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Abstract. Fluid-structure interaction (FSI) problems are frequently solved using partitioned simulation
techniques with black-box solvers, reusing reliable and optimized codes. These problems can principally
be reduced to solving a root-finding problem. In case of strong coupling, pure Gauss-Seidel iterations
between the structure and flow solvers are unstable for lower modes. In these cases, quasi-Newton tech-
niques are used, which construct an approximation of the Jacobian or its inverse by reusing information
from previous iterations and time steps.

Four different quasi-Newton techniques are compared: the interface quasi-Newton algorithm with
an approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS), the interface
block quasi-Newton algorithm with approximate Jacobians from least-squares models (IBQN-LS), the
interface quasi-Newton technique with multiple vector Jacobian (IQN-MVJ) and the multi-vector update
quasi-Newton technique (MVQN). These coupling algorithms are differentiated based on whether the
approximation of the Jacobian is performed for the entire black-box system (IQN-ILS and IQN-MVJ) or
for both individual solvers (IBQN-LS and MVQN). Moreover, a distinction is made between methods
which perform the approximation with either least-squares models (IQN-ILS and IBQN-LS) or multi-
vector techniques (IQN-MVJ and MVQN).

Their performance is compared by solving a 1D flexible tube case, using the in-house coupling soft-
ware CoCoNuT. Both the memory usage and number of iterations between structure and flow solvers in
each time step are examined. The techniques using a multi-vector approach require explicit matrix con-
struction, so that memory requirements scale quadratically, whereas the least-squares techniques have a
matrix-free implementation, resulting in linear scaling. In terms of convergence they are comparable.

1 INTRODUCTION

Multi-physics problems, such as fluid-structure interaction (FSI), are present in various engineering
disciplines. Due to their high complexity, these problems are frequently solved numerically. Two general
approaches exist to perform these numerical simulations. In the first one, a problem specific solver is
written to find the solution in a monolithic way. This solver takes the interaction between the governing
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equations into account directly by solving them simultaneously [1]. In the second approach, the calcu-
lation is done in a partitioned way. Then, the solvers are isolated and evaluated separately. Therefore,
they may be existing software packages, with proven reliability and maturity. The partitioned procedure
establishes a coupling between the two solvers, avoiding the need to develop a dedicated solver.

Within the partitioned approaches, both weakly and strongly coupled techniques exist. The former
will evaluate the solver only once in each time step, whereas the latter will iterate between the solvers
to obtain the desired result. With weakly coupled methods, also called explicit or loose coupling, the
equilibrium between fluid and structure is not exactly satisfied. They are typically suited for aero-elastic
simulations with light and compressible fluids [2, 3]. Problems with a higher ratio of added mass to mass
of the structure require strongly coupled techniques, also called implicit coupling. These are used for
problems with dense and incompressible fluids. The coupling iterations enforce the equilibrium at the
fluid-structure interface, but are also more expensive as each solver is evaluated multiple times within
each time step. However, the cost of subsequent iterations within each time step normally decreases as
the change between the iterations diminishes.

This work focuses on cases with high added mass and incompressible fluids for which the strongly
coupled, partitioned approach is adopted. In these cases, simply iterating between the solvers using
Gauss-Seidel iterations is typically not sufficient, as is demonstrated by several stability-analyses [4, 5,
6]. Most often, Newton-Raphson iterations are performed to overcome this issue. However, as the solvers
are often black-boxes, their Jacobians are not accessible and therefore need to be approximated. Hence,
these techniques are called quasi-Newton methods. Besides the advantage of needing no modification of
or access to the solvers, these techniques only require the knowledge of data at the interface.

Historically, the first quasi-Newton technique in partitioned FSI was the interface block quasi-Newton
method (IBQN-LS), developed by Vierendeels et al. [7]. Initially, the term reduced order models (ROMs)
was used to denote this method. However, due to confusion with proper orthogonal decomposition (POD)
and Galerkin methods, this was later changed. Subsequently, Degroote et al. devised the interface quasi-
Newton method with approximation for the inverse of the Jacobian from a least-squares model (IQN-
ILS) [8]. Later, Bogaers et al. introduced the multi-vector update quasi-Newton technique (MVQN) to
overcome the specification of the reuse parameter q in IQN-ILS [9]. The same paper proposed to apply
the same technique projected on the interface displacement. However, this was only implemented later
by Lindner et al. [10] and Blom et al. [11] and is called interface quasi-Newton multiple vector Jacobian
(IQN-MVJ).

In this work, the above mentioned quasi-Newton techniques will be compared in terms of mathemat-
ical aspects by dividing them in several classes, after which their performance will be evaluated in terms
of number of iterations per time step and memory requirements.

2 INTERFACE QUASI-NEWTON TECHNIQUES

A general FSI problem consists of a structural domain Ωs and a fluid domain Ωf , in which the re-
spective governing equations are solved after discretization. The boundaries of both domains are de-
noted Γs = ∂Ωs and Γf = ∂Ωf respectively and their intersection is called the fluid-structure interface
Γi = Γf ∩ Γs. For the coupling algorithm only the variables on the common boundary are of interest.
Because the flow and structure solver typically have a different mesh size at this interface, interpolation
is usually required. As the focus in this paper is on the coupling, it will be assumed that the meshes on
both sides of this interface coincide. The displacement is represented by x ∈ Ru×1, containing the com-
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ponents of the displacement vectors ~u. The forces on the fluid-structure interface are given by y ∈ Rw×1,
containing the pressure p and the components of the traction vectors ~t.

x =
[
u1,1 . . . u1,d u2,1 . . . u2,d . . .

]T
y =

[
p1 t1,1 . . . t1,d p2 t2,1 . . . t2,d . . .

]T (1)

The first subscript refers to the grid point and the second to the vector component, with d denoting the
dimension of the vector.

In order to reach the solution, two type of equilibrium conditions on the fluid-structure interface have
to be fulfilled. Firstly, the velocities must be equal (kinematic condition):

~v =
D~u

Dt
, (2)

for all point on the interface Γi, where ~v is the velocity in the fluid domain. Secondly, according to the
third Newtonian law, the forces must be equal in size, but opposite in sign (dynamic condition):

~σf · ~nf = −~σs · ~ns, (3)

for all points on the interface Γi, where ~nf,s is the unit normal vector pointing outwards and ~σf,s the stress
tensor. The FSI problem is fully closed by applying appropriate boundary conditions on the remainder
of the boundaries Γs \ Γi and Γf \ Γi.

Further, the structure and flow solvers are concisely written by S(y) and F(x), respectively. This no-
tation hides the dependence on previous time steps and on the variables outside of the common boundary.
The convention is adopted to denote the output of a solver with a tilde, resulting in

ỹn+1,k+1 = F(xn+1,k+1)

x̃n+1,k+1 = S(yn+1,k+1)
(4)

for the calculation in time step n + 1 and iteration k + 1. The index n denoting the time step and the
index k indicating the iteration within that time step will be omitted for brevity, whenever possible.

As such, solving the FSI problem boils down to finding x and y which satisfy the system{
F(x)− y = 0

S(y)− x = 0
(5)

within each time step n. Every time step is solved as follows. Firstly, interpolating the solution from
previous time steps results in an initial guess. Thereafter, iterations are performed between the solvers
until the inequalities

||xk+1 − x̃k+1||2 ≤ εx
||yk+1 − ỹk+1||2 ≤ εy

(6)

are fulfilled. Here, εx and εy are convergence tolerances which can be absolute or relative to the value in
the first iteration. The following part of this section deals with the different ways in which these iterations
are performed.
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(a) Gauss-Seidel scheme.
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(b) Residual formulation scheme.
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(c) Block iteration scheme.

Figure 1: Schematic representation of iteration schemes.

2.1 Three iteration schemes

Gauss-Seidel iterations
The simplest way to iterate between the structure and flow solver is to perform Gauss-Seidel iterations.

In this scheme the output of one solver becomes the input of the next, until the change of x and y is no
longer significant, i.e. Eq. (6) is fulfilled and convergence is reached. This iteration scheme is also called
serial, because the solvers are solved consecutively. The parallel variant is called the Jacobi iteration
procedure, in which the solvers are executed in parallel. For all methods discussed hereafter, a parallel
twin exists. However, in this work the focus will solely be on serial iterations. For a comparison between
both schemes refer to [10].

It is common, but rather arbitrary, to execute the flow solver first in each coupling iteration, followed
by the structure solver. From that viewpoint, Eq. (5) may be written as

x̃k+1 = S ◦F(xk+1), (7)

where ◦ refers to function composition and is equivalent to S(F(x)). As such, the problem is rewritten
in function of the interface displacement only. A basic schematic is shown in Figure 1a. Furthermore, a
residual operator R is defined by

R(xk+1) = S ◦F(xk+1)− xk+1. (8)

which may be rewritten using Eq. (7) as

R(xk+1) = x̃k+1 − xk+1 = rk+1, (9)

and has an output r, which will further be called the residual. This reduces the problem to solving

R(x) = 0, (10)

a set of non-linear equations for x. Convergence is reached when ||r||2 ≤ εx.
For FSI problems with high added mass and an incompressible fluid, Gauss-Seidel iterations are often

unstable [4, 5, 6]. One way to address this problem is to introduce a scalar relaxation factor ω, which
mixes new and old input.

xk+1 = (1− ω)xk + ωx̃k = xk + ωrk (11)
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A smaller relaxation factor increases the parameter range for which Gauss-Seidel iterations are stable,
but penalizes the convergence speed. To avoid this cumbersome compromise, a dynamically varying
relaxation factor can be used, as with Aitken relaxation [12]. In the latter technique, the changing value
of ωk is determined based o the previous value ωk−1 and the residual vectors rk and rk−1.

Newton-Raphson iterations for R
As stated above, the FSI problem can reduced to solving Eq. (10) for x. A typical method for solving

such a set of non-linear equations, is to perform Newton-Raphson iterations. These make use of the
inverse Jacobian of R, written symbolically as R′−1 =

(
dr
dx

)−1
=
(
dx
dr

)
, to obtain a better guess xk+1

for the next input as follows
xk+1 = xk −R′−1(xk)rk, (12)

This may also be regarded as a relation between differences

∆xk = R′−1(xk)∆rk, (13)

where ∆xk = xk+1 − xk is the difference between the input of two subsequent iterations and ∆rk =
0−rk = −rk is the difference between the desired and the current residual. Likewise, ∆x̃k = x̃k+1−x̃k

is the difference between the the structural solver output of two subsequent iterations.
A basic schematic is shown in Figure 1b. Note that the output of the flow solver is still passed on

directly to the structural solver and hence the dynamic condition is exactly fulfilled in every iteration. In
contrast to Gauss-Seidel iterations, the output of the structural solver is modified before it is transferred
to the flow solver.

However, the Jacobian is not accessible in case of black-box solvers. Therefore, the inverse Jacobian(
dr
dx

)−1
is approximated and its estimation is denoted by Nk ∈ Ru×u. Because this matrix needs to be

full rank to serve its purpose in Newton-Raphson iterations, the approximation procedure discussed later
will be not be applied to

(
dr
dx

)−1
, but to

(
dr
dx̃

)−1
instead. Here

(
dr
dx̃

)−1
symbolizes the inverse Jacobian

of R with respect to x̃. Both inverse Jacobians are linked by the following equation(
dr

dx̃

)−1
=

dx̃

dr
=

d (x + r)

dr
=

dx

dr
+ Iu =

(
dr

dx

)−1
+ Iu, (14)

with Iu the u-dimensional identity matrix. Furthermore, the same relation applies for the approximations

Ñ
k

= Nk + Iu, (15)

where Ñ
k
∈ Ru×u is the estimation of

(
dr
dx̃

)−1
. This is discussed further in Section 2.2. The two main

methods which use this iteration scheme are IQN-ILS and IQN-MVJ.

Block Newton-Raphson iterations
Instead of regarding the problem as the search for the root of a single non-linear equation, one may

solve Eq. (5) for both x and y by performing block Newton-Raphson iterations as follows[
F ′(x) −Iw

−Iu S ′(y)

] [
∆x
∆y

]
= −

[
F(x)− y
S(y)− x

]
, (16)

where F ′(x) = dỹ
dx and S ′(y) = dx̃

dy denote the Jacobians of the flow and structure solver, respectively.
These Jacobians are used to find a better guess for the input of each solver. A basic schematic is shown
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in Figure 1c. The output of each solver is modified before being transferred to the next one. Again, the
actual Jacobians are not available due to the black-box characteristics of the solvers, so approximations
will be used, denoted by Mk

f ∈ Rw×u and Mk
s ∈ Ru×w for the flow and structural solver respectively.

At the start of an iteration for instance, the input of the flow solver xk+1 = xk + ∆xk will be
calculated by solving the system(

Iu −Mk
sM

k
f

)
∆xk = x̃k − xk + Mk

s(ỹk − yk) (17)

for ∆xk. In this formula xk and ỹk are the in- and output of the flow solver in the previous iteration
and yk and x̃k are analogously the in- and output of the structural solver. A good way to solve this
linear system is to use an iterative Krylov solver, such as the generalize minimal residual (GMRES)
method [13]. As such, the explicit construction of the Jacobian matrices is avoided, as it is sufficient to
be able to calculate the product of a Jacobian matrix with a vector. A matrix-free procedure is obtained.
Analogously, the input yk+1 = yk + ∆yk for the structural solver is acquired by solving(

Iw −Mk+1
f Mk

s

)
∆yk = ỹk+1 − yk + Mk+1

f (x̃k − xk+1) (18)

for ∆yk. Because the coefficient matrices in Eq. (17) and Eq. (18) are already full rank, there is no need
to apply the approximation methods on other Jacobians as was the case with the residual operator scheme.
Furthermore, in this iteration scheme, two approximate Jacobians are constructed in each iteration and
the Jacobian itself is required, rather than its inverse. This iteration scheme is used in IBQN-LS and
MVQN.

2.2 Two methods for constructing the approximate Jacobians

The previously discussed iteration schemes, meant to improve the stability of Gauss-Seidel iterations,
require the availability of one or multiple (inverse) Jacobians. The residual operator scheme uses the
inverse Jacobian

(
dr
dx̃

)−1
= dx̃

dr , whereas in the block iteration scheme, the Jacobians dx̃
dy and dx̃

dy are
needed. However, as the solvers are treated as black-boxes, these Jacobians are not accessible and have
to be approximated. Previous research showed that the instabilities in Gauss-Seidel iterations are caused
by a limited set of modes [5, 6]. As a consequence, the full Jacobian is not needed and a low-rank
approximation suffices. Taking advantage of this observation, the required Jacobian is constructed based
on in- and outputs from previous solver evaluations. To this end, differences between vectors from
consecutive iterations are stored as columns of two matrices: V and W .

In this section, the procedure will be explained for the residual operator scheme, i.e. the approxima-

tion of dx̃
dr by Ñ

k
. For this scheme, the method receives an input ∆rk and returns an estimation Ñ

k
∆rk

of ∆x̃k. Therefore, inputs r and outputs x̃ from previous iterations are stored in the matrices V and W ,
respectively. The same approximation methods can equally be applied to the block iteration scheme, by
replacing r and x̃ with the correct in- and outputs. The vectors x and ỹ are the in- and output for the
approximation Mk

f of dỹ
dx . Likewise, y and x̃ are the in- and output for the approximation Mk

s of dx̃
dy .

Returning to the residual operator scheme, the set of differences between consecutive iterations δri =
ri+1 − ri and δx̃i = x̃i+1 − x̃i for i = 0, . . . , k − 1 are stored after each iteration k of the current time
step n+ 1, as columns of the matrices V n+1,k and W n+1,k, respectively.

V n+1,k =
[
δrk−1 δrk−2 . . . δr1 δr0

]
W n+1,k =

[
δx̃k−1 δx̃k−2 . . . δx̃1 δx̃0

] (19)
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For brevity, the index n + 1, indicating the current time step, will be left out if no confusion can occur.
The number of columns of V k and W k is indicated with v and is typically much larger than the number
of rows u. Each difference δri has a one-to-one correspondence to a difference δx̃i. It is postulated that

the approximated Jacobian Ñ
k

has to fulfill each of these k relations

δx̃i = Ñ
k
δri, (20)

further called the secant equations. This can concisely be expressed as W k = Ñ
k
V k.

The convergence speed is greatly increased if information from previous time steps is included, due to
similarity between subsequent time steps. The manner in which this is achieved, is different for the two
approximation methods discussed in this section. However, without reuse, both are identical. Therefore,
the approach without reuse will be explained first.

Typically, after the first iteration insufficient information is available to construct an approximate
Jacobian, such that it is approximated as −Iu.

Satisfying the secant equations can be regarded as writing the input ∆rk as a linear combination of
the known differences δri, and composing the required ∆x̃ from the corresponding differences δx̃i. This
linearization of ∆r can be written as

∆rk ≈ V kck (21)

with ck ∈ Rv×1 the coefficients of the decomposition and v the number of columns of V k. Imposing
a least-squares requirement to this overdetermined set of equations (v ≤ u), results in a unique solution
given by

ck = (V kTV k)−1V kT∆rk. (22)

However, this implementation becomes rather unstable if the number of columns in V k becomes high. A
better approach is to calculate the economy-size QR-decomposition using Householder transformations
[14].

V k = QkRk (23)

Note that Qk has orthonormal columns such that QkTQk = Iu, but because Qk is rectangular QkQkT 6=
Iv. The coefficient vector ck is then calculated by solving the triangular system

Rkck = QkT∆rk (24)

using back substitution. Finally, the resulting ∆x̃ is calculated as

∆x̃k = W kck, (25)

which means that ∆x̃k is assumed to consist of the same linear combination of old modes as ∆rk. As
such, the approximate Jacobian is symbolically given by

Nk = Ñ
k
− Iu = W kRk−1QkT − Iu. (26)

However, this matrix should never be constructed explicitly, as only the product of this matrix with an
arbitrary vector is required (Eq. (13)). As such, the procedure is matrix-free, in the sense that no large
dense matrices are constructed.
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Note that the Jacobian dx̃
dr is a square matrix with a dimension u equal to the vector dimension d

multiplied by the number of grid points on the interface. This is normally much larger than the number
of secant equations k. Hence, in order to uniquely define its approximation, a least-squares requirement
is applied.

Least-squares approach to reuse
A first possibility to include information from previous time steps, is expanding the matrices V k and

W k by including those from the q previous time steps.

V k =
[
V n+1,k V n . . . V n+1−q]

W k =
[
W n+1,k W n . . . W n+1−q] (27)

Note that the resulting matrices are denoted with V k and W k, such that the formulas stated above
directly apply. Again, a least-squares requirement is imposed to uniquely define the matrix and all secant
equations are satisfied, also those from previous time steps.

Due to the increase in number of columns, it becomes important to remove columns from V k which
are (almost) linear dependent, in order to be able to solve system Eq. (24). Therefore, an appropriate
filtering has to be applied [15, 16]. After calculation of the QR-decomposition, the diagonal elements of
Rk, starting from the left, are compared with a tolerance ε. When the value is too low, the corresponding
column in V k and W k is removed. Then, the QR-decomposition is recalculated. This is repeated until
all diagonal elements in Rk are higher than ε. As it is beneficial to retain the most recent information, new
columns are added on the left. This is also the reason why the QR-decomposition cannot be updated,
but has to be recalculated in every iteration. However, the associated computational cost is typically
negligible compared to the cost of the solvers. If the number of degrees of freedom on the interface u is
low, possibly the outer most right columns have to be removed as well, to achieve v ≤ u.

The optimal number of time steps which should be taken into account is problem dependent, but
usually varies around q ≈ 10. If q is too low, useful information is disregarded, but when q is too
high irrelevant information is taken into account, which corrupts the validity of the approximation of the
Jacobian. Note that the method remains matrix-free, even after the introduction of reuse. Quasi-Newton
techniques using this type of approach to approximate the Jacobian are IQN-ILS and IBQN-LS.

Multi-vector approach to reuse
A second approach to find a suitable approximation for the Jacobian is the so called multi-vector

technique. Besides fulfilling the secant equations in the current time step,

W n+1,k = Ñ
n+1,k

V n+1,k, (28)

this method requires the approximate Jacobian with reuse from the current time step Ñ
n+1,k

to be as
close as possible to the approximate Jacobian from the previous one Ñ

n
or, in other words, a least-

squares approach on the difference with the previous Jacobian is used. Remark that not applying reuse,
corresponds to setting the previous Jacobian Ñ

n
to zero in every iteration, which boils down to the

method explained in the beginning of this section. If the current Jacobian is split in a part due to the
previous time step and one due to the current time step as follows

Ñ
n+1,k

= Ñ
n

+ ∆Ñ
n+1,k

, (29)
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Eq. (20) becomes

∆Ñ
n+1,k

V n+1,k = W n+1,k − Ñ
n
V n+1,k. (30)

Applying a least square condition on Eq. (30) results in the following update formula

Ñ
n+1,k

= Ñ
n

+
(
W n+1,k − Ñ

n
V n+1,k

)((
V n+1,k

)T
V n+1,k

)−1 (
V n+1,k

)T
. (31)

Simply put, no change of the Jacobian is allowed in directions that have not been encountered in the
current time step (no change condition) and old information from previous time steps is replaced by
newer information when it becomes available.

This method was devised to avoid the determination of the problem dependent parameter q. The
information from previous time steps is taken into account implicitly and is removed automatically when
new information becomes available. As the number of columns of V k remains small, there is less need
for filtering.

The main disadvantage of this method is that it requires the explicit construction of the Jacobian,
which leads to increased memory requirements and calculation speed. A matrix-free method has a mem-
ory requirement proportional to the number of rows u and columns v compared to the explicit matrix
construction, where the memory requirements scale with u2. Especially, simulations with a high number
of degrees of freedom u on the fluid-structure interface favor a matrix-free method. Alternative, matrix-
free implementations of the multi-vector approach have been proposed, but these reintroduce a reuse
parameter [17, 18]. The methods using the multi-vector approach are IQN-MVJ and MVQN.

3 TEST CASE

The four quasi-Newton techniques presented above are now tested on a one-dimensional (1D) test
case.

3.1 One-dimensional flexible tube

Consider a straight flexible tube of length ` with circular cross-section with nominal diameter r0 and
wall thickness h. The fluid has a density ρf . The structure has a modulus of elasticity E, a Poisson’s
ratio ν and density ρs. The parameter values are included in Table 1.

The flow is governed by the continuity and momentum equation in which viscosity and gravity are
neglected:

∂a

∂t
+
∂av

∂z
= 0

∂av

∂t
+
∂av2

∂z
+

1

ρf

(
∂ap

∂z
− p∂a

∂z

)
= 0

(32)

with a = πr2 the cross-sectional area and r the inner radius of the tube. Furthermore, t, v, p are the time,
the velocity along the axis of the tube and the pressure, respectively. On the outlet of the fluid domain
a fixed pressure equal to the reference pressure p0 = 0 Pa is specified. On the inlet a pressure pulse is
imposed with amplitude 1333.2 Pa and a duration of 0.003 s.

The deformation of the tube wall is governed by

ρsh
∂2r

∂t2
+ b1

∂4r

∂z4
− b2

∂2r

∂z2
+ b3(r − ro) = p− po. (33)
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Table 1: Parameter values of the 1D flexible tube case

Parameter Value Parameter Value
` 0.05 m E 300 000 kg/ms2

r0 0.005 m ν 0.3
h 0.001 m ρf 1 000 kg/m3

∆t 0.0001 s ρs 1 200 kg/m3

where parameters b1, b2 and b3 account for stresses and bending in the wall [19, 20]. Only radial dis-
placements are considered, so the length of the tube stays constant. The nominal radius ro corresponds
to a uniform pressure po if the structure is at rest. Here, both tube ends are clamped and the wall is
considered thin. The values of b1, b2 and b3 are then calculated as

b1 =
hE

1− ν2
h2

12
b2 =

hE

1− ν2
h2

12

2ν

r2o
b3 =

hE

1− ν2
1

r2o
+

hE

1− ν2
h2

12

1

r4o
(34)

Because h� ro, the second term of b3 is neglected with respect to the first one.
The tube is discretized on a 1D grid with m cells with a width equal to ∆z = `/m. The test case

above is solved for t from 0 to 0.01 s, in 100 time steps ∆t of 0.0001 s.

3.2 CoCoNuT

The FSI-problem is solved with the open-source code CoCoNuT, developed in-house. This code of-
fers an easy way to couple different software packages, which are treated as black-boxes. It has the
advantage of being modular and flexible in combining mappers, solvers and coupling algorithms. More-
over, due to its comprehensive structure and straightforward implementation with Python, the code is
easily adapted to users own requirements, if needed. The most recent code can be found on GitHub in
the repository pyfsi/coconut. A frozen version used to generate the results in this paper is located on
fsi.ugent.be. Both a flow and structure solver were written for the 1D flexible tube case described in
Section 3.1, the code of which is equally available online.

3.3 Results

As the solvers are typically very expensive in FSI-calculations, the focus is on the number of solver
executions. The term iteration will be used to denote a subsequent flow and structure solver call. Table 2
shows the number of iterations for the different quasi-Newton methods discussed above, as well as with
simple relaxation and Aitken relaxation. The convergence tolerance εx is 10−12. Dynamic relaxation
improves convergence greatly compared to simple relaxation, but does not perform as well as the quasi-
Newton methods. The block and residual operator methods perform similarly, whereas the multi-vector
techniques turn out to be somewhat more efficient compared to the least-squares techniques for this test
case. Note that the latter indeed perform best for q equal to 10. IQN-ILS (q=0) corresponds to the method
without reuse. This shows the importance of reusing information from previous time steps.

Next, Table 3 shows the memory requirements, for different number of cells m. The reported val-
ues are the maximum of the used memory after each iteration as determined using the guppy3 module
in Python. The results clearly show quadratically scaling memory requirements for the multi-vector
techniques, in contrast to the linearly scaling requirements for the least-squares techniques, due to their
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Table 2: Average number of iteration required per time step for the different methods.

Method Number of iterations Method Number of iterations
Relaxation (ω=0.05) 287.95 Aitken relaxation 25.49

IQN-ILS (q=0) 10.90 IBQN-LS (q=0) 10.80
IQN-ILS (q=1) 8.27 IBQN-LS (q=1) 8.38
IQN-ILS (q=5) 5.92 IBQN-LS (q=5) 6.04

IQN-ILS (q=10) 5.18 IBQN-LS (q=10) 5.32
IQN-ILS (q=20) 5.87 IBQN-LS (q=20) 5.74

IQN-MVJ 4.27 MVQN 4.46

matrix-free implementation. Furthermore, the block methods require more memory compared to the
residual operator techniques, as two Jacobian matrices are approximated.

Table 3: Memory requirements for the different methods in MB.

Method m=100 m=1 000 m=10 000
IQN-ILS (q=10) 18 32 169
IBQN-LS (q=10) 20 39 224

IQN-MVJ 19 175 14 556
MVQN 24 422 38 623

4 CONCLUSION

For cases with high-added mass, Gauss-Seidel iterations are not stable or converge very slowly even
when relaxation is applied. In these cases quasi-Newton methods lead to an important improvement in
stability and convergence speed. Four different quasi-Newton techniques were discussed and categorized
based upon iteration scheme and Jacobian approximation. While the block methods require two Jacobian
approximations, only one is needed for the residual operator methods. The least-squares approach can be
implemented matrix-free which results in linearly scaling memory requirements, whereas for the multi-
vector technique, memory requirements scale quadratically, due to the explicit matrix construction. This
is especially bad for problems with a high number of degrees of freedom on the interface. Tests were
performed on a 1D flexible tube using the Python coupling tool CoCoNuT. In terms of convergence the
quasi-Newton methods clearly outperform Aitken relaxation, but are comparable between themselves.
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Mécanique. (2005) 333(12):867–883.

12


	INTRODUCTION
	INTERFACE QUASI-NEWTON TECHNIQUES
	Three iteration schemes
	Two methods for constructing the approximate Jacobians

	TEST CASE
	One-dimensional flexible tube
	CoCoNuT
	Results

	CONCLUSION

