ERP data-analysis 

BrainVision Analyzer 2 (Brain Products, Munich, Germany) was used for off-line data analysis. 

First, raw data inspection was performed followed by IIR filtering (low cut-off 0.3 Hz, high cut-off 30 

Hz, slope 12 dB/oct). A notch filter was enabled at 50 Hz. Artifacts related to eye blinks and eye 

movements were removed based on independent component analysis (ICA). Topographic 

interpolation was used to replace electrode channels that were disabled based on raw data inspection 

followed by re-referencing the data to the average of P9-P10 electrode positions. Subsequently, the 
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EEG was segmented into epochs of -100 to 500 ms relative to stimulus onset. Baseline correction was 

applied using the pre-stimulus window of -100 ms. It should be noted that in this study, all markers 

were corrected based on a 50 ms mismatch between stimulus onset and trigger. This correction factor 

was justified based on a flat baseline of the grand average across all conditions, and a flat baseline of 

the grand average of the conditions separately. After artifact rejection (gradient 75 µV, amplitude -100 

µV – 100 µV, max-min 150 µV/200 ms, low activity 0.5 µV/100 ms), segments were averaged for each 

stimulus intensity. At least 2/3 of the segments had to remain to be included for further data-analysis. 

Measurement windows were determined based on a grand average across all conditions and its 

topographical distribution at all electrode positions. Finally, 50% peak latency and mean amplitude 

values were derived for each stimulus intensity at the FCz electrode positions for P1 in an 30 – 60 ms 

window, N1 in a 70 – 140 ms window, and P2 in a 150 – 290 ms window. Mean-to-mean amplitudes 

were then calculated for the N1/P2 slope function. Mapping of the current source density (CSD) or 

surface Laplacian was used to represent the topographical pattern of the ERP activity based on a 

spherical spline algorithm (Kamarajan et al. 2015; Perrin et al. 1989). 

2.6  Statistical analysis 

Statistical analysis was performed using SPSS Statistics (Version 26 – IBM). Regarding the 

demographic and clinical data of the patients with PD and HCs, the normal distribution of data and 

equality of variances were evaluated with the Shapiro-Wilk test and Levene’s test respectively. The 

parametric independent Student’s t test was used to compare the demographic data and the results 

of the MoCA, BDI - II, and PTA between patients with PD and HCs. In addition, the paired Student’s t 

test was addressed to estimate the effect of dopaminergic medication on the UPDRS-III motor score 

and the H&Y stage. Regarding the IDAEP data, multiple linear mixed models (LMMs) were applied for 

the P1, N1, P2, and N1/P2 respectively. The N1/P2 amplitude was calculated as the absolute amplitude 

difference between N1 and P2. 50% peak latency and/or mean amplitude values were addressed as 

dependent variables. Condition (PD ON, PD OFF, HC), test moment (evaluation 1, evaluation 2), and 

gender, age, BDI - II score were considered as independent variables and possible confounding 
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variables inherent to IDAEP respectively. Independent variables and confounding variables were added 

as fixed factors by default. Participants, intercepts and stimulus intensity (60, 70, 80, 90, and 100 dB 

SPL) were considered as random factors. In addition, post hoc pairwise comparisons were computed 

using Bonferroni correction. Any p values < 0.05 were considered statistically significant. 

3. RESULTS 

Participants were screened for age-related normal hearing, cognitive impairment and 

depression. All participants had a mean PTA ≤ 35 dB HL and no significant differences were found for 

hearing thresholds between patients with PD and HCs, independent Student’s t test, t(26) = -0.170, p 

= 0.866 and t(26) = -0.036, p = 0.971, in the on- and off-medication state respectively. The score on the 

cognitive assessment was ≥ 25 for all participants and did not differ between patients with PD and HCs, 

t(26) = 1.534, p = 0.137. Regarding depression, a significantly higher score, t(26) = 4.196, p < 0.001, was 

found in the PD group compared to the HC group, indicating minimal depression in the patient group. 

In patients with PD, statistical analysis also demonstrated a significantly higher UPDRS-III motor score, 

paired Student’s t test, t(13) = 2.547, p = 0.024, and significantly higher H&Y stage, t(13) = 3.373, p = 

0.005, in the off-medication state compared to the on-medication state.  

3.1  P1 component 

 Based on the LMMs for P1 latency and amplitude, no significant main effect of condition was 

found, F(2, 69) = 1.758, p = 0.180, and F(2, 88) = 1.747, p = 0.180 respectively. 

3.2  N1 component 

Based on the LMM for N1 latency, a significant main effect of condition, F(2, 41) = 4.355, p = 

0.019 was found. Post-hoc pair-wise comparisons demonstrated a shorter N1 latency in the off-

medication state compared to the on-medication state with a mean difference of -1.925 ms, 95% CI [-

3.807, -0.042], p = 0.043. Based on the LMM for N1 amplitude, also a significant main effect of 

condition was found F(2, 39) = 7.006, p = 0.002. Post-hoc pairwise comparisons demonstrated a higher 
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N1 amplitude in the off-medication state compared to the on-medication state with a mean difference 

of -0.612 μV, 95% CI [-1.016, -0.208], p = 0.001. 

3.3  P2 component 

Based on the LMM for P2 latency, no significant main effect of condition was found, F(2, 41) = 

0.042, p = 0.959. Based on the LMM for P2 amplitude, a significant interaction of condition*intensity 

was found F(2, 42) = 7.204, p = 0.002. Post-hoc pairwise comparisons demonstrated a significant effect 

of condition for stimulus intensities of 80, 90 and 100 dB SPL (p ≤ 0.002). A higher P2 amplitude was 

found in patients with PD evaluated in the on-medication state compared to the off-medication state 

at 80, 90, and 100 dB SPL and compared to HCs at 90 and 100 dB SPL (Table 2). 

Table 2 Mean amplitude values of the P2 component per stimulus intensity level in patients with PD 

and HCs. 

P2 mean 
amplitude 

PD ON PD OFF HC  

M 95% CI M 95% CI M 95% CI P-value 

60 dB 2.302 [1.277, 3.327] 2.107 [1.090, 3.123] 1.653 [0.700, 2.605] 0.577 

70 dB 3.226 [2.228, 4.225] 2.863 [1.870, 3.856] 2.030 [1.083, 2.978] 0.083 

80 dB 4.151 [3.130, 5.171] 3.619 [2.603, 4.635] 2.408 [1.433, 3.384] 0.002 

90 dB 5.075 [3.987, 6.163] 4.376 [3.293, 5.458] 2.786 [1.753, 3.820] 0.001 

100 dB 5.999 [4.804, 7.194] 5.132 [3.946, 6.317] 3.164 [2.046, 4.283] 0.001 

Note. PD ON, patients with Parkinson’s disease evaluated in the on-medication state (IDAEP average: 

n = 12); PD OFF, patients with Parkinson’s disease evaluated in the off-medication state (IDAEP 

average: n = 13); HC, healthy control participants (IDAEP average: n = 2 x 14); M, mean; 95% CI, 95% 

confidence interval. 

3.4  N1/P2 slope 

Regarding N1/P2 slope in patients with PD, an average slope of 1.34 μV/10 dB, 95% CI [1.076, 

1.613] and an average slope of 1.14 μV/10 dB, 95% CI [0.877, 1.401] were found in the on- and off-

medication states respectively. No significant difference was evident for the N1/P2 slope values in 
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patients with PD evaluated in the on-medication state compared to the off-medication state. In 

contrast, N1/P2 slope was significantly increased (p < 0.05) in patients with PD in the on-medication 

state compared to the average N1/P2 slope of 0.96 μV/10 dB, 95% CI [0.733, 1.182] found in HCs (Fig. 

1). 

Fig. 2 IDAEP of the P1-N1-P2 complex in patients with Parkinson’s disease evaluated in the on- (PD ON) 

and off-medication states (PD OFF) and healthy control participants (HCs). Intensity dependence of the 

P1-N1-P2 complex is shown for five stimulus intensities at the FCz electrode position. CSD mapping 

was used for the topographical distribution of the N1 sink and P2 source – Please print in color online 

only 

4. DISCUSSION 

The aim of the current study was to gain insight into the different aspects of stimulus-related 

central auditory intensity processing in patients with PD based on the intensity dependence of the P1-

N1-P2 complex. The findings are discussed following the early and late auditory ERP subcomponents 

and the IDAEP slope function. 

4.1  Early components of auditory stimulus intensity processing 

The auditory P1 and N1 subcomponents are considered to reflect the early stages of stimulus-

related auditory processing (Getzmann et al. 2014). In this regard, the P1 component has been related 

to auditory pre-attentive arousal, whereas the N1 component has been recognized to reflect the 

detection of and orientation to auditory changes (Arnott et al. 2011; Hari et al. 1987; Paiva et al. 2016). 

In the present study, no differences in latency or amplitude of the auditory P1 component were found 

between patients with PD and HCs. In addition, no effect of dopaminergic medication on the auditory 

P1 was shown when patients with PD were evaluated in the on- and off-medication states. The result 

may imply comparable levels of auditory pre-attentive arousal between patients with PD regardless of 

the medication state and HCs (Arnott et al. 2011; Hari et al. 1987). 
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In addition, no differences in latency or amplitude of the N1 component were shown between 

patients with PD and HCs. This finding suggests that sound intensity detection in patients with PD 

seems not considerably altered compared to HCs (Arnott et al. 2011; Paiva et al. 2016). Nevertheless, 

latency of the N1 component slightly decreased and amplitude increased when patients with PD were 

assessed in the off- compared to the on-medication state. This result could be interpreted as a slightly 

increased auditory signal detection when patients with PD are evaluated without their dopaminergic 

medication.  

4.2  Late components of auditory stimulus intensity processing 

Remarkably, increased P2 amplitude values were clearly demonstrated in patients with PD 

evaluated in the on-medication state compared to the off-medication state and HCs. Primary processes 

of attentional allocation, perceptual learning, and memory have been related to the P2 component 

(Arnott et al. 2011; Paiva et al. 2016). Moreover, it has been suggested that the P2 component may be 

related to inhibitory processing and gating mechanisms regulating sensory input (Paiva et al. 2016). 

Increased P2 amplitudes have been interpreted to represent an age-related decline in inhibitory 

control (Amenedo and Diaz 1998; Anderer et al. 1996; Harris et al. 2007). As such, the current findings 

may suggest a dysfunctional inhibition at specific stages of auditory input processing in patients with 

PD. 

Although sensory gating has generally been considered as a bottom-up filter mechanism, the 

involvement of top-down early-attentive modulations has also been hypothesized, making the process 

a multi-component and multi-stage concept (Boutros et al. 1999; Golubic et al. 2019; Lijffijt et al. 2009). 

In previous studies, decreased auditory gating in PD has been shown based on the subcomponents of 

the auditory P1-N1-P2 complex (Annanmaki et al. 2017; De Groote et al. 2020; Gulberti et al. 2015; 

Lukhanina et al. 2009). The present study broadens the view of multi-stage gating alterations in PD by 

demonstrating increased P2 amplitude values based on the IDAEP of the P1-N1-P2 complex in L-dopa 

treated patients with PD. In HCs, the configuration of the P1-N1-P2 complex corresponds to a 
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neurophysiological response of auditory input processing during a task that implies automaticity, i.e. 

auditory stimulus processing while watching a silent video (Arnott et al. 2011). In contrast, the 

increased P2 amplitude shown in patients with PD may suggest a dysfunction in withdrawing 

attentional allocation towards the stimuli and seems comparable with an enhanced P2 component for 

non-target stimuli in an attentive oddball paradigm (Crowley and Colrain 2004; Garcia-Larrea et al. 

1992). Therefore, the results of this study specifically suggest alterations of auditory input processing 

that may be related to top-down early-attentive inhibitory processing. Although no evidence was 

found for differences in the early components of auditory input processing between patients with PD 

and HCs in the present study, early stage input alterations in PD have been suggested based on other 

methodological approaches (De Groote et al. 2020). Therefore, an increased allocation of attention 

could also be interpreted as a compensatory mechanism for changes along the auditory pathway 

inducing a PD-specific approach of auditory input processing (Alain et al. 2004; Boecker et al. 1999; 

Getzmann et al. 2014; Keesom and Hurley 2020). 

4.3  IDAEP slope function 

Whilst the pathological hallmark of PD consists of a dopamine deficiency in the striatum due 

to dopaminergic neurodegeneration in the substantia nigra, neurodegeneration in PD also affects 

other brainstem nuclei, thereby affecting multiple neurotransmitter systems (Barone 2010). More 

specifically, neurodegeneration of the locus coeruleus and raphe nuclei may cause noradrenergic and 

serotonergic deficits in PD respectively (Braak et al. 2003). Since a close reciprocal relationship exists 

between the noradrenergic, serotonergic and dopaminergic neurotransmitter systems (Beucke et al. 

2010; Guiard et al. 2008; Millan et al. 1998), altered central auditory processing needs to be 

investigated and interpreted taking into account the multiple neurotransmitter systems involved in 

PD. 

In the present study, increased IDAEP of the N1/P2 was found in patients with PD suggesting 

low levels of serotonergic neurotransmission (Beauducel et al. 2000; Beucke et al. 2010; Hegerl et al. 
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2001; Hegerl and Juckel 1993; Juckel et al. 2003; Juckel et al. 1999; O'Neill et al. 2006). This 

interpretation seems consistent with the significantly higher scores on the BDI - II that were found in 

patients with PD compared to HCs. Moreover, the present research findings could suggest an 

involvement of serotonin in auditory dysfunctions in patients with PD as serotonin has been considered 

to modulate auditory processing based on inhibitory mechanisms (Gopal et al. 2000; Hall et al. 2011; 

Hurley and Hall 2011; Jastreboff and Jastreboff 2015). More specifically, a low serotonergic 

neurotransmission might be related to a reduced inhibition of auditory input in PD. 

Furthermore, a close reciprocal neurophysiological interaction has been recognized between 

the serotonergic and dopaminergic neurotransmitter systems (Beucke et al. 2010; Daw et al. 2002; 

Guiard et al. 2008; Kapur and Remington 1996; Millan et al. 1998). Serotonergic neurons from the 

dorsal raphe nuclei are known to provide a major input to the ventral tegmental area (VTA) in the 

brainstem (Li et al. 2019; Wang et al. 2019; Watabe-Uchida et al. 2012). In turn, dopamine is 

transmitted from the VTA toward the ventral striatum and prefrontal cortex (PFC) through the 

mesocorticolimbic projections. Compared to the profound loss of dopaminergic neurons in the SNc 

from which dopamine is transmitted through the nigrostriatal projections toward the dorsal striatum, 

a relatively spared ventral striatum has been considered in PD (Al Jaja et al. 2020; Cools 2006; 

MacDonald and Monchi 2011). Since opponent interactions between serotonin and dopamine have 

been hypothesized, low serotonergic function may imply disinhibition of dopaminergic activity in the 

ventral striatum and PFC (Daw et al. 2002; Kapur and Remington 1996; Seo et al. 2008). This hypothesis 

may be in line with a decreased inhibitory control associated with dopamine overflow in the ventral 

striatum (Georgiev et al. 2015). Alternatively, the BG might be in a central position to serve dynamic 

gating mechanisms for updating stable cognitive representations in the PFC (Cools 2006; Gulberti et 

al. 2015). As such, alterations in top-down modulations indexing early-attentive processes have also 

been related to the hypothesis of a decreased intracortical inhibition in patients with PD (Lukhanina et 

al. 2009; Lukhanina et al. 2010). In the present study, a distinct frontal topographical distribution in 

the PD compared to the HC group was demonstrated. 
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Following the spatio-temporal progression of dopamine depletion, dopaminergic medication 

may improve motor and cognitive function associated with the dorsal striatum, whereas relatively 

intact brain areas such as the ventral striatum and PFC could be overdosed (Cools 2006; MacDonald 

and Monchi 2011). In the present study, differences in mean between the PD and HC group further 

increased when patients with PD were evaluated with their regular dopaminergic medication 

suggesting additional dopaminergic dysregulation and serotonergic suppression. In addition, the 

effects of dopamine overdose could still be present when patients with PD are evaluated in the off-

medication state. Long-term effects of dopamine on the VTA have been suggested (MacDonald and 

Monchi 2011) which may imply that a washout period as proposed by the CAPSIT protocol might be 

too short to distinctively alter specific aspects of cognitive functioning in patients with PD chronically 

treated with dopaminergic medication. Furthermore, the effect of dopaminergic medication might 

explain why the results in long-term L-dopa treated patients with PD differ from the research findings 

reported in the studies of Beucke et al. (2010) and Park et al. (2020). In their studies, beneficial effects 

of dopaminergic medication on IDAEP have been reported in de-novo patients with PD (Beucke et al. 

2010; Park et al. 2020). 

As in the present study IDAEP was investigated in patients with PD, the current discussion 

specifically focused on the involvement of serotonin and its relationship with dopaminergic 

neurotransmission in auditory processing in PD. Nonetheless, other neurotransmitter systems and 

various interactions could also be involved (Keesom and Hurley 2020). More specifically, dopamine, 

glutamate, gamma-aminobutyric acid, and acetylcholine are common neurotransmitters of the 

auditory system and BG circuitry (Jafari et al. 2020; Lee and Godfrey 2014; Oestreicher et al. 2002; Ruel 

et al. 2007). In this way, possible neurophysiological interaction mechanisms between peripheral and 

central auditory processing, and non-auditory systems must be considered in PD (Keesom and Hurley 

2020). Finally, dopamine and dopaminergic medication exert their influence on the various 

neurotransmitters and their interactions involved (Jafari et al. 2020), making understanding of the 

neurophysiological mechanisms of auditory input processing in PD challenging. 
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4.4  Limitations and future directions 

 Although this study provided evidence for alterations in auditory intensity processing in PD, 

certain limitations and suggestions for further research need to be considered. First, sample size could 

be considered relatively small. This aspect could threat the statistical power of the present study and 

may hamper the generalization of the research findings. Nevertheless, few studies have investigated 

auditory processing in PD by evaluating the same patients with PD in both the on- and off-medication 

states. Furthermore, a balanced study design was provided by also evaluating the HCs twice. Second, 

alterations of auditory input processing in PD were found at the late components of auditory stimulus 

intensity processing. No evidence was found for differences in the early components of auditory input 

processing between patients with PD and HCs in the present study. However, it can be hypothesized 

that an increase in auditory processing load, for example by using a high stimulus rate, complex signals 

such as speech, or noise-added conditions could result in other insights (De Groote et al., 2020; 

Schwent et al. 1976a, Schwent et al. 1976b; Talsma et al. 2010). Third, research into sensory and 

cognitive processing in PD has been characterized by dysfunctions in various oscillatory networks 

(Dushanova et al. 2009, Dushanova et al. 2010; Dushanova 2011; Güdücü et al. 2019; Güntekin et al. 

2018; Solís-Vivanco et al. 2018). Frequency or joint time-frequency analysis (Zhang 2019) may provide 

valuable insights into the spectral power changes that are associated with auditory processing in 

patients with PD. Finally, the present research findings underline important clinical implications of the 

possible involvement of serotonin in auditory processing in PD. In the review article by Keesom and 

Hurley (2020), alterations in peripheral and central auditory processing, cognitive functioning, and 

social interaction have all been interrelated by possible deficiencies of the serotonergic 

neurotransmission system. The authors provide a conceptual diagram that may be considered highly 

valuable to support both the fundamental and clinical relevance of further research into altered 

auditory processing within the communication deficits in PD. 
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5. CONCLUSION 

In the present study, deficits in serotonergic neurotransmission in PD were shown based on 

increased IDAEP. More specifically, a significantly increased P2 amplitude was demonstrated in 

patients with PD evaluated in the on-medication state compared to the off-medication state and HCs. 

Due to these specific alterations of the N1-P2 complex, the current results may suggest a disturbed 

gating of auditory input at an early-attentive stage of auditory processing in PD. The findings are 

consistent with the involvement of the basal ganglia and the role of dopaminergic and serotonergic 

neurotransmission in auditory gating. Accordingly, further insights into how the pathophysiology of PD 

could imply distinct alterations in auditory intensity processing have been provided. However, future 

research is needed to unravel both the fundamental and clinical implications of the present findings. 
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