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Abstract. Nonlinear energy sinks serve as more robust vibration ab-
sorbers than linear counterparts. In literature, the most popular NES is
the non-grounded NES (NGNES), a mass connected to a vibrating me-
chanical system through a highly nonlinear spring. Less known are the
grounded NESs (GNES), that are connected to the mechanical system
through a weak linear spring, and grounded through a highly nonlin-
ear spring. To increase the performance of the NGNESs, its mass may
be increased. However, as the NGNES’s mass rests on mechanical sys-
tem, this NES’s mass is typically limited to a light-weight. On the other
hand, GNES design is not limited by its mass as it rests on the ground.
Furthermore, the weak connecting spring increases the design flexibility
compared to the NGNES. In this contribution, it will be shown that
tuning and performance prediction of the GNES performance is highly
similar as previously discovered for the NGNES while showing there is
more design flexbility for the GNES.
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1 Introduction

When a nonlinear nonlinear energy sink (NES) is attached to a mechanical sys-
tem, the vibration energy is irreversibly transferred from the mechanical system
to the NES through targeted energy transfer (TET). This occurs because of
highly localized nonlinear normal modes, where the vibration energy is mainly
localized in the NES. The first research about these NESs focussed on grounded
NESs (GNESs) (Figure 1a). It was investigated in the context of the redistri-
bution of energy between a highly nonlinear and a linear oscillator, connected
by a weak linear stiffness [1]. Later, non-grounded NESs (NGNESs) (Figure 1b)
were given more attention in literature, primarily as vibration absorbers [2]. As
a NGNES rests on the vibrating mechanical system, the NES mass is typically
only a fraction of the mechanical system, e.g. 2 %. Yet in [3], it was shown that
increasing the NES mass expedited vibration transfer. GNESs do not have this
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limitation, and additionally have more design freedom with the weak connect-
ing spring. In engineering applications, the NGNES has been widely applied to
civil structures [4], (rotating) machinery [5, 6] and aerospace [7] but GNES ap-
plications are few and far between. In [8], a GNES was developed to suppress
lateral vibrations in a rotor system. An equivalent GNES model also appears
when shunting piezoelectric material with a nonlinear impedance for vibration
absorption [9]. In the research presented here, the GNES’s dynamics will be an-
alyzed by deriving its slow invariant manifold (SIM), expressing the evolution
of the vibrations envelope on a slow time scale. The contributions are 1) the
SIM is found to be equivalent to the SIM derived for the NGNES in [3], 2) the
GNES performance can be predicted from simple formulae that solely depend on
properties of the mechanical system and GNES, 3) the introduction of a novel
beating measure, expressing the degree of back-and-forth vibration reflection be-
tween the GNES and the mechanical system, and 4) a tuning methodology based
on maximizing GNES performance by increasing mitigation speed while steering
clear of beating.

The paper is structured in the following manner: in the next section, the
SIM for the GNES is derived and compared to NGNES’s SIM. Then in section
3, analytical performance measures are derived, expressing the mitigation speed,
dissipated energy and beating. Section 4 presents the novel tuning methodology
balancing the aforementioned performance measure and finally in section 5 the
conclusions are made.
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Fig. 1: The grounded (a) and non-grounded (b) NES coupled to an SDOF system.
Mechanical system’s (c) and NES’s vibrations (d).

2 System Dynamics

The dynamics of a GNES coupled to a mechanical system (Figure 1a) is described
by the following differential equations:{

mẍ+ cẋ+ kx+ kc(x− xna) = 0

mnaẍna + cnaẋna + knax
3
na + klinxna + kc(x− xna) = 0

(1)
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Similarly for the NGNES:

{
mẍ+ cẋ+ kx+ cna(ẋ− ẋna) + kna(x− xna)3 + klin(x− xna) = 0

mnaẍna + cna(ẋna − ẋ) + kna(xna − x)3 + klin(xna − x) = 0
(2)

A first numerical simulation is presented in Figures 1c and 1d. Here the
mechanical system has a mass m = 1 kg, a stiffness k = 1 N/m and no damping.
It has an initial speed of x(0) = 1 m/s. The NGNES has a NES mass mna = 0.02
kg, a damping cna = 0.002 Ns/m, and a cubic nonlinear stiffness of kna = 0.004
N/m3 and the GNES mna = 0.04 kg, cna = 0.002 Ns/m, and kna = 0.004
N/m3. For this particular set of parameters, the vibrations are highly similar.
The vibrations in the mechanical system decrease until about 70 s, after which
a residual amount of energy is dissipated very slowly, typical of NESs. To clarify
why they are similar, the SIM for both the GNES and NGNES are derived next.

2.1 Grounded absorber

Dividing (1) by mass m yields{
ẍ+ ελẋ+ ω2

0x+ εω2
0(x− xna) = 0

εµẍna + ελnaẋna + εΩ3ω
4
0x

3
na + εκω2

0xna + εω2
0(xna − x) = 0

where

ελ =
c

m
ω2
0 =

k

m
ε =

kc
k

µ =
mna

kc
ω2
0

κ =
klin
kc

λna =
cna
kc
ω2
0 Ω3 =

kna
kcω2

0

(3)

with ε � 1. For κ < − 1
1+ε , the NES is bistable. Bistable NESs have two

stable resting positions where x 6= 0 and xna 6= 0, which may strain the system
at rest. Furthermore, unoptimal chaotic vibrations may occur [10]. This will not
be considered in this paper.

The slow flow dynamics are obtained by applying the following steps:

– A 1:1 resonance with frequency ω0 is assumed.
– A complexification of the dynamic variables to ϕ(t)ejω0t = ẋ + jω0x and
ϕna(t)ejω0t = ẋna + jω0xna is applied with ϕna and ϕ ∈ C the dynamic
envelopes.

– The complex variables are expressed as a perturbation series in ε, ϕ = ϕ0 +
εϕ1 and ϕna = ϕna,0 + εϕna,1.

– The dynamics are regarded on two time scales, T0 = t, the fast time, and
T1 = εt, the slow time.

– The complex, slow time variables are expressed in their polar notation :
ϕ0(T1) = R0e

jδ0 and ϕna,0(T1) = Rnae
jδna .
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– Dimensionless envelope variables Z0 = Ω3E0 and Zna = Ω3Ena are intro-
duced, with E0 = R2

0 = |ϕ0(T1)|2 and Ena = R2
na = |ϕna(T1)|2.

– Damping is made dimensionless with ξ = λ
ω0

and ξna = λna

ω0
.

A more thorough derivation is found in [3]. While applying these steps, all
terms O(ε2) were neglected.

The result is the slow flow dynamics:

∂Z0

∂T1
= −λZ0 − λnaZna

Z0 =

[
ξ2na +

(
µ− κ− 1− 3

4
Zna

)2
]
Zna

(4)

The set of equations in (4) have a dynamic and static relation between the
dimensionless envelope of the mechanical system Z0 and the NES’s vibration
Zna. The dynamic relation dictates that Z0 decreases if there is damping (λ
and λna). The static relation is called the slow invariant manifold (SIM) and
constrains the relation between Zna and Z0. Next, the SIM for the NGNES is
derived.

2.2 Non-grounded absorber

Dividing (2) by mass m:

{
ẍ+ ελẋ+ ω2

0x+ εẍna = 0
εẍna + ελna(ẋna − ẋ) + εΩ3ω

4
0(xna − x)3 + εκω2

0(xna − x) = 0
(5)

with

ελ =
c

m
ω2
0 =

k

m
ε =

mna

m

κ =
klin

mnaω2
0

λna =
cna
mna

Ω3 =
kna

mnaω4
0

(6)

Although these parameters share the same symbols as in (3), their physical
meaning are different.

To derive the slow flow dynamics, similar steps are applied as above, except
the complexified variables are now defined as ϕ(t)ejω0t = ẋ+εẋna+jω0(x+εxna)
and ϕna(t)ejω0t = ẋna−ẋ+jω0(xna−x). The slow flow dynamics for the NGNES
are:

∂Z0

∂T1
= −λZ0 − λnaZna

Z0 =

[
ξ2na +

(
1− κ− 3

4
Zna

)2
]
Zna

(7)

The dynamic relation is equivalent as in (4) while the SIM is slightly different.
The SIM is now generalized for both NESs.
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2.3 Slow dynamics

The slow flow dynamics and SIM for both NESs, (4) and (7) are generalized as:

∂Z0

∂T1
= −λZ0 − λnaZna

Z0 =

[
ξ2na +

(
Γ − 3

4
Zna

)2
]
Zna

(8)

with Γ = 1−κ for the non-grounded absorber, and Γ = µ−κ−1 for the grounded
absorber. Note that the dimensionless constants have a different physical mean-
ing for the GNES (3) and NGNES (6). The simulations in Figures 1c and 1d are
compared to their slow flow dynamics in Figure 2. For the GNES, µ = 2 and
κ = 0 and for the NGNES κ = 0. Thus for both NESs Γ = 1, ξna = 0.1 and
Z0(0) = 0.2020, and as such their SIM and slow flow evolutions are equivalent.
The actual vibrations of the NESs follow the slow flow on average. The SIM as
seen in Figure 2c has a fold and two local extrema:

Zna± =
4

9

(
2Γ ±

√
Γ 2 − 3ξ2na

)
Z±
0 =

[
ξ2na +

(
Γ − 3

4
Zna∓

)2
]
Zna∓

(9)

with {Z+
0 , Z

−
na} a local maximum and {Z−

0 , Z
+
na} a local minimum which exist

for:

ξna <
Γ√
3

(10)

The condition (10) for the existence of the extrema and thus the fold is
required for efficient energy transfer [3, 10]. Optimal energy transfer occurs when
the dynamics initiate on the right branch of the SIM, where according to the
dynamic relation of (8), the decay rate of Z0 is the highest. The SIM also has a
local minimum. The vibrations decay efficiently to the minimum and then jump
to the left branch. This explains the residual energy.

 

(a)

 

(b)

 

(c)

Fig. 2: Comparison of slow flow dynamics and simulations of complete dynamics.
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3 Performance

Observing the slow flow evolution in Figure 2 reveals that Z0 decays almost
linearly at a high rate until a change of slope. The remaining Z0 after the slope
change is the residual energy which is dissipated for slowly. At the same time,
Zna drops to a low value. On the SIM in Figure 2c, this drop in NES efficiency
corresponds to the jump from the right branch to the left branch. Now, simple
analytic formulae expressing the duration of efficient energy transfer (or pumping
time) and the residual energy are derived from (8).

3.1 Analytical performance measures

Residual energy The residual energy is the vibration energy left after the
slow flow dynamics jump from the right to the left branch. Relative to the initial
energy, it is found as:

Eres =
Z−
0

Z0(0)
=

E−
0

E0(0)
(11)

These energy measures are calculated from the compound system’s parameters
(9), and the initial energy , Z0(0) = Ω3(ẋ(0)2 + ω2

0x
2(0)).

Pumping time From (4) the expression for ∂Zna

∂T1
can be determined. By ne-

glecting system damping, ξ ≈ 0, the expression is integrated to obtain:

I(Zna)︷ ︸︸ ︷
27

32
Z2
na − 3ΓZna +

(
Γ 2 + ξ2na

)
ln(Zna) = C − ω0ξnaT1

(12)

The duration between two values of Zna can be calculated from (12). The
pumping time can then we calculated as:

εTpump =
1

ω0ξna

(
I(Zna(0))− I(Z+

na)
)

(13)

This expression also only depends on the compound system’s parameters and
the initial energy. Here Zna(0) is the value on the right branch corresponding
with Z0(0). The pumping time is inversely proportional to ε. For the NGNES
this is the mass ratio, which has hard upper limit. For the GNES this is the
stiffness ratio, which does not have a hard constraint.

Prediction of performance For the coefficient and initial conditions of sim-
ulations in Figure 1 and Figure 2, the pumping time Tpump is 58.2 s and the
residual energy is 0.066. These can be calculated before a numerical simulation,
to predict the the performance.
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3.2 Beating index

A vibration consisting of two closely spaced frequencies ω1 and ω2 has a sig-
nificant amplitude modulating beat of frequency ω2−ω1

2 . In the simulations in
Figure 1, the GNES shows some slight beating, where vibration energy is re-
flected back-and-forth from NES to mechanical system.

The linear eigenfrequencies of the grounded absorber are derived from the
following determinant, obtained from a linearized version of (1):∣∣∣∣(1 + ε)ω2

0 − ω2 −εω2
0

−εω2
0 εω2

0(1 + κ)− εµω2

∣∣∣∣ = 0

=⇒ ω2 =
1 + µ(1 + ε) + κ±

√
(1 + µ(1 + ε) + κ)2 − 4µ(1 + κ+ εκ)

2µ
ω2
0

≈ 1 + µ+ κ± (µ− 1− κ)

2µ
ω2
0 ⇒ ω2

1,2 ≈ {
1 + κ

µ
, 1} · ω2

0

(14)

Similar, for the non-grounded absorber:∣∣∣∣(1 + εκ)ω2
0 − ω2 −εκω2

0

−εκω2
0 εκω2

0 − εω2

∣∣∣∣ = 0 =⇒ ω2
1,2 = {κ, 1} · ω2

0 (15)

The following measures expresses the proximity of the eigenfrequencies:

I2beat =
ω2
2 − ω2

1

ω2
0

GNES
=

µ− κ− 1

µ

NGNES
= 1− κ (16)

For the simulation in Figure 1, I2beat is 0.5 for the GNES and 1 for the NGNES.
The linearized eigenfrequencies for the GNES are closer, explaining the higher
degree of beating in the GNES.

4 Tuning

Although the GNES and NGNES have an equivalent SIM and performance mea-
sures, tuning and designing the physical parameters of both NESs is different.
While the NGNES has a hard constraint on the absorber mass, directly impact-
ing ε and thus the performance (it is in the denominator in (13)), this is less
of an issue for the GNES. Moreover, the ε for the GNES, the stiffness ratio,
generally does not have a hard constraint. The only real tuning parameters for
the NGNES are thus the damping ξna and κ. For the GNES, ε, µ, κ and ξna can
be considered to be design parameters. However, this high dimensional design
space increases the complexity of finding suitable GNES parameters. Therefore,
a novel tuning methodology is presented next.

4.1 Tuning plane GNES

To obtain a suitable choice for µ and κ, the tuning plane is presented in Figure
3. The choice for µ and κ is constrained by the conditions for the fold in the SIM,
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(10), µ > κ+ 1 +
√

3ξna, by the condition for bistability and chaotic vibrations
κ > − 1

1ε and by an optional mass constraint µ < µmax. These constraints form
a triangle of admissible µ and κ values, within the black lines in Figure 3.
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Fig. 3: Tuning plane for grounded NES for ε = .02 and ξna = 0.1.

The class of GNESs with equal Γ , or where µ−κ = C, C > 1 have the same
analytical performance, (13) and (11). Two equi-performance lines are drawn
on Figure 3. Additionally, lines for constant beating index, µ = 1+κ

1−I2beat
are also

shown. For the same predicted performance, GNES more to the right on the
tuning plane suffer more from beating.

4.2 Simulations

For the mechanical system presented in section 2, several GNESs are now tuned,
with parameters given in Table 1. Each time, Ω3 is chosen such that
Z0(0) = 2·Z+

0 to ensure the dynamics attract to the right branch of the SIM. Five
NES will be simulated for ẋ(0) = 1 m/s. The first two NESs, where µ−κ = 4, lay
on a equi-performance line, but have a different beating index. The simulations
in Figures 4a and 4d reveal a similar performance, but significant beating for the
second NES. The next 2 NESs have µ− κ = 2, a faster GNES is predicted with
the pumping time and is confirmed in Figures 4b and 4e. However, The NES with
the lower beating index, has significantly more residual energy in the simulation,
not predicted by (11). From these simulations, one might suggest that an as small
µ − κ with an as small µ is the optimal choice. As a counterexample, NES 5 is
simulated, having an ε = 0.12 and a µ = 4, or mna = 0.48. It is compared to
NES 3 in Figures 4c and 4f and has comparable performance. Additionally, NES
5 has a lower stroke. The high absorber mass of this NES, 0.48 kg, would not be
feasible for NGNESs.
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Ω3 µ κ ε Eres Tpmp I2beat
1 10.7 4 0 0.02 0.003 1021 s 0.75
2 10.7 24 20 0.02 0.003 1021 s 0.125
3 0.404 1.1 -0.9 0.02 0.03 112 s 0.9
4 0.404 5 3 0.02 0.03 112 s 0.2
5 10.7 4 0 0.12 0.003 170 s 0.75

Table 1: NES parameters and static performance.
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Fig. 4: Simulation of NES in Table 1, NESs 1 and 2 (a)(d), 3 and 4 (b)(e) and 3
and 5 (c)(f).

5 Conclusion

This paper presented a thorough research of the grounded nonlinear energy
sink (GNES) based on its slow invariant manifold (SIM). It was shown that
the SIM has an equivalent shape as the SIM of non-grounded NESs, but where
the GNES mass and coupling spring have a different role. The performance of
the GNES could be predicted with static performance measures and the novel
beating index. These allowed to construct a tuning plane GNES, constrained by
constant lines of performance and beating. It was shown that for GNESs with
distant linear eigenfrequencies or a high beating index, the static performance
measure are good predictors of the duration of energy transfer and residual
energy. The opposite was true GNESs with close eigenfrequencies or low beating
index. The increased design freedom of the GNES allows a performant vibration
mitigation for both a small NES mass with weak coupling spring and higher
NES mass with stronger coupling spring. The latter configuration has a smaller
stroke.
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