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Over the last decade, a giant leap forward has been made in resolving the main bottleneck in metabolo-
mics, i.e., the structural characterization of the many unknowns. This has led to the next challenge in this
research field: retrieving biochemical pathway information from the various types of networks that can
be constructed frommetabolome data. Searching putative biochemical pathways, referred to as biotrans-
formation paths, is complicated because several flaws occur during the construction of metabolome net-
works. Multiple network analysis tools have been developed to deal with these flaws, while in silico
retrosynthesis is appearing as an alternative approach. In this review, the different types of metabolome
networks, their flaws, and the various tools to trace these biotransformation paths are discussed.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

At the start of this millennium, biochemical research was
marked by the retrieval of the Arabidopsis [1] and human full gen-
ome sequences [2,3], and by the development of metabolomics [4–
6] as a third cornerstone next to transcriptomics and proteomics,
to support functional genomics. Functional genomics was expected
to enable the high-throughput functional annotation of the many
unknown genes that were obtained via genome sequencing. How-
ever, halfway 2016, the molecular function of 47% of the Arabidop-
sis genes was still unknown owing mainly to the often excessive
time necessary to obtain experimental proof for the function of a
gene (https://www.arabidopsis.org/portals/genAnnotation/gen-
ome_snapshot.jsp).

In parallel to unraveling gene functions, the omics technologies
brought hope to finally understand the system-wide organization
and regulation of the metabolism in living systems. Admittedly,
systems biology entered full maturation at the moment that bio-
logical networks, such as transcriptional regulatory, protein–pro-
tein interaction, and metabolic networks, could be constructed
from large amounts of omics data [7–9]. These large-scale net-
works offered a chance to understand how the molecular basis of
life is governed. Accordingly, network analysis has provided insight
into frequently occurring node connectivity patterns or motifs in
biological networks [10], and revealed how, e.g., the control of gene
regulation in living systems is designed [11]. As compared to other
biological networks, the information displayed in metabolic net-
works is far less complete. The two main reasons for this lack of
knowledge are enzyme promiscuity, and the many unknown path-
ways in secondary, also called specialized, metabolism. Enzyme
promiscuity, occurring when enzymes recognize multiple sub-
strates and/or catalyze multiple reactions [12–14], could be attrib-
uted to 37% of all metabolic enzymes in Escherichia coli, and a
similar proportion has been observed in other prokaryotic and
eukaryotic microorganisms [15]. Concerning the second reason,
as opposed to primary metabolism, which is common to all organ-
isms, secondary metabolism is not required for general growth,
development, and reproduction, but provides the host with distinct
fitness benefits in a specific ecosystem, hence, the specialized
metabolic pathways often vary substantially among species. This
increases dramatically the number of pathways that have to be
unraveled, explaining the slow progress in pathway elucidation
and the functional annotation of the responsible genes.
1.1. Metabolic networks provide a basis to study the control and
regulation of metabolism

Before attempting to study prevailing patterns in a metabolic
network, a network that accurately reflects metabolism has to be
assembled. For the construction of a metabolic network, informa-
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tion can be readily gathered from pathway databases (Fig. 1A),
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[16–18], BioCyc [19], the Plant Reactome database [20,21] and
the Gramene database [22], yet these databases might be incom-
plete or insufficiently detailed. When attempting to complete the
metabolic network of a particular species, gaps representing
unknown reactions have to be filled in, which demands an exhaus-
tive search for all gene–protein–reaction associations by concate-
nating gene–protein and protein–reaction information from
different databases. Subsequently, a final curation via constraint-
based modeling (CBM, see Glossary) [23–25] yields a so-called
genome-scale metabolic model (GSMM) [26–28]. Metabolic net-
works are mainly displayed either as a homogenous network
(nodes and edges reflecting metabolites and reactions) or as a
bipartite graph characterized by two types of nodes (representing
metabolites and enzymes), in which the edges represent links
between substrates/products and their respective enzymes.
Regardless of the layout, metabolic networks typically contain
many poorly connected nodes interconnected by a few heavily
connected nodes (the hubs), the latter being especially associated
with cofactors such as ATP, NADH, glutamate and coenzyme A
[29]. Consequently, the node connectivity, defined as the number
of edges per node, shows a heavy-tailed probability distribution
[30–36]. Furthermore, metabolic networks have a non-random
topology and are likely organized in a hierarchical modular struc-
ture (Fig. 1A) [37], in which network modules (see Glossary) that
sometimes represent particular biochemical pathways, are nested.

Compared to transcriptional regulatory networks, the search for
motifs in metabolic networks is more slowly pursued, in part
because the relationship between a metabolic network motif and
metabolic regulation or control (see Glossary for the difference
between metabolic control and regulation) is not always clear
[38]. Nevertheless, targeted searches for well-known motifs have
been performed, for example, to exhaustibly enumerate all sub-
strate cycles [39]. The same authors also screened for feedback
inhibition loops following enrichment of the metabolic networks
with metabolite–enzyme regulatory (inhibition/activation) inter-
actions [40]. The latter type of analysis can only be efficiently per-
formed when (i) all such interactions are known, and (ii) the
metabolic network adequately reflects the biochemical pathway
architecture [41]. Both prerequisites are also important when
searching for network motifs concerning the transcriptional regu-
lation of biochemical pathways, which necessitates combining
metabolic networks with transcriptional regulatory networks
[42–44]. Obviously, the more the metabolic network accurately
reflects metabolism, the better it is suited, in combination with
other types of biological networks, to search for metabolic con-
trol/regulatory motifs.

Nodes representing primary metabolites were shown to be con-
nected via multiple network paths [45]. In part, this is due to the
many cycles (e.g., Krebs cycle, pentose phosphate pathway, etc.)
operating in primary metabolism. Hence, blocking a particular
pathway in primary metabolism is not necessarily associated with
the loss of the downstream metabolites. This explains, at least par-
tially, why quantitative trait locus (QTL) analyses of the concentra-
tions of primary metabolites in natural or mapping populations
yield associations with many loci [46–48]. Furthermore, these
QTL data also point to the shared control of metabolic fluxes by
all reaction steps as opposed to control exerted by a single rate-
limiting step [49,50]. The fact that the levels of primary metabo-
lites are controlled by many steps explains why significant correla-
tions between the abundances of any pair of primary metabolites
across biological replicates, i.e., abundance-based correlations,
are rarely encountered [51]. Positive abundance-based correlations
necessitate that (i) most of the control of the levels of both metabo-
lites occurs via the same set of reactions, and, assuming this is
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indeed the case, that (ii) each reaction affects the covariation
between the levels of both metabolites in the same direction
[52]. These are rather stringent conditions that are not expected
to readily occur. Therefore, the few positive correlations that have
been reported in primary metabolism likely arise when (i) metabo-
lite levels covary because a single step controls most of the flux to
both metabolites (asymmetric control), (ii) the rate of one step is
varying over a much larger range than any of the other steps (out-
lying variation), or (iii) both metabolites are in chemical equilib-
rium [53]. Whereas a chemical equilibrium can only explain
significant correlations between biochemically proximal metabo-
lites, e.g., between glucose-6-phosphate and fructose-6-
phosphate, asymmetric control and outlying variation also explain
the observed correlations between biochemically distant metabo-
lites in primary metabolism [54].

Although negative abundance-based correlations are less likely
to be observed compared to positive abundance-based correla-
tions, they have been reported in primary metabolism [51]. They
arise whenever mass conservation exists between two metabolites,
for example when they are part of a moiety-conserved cycle (e.g., a
reaction in which NADH is oxidized will be coupled to other reac-
tions that reduce NAD+, leading to a negative correlation between
NADH and NAD+ levels) [52]. From this perspective, searching
motifs representing moiety-conserved cycles in metabolic net-
works that are supplemented with abundance-based correlations
using metabolome data would be a powerful approach to gain
insight into the importance of moiety-conserved cycles in meta-
bolic control/regulation. The same approach also allows to search
for groups of nodes that are mutually showing high positive
abundance-based correlations in metabolic networks. This
approach enables pointing to regions in the network in which
the flux is mainly affected by one particular enzymatic reaction.
Likely, such regions are more prevalent in secondary metabolism.

In contrast to the many QTLs typically obtained for the abun-
dance of primary metabolites, the levels of plant-derived sec-
ondary metabolites are often associated with only few loci
[46,47,55]. Sometimes, enzyme-encoding loci can be functionally
annotated based on the absence of a particular secondary metabo-
lite in a subset of the population [56,57]. Furthermore, the guilt-
by-association principle, in which correlations are sought between
metabolite accumulation and transcript expression profiles, has
been especially successful in the study of plant secondary metabo-
lism [58–60]. Consequently, it seems that secondary metabolic
pathways are much more subjected to transcriptional control or
affected by rate-limiting steps than primary metabolic pathways.
Asymmetric control would be expected in case of rate-limiting
steps affecting the levels of different metabolites, leading to posi-
tive abundance-based correlations between biochemically related
metabolites. In agreement, in a study of the aromatic metabolism
in the rosette leaves of Arabidopsis thaliana, Morreel et al. (2014)
[61] noticed a positive relationship between the abundance-
based correlation coefficient and the mass spectrometry (MS) frag-
mentation spectral similarity. As Shen et al. (2019) [62] observed
that similar MS fragmentation spectra especially appear between
neighboring metabolites in a biochemical pathway, the study of
Morreel et al. (2014) [61] suggests that biochemically proximal
metabolites might more readily show a positive abundance-
based correlation in secondary metabolism than in primary meta-
bolism. Gaquerel et al. (2013) [63] also noticed that more positive
correlations are observed between the abundances of compounds
belonging to the same secondary biochemical class than between
compounds belonging to different classes. However, more studies
are necessary to understand the distribution of abundance-based
correlations across secondary metabolic networks, and how this
distribution differs from that of abundance-based correlations in
primary metabolic networks. Nevertheless, these few observations



Fig. 1. Metabolic versus metabolome network. (A) Scheme reflecting the construction of a homogeneous metabolic network (nodes and edges reflecting metabolites and
enzymatic conversions) using data from the KEGG database. The metabolic network displays a hierarchical modular structure (adapted from Ravasz et al. (2002) [37]). (B) A
metabolome network is constructed from metabolome data (nodes represent features). Dependent on whether edges reflect a correlation, a mass difference, a spectral
similarity, or a structural similarity (using a binary vector of molecular descriptors for each structure), the network is referred to as a correlation network (CN), a mass
difference network (MDN), a spectral similarity network (SpN), or a structural similarity network (StN). OXY, oxygenation; P, product; S, substrate.
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indicate the importance of studying, besides the global metabolic
network, the differences between primary and secondary meta-
bolic networks.

Many differences between primary and secondary metabolism
can be explained at a transcriptional regulation level, but arise as
well from differences in the network topology of primary and sec-
ondary metabolism, such as the presumed higher frequency of
cycles and branching in primary metabolism as compared to sec-
ondary metabolism. However, a GSMM approach will fail to eluci-
date the differences between primary and secondary metabolic
networks, because insufficient pathway knowledge is available
concerning the secondary metabolism of most species. The main
source of information on secondary metabolic networks is gener-
ated by the comprehensive profiling of the secondary metabolome
via liquid chromatography (LC) or capillary gas chromatography
(CGC) coupled to MS. Such profiling data yields tens of thousands
of features (see Glossary), annotated by a retention time and a
mass-to-charge (m/z) value, that represent the metabolites.
1.2. What type of information is gained via MS-based metabolomics?

Following data processing, GC- and LC-MS platforms yield a list
of features. These features represent ions that are usually gener-
ated via (de)protonation of the metabolite to yield the negative
or positive pseudo-molecular ion of the metabolite (mainly in
LC-MS), or by electron loss to yield the radical cation of the
metabolite (mainly in GC–MS). Below, the pseudo-molecular ion
or radical cation are collectively referred to as the precursor ion.
In addition to the feature representing the precursor ion, each pro-
filed metabolite is associated with features representing (i) natural
isotopes, (ii) potential adducts, (iii) fragment ions produced inside
the ionization source (in-source fragmentation; ISF) [64], and (iv)
in-source reactions [65]. From an MS perspective, all features (their
m/z values and their intensities) belonging to the same metabolite
can be viewed in an MS1 spectrum. Below, the terms features and
ions are interchangeably used.

In GC–MS-based metabolomics, extensive fragmentation in the
ionization source occurs upon electron ionization (EI), yielding
very reproducible ISF spectra that can be matched against large
EI spectral databases such as the Wiley Registry of Mass Spectral
Data [66], which currently contains EI spectra of almost 700,000
compounds. In LC-MS-based metabolomics, the fragmentation
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spectrum is generated in the MS analyzer rather than in the ioniza-
tion source, mainly via low energy collision-induced dissociation
(CID). CID leads to either MSn spectra or an MS/MS spectrum when
profiling occurs using, e.g., an ion trap (IT) or a quadrupole-time-
of-flight (Q-TOF) MS. In MSn fragmentation, the generated MS2

product ions can each be further fragmented to MS3 second order
product ions, which can themselves be subjected to MS4 fragmen-
tation, and so on. Therefore, the MSn spectra of an ionized com-
pound consist of an MS2 spectrum and, optionally, several MS3,
MS4, . . . spectra. This permits the construction of MSn spectral trees
that reflect the subsequent fragmentations of the ionized com-
pound in the gas phase [67–69]. In contrast with MSn fragmenta-
tion, MS/MS fragmentation yields more product ions, including
low-mass product ions. Independently of the type, i.e., MSn or
MS/MS, the CID spectrum depends on the instrument voltage and
temperature settings, as well as the instrument configuration,
and, thus, is often not reproducible between labs. Consequently,
as compared to the construction of EI spectral databases, the con-
struction of CID spectral databases, such as MassBank [70] or
mzCloud (HighChem, Ltd. Bratislava, Slovakia), have been lagging
behind. CID spectral databases have been developed relatively
recently, i.e., during the last decade, but are only slowly increasing
in numbers [71].

From the GC- or LC-MS profiles, biochemical insights can be
gained by the construction of a mass difference network (MDN),
a spectral similarity network (SpN), a structural similarity network
(StN), or an abundance-based correlation network (CN) in which
the features are represented as nodes. None of these networks
(generally referred to as metabolome networks; Fig. 1B) accurately
display the metabolic network (representing the total of all known
biochemical pathways), yet they provide a starting point for fur-
ther curation. Below, we describe the current status in generating
biochemical pathway information from metabolome data.

2. The metabolome network as a metabolic network surrogate

The first networks constructed frommetabolome data were CNs
[51] (Fig. 1B). In a CN, the nodes are features that are connected by
edges whenever their abundance-based correlation is high. Assum-
ing a metabolic steady state, these abundance-based correlations
arise from concentration fluctuations that propagate through
metabolism because of the interplay between a continuously



Table 1
Software/algorithms for metabolome network construction.

Software/algorithm2 Type Included procedures Reference

MetaNetter MDN [86]
CN Pathway database mapping

Compound-based feature grouping
[101]

MI-Pack MDN1 [88]
Metscape 2 MDN1 Addition of non-detected intermediates [198]

MDN Atom mass differences [199]
GNPS MN [81]
MetaMapp MDN1 StN and MN networks [84]
mummichog MDN1 Differential feature clustering onto network modules [150]
mzGroupAnalyzer MDN [200]
CSPP MDN Retention time order

CID spectral similarity
Abundance-based correlation

[61]

MetaMapR MDN1 StNs, SpNs and MNs [151]
MN in silico CID spectral database [201]

PIUMet MDN1 Differential feature clustering onto network modules [149]
BioCAn MDN1 Differential feature clustering onto network modules + neighboring node connectivity

CID spectral matching
in silico spectral elucidation

[148]

MetaNetter 2 MDN Compound-based feature annotation [102]
MDN Pathway database mapping (KEGG) [202]

MetCirc MN [80]
NAP MN in silico CID spectral elucidation [112]
MetGem MN [203]
MolNetEnhancer MN in silico CID spectral elucidation (several tools) [113]

MN Gas phase fragmentation rules [114]
MetWork MN in silico CID spectral elucidation

Biotransformations
[204]

MetNet MDN Retention time order
Multiple association statistics

[205]

COBRA Toolbox v.3.0 MDN3 Multi-omics data [176]
REMI MDN3 Multi-omics data [173]
MetaBridge MDN3 Multi-omics data [177]

Due to size restrictions, a restricted number of software/algorithms is given. 1 Nodes in the MDN are profiled compounds that can be retrieved, together with their enzymatic
reactions which represent the MDN edges, from pathway databases. 2 A name is lacking for some algorithms. 3 Rather than an MDN, these software/algorithms employ a
GSMM which can sometimes be manually curated.

S. Desmet, M. Brouckaert, W. Boerjan et al. Computational and Structural Biotechnology Journal 19 (2021) 72–85
changing environment, the pathway architecture and the complex
regulation of metabolism [54]. Therefore, the covariations between
metabolite concentrations enable, at least in theory and when the
metabolic network is fully known, to compute all elasticities of the
various reactions [72]. As defined in metabolic control analyses
[49,50], the elasticity refers to the change in reaction rate upon a
small change in the concentration of a metabolite; in case of a sub-
strate, the elasticity represents a system-wide version of the
Michaelis-Menten constant. Hence, CNs contain information of
the physiological state [73]. Comparing CNs might enable, e.g., to
point to reactions that are considerably changed between the
two experimental conditions [74]. Various methods for the differ-
ential analysis of CNs have been developed [75–77].

In order to unravel metabolic pathways, the question arises to
what extent CNs display the pathway architecture. While metabo-
lites that are in chemical equilibrium will yield ‘‘correlated” fea-
tures, many neighboring pathway intermediates do not show
high abundance-based correlations. Furthermore, significant corre-
lations can also be generated between biochemically distant
metabolites, at least in case the CN is based on Pearson or Spear-
man correlation coefficient computations [52–54]. Therefore, little
pathway information can be retrieved from such a CN. However,
CNs that are created using partial correlation coefficients, so-
called Gaussian Graphical Models (GMMs), were argued to reflect
the biochemical pathway architecture much better [78].

The main goal of SpNs is to facilitate structural characterization
by grouping features representing metabolites for which similar
MS fragmentation spectra were recorded [79–81] (Fig. 1B). Assum-
ing that CID spectral similarity reflects structural similarity, all CID
spectra within an experiment are mutually compared, an edge is
drawn whenever the spectral similarity surpasses a preset thresh-
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old, and the mass difference between the two involved features is
computed. Structural characterization can then be performed via
network propagation; starting from a node representing a known
compound (e.g., via spectral library matching), the structure asso-
ciated with an adjacent node can be elucidated taking the spectral
similarity into account. This procedure has been implemented in
the Global Natural Products Social Molecular Networking (GNPS)
database (Table 1); here, the SpN is referred to as a molecular net-
work (MN) [79,81]. Besides computing the MN, the GNPS database
allows to match CID spectra against existing CID spectral libraries,
and to curate or elucidate CID spectra that are already present in
the database. The on-going curation of the GNPS database is
referred to as ‘living data’ by the GNPS developers [82]. Clearly,
many of the edges in an SpN will represent concatenations of mul-
tiple enzymatic reactions.

StNs are the most recently defined of all types of metabolome
networks [83,84] (Fig. 1B). They are constructed using those fea-
tures for which a structure could be retrieved from a compound
or pathway database. Structural similarity computations are not
based on the molecular structures themselves, but are obtained
following the ‘translation’ of each molecular structure into a set
of molecular descriptors. Different sets of molecular descriptors
are publicly available, such as the ‘fingerprint’ set of the PubChem
compound database, which contains almost 900 descriptors. Each
of the molecular descriptors within a set represents a chemical
substructure. Consequently, the compound’s structure is repre-
sented by a molecular descriptor vector of binary elements, in
which each element represents the absence/presence of a particu-
lar chemical substructure. The structural similarity between two
compounds, represented by, e.g., the Tanimoto coefficient, is then
computed using their corresponding molecular descriptor vectors.
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Structural characterization can also be aided via the construc-
tion of MDNs, assuming that the profiled compounds are rather
closely biochemically related. In this approach, pairs of features
are searched, of which the mass differences correspond to those
of well-known enzymatic reactions, e.g., 14.015 Da in case of a
methylation (Fig. 1B). Consequently, MDN edges represent mass
differences and, thus, putative biotransformations (see Glossary).
Structural characterization proceeds via network propagation tak-
ing the mass difference, i.e., the biochemical conversion, into
account. Such MDNs employ MS1 level information, and were first
applied on direct infusion-MS profiles [85,86]. By mapping the
mass differences to those present in pathway databases such as
KEGG, a more accurate computation of the chemical formula of
the features was possible [87,88]. Using reversed phase LC-MS pro-
filing, this approach has been elaborated by including the elution
order between the candidate substrate and product features of
the considered biotransformation as, e.g., the candidate product
of a methylation is expected to elute later than the candidate sub-
strate. Hence, as retention time information is also included, such
MDNs are rather referred to as Candidate Substrate Product Pair
(CSPP) networks [61] (Table 1). Additional support for the bio-
chemical validity of a particular CSPP might be obtained by com-
puting for the candidate substrate and product features, (i) the
abundance-based correlation, and (ii) their CID spectral similarity
whenever CID spectra are available [61]. CSPP networks have been
useful to gain insight into cellular [89] and sub-cellular metabo-
lism [90], and to annotate the in vivo activity of unknown enzymes
[91]. Despite the apparent redundancy of SpN and MDN
approaches for structural characterization, both approaches are
partially complementary: whereas SpNs may reveal unexpected
biochemical conversions, MDNs will display structurally similar
compounds even when their CID spectra are dissimilar. While
sometimes not realized, it has indeed been shown that spectral
similarity implies structural similarity, but not necessarily vice
versa (e.g., see structural versus spectral similarity plots in Rasche
et al. (2012) [92] and Rojas-Cherto et al. (2012) [93]) (left and mid-
dle spectrum in Fig. 2).

Despite the help offered by metabolome networks in under-
standing, e.g., metabolic changes upon perturbations, they cannot
be analyzed via the same systems biology approaches that are
applied to metabolic networks. Several flaws prevent turning them
into an approximation of metabolic networks: (i) metabolome net-
works are highly redundant due to the presence of multiple fea-
tures representing each compound, (ii) being the most important
bias, most of the network nodes are not annotated because of the
large number of unknown compounds in the secondary metabo-
lism, and (iii) no one-to-one relationships, i.e., a bijection, exist
between biotransformations and enzymatic reactions.

2.1. Flaw 1: metabolome networks are highly redundant

Ideally, only the feature representing the precursor ion of each
metabolite should be included in the metabolome network by dis-
carding all other redundant features. This would need MS1 spec-
trum construction as the final data processing stage, implying the
grouping of all features at a particular retention time that are asso-
ciated with the same compound, yet preventing the inclusion of
features associated with co-eluting compounds. Currently, several
programs are available for this purpose [94–99]. Following the
construction of the MS1 spectrum, the m/z value of the precursor
ion is annotated by taking the m/z values of the adduct ions into
account [100]. However, (i) precursor ion annotation is sometimes
difficult when adduct ions are absent, (ii) some compounds are
detected as adduct ions rather than as precursor ions, and (iii)
the ion type corresponding to some MS1 features cannot be anno-
tated, hence, questioning whether the feature is not rather repre-
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senting a co-eluting compound. Therefore, although allowing the
construction of a less redundant metabolome network, prior MS1

spectral filtering will inevitably provide a biased network. A possi-
ble solution exists in pinpointing or clustering, within the metabo-
lome network, features belonging to the same MS1 spectrum.
Because an abundance-based correlation is often implemented in
the MS1 spectrum construction procedure, both Gipson et al.
(2008) [101] and Gaquerel et al. (2013) [63] applied a further clus-
tering of MS1 features following CN construction. To deal with this
problem in MDN construction, two types of edges have been
implemented in MetaNetter 2 (Table 1) that address either a bio-
transformation or an MS1-based adduct formation [102]. Whereas
the CN-based approach allows pinpointing all features belonging
to the same MS1 spectrum, the MDN-based approach enables
annotating the ion type of the MS1 spectral features whenever pos-
sible. Optimally, the benefits of both methods are combined.

2.2. Flaw 2: poor node annotation

The low number of known metabolites in plant secondary
metabolism is an immediate consequence of the labor-intensive
purification or chemical synthesis of the compound that is neces-
sary to identify a compound by nuclear magnetic resonance
(NMR) analysis or via spiking experiments. To date, this bottleneck
remains unsolved as researchers are increasingly realizing the
complexity of the plant metabolome, with predictions of up to 1
million metabolites being present in the plant kingdom
[103,104]. Contrasting with the size of the transcriptome or pro-
teome of a species, the metabolome size cannot be predicted from
genome information. Many enzymes are promiscuous; even
enzymes from central metabolic pathways, such as glycolysis, can-
not avoid side reactions [105]. This is further complicated by the in
planta chemical degradation of metabolites [106].

As compared to spiking- or NMR-based identification, a more
high-throughput structural characterization pipeline employs the
metabolome data itself. Typically, this starts with computing the
chemical formula of the precursor ions [88,107–110]. When avail-
able, spectroscopic data, e.g., UV/VIS absorption spectra, and/or the
ion mobility-based drift time can be consulted, yet most informa-
tion on the structural moieties is obtained by analyzing the CID or
EI spectrum. Except for a limited number of compounds that can be
structurally annotated by matching against spectral databases, de
novo spectral elucidation will have to be attempted for most of
the unknown compounds. From a spectral matching perspective,
especially CID spectra will need de novo spectral elucidation (see
‘1.2 What type of information is gained via MS-based metabolomics?’).
Tools for the latter purpose have been developed [111], and subse-
quently combined with MNs to facilitate network propagation
[112–114].

Most de novo spectral elucidation tools need candidate struc-
tures for which the CID spectra can be predicted and compared
to that of the unknown compound. Such candidate structures can
be retrieved from a compound database (e.g., the PubChem data-
base containing currently over 110 million compounds) using the
mass or the chemical formula of the unknown compound [115].
However, the number of plant metabolites represents only a small
fraction of any large compound database, as most entries will be
non-biological compounds such as, e.g., drugs. Consequently, only
a minority of the profiled compounds can be traced back in these
compound databases. This bottleneck has been tackled by creating
in silico compound databases, i.e., by subjecting the metabolites in
silico to well-known biotransformations, such as methylation and
glucosylation among others [116]. With each applied biotransfor-
mation, this approach readily leads to an exponentially increasing
number of in silico generated compounds, hence, some programs
only perform the in silico biotransformations on a selected set of



Fig. 2. Negative ionization CID spectra. MS2 spectra recorded on an IT-MS of two p-coumaroyl esters: p-coumaroyl isocitrate (left, precursor ion at m/z 337.06) and p-
coumaroyl glucose (middle, m/z 325.09). On the right, the MS2 spectrum is displayed of [13C9]-labeled p-coumaroyl glucose (m/z 334.12) generated during a time course
feeding experiment with [13C9

15N1]-phenylalanine.
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metabolites, of which the core structures are highly likely to occur
in the generated metabolite profiles [117–121].

2.2.1. Combining analytical chemical approaches for structural
characterization via data fusion

Via data fusion, the complementary information present in dif-
ferent sources of spectroscopic data can be integrated together.
This process involves either online- or offline-coupled instrumen-
tation. Examples of the former are the various combinations of
UV/VIS absorption, infrared (IR) absorption and fluorescence spec-
troscopy, and MS coupled to LC [122]. However, except for MS, all
these detectors record spectra of which the detection response at
each wavelength results from contributions of all co-eluting com-
pounds. Disentangling the spectra of the individual compounds
from these composite spectra has been a main objective in the
development of chemometry [123]. To avoid the often time-
consuming (and sometimes biased) chemometry-associated
machine learning approaches, IR spectroscopy has been recently
assembled onto IT-MS; upon isolation of a particular ion in the
mass analyzer, its IR absorption and CID spectrum can then be
recorded almost simultaneously [124]. As an alternative approach
to the online detector coupling or the use of machine learning-
based data fusion, the redundant information present in spectra
can be used to fuse data from different instrument platforms. For
example, in a CSPP-like approach, high-resolution MS data has
been fused to LC low-resolution MS data, hence, combining the
accurate m/z values recorded on the former instrument with the
retention times obtained on the latter platform [125].

NMR spectroscopy has also been online hyphenated to LC-MS.
In the presence of a magnetic field, NMR measures the differences
between the 1H nuclei of a compound with respect to the preces-
sion frequencies of their magnetic moment vectors; these differ-
ences are expressed in chemical shift values. Compared to MS,
NMR has a low sensitivity, compromising the coupling of NMR to
LC-MS [126]. Because of the issues concerning online LC-MS-
NMR, offline coupling of NMR to LC-MS has more frequently been
pursued. By combining the offline data from NMR and MS, struc-
tural elucidation has been successful even when spectra were
acquired on a mixture of compounds [127]. Some of these
approaches could be called ‘supervised’ NMR as the NMR spectrum
is inspected for the expected peak combination that supports the
MS-based structural characterization [120].

2.2.2. Data fusion using retention time alignment: spectral metadata
analysis

The above-described data fusion via an offline approach is cum-
bersome and/or sensitive to the mismatching of different types of
spectra, but can be improved when the different spectroscopic
analyses are preceded by the same chromatographic method,
assuming that the retention time of a particular compound hardly
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differs between the different instrument platforms. Data fusion
then relies on chromatographic alignment. Among the more
straightforward approaches is the data fusion of MS/MS and MSn

spectra, which we here refer to as spectral metadata analysis. Both
of these CID spectral types yield complementary information but
are sufficiently redundant to aid the chromatographic alignment,
i.e., by associating the same compound in both chromatograms
using both retention time correspondence and CID spectral match-
ing. Such an MS spectral metadata analysis allows also to consult
multiple spectral databases and to implement multiple de novo
spectral elucidation tools for structural characterization, because
these databases and tools are sometimes rather dedicated to a par-
ticular type of CID spectrum. These advantages of combining dif-
ferent types of CID spectra have led to, e.g., the construction of
the widely used IT-orbitrap MS analyzers [128], which record
MS/MS-like higher-energy collision dissociation (HCD) spectra, as
well as MSn spectra. However, even when performing metabolite
profiling on such instruments, spectral metadata analysis is still
necessary whenever CID spectra have to be combined that were
recorded using different instrument settings (e.g., positive or neg-
ative ionization, or involving metal complexation), or using differ-
ent wet lab conditions (e.g., when performing stable isotope-
labeled (SIL) precursor feeding, or applying post-column
derivatization).

Sometimes more detailed structural information can be derived
from CID spectra using particular instrument settings. For example,
the default metabolomics-based LC-MS procedures often cannot
handle the precise linkage position between substructures, such
as the linkage position of an aglycone to its sugar in case of glyco-
sylation. Such linkage positions can often be determined by consid-
ering the CID spectrum of either the metal ion complexes of the
glycosides [129] or of the glycoside anions [130–132]; both types
of CID spectra sometimes yield complementary information. Fur-
thermore, following elucidation of the linkage position of the agly-
cone onto the sugar, the stereoisomeric configuration still has to be
determined. Such information might be derived via MSn analysis
[133]. Thus, both in-depth MSn analysis and dedicated CID spectral
settings aid in getting sufficient information to resolve the struc-
tures of unknown compounds.

Alternatively, to get sufficient CID spectral information, SIL pre-
cursor feeding or post-column derivatization can be performed.
Upon feeding plants with a SIL biochemical precursor followed
by an LC-MS analysis, the CID spectra of the isotopologs (see Glos-
sary) of any unknown compound can be visualized together for
structural characterization (compare middle and right spectrum
in Fig. 2) [134]: any CID product ion representing a substructure
that is derived from the SIL biochemical precursor will appear at
a different m/z value in the CID spectra of the isotopologs. Addi-
tionally, isotopologs of an analyte can also be generated via hydro-
gen– deuterium exchange (HDX) [135]. The observed mass
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increments of precursor and product ions due to HDX aid in locat-
ing functional groups having exchangeable protons [136].

Structural characterization can also be facilitated by including
information obtained following derivatization of the metabolite.
To permit alignment of LC-MS data generated from the underiva-
tized and the derivatized analytes, post-column derivatization is
necessary. Post-column derivatization might involve mixing the
eluent with a derivatization reagent before it enters the MS ioniza-
tion source. For example, mixing the eluent with acetone under UV
light converts double bonds to oxetane moieties [137]. Following
post-column derivatization, the resulting mass increments of the
precursor and product ions facilitate the localization of double
bonds. Post-column derivatization can also be pursued in-source
by infusing the derivatization reagent directly into the MS ioniza-
tion source [138].

2.3. Flaw 3: biotransformations do not adequately reflect enzymatic
reactions

When inspecting metabolome networks, it is often observed
that two nodes that are connected by an edge do not truly corre-
spond to the substrate and the product of an enzymatic reaction.
This anomaly occurs most frequently in CNs and SpNs, in which
edges are defined based on abundance-based correlation or CID
spectral similarity coefficients, and where mass difference compu-
tation, if performed, only occurs as a second step. Therefore, an
MDN that is built using only the features representing the precur-
sor ions is most suited to search for biochemical pathways. Never-
theless, information from CNs and SpNs can be helpful in deriving
an MDN that reflects the metabolism. In an MDN, four potential
causes for this anomaly have been published (Fig. 3) [61]: (i) bio-
transformations that reflect a linear sequence of enzymatic reac-
tions (referred to as ‘reaction combinations’, Fig. 3A), sometimes
occurring because the pathway intermediates are not detected in
the metabolome data; (ii) biotransformations that can be
explained by different combinations of enzymatic reactions (‘mul-
tiple reaction paths’, Fig. 3B); (iii) biotransformations that reflect
true enzymatic reactions, yet some of the corresponding edges
connect the derivatized forms (e.g., glucosylated derivatives)
rather than the in vivo substrate and product (‘reaction displace-
ments’, Fig. 3C); and (iv) biotransformations of which some of
the corresponding edges end up in a node corresponding to a struc-
tural isomer of the expected product (‘isomer displacements’,
Fig. 3D). The latter can only be properly addressed via structural
characterization (see 1.2. What type of information is gained via
MS-based metabolomics?’) or, at least in part, by considering the
MS fragmentation spectral similarity.

Some of the anomalies can be partially solved using information
from pathway databases such as KEGG; this approach has led to
the development of several metabolome database visualization
programs [88,101,139–146] (Table 1). These programs typically
annotate features by matching their computed molecular weights
to those of the compounds in a pathway database. Metabolomics
results can then be interpreted based on the pathways in which
the features are mapped (referred to as metabolite mapping)
[147]. These pathway visualization strategies are especially inter-
esting when analyzing primary metabolism, because primary
metabolites are well-covered in pathway databases. However, each
feature will be mapped to all of its corresponding isomers in the
pathway database. To select the correct isomer, comparative meta-
bolomics experiments can be carried out. Here, feature annotation
results from mapping the differential features mutually as close as
possible onto metabolic pathways or metabolic network modules
[148,149]. Methods such as mummichog [150] (Table 1) assume
that the metabolic network generated from a GSMM shows a hier-
archical modular topology (see ‘1.1 Metabolic networks provide a
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basis to study the control and regulation of metabolism’), and that
the differential features resulting from applying a treatment or a
genetic modification are biochemically related and, thus, end up
in one or a few neighboring modules. Alternatively, including
retention time and (predicted) CID spectral information may
improve the isomer mapping. Such a strategy is implemented in
MetDNA [62] (Table 1), and is based on the assumption that neigh-
boring pathway intermediates have similar MS fragmentation
spectra. The algorithm starts with feature identification via spec-
tral matching against MS spectral databases; the identified fea-
tures are referred to as ‘seed metabolites’. Next, the seed
metabolites are mapped onto KEGG, and KEGG compounds that
are linked via a reaction to one of the seed metabolites are
retrieved. The precursor m/z values for these KEGG-retrieved com-
pounds are computed, their retention times predicted (based on a
retention time prediction model constructed using the initial set of
seed metabolites) and their putative MS fragmentation spectra
borrowed from the seed metabolite to which they were linked
via an enzymatic reaction. Searching the metabolome data for fea-
tures having (i) an identical precursor m/z value, (ii) a similar
retention time, and (iii) a similar MS fragmentation spectrum to
those associated with one of the KEGG-retrieved compounds,
results in additional feature annotations in a first round. After
the set of seed metabolites has been augmented with the newly
annotated features, the whole procedure can be repeated. This
recursive method allowed the authors to annotate more than
1000 compounds, yet, as is the case for mummichog and related
approaches, annotations involved only compounds that are already
present in pathway databases. Thus, by mapping of all annotated
features onto a metabolome network, only known pathways will
be displayed.

Many of the identified, especially secondary, metabolites are
not present in pathway databases, but might be found in com-
pound databases [151,152]. Barupal et al. (2012) [84] combined
information from both pathway and compound databases to con-
struct networks: MDNs based on pathway databases were overlaid
with StNs, in which edges represented structural similarity. In
addition, the authors included the unknown compounds as well
by constructing and overlaying an SpN, thus, connecting unknown
features with known features via the SpN. Rather than overlaying
different types of metabolome networks, Morreel et al. (2014)
[61] added CID spectral similarity as an additional attribute to
the edges in the MDN, allowing to directly judge the biochemical
validity of the biotransformation displayed by each of the edges
via their CSPP algorithm.

2.3.1. Dealing with pathways that are not yet present in any database
Tackling the system-wide annotation of pathways by connect-

ing completely unknown compounds that are neither present in
pathway databases nor in compound databases might benefit from
SIL precursor feeding experiments (see ‘2.2.2 Data fusion using
retention time alignment: spectral metadata analysis’) or from gener-
ating differential metabolome networks, e.g., from samples taken
throughout development [81], across different tissues [153],
derived following an abiotic or a biotic stress application, or based
on (sub)cellular profiling. Differential metabolome networks facil-
itate the suggestion of putative pathways, because compounds of a
particular class are often synthesized at a specific developmental
stage, in a specific tissue, cell or cellular compartment, or upon a
particular treatment. Notably, dedicated instruments are some-
times needed, such as MS imaging or nano-LC-MS instruments,
for tissue-specific or cellular metabolomics [154,155]. The differ-
ential biotransformations in these comparative metabolome
experiments might be derived by computing all possible mass dif-
ferences and comparing their frequencies between developmental
stages, tissues/cells/compartments, or treatments.



Fig. 3. Biotransformation–enzymatic conversion anomalies. See text for explanation (‘2.3 Flaw 3: biotransformations do not adequately reflect enzymatic reactions’). Edges and
black nodes represent putative biotransformations and features. Gray nodes represent putative, non-detected pathway intermediates. BEN, benzoylation; HBEN,
hydroxybenzoylation; HEX, hexosylation; MET, methylation; MOX, methoxylation; OXY, oxygenation.
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Rather than constructing putative biotransformation paths by
an in-depth analysis of the metabolome data, biotransformation
paths between two pre-specified compounds, i.e., precursor and
end-product, might be computationally generated via a so-called
retrosynthesis. To predict biotransformation paths, several bio-
transformation databases and tools have been established [156–
161]. Using these databases and tools, a variety of in silico enzy-
matic products of a particular compound can be generated, and
by performing this iteratively, a network (directed graph) can be
constructed with nodes and edges reflecting in silico-generated
compounds and biotransformations, respectively. As mentioned
above, such a strategy allows creating in silico compound data-
bases, yet also enables tracing putative reaction paths between
precursor and end-product in the network via, e.g., graph theory-
based pathway searching algorithms. To prevent combinatorial
explosion, restrictions on the biotransformations and the gener-
ated biotransformation paths need to be imposed [162]. For exam-
ple, in the BNICE (Biochemical Network Integrated Computational
Explorer) framework, biotransformations are only allowed on com-
pounds having particular substructures; in addition, only the ther-
modynamically feasible biotransformation paths are retained
[163]. However, even when using constraints, multiple biotrans-
formation paths are still predicted. Further optimization involves
atom mapping [164–167] and/or CBM [23,24,168]. Atom mapping
only accepts biotransformation paths comprised of steps in which
an atom is transferred between the substrate and product. For
example, when considering the hexokinase reaction in the net-
work, the biotransformation path containing a step in which glu-
cose is connected to glucose-6-phosphate will be retained by
atom mapping, whereas the alternative path in which glucose is
connected with ADP will be rejected. CBM enables selecting the
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mass-balanced pathways; a CBM approach using in silico-
generated metabolic networks has been developed [43]. The vari-
ous graph theory-based path searching algorithms and the imple-
mented constraints have been reviewed by several groups
[169,170].

Although metabolome networks might allow predicting bio-
chemical pathways, the enzymes/genes responsible for the individ-
ual reactions cannot be identified without additional information.
Annotating the correct enzymes/genes associated with each reac-
tion step is important as it provides considerable support for the
in vivo existence of the pathway. Enzyme/gene information can
be retrieved from other omics technologies [171]. Such multi-
omics data are often generated in a time-course experiment
[172], or in a comparative experiment involving particular treat-
ments or different tissues, cells, or cellular compartments [173].
These comparative experimental set-ups might be especially rele-
vant for secondary metabolism. Opposite to the production of pri-
mary metabolites which are precursors for a variety of growth and
stress physiological processes, selective sets of secondary metabo-
lites are coordinately produced in a spatially and temporally con-
trolled manner under particular stress conditions [174]. Taking
also into account that many biochemical pathways operate within
enzyme complexes [175], metabolic network construction benefits
most from combining metabolome networks with gene co-
expression and/or protein–protein interaction networks
[176,177], and using, e.g., the guilt-by-association principle (see
‘1.1 Metabolic networks provide a basis to study the control and reg-
ulation of metabolism’) [178–180].

In addition, metabolomics can be combined with genetic/bio-
chemical screens for gene annotation. Forward genetics screens
are based on generating a large random collection of mutants,
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and screening them for the (dis)appearance of particular metabo-
lites via metabolomics [181]. Alternatively, as the levels of many
metabolites vary quantitatively rather than in a Mendelian way
in natural or mapping populations, genes or genetic loci that gov-
ern the metabolite abundances can be revealed by subjecting
population-wide metabolome data to QTL analysis [182–185] or
genome-wide association studies (GWAS) [186,187]. QTL/GWAS
studies might involve metabolome network construction, for
example, in a bipartite network in which nodes represent either
features or genetic loci. New biochemical pathways can then be
proposed based on the indirect connection between known and
unknown features via their association with the same genetic locus
[188]. In a reverse genetics approach, gene overexpressing or
down-regulated lines can be compared with control lines. This is
referred to as ex vivo metabolome profiling [189]. The latter term
also encompasses the use of inhibitors as a way to inactivate a par-
ticular enzyme or enzyme class. If ex vivo metabolome profiling
fails to annotate the function of a particular gene/enzyme,
in vitro activity-based metabolome profiling can be attempted.
Compared to in vitro enzymatic assays that involve the addition
of the putative substrate to the enzyme, a metabolite extract is
fed to the enzyme and new features are searched for [190];
in vitro activity-based metabolome profiling is high-throughput
and offers much more chance of finding the in vivo substrate as
opposed to traditional enzyme assays. Strategies to combine meta-
bolomics with genetics to resolve biochemical pathways have been
reviewed [189,191].
3. Summary and outlook

To understand how plant secondary metabolism is organized
and controlled/regulated, and how it compares with primary meta-
bolism, it is necessary to fully comprehend its overall pathway
architecture. Despite that pathways of secondary metabolism are
insufficiently represented in current pathway databases and
GSMMs, metabolomics data represent a rich resource to discover
the various secondary metabolites that are present in a particular
species via metabolome network construction. Expectedly, such
networks will better reflect the metabolic network when they are
constructed from a combination of CNs, SpNs, StNs and MDNs, and
taking information from pathway databases or existing GSMMs
into account.

Including retrosynthesis, which is currently mainly used in the
synthetic biology field, into metabolome network studies offers a
powerful strategy to predict specialized metabolic pathways. To
further support the in silico-predicted optimal enzyme-catalyzed
path towards a particular product, the intermediates can be
searched for in the metabolome network. Recent progress in the
annotation of metabolite substructure based on CID spectra might
help in annotating unknown peaks as pathway intermediates
[192]. However, retrosynthesis, performed on a multitude of pre-
cursor–product metabolite pairs, might boost the metabolic net-
work complexity. In this case, a similar strategy could be applied
as currently performed in the curation of GSMM, i.e., applying
Glossary
Abundance-based correlation. The correlation between the abu

computed as the Pearson or Spearman correlation coefficient.
Biotransformation. Term derived from the computational fi

compounds; biotransformations reflect tentative enzymatic conver
Compound database. Publicly available database that contain

Biochemical information is often lacking or rudimentary.
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CBM to remove non-essential edges on the one hand and to point
pathway gaps on the other hand [25]. Further support for particu-
lar biotransformation paths can also be provided via another
GSMM-applied strategy: pathway mapping using multi-omics
data, especially when derived from time-course or comparative
studies. Currently, pathway mapping of comparative multi-omics
data hardly considers pathway compartmentalization, despite the
fact that topological differences are evident between global and
compartment-specific metabolic networks [193]. Fortunately, such
information has increasingly become available during the last
decade due to the construction of pathway databases containing
tissue-, cell-, and cellular compartment-specific information
[20,21].

Of utmost importance for unraveling secondary metabolic path-
ways is the continued effort to improve the annotation of metabo-
lome network nodes in case retrosynthesis-based annotation is not
successful. Despite the advances obtained by the development of
databases and in silico tools, it is increasingly recognized that fur-
ther progress is hindered by the rather slow growth of annotated,
metabolite-associated, MS spectral data. In addition, such data are
available in a variety of MS spectral types, such as MS/MS and MSn

spectra, hence data fusion and spectral metadata analysis will
become increasingly important for structural characterization.
The latter approaches are rather seldomly pursued as (i) instru-
ment platforms in many labs are over-occupied, (ii) an extensive
structural characterization is unnecessary for many default meta-
bolomics approaches, and, perhaps most importantly, (iii) only
few labs have access to different spectroscopic instruments record-
ing MS/MS as well as MSn. Consequently, dedicated software that
handles the alignment of CID spectra across different instrument
platforms or recorded under different experimental settings (e.g.,
following metal complexation, derivatization, isotope labeling, or
different CID spectral settings), is currently underdeveloped, as
are spectral databases connecting these different types of CID
spectra.

By considering different metabolome network metrics
(abundance-based correlation, spectral similarity, etc.), retrosyn-
thesis, multi-omics data, and final authentication via genetic/bio-
chemical screening experiments, an improved metabolome-to-
metabolic network transition is expected. Primordial is the inclu-
sion of information from pathway databases, yet the same data-
bases have to be updated with new insight gained from the
metabolic networks, and new spectral databases are needed that
integrate the different types of spectra, as obtained via data fusion
and mass spectral metadata analysis. As the number of metabolic
networks will continue to rise, non-curated data might increas-
ingly enter these databases. Therefore, concomitant with the gen-
eration of metabolic networks, an investment in database
curation will be necessary [194,195]. Consequently, elucidating
plant secondary metabolism at an increasing pace requires a better
collaboration between plant specialists, computational biologists,
computer scientists, database developers, and the GSMM and
metabolite identification research communities.
ndances of two features across biological replicates, by default

eld that refers to the reactions interconverting biochemical
sions.
s mainly structural and physicochemical data of compounds.



Constraint-based modeling (CBM). Approach to determine the flux space by solving the system equations (see Glossary)
assuming a metabolic (pseudo-)steady state, i.e., by solving Nv=0 with N being the stoichiometric matrix (rows and columns are
metabolites and reactions), and v being the flux vector (in case of a steady state, the flux for each enzymatic conversion equals
its reaction rate). The flux space is formed by the set of non-trivial solutions for v. Besides the (pseudo-)steady state, additional con-
straints such as reaction thermodynamics, and setting lower and upper bonds to the enzymatic reaction rates, can be included in
the model.

Feature. A term derived from machine learning. The ions detected via MS are referred to as features following processing of the
chromatogram peaks. Each feature is characterized by a m/z value and a retention time.

Isotopologs. Molecules that only differ in their isotopic composition.
Metabolic control/regulation. Conceptual definitions for metabolic regulation and control are based on Fell (1997) [196]. Meta-

bolic regulation is defined within the context of homeostasis, i.e., in order to stabilize metabolite concentrations and pathway
fluxes. Metabolic control defines the change in pathway flux upon a change in reaction rate of a particular enzyme. For example,
a linear pathway in which the first enzyme is feedback inhibited by a pathway intermediate, will be regulated by the first enzyme,
yet the pathway flux will be mostly affected by the enzymes downstream of the intermediate performing the feedback inhibition
[197].

Metabolic network. Nodes and edges represent metabolites and enzymatic conversions based on information from pathway
databases or from a genome-scale metabolic model (GSMM).

Metabolome network. Network constructed from metabolome data; nodes represent features. Edges reflect an abundance-
based correlation (correlation network, CN), a spectral similarity computed using, e.g., the dot product (spectral similarity network,
SpN), a structural similarity computed as, e.g., the Tanimoto coefficient (structural similarity network, StN), or a mass difference
(mass difference network, MDN).

Network module. Sub-network of which the nodes are involved in the same biological function that is different from the bio-
logical functions of other modules, for example, membership of a particular biochemical pathway.

Network motif. A recurring, significant pattern of node interconnections.
Pathway database. A database containing predominantly biochemical pathway information, i.e., the metabolites and the

enzymes working on them. Often species-specific pathway information is present and sometimes gene/protein data.

System equations. A system equation is proposed for each metabolite, and defines how its concentration is determined by the
difference between its rates of synthesis and degradation. At (pseudo-)steady state, the synthesis rate is balanced by the degrada-
tion rate, yielding a stable metabolite concentration for which the instantaneous rate of change is zero.
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