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The Bioinformatics article ‘Hayai-Annotation Plants: an ultrafast
and comprehensive functional gene annotation system in plants’
(Ghelfi et al., 2019), describes the Hayai-Annotation Plants tool for
the functional annotation of plant genes (hereafter shortened to
Hayai), together with a performance evaluation of the Hayai tool
and similar software. The applied functional annotation is mostly
based on the Gene Ontology (GO) framework, and GO-based per-
formance evaluations of different functional annotation tools are
reported. We agree with Ghelfi and coauthors that creating user-
friendly tools and software for the functional annotation of nonmo-
del plant species is of prime importance in this era of ubiquitous
transcriptome and genome sequencing. However, we are extremely
alarmed at the evaluation methodology employed by the authors of
the Hayai tool, as several critical flaws are present with regards to
the assessment of (in)correct GO annotations, (not) incorporating
the GO graph structure when estimating performance, and how the
datasets for the evaluation were selected.

1 Introduction

GO is a structured ontology, providing a clear and unambiguous
way to describe the function of gene products (Dessimoz and
�Skunca, 2017). The structure is provided by organizing the GO in a
graph structure, where the top-level GO terms are generally quite
general (e.g. ‘reproduction’), and the leaf GO terms are very specific
(e.g. ‘flower development’). The implication is that the top-level GO
terms are associated with many more gene products, than the
bottom-level (leaf) GO terms.

The basis of various GO annotation software is fundamentally
similar: (i) gene sequences are provided as input by the end-user, (ii)
one or more algorithms are applied, often making use of reference
databases and (iii) the software produces a list of gene identifiers
annotated with GO annotations to the end-user. Given that the GO

is organized in a complex graph structure, where child GO terms are
more specific than their parental GO terms, the various GO annota-
tion software packages can return the output per gene in different
manners:

• Only the most specific GO terms are returned; parental GO terms
are removed from the output where possible.

• For each GO term, all parental GO terms are also returned in the
output.

• No effort is made to select the most specific terms, or to propagate
the output to the parental terms. Thus, partial redundancy might
be present.
Depending on the output per software tool, the end-user might

thus need to perform additional postprocessing (filtering and/or
propagation).

Importantly, when evaluating the performance of different GO
annotation software tools, the graph structure needs to be used to
homogenize the various outputs. This can be done either prior to the
evaluation, or the homogenization needs to be an integral part of the
evaluation procedure itself. The graph structure also plays a role in
many of the used metrics to evaluate GO annotations: annotating a
gene product with a parental GO term that is not as specific as the
GO term used in the gold standard, should be seen as a lesser infrac-
tion than not annotating the gene product at all. To this end, many
metrics make use of the Semantic Similarity between GO terms
(Dessimoz and �Skunca, 2017). Finally, an important point is that
GO annotations are incomplete, and that absence of evidence is not
equal to absence of function (Dessimoz and �Skunca, 2017), the so-
called ‘Open World Assumption’. Thus, the assessment of false posi-
tives (FP) is quite difficult (Dessimoz et al., 2013).
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2 GO annotation evaluations

In the Hayai article (Ghelfi et al., 2019), the performance of the
Hayai tool is compared to that of TRAPID (Van Bel et al., 2013)
and BLAST2GO (Conessa and Götz, 2008), ignoring the graph
structure of the GO and differences in the output of different tools.
The supplementary material of the Hayai article makes it clear that
only Unix commands such as grep and awk are used to check the ab-
sence and presence of GO annotations, which will result in errone-
ous counts. This in turn leads to wrong estimates of both the true
positives (TP), false positives (FP), and false negative (FN) rates, and
subsequently also provides wrong results for the overall specificity
and sensitivity of the evaluated tools.

We will demonstrate the issues in the evaluation procedure, by
showcasing an example for which the GO annotation from UniProt
Consortium (2018) will be considered the gold standard, which we
compare to the GO annotation produced by any other tool. Note
that this approach is in itself a simplification due to the Open World
Assumption.

We can distinguish between four comparisons with regards to
the propagation of GO terms to their respective parental terms in
GO annotations:

I. The gold standard is not propagated, and neither is the prediction

II. The gold standard is propagated, the prediction not

III. The gold standard is not propagated, but the prediction is

IV. The gold standard is propagated, and so is the prediction

As example we use the Arabidopsis thaliana gene AT5G35770,
which is annotated in UniProt with, among others, the GO term
‘flower development’ (UniProt Consortium, 2018). Due to the graph
structure, it is also annotated with all its parental terms that have
the ‘is_a’ relationship (Table 1).

Now, assume that the tool that we wish to evaluate annotates
the example gene with the GO term ‘reproductive structure develop-
ment’ (GO:0048608). This GO term is clearly correct, just not the
most precise and informative.

Using the Hayai tool methodology for evaluating GO annota-
tions (see Supplementary Materials S1–S5), we can generate a table
which showcases the results that would have been obtained when ei-
ther propagating or not propagating the GO annotations to the re-
spective parental terms (Methods I–IV in Table 2). When the graph
structure is fully not taken into account (I), it is clear that the pre-
dicted GO annotation is flagged as wrong, while the expected result
is flagged as missing. When the graph structure is taken into account

for the gold standard, but not for the GO predictions (II), it is clear
that the number of FN is very high due to the increased number of
GO annotations in the gold standard. When the graph is not taken
into account for the gold standard, but it is for the GO predictions
(III), it is clear that the number of FP is very high due to the many
predicted GO annotations, as mirrored in (II). When the DAG is
taken into account for both the gold standard and the GO predic-
tions (IV), then artificially high numbers of TP and FN are achieved,
with the balance depending on the depth of the GO term reported
by the tool annotation.

This makes it very clear that not taking the graph structure into
account leads to erroneous conclusions, but simply propagating GO
terms is also not an optimal solution when solely using awk and
grep for testing the absence and presence of GO annotations. The
core issue is that these Unix commands can only be used to perform
string-matching operations on a line-by-line basis, forgoing the com-
plexity of the GO structure. Various solutions have been proposed
for the problem of evaluating GO annotations (Dessimoz et al.,
2013), with the usage of GO semantic similarity metrics being one
of the more prominent (Dessimoz and �Skunca, 2017).

Coming back to the Hayai article (Ghelfi et al., 2019), Table 1 in
its manuscript details the TP, FP, and FN counts for Hayai,
Blast2GO, and TRAPID. The extremely high FP counts for TRAPID
should be seen in the light of case III of Table 2: the UniProt-GOA
data are not propagated to the parental terms, while the TRAPID
data are. Additionally, the relatively (compared to Blast2GO and
Hayai) lower TP rate of TRAPID compared to Hayai is a side effect
of TRAPID often reporting a parental term of the annotation from
the UniProt-GOA gold standard, rather than the most specific.
While this can indeed be construed as TRAPID having a lower sensi-
tivity, an optimal scoring system should not report single Boolean
values for GO annotations. Chapter 10 in the GO handbook
(Dessimoz and �Skunca, 2017) titled ‘Community-Wide Evaluation
of Computational Function Prediction’ goes more in-depth in how
to perform the proper evaluation.

Another important take-home message from the CAFA challenge
(Radivojac et al., 2013) is the need for the performance evaluations
for computational predictions to be split up over the three different
aspects that make up the GO: molecular function, cellular component,
biological process. Each of the aspects represent different challenges
and performance. For example, in the recent CAFA3 challenge (Zhou
et al., 2019), the performance for predicting molecular function and
cellular component GO terms is much better than the one for predict-
ing the biological process GO terms. Averaging the data over all three
aspects will give rise to drawing incorrect conclusions.

3 Separation of test versus training data

Another issue that is present in the ‘Hayai-Annotation Plants’ article
is that the data used to build the models used in the software, con-
tains the same information as the data used to evaluate the tool. As
training data for the Hayai tool the entirety of UniProt Consortium
(2018), which includes A.thaliana, is used. Subsequently the tool is
evaluated by looking at the annotation of A.thaliana genes.

An optimal solution would be to have independent test datasets,
or make use of a data freeze, such as during the CAFA challenge

Table 1. GO annotations for gene AT5G35770

GO accession GO name

GO:0008150* Biological process

GO:0000003* Reproduction

GO:0032502* Developmental process

GO:0022414* Reproductive process

GO:0032501* Multicellular organismal process

GO:0048856* Anatomical structure development

GO:0007275* Multicellular organismal development

GO:0003006* Developmental process involved in reproduction

GO:0048731* System development

GO:0061458* Reproductive system development

GO:0048367* Shoot system development

GO:0048608* Reproductive structure development

GO:0009791* Postembryonic development

GO:0090567* Reproductive shoot system development

GO:0009908 Flower development

Note: GO annotations for gene AT5G35770. The order of the GO terms is

determined by the depth of the GO term in the DAG. Propagated terms, when

starting from the GO accession GO:0009908, are indicated with a *. Source

data: UniProt.

Table 2. Results when using Hayai methodology

Method Gold standard Tool TP FP FN

I Not propagated Not propagated 0 1 1

II Propagated Not propagated 1 0 14

III Not propagated Propagated 0 11 1

IV Propagated Propagated 12 0 3

Note: Results when using the Hayai methodology for evaluating GO anno-

tations, with the gold dataset containing the single annotation GO:0009908,

and the test dataset containing the single annotation GO:0048608.

TP, true positives; FP, false positives; FN, false negatives.
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(Radivojac et al., 2013). If this is not a feasible approach, then
cross-validation can be applied to train the software on a subset of
the data, and evaluate the software using another subset of the data

(Dangeti, 2017).

4 Conclusion

We find major issues with how the evaluation of the Hayai tool was
performed. Not separating the testing and evaluation data, or using

solutions such as cross-validation, is only a minor problem in the
evaluation procedure. The much greater problem seems to be an in-

correct interpretation of how the GO is organized, and how GO pre-
dictions should be evaluated. We acknowledge being a party of
interest, as we are the authors of the TRAPID tool which was com-

pared to the Hayai tool. However, the issues we bring forward are
generic enough for them to be accounted for in all functional predic-

tion software.
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