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Samenvatting

Dit doctoraatsproefschrift gebruikt artificiële intelligentie (AI) om cardiovasculaire
medische beelden te analyseren en beoogt daarbij efficiënte en nauwkeurige modellen
aan te bieden die artsen kunnen helpen bij het besluitvormingsproces. De belangrijkste
focus van deze studie ligt op transkatheter hartklepinterventies, een behandeling
waarvan verwacht wordt dat ze de komende jaren aanzienlijk zal toenemen. Omdat
deze ingrepen gewoonlijk via de lies gebeuren en de borstkas hiervoor niet geopend
moet worden, is een nauwkeurige preoperatieve medische beeldanalyse cruciaal voor een
optimale behandeling van de patiënt. De analyse is echter niet altijd eenvoudig vanwege
de complexiteit van specifieke pathologieën, dimensies van de beelden, beeldkwaliteit
en de ervaring van de operator. Voor experten zijn bicuspide aortakleppen bijvoorbeeld
nog steeds een pathologie die moeilijk te detecteren is op een driedimensionaal (3D)
medisch beeld. Automatische beeldanalyse kan hier mogelijks een oplossing bieden.
Bovendien kan automatisatie helpen om de efficiëntie te verhogen in hoge volume centra
met veel ervaring, en kan het helpen om bij minder ervaren centra de nauwkeurigheid
van de analyses te verhogen.

Om tegemoet te komen aan deze noden, heb ik verschillende van deze transkatheter
hartklepinterventies onderzocht en automatische technieken bedacht, gebaseerd op
deep learning, die de arts kunnen helpen met cardiovasculaire medische beeldanalyse.

Morfologie classificatie van de aortaklep

In deze studie stelden we dat deep learning kan gebruikt worden om tricuspide en
bicuspide aortakleppen (BAV) van patiënten te classificeren uit MDCT beelden. BAV
is de meest voorkomende aangeboren hartaandoening bij volwassenen. Bovendien
is de aanwezigheid van BAV een belangrijke factor bij het selecteren van de juiste
behandeling voor patiënten met symptomatische ernstige aortaklepstenose. Experten
beweren dat het moeilijk is om deze pathologie te classificeren omdat de verkalking
van de klepblaadjes de juiste classificatie kunnen verhinderen en de beeldvormende
modaliteit mogelijks niet de details van de pathologie onthult.

Deze retrospectieve studie werd uitgevoerd met MDCT data van patiënten die
waren doorverwezen voor minimaal invasieve aortaklepvervanging (TAVR). Een 3D
convolutionair neuraal netwerk (CNN) werd ontwikkeld om de MDCT afbeeldingen
te classificeren als tricuspide of bicuspide. De cross-validatie van de dataset toonde
aan dat een getraind 3D CNN model een uitstekend vermogen had om de aortaklep
correct te classificeren, met een hoge sensitiviteit (100 %) en specificiteit (92 %). Deze
resultaten waren zeer gunstig, aangezien het model op een relatief kleine dataset
werd getraind. Gezien deze optimale resultaten, kunnen we stellen dat een dergelijk
hulpmiddel door clinici kan gebruikt worden om BAV te identificeren. Als we naar
de beschikbare literatuur kijken, zijn er geen studies die een 3D CNN model hebben
gebruikt om een volledig 3D volume als input te classificeren.
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Geautomatiseerde selectie van de TAVR-implantaat grootte

Verschillende metingen van de aorta annulus zijn noodzakelijk tijdens het besluit-
vormingsproces dat voorafgaat aan een TAVR-procedure. De uiteindelijke afmeting
van de gekozen prothese wordt mede bepaald door de oppervlakte of de omtrek van
deze aorta annulus. Deze ring wordt gemeten op het annulaire vlak van de aorta (AAP);
een 2D vlak gedefinieerd door de onderste scharnierpunten van de aortaklepbladen.

In deze retrospectieve studie werden de MDCT data van 355 patiënten gebruikt om
twee CNN-modellen te trainen om de aorta annulus te segmenteren. De oppervlakte
en de omtrek werden afgeleid van de voorspelde segmentatie en werden gebruikt om
de implantaat grootte te selecteren van de Edwards Sapien 3 en de Medtronic Evolut
kleppen. De validatie werd in drie stappen uitgevoerd. Eerst werd een test-dataset
van 118 patiënten gebruikt om de nauwkeurigheid te evalueren. Deze patiënten werden
uitgesloten van de trainingsfase. De resultaten toonden aan dat de oppervlakte en de
omtrek op een automatische, reproduceerbare, efficiënte en nauwkeurige manier konden
worden voorspeld aan de hand van onze methode. Ten tweede waren de verschillen
tussen de handmatig verkregen metingen van de aorta annulus en de automatische
voorspellingen vergelijkbaar met de verschillen tussen twee onafhankelijke operatoren.
Dit duidt op een voldoende nauwkeurigheid van onze voorgestelde aanpak. Ten slotte
werd bij het invoegen van de voorspelde oppervlakte en omtrek in de maattabellen van
de Edwards Sapien 3 en het Medtronic Evolut kleppen, gevonden dat de automatisch
geselecteerde klepmaten goed overeenkwamen met de handmatig bepaalde klepmaten.
De totale analysetijd van AAP tot de grootte van de prothese was minder dan 1
seconde, wat veel sneller is dan de handmatige verwerkingstijd van ongeveer 10
minuten. Daarom kan onze voorgestelde methode de huidige pre-operatieve TAVR
planning versnellen en analysefouten in nieuwe centra verminderen.

Op weg naar een veilige en efficiënte preoperatieve planning van
minimale invasieve mitralisklepvervanging (TMVR)

De detectie van de annulaire ring van de mitralisklep is een tijdrovend en uitdagend
proces. De mitralisklep-annulus heeft een zadelvormige anatomie, die in grootte en
vorm verandert tijdens de hartcyclus. Van de gedetecteerde mitralisklep-annulus
kunnen aanvullende metingen worden bepaald, zoals de oppervlakte, 2D en 3D
perimeter, trigone-naar-trigone-, septaal-lateraal- en commissure-naar-commissure-
afstand. De annulaire ring van de mitralisklep en de afgeleide metingen daarvan zijn
cruciaal tijdens de TMVR-procedure en ontwikkeling van nieuwe mitralisklepprotheses.

Deze retrospectieve studie gebruikte de MDCT beelddata en expertgegevens van
71 patiënten om deep learning modellen te trainen om de mitralisklep-annulus te
segmenteren uit de medische beelden. Eenmaal gesegmenteerd, werden de boven-
staande metingen afgeleid van de mitralisklep-annulus tijdens een post-processing
stap. De methode werd cross-gevalideerd vanwege de kleine omvang van de dataset.
De nauwkeurigheid van de methode werd bevestigd door de voorspelde en handmatig
afgeleide metingen te vergelijken. De totale analysetijd van onze voorgestelde methode
was minder dan 1 seconde per patiënt, terwijl de handmatige verwerkingstijd rond
de 25 minuten per patiënt ligt. De efficiëntie en nauwkeurigheid van onze voorge-
stelde methode bieden het vertrouwen deze technologie naar de klinische praktijk te
brengen. Een voorstel voor een klinische toepassing voor medische beeldanalyse werd
gepresenteerd in deze studie.
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Detectie van het annulaire vlak van de aortaklep en de coronaire
ostia.

Tijdens de preoperatieve planning van een TAVR-procedure, worden de MDCT-
afbeeldingen gebruikt om bepaalde anatomische risicofactoren te identificeren. Zo
worden bijvoorbeeld de afstanden van de AAP tot de linker en rechter coronaire
ostium (LCO, RCO) geïdentificeerd. Deze afstanden helpen om het risico op coronaire
obstructie te begrijpen. Deze obstructie is een potentieel levensbedreigende complicatie
waarbij de bloedstroom naar een kransslagader aanzienlijk wordt verminderd. De
AAP wordt gedefinieerd door de drie onderste scharnierpunten van de aortaklepbladen:
de linker-, non- en rechter coronaire cusp (LCC, NCC en RCC).

In deze retrospectieve studie werden de MDCT beelddata en expertgegevens van 344
patiënten gebruikt om modellen te trainen die de vijf bovengenoemde oriëntatiepunten
konden detecteren. De methode combineert de resultaten van drie getrainde CNN-
modellen en een post-processing stap. Drie stappen werden toegepast om de methode
te valideren. Eerst werd een test-dataset van 100 patiënten (deze werden uitgesloten
van de trainingsfase) gebruikt om de nauwkeurigheid van de methode te evalueren.
De resultaten toonden aan dat de vijf oriëntatiepunten efficiënt en nauwkeurig konden
worden gedetecteerd. Vervolgens werd een interobserver-variabiliteitsstudie uitgevoerd.
Het verschil tussen de handmatig en automatisch geïdentificeerde oriëntatiepunten
was over het algemeen kleiner in vergelijking met verschillen die werden waargenomen
tussen twee onafhankelijke operatoren. Dit geeft aan dat de voorgestelde aanpak deze
oriëntatiepunten met acceptabele nauwkeurigheid detecteert. Ten slotte werd ook
geïllustreerd dat de methode het mogelijk maakt om klinisch relevante metingen zoals
coronaire hoogte nauwkeurig en automatisch te bepalen. De totale analysetijd van
MDCT-afbeelding naar de voorspelde punten was minder dan 1 seconde, wat duidelijk
het potentieel van onze voorgestelde methode aantoont om de huidige pre-operatieve
planning te versnellen.

Curriculum deep learning met verschillende exploratiestrategieën:
een haalbaarheidsstudie naar de detectie van cardiovasculaire ori-
ëntatiepunten.

In deze retrospectieve studie werd een curriculum deep q-learning algoritme ge-
bruikt om de inferieure rand van het membraneuze septum automatisch te detecteren.
Deze rand is een bekende anatomische markering voor het atrioventriculaire gelei-
dingspad en werd in onze studie gedefinieerd door drie punten. De preoperatieve
beoordeling van de locatie van het atrioventriculaire geleidingssysteem is belangrijk
om het risico op geleidingsstoornissen na een TAVR-procedure beter te begrijpen en
zelfs te voorspellen.

Het idee achter curriculum deep q-learning is dat een artificiële agent geleidelijk
de oriëntatiepunten in het medische beeld leert te vinden. De agent heeft een beperkt
zicht en leert naar de oriëntatiepunten te lopen. Tijdens de wandeling probeert
het de notie van cumulatieve beloning te maximaliseren. Het model werd cross-
gevalideerd vanwege de kleine dataset (278 patiënten). De validatie illustreerde
dat de methode nauwkeurig en efficiënt was. Een interobserver-variabiliteitsstudie
bevestigde de nauwkeurigheid van de methode. De output van dit onderzoek was
drieledig: ten eerste werden de voorspelde locaties nauwkeurig en efficiënt gedetecteerd.
Vervolgens werden twee nieuwe strategieën voor actie-selectie α-decay en actie-dropout
gevalideerd en vergeleken met de reeds bestaande ε-decay. Ten slotte bleek de taak
van het detecteren van deze oriëntatiepunten computationeel goedkoop (in vergelijking
met vergelijkbare methoden), maar moeilijk genoeg om als basis te dienen om te
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experimenteren met nieuwe DQL technieken.



Summary

This doctoral thesis involves AI to analyse cardiovascular medical images and aims
to provide efficient and accurate models that can assist the physician in the decision-
making process. The main focus lies with transcatheter heart valve interventions
where the number of treatments and patients is expected to increase significantly
in the coming years. Since these interventions are closed-chest procedures, accurate
pre-operative medical image analysis is crucial for optimal patient treatment. However,
the analysis is not always straightforward due to the complexity of specific pathologies,
image dimensions, image quality and the operator experience. For example, bicuspid
aortic valves are still, for the experts’ eye, a pathology that is challenging to detect
on a three-dimensional (3D) image. Automatic image analysis may offer a solution
here. Moreover, automation can help to increase efficiency in experienced high-volume
centers, and this can also help in less experienced centers to increase the accuracy of
the analyses.

To meet these needs, I have investigated several of these transcatheter heart valve
interventions and devised automatic techniques, based on deep learning, that can
assist the physician with cardiovascular medical image analysis.

Aortic valve morphology classification

In this study, we hypothesised that deep learning could be used to classify tricuspid
and bicuspid aortic valve (BAV) patients from MDCT images. BAV is the most
common congenital heart disorder in adults. The presence of BAV is a crucial factor
when selecting the proper treatment for patients with symptomatic severe aortic
stenosis who are at increased risk for surgery. Experts claim that it is difficult to
classify this pathology, as the leaflet calcification may prevent proper classification
and the imaging modality may not reveal the details of the pathology.

This retrospective study was performed with the MDCT data of patients who had
been referred for transcatheter aortic valve replacement (TAVR). A three-dimensional
(3D) convolutional neural network (CNN) was developed to classify the MDCT images
and label the aortic valve morphology as tricuspid or bicuspid. The cross-validation
of the dataset showed that a trained 3D CNN had an excellent ability to classify
aortic valve morphology, with a high degree of both sensitivity (100%) and specificity
(92%). These results are very favourable, especially given the relatively small dataset
on which the model was trained. Given these features, it is foreseeable that a tool
such a this could be used by clinicians to identify BAV. When looking at the available
literature, there are no studies which have used a 3D CNN model to classify entire 3D
region of interest (ROI) as input.

Enabling automated device size selection for TAVR

Different measurements of the aortic annulus are crucial during the decision-
making process prior to a TAVR procedure. For example, the area or perimeter of the
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measured aortic annulus determine (among other measurements) the final prosthesis
device size. The aortic annulus is measured on the aortic annular plane (AAP); a
two-dimensional (2D) plane defined by the lowest hinge points of the aortic valve’s
leaflets.

In this retrospective study, the MDCT images of 355 patients were used to train
two CNN models to segment the aortic annulus. The area and perimeter were derived
from the predicted segmentation and were used to select prosthesis sizes for the
Edwards Sapien 3 and the Medtronic Evolute device. The validation was performed in
three steps. First, a test dataset of 118 patients was used to evaluate accuracy. These
patients were excluded from the training phase of the models. Results showed that
the area and perimeter could be predicted in an automatic, reproducible, efficient and
accurate manner using our method. Secondly, the differences between the manually
obtained aortic annulus measurements and the automatic predictions were similar
to the differences between two independent observers. This indicates a satisfying
accuracy of the proposed approach. Finally, when inserting the predicted area and
perimeters in the sizing charts of the Edwards Sapien 3 and the Medtronic Evolute
device, it was found that the automatically selected device sizes accorded well with
the manually determined device sizes. The total analysis time from AAP to prosthesis
size was below 1 second, which is much faster than the manual processing time of
approximately 10 minutes. Therefore, our proposed method can speed-up the current
pre-operative TAVR planning as well as reduce analysis errors in new centers.

Towards safe and efficient pre-operative planning of transcatheter
mitral valve replacement (TMVR)

The detection of the mitral valve annulus is a time-consuming and challenging
process. The mitral valve annulus has a saddle-shaped anatomy, which changes in
size and shape during the cardiac cycle. From the detected mitral valve annulus,
additional measurements can be assessed such as the area, 2D and 3D perimeter,
trigone-to-trigone-, septal-lateral- and commissure-to-commissure distance. The mitral
valve annulus and the derived measurements thereof are crucial during the TMVR
procedure and mitral valve prosthesis development.

This retrospective study used the MDCT images and expert data of 71 patients to
train deep learning models to segment the mitral valve annulus from medical images.
Once segmented, the measurements above were derived from the mitral valve annulus
during a post-processing step. The method was cross-validated due to the small size of
the dataset. The accuracy of the method was confirmed by comparing the predicted
and manually derived measurements. The total analysis time of our proposed method
was less than 1 second per patient, which is much faster the manual processing time
of approximately 25 minutes per patient. The efficiency and accuracy of our proposed
method provide the confidence to move towards implementation of this technology in
clinical practice. A proposal for a clinical application for medical image analysis was
presented in this study.

Aortic annular plane and coronary ostia detection

During the pre-operative planning of a TAVR procedure, the MDCT images are
used to identify certain anatomical risk factors. For example, the distances from
the AAP to the left coronary ostium (LCO) and the right coronary ostium (RCO)
are identified. These distances help to understand the risk of coronary obstruction.
This obstruction is a potentially life-threatening complication during which the blood
flow to a coronary artery is reduced significantly. The AAP is defined by the three
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lowest hinge points of the aortic valve’s leaflets: the left coronary cusp (LCC), the
non coronary cusp (NCC) and the right coronary cusp (RCC).

In this retrospective study, the MDCT images and expert data of 344 patients
were used to train models that could detect the five landmarks mentioned above. The
method combined the results of three trained CNN models and a post-processing step.
Three steps were applied to validate the method. First, a test dataset of 100 patients
(these were excluded from the training phase) was used to evaluate the accuracy of our
method and results showed that the five landmarks could be detected efficiently and
accurately. Next, an inter-observer variability study was conducted. The difference
between the manually and automatically identified landmarks was generally smaller
when compared to differences observed between two independent operators. This
indicates that the suggested approach detects these landmarks within acceptable
accuracy. Finally, it was also illustrated that the method allows to accurately and
automatically determine clinically relevant measurements such as coronary height.
The total analysis time from MDCT image to the predicted landmarks was less than
one second, which clearly shows the potential of our proposed method to speed up
current pre-operative planning workflows.

Curriculum deep reinforcement learning with different exploration
strategies: A feasibility study on cardiac landmark detection

In this retrospective study, a curriculum deep q-learning (DQL) algorithm was
used to detect the inferior border of the membranous septum automatically. This
border is a known anatomical marker for the atrioventricular conduction path and
was defined in our study by three points. The pre-operative assessment of the location
of the atrioventricular conduction path is crucial to understand the risk of conduction
abnormalities following a TAVR.

The idea behind curriculum DQL is that an artificial agent gradually learns to
find the landmarks within the medical image. The agent has a limited view and learns
to walk towards the target landmarks. During the walk, it tries to maximise some
notion of cumulative reward. The model was cross-validated due to the small size of
the dataset consisting of 278 patients. The validation illustrated that the method was
accurate and efficient. An inter-observer variability study confirmed the accuracy of
the method. The output of this study was three-fold: first, the predicted landmark
locations were detected accurately and efficiently. Next, two novel action-selection
strategies α-decay and action-dropout were validated and compared to the already
established ε-decay. Finally, the task of detecting these landmarks was computationally
cheap (when compared to similar methods) yet difficult enough to serve as a baseline
to experiment with novel DQL techniques.





Contents

Acknowledgements i

Samenvatting iii

Summary vii

1 Introduction 1
1.1 FEops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aortic valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mitral valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Medical image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Introducing deep learning . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7.1 Aortic valve morphology classification . . . . . . . . . . . . . . 7
1.7.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7.2.1 Enabling automated device size selection for TAVR . 8
1.7.2.2 Towards safe and efficient pre-operative planning of

transcatheter mitral valve replacement (TMVR) . . . 9
1.7.3 Landmark detection . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7.3.1 Aortic annular plane and coronary ostia detection . . 9
1.7.3.2 Curriculum deep reinforcement learning with different

exploration strategies: A feasibility study on cardiac
landmark detection . . . . . . . . . . . . . . . . . . . 10

1.8 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 List of realisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9.1 Journal publications . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9.2 Conference publications . . . . . . . . . . . . . . . . . . . . . . 12
1.9.3 Abstracts, posters and presentations . . . . . . . . . . . . . . . 12
1.9.4 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9.5 Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Deep learning 15
2.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Types of machine learning . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Linear regression with multiple variables . . . . . . . . . . . . . 18
2.1.4 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.8 Hyper-parameter tuning . . . . . . . . . . . . . . . . . . . . . . 21



2.1.9 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 A short history of deep learning before 1998 . . . . . . . . . . . 23
2.2.2 LeNet (1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2.1 Convolutional layers . . . . . . . . . . . . . . . . . . . 24
2.2.2.2 Activation functions . . . . . . . . . . . . . . . . . . . 26
2.2.2.3 Pooling layers . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2.4 Fully connected layer . . . . . . . . . . . . . . . . . . 27
2.2.2.5 Optimisation . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2.6 Data augmentation . . . . . . . . . . . . . . . . . . . 28
2.2.2.7 Architectural design . . . . . . . . . . . . . . . . . . . 28

2.2.3 ReLU (2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Dropout (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 AlexNet (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 Random orthogonal matrices (2013) . . . . . . . . . . . . . . . 30
2.2.7 VGGNet (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.8 Adam (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.9 Batch normalisation (2015) . . . . . . . . . . . . . . . . . . . . 31
2.2.10 U-Net (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.10.1 Transposed convolutions . . . . . . . . . . . . . . . . 32
2.2.11 Inception (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.12 Dilated convolutions (2015) . . . . . . . . . . . . . . . . . . . . 33
2.2.13 ResNet (2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.14 V-Net (2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.14.1 Dice coefficient cost function . . . . . . . . . . . . . . 35
2.2.15 DenseNet (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.16 DenseVNet (2018) . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 The human heart 37
3.1 The human heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Cardiovascular diseases . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Valvular heart diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 The success of transcatheter-based solutions . . . . . . . . . . . 40

3.2.2.1 Aortic valve . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2.2 Mitral valve . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2.3 Tricuspid valve . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2.4 Pulmonary valve . . . . . . . . . . . . . . . . . . . . . 45
3.2.2.5 Transcatheter-based solutions in this thesis . . . . . . 45

3.2.3 Diagnosis and pre-operative planning . . . . . . . . . . . . . . . 45
3.2.3.1 Medical images . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3.2 Medical image software . . . . . . . . . . . . . . . . . 47
3.2.3.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Classification 49
4.1 Literature overview of cardiac classification with deep learning . . . . 49

4.1.1 2015-2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.1.1 Detailed literature overview . . . . . . . . . . . . . . . 50

4.1.2 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2.1 Detailed literature overview . . . . . . . . . . . . . . . 52



4.1.3 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3.1 Detailed literature overview . . . . . . . . . . . . . . . 53

4.1.4 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.4.1 Detailed literature overview . . . . . . . . . . . . . . . 57

4.1.5 Meta-analysis of the literature overview . . . . . . . . . . . . . 59
4.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Aortic valve morphology classification . . . . . . . . . . . . . . . . . . 61
4.2.1 Bicuspid aortic valve . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.2.1 MDCT images . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2.2 Manual classification . . . . . . . . . . . . . . . . . . . 63
4.2.2.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2.4 Automatic classification . . . . . . . . . . . . . . . . . 65

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Segmentation 71
5.1 Literature overview of cardiac segmentation with deep learning . . . . 71

5.1.1 Before 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.1.1 Detailed literature overview . . . . . . . . . . . . . . . 72

5.1.2 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2.1 Detailed literature overview . . . . . . . . . . . . . . . 73

5.1.3 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3.1 Detailed literature overview . . . . . . . . . . . . . . . 75

5.1.4 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.4.1 Detailed literature overview . . . . . . . . . . . . . . . 80

5.1.5 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.5.1 Detailed literature overview . . . . . . . . . . . . . . . 83

5.1.6 Meta-analysis of the literature overview . . . . . . . . . . . . . 83
5.1.6.1 Anatomical region . . . . . . . . . . . . . . . . . . . . 83
5.1.6.2 Pre-processing step . . . . . . . . . . . . . . . . . . . 85
5.1.6.3 Reported metric . . . . . . . . . . . . . . . . . . . . . 86

5.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Enabling automated device size selection for TAVR . . . . . . . . . . . 87

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2.1 MDCT imaging . . . . . . . . . . . . . . . . . . . . . 87
5.2.2.2 Manual detection . . . . . . . . . . . . . . . . . . . . 88
5.2.2.3 Automatic detection . . . . . . . . . . . . . . . . . . . 88
5.2.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . 92

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Towards safe and efficient pre-operative planning of TMVR . . . . . . 96
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2.1 MDCT images . . . . . . . . . . . . . . . . . . . . . . 98
5.3.2.2 Manual detection . . . . . . . . . . . . . . . . . . . . 98
5.3.2.3 Automatic detection . . . . . . . . . . . . . . . . . . . 98
5.3.2.4 Training and validation . . . . . . . . . . . . . . . . . 99
5.3.2.5 Detection . . . . . . . . . . . . . . . . . . . . . . . . . 100



5.3.2.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Landmark detection 107
6.1 Literature overview of landmark detection with deep learning . . . . . 107

6.1.1 2015-2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1.1.1 Detailed literature overview . . . . . . . . . . . . . . . 108

6.1.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Aortic annular plane and coronary ostia detection . . . . . . . . . . . . 111

6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2.1 MDCT imaging . . . . . . . . . . . . . . . . . . . . . 111
6.2.2.2 Manual detection . . . . . . . . . . . . . . . . . . . . 112
6.2.2.3 Automatic detection . . . . . . . . . . . . . . . . . . . 113
6.2.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . 115

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Curriculum deep reinforcement learning with different exploration strate-
gies:
A feasibility study on cardiac landmark detection . . . . . . . . . . . . 120
6.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1.1 Patient and imaging data . . . . . . . . . . . . . . . . 121
6.3.1.2 Landmark detection with reinforcement learning . . . 122
6.3.1.3 Landmark detection with deep reinforcement learning 123
6.3.1.4 Landmark detection with curriculum deep q-learning 124
6.3.1.5 The exploring agent . . . . . . . . . . . . . . . . . . . 125
6.3.1.6 Algorithmic details . . . . . . . . . . . . . . . . . . . 125
6.3.1.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.3 Q-landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conclusions and future perspectives 131
7.1 Research conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.1.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.1.2.1 Enabling automated device size selection for TAVR . 133
7.1.2.2 Towards safe and efficient pre-operative planning of

transcatheter mitral valve replacement (TMVR) . . . 134
7.1.3 Landmark detection . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1.3.1 Aortic annular plane and coronary ostia detection . . 135
7.1.3.2 Curriculum deep reinforcement learning with different

exploration strategies: A feasibility study on cardiac
landmark detection . . . . . . . . . . . . . . . . . . . 135

7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.1 Future directions per study . . . . . . . . . . . . . . . . . . . . 136

7.2.1.1 Aortic valve morphology classification . . . . . . . . . 136
7.2.1.2 Enabling automated device size selection for TAVR . 137



7.2.1.3 Towards safe and efficient pre-operative planning of
TMVR . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.1.4 Aortic annular plane and coronary ostia detection . . 138
7.2.1.5 Curriculum deep reinforcement learning with different

exploration strategies: A feasibility study on cardiac
landmark detection . . . . . . . . . . . . . . . . . . . 139

7.2.2 General future direction . . . . . . . . . . . . . . . . . . . . . . 139
7.2.2.1 Continuous learning . . . . . . . . . . . . . . . . . . . 139
7.2.2.2 Medical image pipelines . . . . . . . . . . . . . . . . . 140
7.2.2.3 Learning with less data . . . . . . . . . . . . . . . . . 140

References 143

A Towards realistic and tailored medical image generation 163
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.2.1 MDCT images . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.2.2 Generative adversarial network . . . . . . . . . . . . . . . . . . 164
A.2.3 Training, evaluation and Z-arithmetic . . . . . . . . . . . . . . 165

A.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B Light-weight algorithm for deep learning architecture evolution 167
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.2.2 Individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.2.3 Mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2.3.1 Mutation details . . . . . . . . . . . . . . . . . . . . . 170
B.2.4 Training and validation . . . . . . . . . . . . . . . . . . . . . . 170
B.2.5 Evolution algorithm . . . . . . . . . . . . . . . . . . . . . . . . 170

B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
B.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C Echocardiographic analysis with deep learning: from cardiac cycle
classification to cardiac output regression 175
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.2 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
C.2.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
C.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 178

D Cohort overview 181
D.1 Aortic cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D.1.1 Classification cohort . . . . . . . . . . . . . . . . . . . . . . . . 183
D.1.2 Membranous Septum Detection . . . . . . . . . . . . . . . . . . 183

D.2 Mitral cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183





List of Figures

1.1 Overview of the FEops HEARTguideTM workflow. . . . . . . . . . . . 3
1.2 Schematic overview of TAVR . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The human heart with a focus on the mitral valve apparatus . . . . . 5
1.4 Schematic drawing of the aortic root and components. . . . . . . . . . 10

2.1 A schematic overview of the interaction between the elements of machine
learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Example of linear regression: house price prediction. . . . . . . . . . . 17
2.3 Simplified plot of error vs. model complexity. . . . . . . . . . . . . . . 20
2.4 Cross-validation using k-folding. . . . . . . . . . . . . . . . . . . . . . 21
2.5 Feedforward networks with zero and one hidden layer . . . . . . . . . . 22
2.6 The first deep learning architectures. . . . . . . . . . . . . . . . . . . . 24
2.7 The architecture of LeNet-5 . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Schematic overview of a convolutional layer . . . . . . . . . . . . . . . 25
2.9 The sigmoid and tanh activation functions and their derivatives. . . . 26
2.10 Types of pooling layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 The ReLU and Leaky ReLU activation functions and their derivatives 29
2.12 Dropout layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.13 The architecture of AlexNet. . . . . . . . . . . . . . . . . . . . . . . . 30
2.14 The architecture of VGG-16. . . . . . . . . . . . . . . . . . . . . . . . 31
2.15 Overview of the U-Net architecture. . . . . . . . . . . . . . . . . . . . 32
2.16 Inception block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.17 Dilated convolutional layer. . . . . . . . . . . . . . . . . . . . . . . . . 33
2.18 Residual block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.19 Overview of the V-Net architecture . . . . . . . . . . . . . . . . . . . . 34
2.20 Dense block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.21 Overview of the DenseVNet architecture. . . . . . . . . . . . . . . . . . 36

3.1 Overview of the blood flow of the human heart. . . . . . . . . . . . . . 38
3.2 Different ways to access the heart . . . . . . . . . . . . . . . . . . . . . 40
3.3 Schematic overview of the anatomy of the aortic root . . . . . . . . . . 41
3.4 Schematic overview of a TAVR procedure . . . . . . . . . . . . . . . . 42
3.5 Schematic representation of the details of the mitral valve. . . . . . . . 44
3.6 Image and meta-information of CT slices. . . . . . . . . . . . . . . . . 46

4.1 Region of interest classification in 2D CT images. . . . . . . . . . . . . 51
4.2 Classification of patches to segment the LV from CT images. . . . . . 51
4.3 View classification from 2D US images with U-Net and VGG-16. . . . 54
4.4 Models used to segment non-contrast chest CT scans to derive the

Agatston score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Workflow to detect five regions of the heart from CT images. . . . . . 56



4.6 The two-path architecture for simultaneous use of polar and Cartesian
representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Chronological overview of the most significant milestones of the pre-
sented literature and the bicuspid aortic valve (BAV) classification
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Schematic overview of the different types of bicuspid aortic valves . . . 61
4.9 Schematic overview of different aortic dilation patterns in bicuspid

aortic valve patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 The aortic valve perpendicular plane and the 3D hockey puck view of

tricuspid and bicuspid aortic valve patients. . . . . . . . . . . . . . . . 64
4.11 Overview of the exported resolutions for both bicuspid and tricuspid

patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.12 The 3D architecture to classify bicuspid- and tricuspid patients. . . . 66
4.13 Receiver operating characteristic curve to correctly classify aortic valve

morphology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.14 Output of the second 3D convolutional layer of the classification model. 67

5.1 A deep learning architecture to segment the LV from MR images in 2016. 73
5.2 Schematic overview of a segmentation architecture in 2016: 15-layer

deep FCNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Segmentation through low- and normal resolution patches. . . . . . . . 76
5.4 Image flow from 3D medical image to 3D segmentation in 2017. . . . . 77
5.5 A deep learning architecture to segment medical images in 2018 . . . . 80
5.6 Bi-ventricle segmentation using a dual input CNN model. . . . . . . . 81
5.7 Comparison of two methods that segmented the left ventricle from MR 84
5.8 Chronological overview of the most significant milestones of the pre-

sented literature, the TAVR device size selection study and the mitral
valve annulus detection study. . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Example of the aortic annular planes and the accompanying binary
masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.10 Schematic overview of the architecture used to segment the aortic annulus. 89
5.11 The residual block of the aortic annulus segmentation architecture. . . 90
5.12 General overview of the method to segment the aortic annulus from

MDCT images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.13 Scatter plots comparing the inter-observer correlation for area and

perimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.14 Bland-Altman plots for area and perimeter measurements between

observer 1 and the model . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.15 The agreement between prosthesis sizes from the Edwards Sapien 3 and

Medtronic Evolut TAVR sizing chart. . . . . . . . . . . . . . . . . . . 94
5.16 Overview of the procedure to manually detect the mitral valve annulus. 97
5.17 Overview of the automatic mitral annulus detection strategy. . . . . . 100
5.18 A visual comparison between ground truth and prediction of 4 patients.102
5.19 Bland-Altman and correlation plot comparing the 2D perimeter of the

predicted mitral valve annulus and ground truth. . . . . . . . . . . . . 103
5.20 Schematic overview of the implementation of the proposed method in a

clinical workflow for planning transcatheter mitral valve interventions 104

6.1 The vector field prediction used to trace TAVR landmarks. . . . . . . 109
6.2 Chronological overview of the most significant milestones of the pre-

sented literature, the aortic landmark detection study and landmark
detection with curriculum deep Q-learning. . . . . . . . . . . . . . . . 110



6.3 Overview of the anatomy of the aortic root . . . . . . . . . . . . . . . 112
6.4 Overview of the MDCT images and the created mask. . . . . . . . . . 113
6.5 Overview of the aortic landmark detection strategy. . . . . . . . . . . 114
6.6 Overview of the post-processing step of the aortic landmark detection

strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 The correlation between the predicted coronary ostium heights and the

ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.8 Bland-Altman analysis for left- and right coronary ostium height. . . . 117
6.9 An example of the detected landmarks from an unseen patient . . . . 117
6.10 Schematic drawing of the aortic root and the membranous septum. . . 120
6.11 The three points defining the inferior border of the membranous septum.122
6.12 Overview of landmark detection in a medical image using reinforcement

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.13 The architecture of the duelling DQN model. . . . . . . . . . . . . . . 124
6.14 Graphical representation of the curriculum learning approach. . . . . . 124
6.15 Overview of the three action-selection strategies. . . . . . . . . . . . . 125
6.16 The evolution of the distances to the target landmarks for each sub-

starting point for all three action-selection strategies. . . . . . . . . . . 128
6.17 The agent’s path in the medical image and q-landscape for each of the

target landmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 Schematic overview of an generic web-based medical image analysis
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Overview of the architecture of the generator model G. . . . . . . . . . 164
A.2 Comparison between a real and generated image of the aortic annular

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.3 Generated images and the histogram of their associated latent space. . 166

B.1 Examples from the MNIST dataset: handwritten numbers ranging from
0 to 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.2 The initial deep learning architecture of an individual. . . . . . . . . . 169
B.3 A grown deep learning architecture with a fitness score of 0.94. . . . . 171
B.4 A plot of the fitness of the individuals in time . . . . . . . . . . . . . . 171

C.1 Example of US images from the cardiac cycle. . . . . . . . . . . . . . . 176
C.2 A schematic overview of the temporal classification architecture . . . . 177
C.3 A schematic overview of the temporal regression architecture. . . . . . 177
C.4 The receiver operating characteristic curves of the configurations. . . . 178

D.1 Gender and age distribution of the aortic cohort . . . . . . . . . . . . 181
D.2 Contrast information of the aortic cohort . . . . . . . . . . . . . . . . 182
D.3 Manufacturers information of the aortic cohort . . . . . . . . . . . . . 182
D.4 Gender and age distribution of the mitral cohort . . . . . . . . . . . . 183
D.5 Contrast information of the mitral cohort . . . . . . . . . . . . . . . . 184
D.6 Manufacturers information of the mitral cohort . . . . . . . . . . . . . 184





List of Tables

2.1 Confusion matrix to evaluate the outcome of a binary classifier. . . . . 19

3.1 Overview of the current clinical trials on low risk patients. . . . . . . . 43

4.1 Summary of cardiac classification with deep learning in 2015-2016. . . 50
4.2 Summary of cardiac classification with deep learning in 2017. . . . . . 52
4.3 Summary of cardiac classification with deep learning in 2018 . . . . . 53
4.4 Summary of cardiac classification with deep learning in 2019 . . . . . 57
4.5 Classification of patient characteristics . . . . . . . . . . . . . . . . . . 63
4.6 Subtype details of the BAV patients in the cohort . . . . . . . . . . . . 63

5.1 Summary of cardiac segmentation with deep learning before 2016. . . 72
5.2 Summary of cardiac segmentation with deep learning in 2016. . . . . . 73
5.3 Summary of cardiac segmentation with deep learning in 2017. . . . . . 75
5.4 Summary of cardiac segmentation with deep learning in 2018 . . . . . 79
5.5 Summary of cardiac segmentation with deep learning in 2019 . . . . . 83
5.6 Training details for the aortic annular plane segmentation. . . . . . . . 90
5.7 Data-augmentation details for training the aortic annulus segmentation

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.8 Comparison of the aortic annulus perimeter and area between model

and both observers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Training details of the mitral valve annulus segmentation training. . . 99
5.10 Comparison between the clinical measurements of the observer and the

predicted measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Summary of landmark detection with deep learning in 2015-2019 . . . 108
6.2 Training details of the aortic landmark detection training. . . . . . . . 114
6.3 Comparison of the Euclidean distances between the predicted and

ground truth aortic landmarks. . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Comparison between the predicted and the ground truth coronary

ostium heights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5 A summary of the Euclidean distances from the predicted landmark to

the target landmark for all three action-selection strategies. . . . . . . 127
6.6 Comparison of the Euclidean distances between the predicted and target

landmarks (d1), and the target points identified by the two observers
(d2). Paired difference (paired diff.) in mm. . . . . . . . . . . . . . . . 128

C.1 Image quantity configuration overview. . . . . . . . . . . . . . . . . . . 178





Acronyms

1D one-dimensional.
2D two-dimensional.
3D three-dimensional.
4D four-dimensional.

AAP aortic annular plane.
Adam adaptive moment estimation.
AI artificial intelligence.
AS aortic stenosis.
AUC area under the roc curve.
AV atrioventricular.

BAV bicuspid aortic valve.

CAC coronary artery calcification.
CAGR compound annual growth rate.
CNN convolutional neural network.
CoA coarctation of the aorta.
CS cardiac sarcoidosis.
CT computed tomography.

DBN deep belief network.
DCGAN deep convolutional generative adversarial networks.
DL deep learning.
DNN deep neural network.
DQL deep q-learning.
DQN deep q-network.

ECG electrocardiography.
EDV end-diastolic volume.
EF ejection fraction.
ESV end-systolic volume.

FCNN fully convolutional neural network.
FN false negative.
FP false positive.

GAN generative adversarial network.
GPU graphical processing unit.

HU Hounsfield units.



LA left atrium.
LCC left coronary cusp.
LCO left coronary ostium.
Leaky ReLU leaky rectified linear unit.
LV left ventricle.
LVH left ventricle hypertrophy.
LVOT left ventricular outflow tract.

MAC mitral annular calcification.
MDCT multidetector computed tomography.
ML machine learning.
MR magnetic resonance.
MSE mean squared error.

NCC non coronary cusp.
NLL negative log-likelihood.

OCT optical coherence tomography.

PET positron emission tomography.

RA right atrium.
RCC right coronary cusp.
RCO right coronary ostium.
ReLU rectified linear unit.
RI retinal images.
RNN recurrent neural network.
ROI region of interest.
ROM random orthogonal matrices.
RV right ventricle.

SAVR surgical aortic valve replacement.
SGD stochastic gradient descent.
STS-PROM society of thoracic surgeons predicted risk of mortal-

ity.
SV stroke volume.

TAVR transcatheter aortic valve replacement.
TMVR transcatheter mitral valve replacement.
TN true negative.
TP true positive.

US ultrasound.

WHO world health organization.



1
Introduction

Artificial intelligence
is the new electricity

Andrew Ng

Artificial intelligence (AI) has known an unprecedented rise in the past decade,
including medical image analysis. This extraordinary progress was made possible
through substantial advancements in its subfields: machine learning (ML) and deep
learning (DL). Current algorithmic performances surpass similar algorithms or even
humans by a large margin, and although many are enthusiastic about this scientific
achievement, others fear what the future might bring. AI has already known uprises
and downfalls 1 in the past, and therefore, it is essential to temper the current
enthusiasm by matching it with realism, including the domain of medical image
analysis. AI can assist the human physician with the medical image analysis by
providing efficient and accurate models that encapsulate expert knowledge. However,
the human aspect and human decision making in health care will always be crucial [1,
2].

This doctoral thesis involves AI to analyse cardiovascular medical images and aims
to provide efficient and accurate models that can assist the physician in the decision-
making process. The main focus lies with transcatheter heart valve interventions
where the number of treatments and patients is expected to increase significantly
in the coming years. Since these interventions are closed-chest procedures, accurate
pre-operative medical image analysis is crucial for optimal patient treatment. However,
the analysis is not always straightforward due to the complexity of specific pathologies,
image dimensions, image quality and the operator experience. For example, bicuspid

1The so-called ‘AI-winters’
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aortic valves are still, for the experts’ eye, a pathology that is challenging to detect
on a three-dimensional (3D) image. Automatic image analysis may offer a solution
here. Moreover, automation can help to increase efficiency in experienced high-volume
centers, and this can also help in less experienced centers to increase the accuracy of
the analyses.

To meet these needs, I have investigated several of these transcatheter heart valve
interventions and devised automatic techniques, based on deep learning, that can
assist the physician with cardiovascular medical image analysis.

1.1 FEops

This PhD was supported by the European Horizon 2020 Framework2 through the
MSCA-ITN3 and was part of the MUSICARE4 PhD training program. The main goal
of MUSICARE was to create a bridge between academia, industry and physicians in
order to foster research and develop technology in the cardiovascular domain. One of
the partners of this project was FEops, which is where I conducted this PhD research.

FEops started as a spin-off company from UGent and is now a company that
provides personalised computational modelling and simulation for structural heart
interventions. FEops HEARTguideTM is a platform that uses advanced simulation
technology to provide physicians and device manufacturers pre-operative insights into
the interaction between a device and the specific patient anatomy. These insights may
accelerate research and development of novel transcatheter-based solutions and have
the potential to improve clinical outcomes in a hospital setting.

FEops HEARTguideTM encapsulates the following workflow: first, a physician
uploads medical images of a patient. Upon receiving these images, trained case
analysts inspect the images by rating the image quality and perform pre-processing
steps such as cardiac phase selection, region of interest selection and anatomical
measurements. This step is crucial for the subsequent steps and the final report. Next,
the simulations are carried out. The interaction of the device within the anatomy is
simulated during the finite element analysis (FEA) and, in case of aortic heart valve
replacement, computed fluid dynamics (CFD) simulation is used to predict potential
valve leakage. Finally, a report summarises the image analysis and the output of the
simulations and is made available online where the physician can inspect the report.
An overview of this workflow is depicted in Figure 1.1.

2European Horizon 2020 Framework project number 642458
3Marie Sklodowska-Curie Action International Training Network
4MUltiSectorial Integrative approaches to CArdiac caRE: www.musicare2020.eu
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Figure 1.1: Overview of the FEops HEARTguideTM workflow. The workflow starts
when a customer uploads medical images. Next, image processing and anatomical
measurements are performed by trained case analysts. After the simulations, a report
is sent back to the customer.

The first patient-specific modelling workflow of FEops focused on the interaction
between a prosthesis and the aortic valve anatomy during a transcatheter aortic
valve replacement (TAVR). During the past years, FEops has performed the above-
described workflow to a significant number of patients to simulate a TAVR procedure.
The medical images of these patients and corresponding expert annotations were
the starting point of my research in the domain of the aortic valve. In this thesis,
we introduce novel methods that automate a few of the TAVR pre-operative image
analyses.

1.2 Aortic valve

The aortic valve lies between the left ventricle and the aorta. This semilunar heart
valve normally has three leaflets which prevent the blood from flowing backwards
during ventricular diastole. Aortic stenosis (AS) is a progressive valvular heart disease
that reduces the motion of the aortic leaflets and valve area [3]. The conventional
treatment for aortic stenosis is open-chest surgical aortic valve replacement (SAVR) but
for patients at high- and intermediate surgical risk, a minimally invasive alternative,
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called TAVR, has become a well-accepted procedure [4–6].

TAVR is a closed-chest procedure, and in order to assess the anatomical properties,
a heart team analyses the diseased aortic valve pre-operatively with CT images [7].
During a TAVR, a crimped prosthetic valve is positioned in the aortic root and
deployed. The expanding metallic frame crushes the calcified native leaflets against
the aortic wall and, prosthetic leaflets attached to this frame take over the valve’s
function (Figure 1.2).

Figure 1.2: Schematic overview of TAVR. The transcatheter aortic valve is positioned
in the aortic root and deployed. Image from [4].

TAVR has known a significant evolution in the past decade, evolving from a last
resort procedure for an inoperable patient [8], to a proper alternative to the surgical
approach for high-risk patients [9–11]. Soon thereafter, studies concluded that treating
intermediate-risk patients using TAVR has a similar outcome as the surgical approach
[12, 13], and recent studies showed that TAVR is at least as good as the surgical
approach in low-risk patients [14, 15]. Including high-, intermediate- and low-risk
patients as candidates for TAVR will significantly increase the number of patients
undergoing this treatment. This evolution is reflected in the expected global TAVR
market revenue which is expected to grow towards $8 billion by 20255.

5https://www.alliedmarketresearch.com/tavi-market
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1.3 Mitral valve

Efforts have been made to apply the knowledge of transcatheter aortic valve
solutions to the field of other heart valves such as the mitral valve. Mitral valve
regurgitation is the most common valvular disease in the western world, affecting
1 in 10 individuals aged 75 and older [16, 17]. Regurgitation is the inability of a
valve to close completely, which influences the prevention of the back-flow of the
blood. Currently, the standard procedure for mitral valve regurgitation is the surgical
approach. However, similar to the story of TAVR, high-risk patients are excluded from
this invasive surgery. Percutaneous mitral valve repair can be a viable alternative for
this high-risk patient group [18], but recent data also shows that transcatheter mitral
valve replacement (TMVR) is an emerging option [17, 19].

The complexity of the mitral valve is one of the reasons that transcatheter-based
solutions in this field are moving slower. The mitral valve has a non-planar, saddle-
shaped annulus which deforms significantly during the cardiac cycle. This anatomical
shape is difficult to determine, but the adequate characterisation is crucial for research
and clinical purposes. Figure 1.3 depicts a simplified image of the mitral valve. Since
it is important to capture the movement of the mitral valve annulus, volumetric CT
images are used to capture the cardiac cycle resulting in four-dimensional (4D) (3D +
time) medical images. In this thesis, we discuss a novel method to detect the mitral
valve annulus from medical images automatically.

Figure 1.3: The human heart with a focus on the mitral valve apparatus. Image from
www.heart-valve-surgery.com.
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1.4 Medical image analysis

The aortic- and mitral transcatheter-solutions require medical image analysis in
order to understand the anatomy and pathology of the valve. In the domain of the
aortic valve, 3D CT images are standard while 4D CT images are preferred for mitral
valve treatments. The analysis of the medical images is performed manually by a
trained operator using expert software. This analysis takes time and depending on
the experience of the operator may entail human error. Moreover, the analysis may
be hampered by the image quality and degree of pathology. Artefacts such as motion,
noise or signal resonance can omit anatomical details while pathology can obscure
exact anatomical measurements. For example, the identification of the mitral valve
annulus is difficult for patients with a high degree of mitral annular calcification. The
image quality and degree of pathology are not only essential factors for pre-operative
planning or as a pre-processing step for simulations but also crucial when developing
automatic image analysis methods.

When I started in my PhD in 2015, Dr. Philippe Bertrand generously provided a
dataset of 10 patients. Each sample in this dataset consisted of a sequence of ultrasound
(US) images and associated measurements of the mitral valve. Armed with two methods
[20, 21], I started a quest to extract anatomical features - automatically, because,
it was foreseen that my research could automatise the image analysis component
within FEops. After a few successes, we had a meeting with some colleagues from the
University of Leuven, who explained to us their image analysis tool. This tool helped
us to analyse each frame of the image sequence separately and identify anatomical
features. When moving to the next frame in the image sequence, all previously
identified anatomical features were not taken into account. We quickly realised that if
we were going to automatise the image analysis component, we needed to contain, use
and include as much data as possible. It was at that moment that the research domain
of this PhD shifted towards machine learning and deep learning. One of the first
realisations of entering the domain of machine learning is that we had to abandon this
dataset because it was too small, plus the interest of FEops moved towards another
imaging modality.

Machine learning approaches learn to perform a task by using features that describe
the data. Unfortunately, given the high dimensionality of the medical images used in
the field of aortic and mitral transcatheter-solutions, two problems may occur. The
first problem is the curse of dimensionality. When the number of dimensions of the
data is high, many of the machine learning algorithms may not find a proper solution
or even fail [22]. For example, predicting a point in a 3D CT image becomes a needle
in a haystack problem: the search space is enormous compared to the solution. The
second problem concerns feature engineering. Classification methods, such as logistic
regression, use features that describe the data. For example, is the patient a smoker
or not. The quality of these features is determined by the ability to support the
classification task. If the feature is not relevant to the classification, it will not benefit
the classification and may even contribute to the curse of dimensionality. However,
how to determine the quality of a feature? Also, how do we know when we have
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enough features?

1.5 Introducing deep learning
Deep learning deals with the two problems mentioned above. Even when analysing

high-dimensional data, deep learning will be able to model the data adequately because
it can draw non-linear, complex-shaped decision boundaries. Deep learning follows the
general principles of machine learning which is that it can learn from large quantities
of data and generalise to previously unseen data. However, in order to develop a high
performing machine learning model, a rich collection of features must be available.
As previously stated, engineering these features by hand may entail difficulty. Deep
learning skips this step and learns these features by itself.

Deep learning has revolutionised image analysis in the past decade. It re-emerged
in 2012, when a convolutional neural network (CNN) won a global image recognition
competition by a large margin [23]. It did not take long before deep learning was
introduced in the biomedical domain. In 2015, a two-dimensional (2D) CNN model
called U-Net outperformed other biomedical segmentation algorithms in two different
competitions [24]. A 3D CNN model called V-Net was proposed one year later and
was applied to segment the prostate from magnetic resonance (MR) images [25]. The
evolution did not stop here, and in 2018, Gibson et al. presented a 3D CNN model
called DenseVNet. This model was capable of segmenting several organs from 3D CT
images [26].

In this thesis, we present automatic methods that use deep learning to perform
cardiovascular image analysis. Given the expected growth of the number of patients,
the presented methods may provide powerful tools to enable efficient and accurate
cardiovascular medical image pipelines.

1.6 Conclusion
In this introduction, I presented FEops, the company where I conducted this PhD

research. After which, TAVR and transcatheter mitral solutions were introduced with
a strong emphasis on the pivotal role of medical image analysis. Finally, I touched on
deep learning and the potential it provides to the field of (medical) image analysis.

1.7 Research contributions
In the following sections, I present an overview of the research contributions in

this thesis. These sections can be categorised into classification, segmentation and
landmark detection.

1.7.1 Aortic valve morphology classification

In this study, we hypothesised that deep learning could be used to classify tricuspid
and bicuspid aortic valve (BAV) patients from MDCT images. BAV is the most
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common congenital heart disorder in adults. The presence of BAV is a crucial factor
when selecting the proper treatment for patients with symptomatic severe aortic
stenosis who are at increased risk for surgery. Experts claim that it is difficult to
classify this pathology, as the leaflet calcification may prevent proper classification
and the imaging modality may not reveal the details of the pathology.

This retrospective study was performed on patients who had been referred for
TAVR. MDCT imaging was used to label the aortic valve morphology as tricuspid
or bicuspid, and a 3D CNN was developed to classify the MDCT images. The cross-
validation of the dataset showed that a trained 3D CNN had an excellent ability to
classify aortic valve morphology from MDCT imaging correctly, with a high degree
of both sensitivity (100%) and specificity (92%). These results are very favourable,
especially given the relatively small dataset on which the model was trained. Given
these results, it is foreseeable that a tool such as this could be used by clinicians to
identify BAV.

1.7.2 Segmentation

1.7.2.1 Enabling automated device size selection for TAVR

Different measurements of the aortic annulus are crucial during the decision-
making process prior to a TAVR procedure. For example, the area or perimeter of the
measured aortic annulus determines (among other measurements) the final prosthesis
device size. The aortic annulus is measured on the aortic annular plane (AAP); a
two-dimensional (2D) plane defined by the lowest hinge points of the aortic valve’s
leaflets.

In this retrospective study, the images and expert data of 473 patients were used
to train two CNN models to segment the aortic annulus from multi-resolution MDCT
images. The medical images were resampled to two resolutions (1.0 and 0.5 mm),
and each model was trained with a different resolution, but the validation used the
input of both models. The area and perimeter were derived from the predicted
segmentation and were used to select prosthesis sizes of the Edwards Sapien 3 and
the Medtronic Evolut device. The validation was performed in two steps using a
test dataset of 118 patients. First, the differences between the manually obtained
aortic annulus measurements and the automatic predictions were determined and
found to be similar to the differences between two independent observers. These
differences indicate a satisfying accuracy of the proposed approach. Secondly, the
predicted area and perimeters were inserted in the sizing charts of the Edwards Sapien
3 and the Medtronic Evolute device. It was found that the automatically selected
device sizes accorded well with the manually determined device sizes. This accordance
confirms the adequate model accuracy again. The total analysis time from AAP to
prosthesis size is below 1 second, which is much faster than the manual processing
time of approximately 10 minutes. Therefore, the proposed method can speed-up the
current pre-operative TAVR planning as well as reduce analysis errors, for example,
in inexperienced centers.
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1.7.2.2 Towards safe and efficient pre-operative planning of tran-
scatheter mitral valve replacement (TMVR)

The detection of the mitral valve annulus is a time-consuming and challenging
process. The mitral valve annulus has a saddle-shaped anatomy, which changes in
size and shape during the cardiac cycle. From the detected mitral valve annulus,
additional measurements can be assessed such as the area, 2D and 3D perimeter,
trigone-to-trigone-, septal-lateral- and commissure-to-commissure distance. The mitral
valve annulus and the derived measurements thereof are crucial during the TMVR
procedure and mitral valve prosthesis development.

This retrospective study used the images and expert data of 71 patients to train
deep learning models to segment the mitral valve annulus from volumetric MDCT
images. Once segmented, the derived measurements mentioned earlier were computed
during a post-processing step. The method was cross-validated due to the limited size
of the dataset. The accuracy of the method was confirmed by comparing the predicted
and manually derived measurements. The total analysis time of the proposed method
is less than 1 second per patient, which is much faster the manual processing time of
approximately 25 minutes per patient. The efficiency and accuracy of the proposed
method provide the confidence to move towards implementation of this technology in
clinical practice. A proposal for such a medical image analysis pipeline was presented.

1.7.3 Landmark detection

1.7.3.1 Aortic annular plane and coronary ostia detection

During the pre-operative planning of a TAVR procedure, the MDCT images are
used to identify certain anatomical risk factors. For example, the distances from
the AAP to the left coronary ostium (LCO) and the right coronary ostium (RCO)
are identified. These distances help to understand the risk of coronary obstruction.
This obstruction is a potentially life-threatening complication during which the blood
flow to a coronary artery is reduced significantly. The AAP is defined by the three
lowest hinge points of the aortic valve’s leaflets: the left coronary cusp (LCC), the
non coronary cusp (NCC) and the right coronary cusp (RCC) (Figure 1.4).

In this retrospective study, the images and expert data of 344 patients were used
to train models that could detect the LCC, NCC, RCC, LCO and RCO. The output
of three trained CNN models were combined, and the predicted points were obtained
after a post-processing step. The validation was performed on a test dataset of 100
patients (excluded from the training phase), and it was shown that the five landmarks
could be detected efficiently and accurately with the proposed method. An inter-
observer variability study was also conducted, and the difference between the manually
and automatically identified landmarks was generally smaller when compared to
differences observed between two independent observers. This difference indicates that
the suggested approach detects these landmarks within acceptable accuracy. Finally, it
was also illustrated that the method allows to accurately determine clinically relevant
measurements such as coronary height - automatically. The total analysis time from
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MDCT image to the predicted landmarks was less than 1 second, which clearly shows
the potential of the proposed method to speed up current pre-operative planning.

Figure 1.4: Schematic drawing of the aortic root and components. Image from [27].

1.7.3.2 Curriculum deep reinforcement learning with different ex-
ploration strategies: A feasibility study on cardiac landmark
detection

In this retrospective study, a curriculum deep q-learning (DQL) algorithm was
used to detect the inferior border of the membranous septum automatically. This
border is a known anatomical marker for the atrioventricular conduction path and
was defined in our study by three points. The pre-operative assessment of the location
of the atrioventricular conduction path is crucial to understand the risk of conduction
abnormalities following a TAVR.

The idea behind DQL is that an artificial agent learns to find the points within
the medical image. The agent has a limited view and learns to walk towards the
target points. During this walk, it tries to maximise some notion of cumulative
reward. We applied curriculum learning in order to gradually teach the agent to
find the points defining the inferior border of the membranous septum. The method
was cross-validated due to the small size of the dataset consisting of 278 patients.
The output of this study was three-fold: first, the validation illustrated that the
method was accurate and efficient, and an inter-observer variability study confirmed
the accuracy. Next, two novel action-selection strategies α-decay and action-dropout
were introduced and compared to the already established ε-decay. Finally, the task of
detecting these points is computationally cheap (when compared to similar methods)
yet difficult enough to serve as a baseline to experiment with novel DQL techniques.
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1.8 Structure of this thesis

Since this research is fueled by deep learning, a broader and in-depth introduction
of deep learning focussing on image-related tasks is presented in chapter 2. As
described above, deep learning has been applied to medical images in order to support
pre-operative planning in the field of transcatheter-based structural heart interventions.
The clinical background and expected evolution in this domain are presented in chapter
3. Chapters 4, 5 and 6 address methods that perform classification, segmentation and
landmark detection in cardiovascular medical images and each contain a state-of-the-
art literature overview. The conclusions and future directions of this thesis can be
found in chapter 7.
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2
Deep learning

The art of simplicity
is the puzzle of complexity

Douglas Horton

In this chapter, the necessary machine learning and deep learning concepts are
introduced to support subsequent chapters. In the first part of this chapter, the
general elements of machine learning are explained. These elements are essential to
understand concepts such as learning rate, overfitting and others and will return in
the rest of this thesis. Since this research was fuelled by deep learning, there is a
thorough explanation of deep learning concepts and mechanisms in the final section
of this chapter. I refer to the following works for an in-depth overview of machine
learning [28, 29] and deep learning [30].

2.1 Machine learning

Computer scientist and machine learning pioneer Tom Mitchell defines machine
learning as follows; ‘A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E’ [28].

In Figure 2.1, an example is presented that shows the interaction between the
elements introduced by Mitchell. The task T is to classify images of the heart and
liver. A learning algorithm trains a model by using the labelled images, which is the
experience E. During training, a performance measure P identifies the accuracy of the
model. For example, the model may think that an image of the heart is 80% heart
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Figure 2.1: A schematic overview of the interaction between the elements of machine
learning.

and 20% liver. After training, the model can be used to classify previously unseen
images during the test phase.

The definition mentioned above is a good starting point to understand the general
concepts of machine learning. However, it does not explain how a computer program
or learning algorithm learns from data, nor does it explain the organisation of the
data, which will be the subject of the following sections.

2.1.1 Types of machine learning

In the previous example, a dataset of labelled images was assumed and used to
train a model. This type of learning is called supervised learning; where input-output
pairs are used to accomplish a task, and the relationship between input and output is
known. Supervised learning can be categorised into regression and classification. In
the case of regression, a model learns a function that maps the input to a continuous
output variable - for example, house price prediction based on the size of the house. In
the case of classification, a model learns a function that maps the input to a discrete
output variable - for example, cancer prediction based on the size of a tumour.

The second type of learning is called unsupervised learning. This self-organising
learning method tries to find patterns in the data without using labels. For example,
in the liver and heart classification example, clustering pixels in the images can be
an unsupervised task. This clustering could be used to measure blood pools in the
images. The final type of learning is reinforcement learning. This area of machine
learning focuses on how artificial agents take actions in an environment in order to
maximise some notion of cumulative reward.

In this thesis, we will mostly use supervised learning; however, all three types of
learning will be used. In the next example, linear regression, logistic regression and
neural networks are explained in order to establish some terminology and introduce
machine learning concepts.
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Figure 2.2: Example of linear regression: house price prediction. The goal is to find
the line that best fits the training data. This line can be used to predict house prices of
houses which are not in the training set. For example, given a house of 350 m2, the
predicted price is 265.000 e.

2.1.2 Linear regression

In this section, linear regression is explained by using a house price prediction
example. The size of the houses are the input features of the model (or x), and the
prices are the output features (or y). A pair of size and price is called a training
sample (or (x, y)), and all training samples form the training dataset. In Figure 2.2,
an example is depicted and a generated training set is plotted. As expected, smaller
houses cost less than bigger houses. One way to model this trend is to draw a line
through the data points. Once we have such a line, we can use this line to predict
house prices of houses which are not included in the training dataset.

The goal is to find the line that best fits the training data. This best fit is where
the average vertical distance from the plotted training samples to the line will be
the least. From the definition of a line, ŷ = w0 + w1x where w0 is the y-intercept of
the line and w1 is the slope of the line, it is clear that we need to find the values of
parameters w0 and w1. In order to evaluate the values of these parameters, the mean
squared error (MSE) can be used as a cost function and is defined as

MSE(ŷ, y) =
1

m

m∑
i=1

(ŷi − yi)2

where m is the number of predictions, y is the ground truth from the training dataset
and ŷ is the prediction of the model using the current values of w0 and w1 and the
input value x (or the house size in this example).

One method for finding optimal values for the weights is gradient descent. This
iterative algorithm tries to find the global minimum of the cost function by showing
the entire dataset to the model for several iterations (or epochs). During each iteration,
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gradient descent makes small changes to the weights in the direction that reduces the
cost. These directions are given by the negative gradient of the cost function. These
gradients are the partial derivative of the cost function with respect to the weights. In
the case of linear regression, the partial derivatives of the cost function (MSE) with
respect to w0 and w1 are computed as follows

∂MSE

∂w0
=

2

m

m∑
i=1

(ŷi − yi)

∂MSE

∂w1
=

2

m

m∑
i=1

(ŷi − yi)xi

and the weights w0 and w1 are updated after each epoch as follows

w0 = w0 − α
2

m

m∑
i=1

(ŷi − yi)

w1 = w1 − α
2

m

m∑
i=1

(ŷi − yi)xi

where α is defined as the learning rate, the most important hyper-parameter of gradient
descent.

2.1.3 Linear regression with multiple variables

By extending the previous example with an extra input feature, for example, the
number of bedrooms, the data can be modelled as follows: ŷ = w0 + w1x1 + w2x2,
where x1 and x2 represent the house size and number of bedrooms. Gradient descent
can be used to find the optimal values for the parameters w0, w1 and w2 by minimizing
MSE with learning rate α.

The data range of the house prices will be higher than the number of bedrooms.
For example, a house can have a size of 400 m2 while having three bedrooms. This
range difference needs to be addressed because gradient descent converges faster on
smaller ranges and may overshoot the global minimum (or oscillate) when the input
features are highly uneven. Both feature scaling and mean normalisation can be used
to address this problem. Feature scaling transforms the range of a feature into a new
range of just one and mean normalisation transforms the average of a feature into
zero. The advantage of using these two methods is a more stable training process,
while a larger learning rate can be used.

2.1.4 Logistic regression

In this section, logistic regression will be introduced by using the cancer prediction
example. The goal is to classify tumours as malignant or non-malignant by looking at
their sizes. In this binary classification problem, the input features are the tumour
sizes, and the output can have only two values 0 (non-malignant) or 1 (malignant).
Logistic regression uses the same model like linear regression but introduces a sigmoid



Deep learning 19

function to transform the output of the model into probabilities. The classification is
determined by the decision boundary, which is usually set to 0.5. Gradient descent
can be used to find the values of the parameters in this model by using the negative
log-likelihood (NLL) as cost function which is defined as

NLL(ŷ, y) = −
m∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi))

In order to rate a classification model such as logistic regression, the predictions
of the model can be compared to the ground truth. A predicted classified sample can
be identified as a true positive (TP), a false negative (FN), a false positive (FP) or a
true negative (TN) (Table 2.1).

Predicted positives Predicted negatives
Actual positives true positive (TP) false negative (FN)
Actual negatives false positive (FP) true negative (TN)

Table 2.1: Confusion matrix to evaluate the outcome of a binary classifier.

The following ratios are used to identify the performance of a classifier. The
positive predictive value (PPV) or precision is a fraction of true positive samples over
all positive samples. The negative predicted value (NPV) is a fraction of the true
negative samples over all negative samples.

PPV =
TP

TP + FP

NPV =
TN

TN + FN

The true positive rate, recall or sensitivity is a fraction of true positive samples
over the sum of the true positive and false negative samples. The true negative rate or
specificity is the similar ratio but for the negative samples. Sensitivity and specificity
are defined as

sensitivity =
TP

TP + FN

specificity =
TN

FP + TN

The performance of a classifier can also be expressed by computing the f1 score or
harmonic average between precision and sensitivity as follows

f1 =
2 ∗ precision ∗ sensitivity
precision+ sensitivity
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The f1 score is also known as the Sørensen-Dice coefficient, dice similarity coefficient,
or Dice score. In this thesis, the term Dice score will be used. And finally, the accuracy
of a classifier can be measured as follows

accuracy =
TP + TN

TP + FP + TN + FN

2.1.5 Generalisation

The main challenge of machine learning is to create a model that performs properly
on new, previously unseen data. This ability is called generalisation, and this is where
machine learning differs from optimisation. Training a model can be difficult, and it
is essential to understand the generalisation error during training which is why the
dataset is split into a training dataset, a validation dataset and a test dataset. This
spit enables us to understand the generalisation property of a model during and after
training. The training dataset is used to train a model and, the difference between the
predicted samples and the ground truth is the training error. The validation dataset
is used to evaluate the predictive power of the model during training without altering
the weights. The evaluation uses the cost function too, which yields the validation
error. The test dataset is used after training the model, and the test error expresses
the predictive power of the model to unseen samples.

The training- and test error are related to underfitting and overfitting. Underfitting
is the phenomenon where a model is unable to reduce the training error and overfitting
describes a significant difference between training- and test error. The best fit is where
training- and test error have the lowest value, and the difference between the two
errors is small (Figure 2.3).

Figure 2.3: Simplified plot showing the relationship between error vs. model complexity
and training- and test error. Image from [30].

2.1.6 Regularisation

Regularisation is defined as ‘any modification we make to a learning algorithm
that is intended to reduce its generalisation error but not its training error’ [30]. The
model’s size or capacity is defined by the number of learnable parameters in the model.
Whereas the capacity enables the model to represent a wider variety of functions,
regularisation can enable a preference towards a specific type of function. Many
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regularisation techniques exist, and some of them will be introduced in subsequent
sections. One method of regularisation adds a penalty Ω to the cost function. In the
previous example of linear regression, the cost function becomes

J = MSE + λΩ(w)

where w are the weights, Ω is the penalty and λ controls the strength of the penalty.

2.1.7 Cross-validation

Cross-validation can be used to maximise the amount of data used to train a
model and to get an idea of model performance. This approach can be beneficial in
case of small datasets. A commonly used method is k-folding, which spits the entire
dataset into k subsets. The training and test process is repeated k-times or folds.
During each fold, a different subset is used as a test dataset. The remaining subsets
are used as the training dataset. K-folding allows using the entire dataset as the test
dataset while preserving the separation between training and test dataset (Figure 2.4).
If k is equal to the size of the dataset, this method is called leave-one-out.

Figure 2.4: Cross-validation using k-folding (k=4) where the data is split into 4 subsets.

2.1.8 Hyper-parameter tuning

The training of a model uses specific values for the hyper-parameters. The learning
rate α is one of the essential hyper-parameters when using gradient descent. Choosing
a high learning rate can speed up the training process significantly but may cause
gradient descent to miss a local minimum (also known as overshooting). A low learning
rate will slow down the convergence speed, but the training process will not miss a
local minimum.

There are more hyper-parameters than the learning rate and the regularisation
strength controller λ. In this chapter, many more hyper-parameters will be introduced,
which all need appropriate tuning. Hyper-parameter tuning is the process of finding the
most optimal values for these parameters. The execution can be performed manually;
by testing a different value for a parameter or automatically in which there are two
general strategies; grid search and randomised search.
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Grid search trains and validates a model for every combination of hyper-parameters.
This approach requires a fixed range of values for each parameter. If the most optimal
values lie in between this fixed range, the values will not be discovered by executing
this grid search once. Randomised search fixes this by choosing random combinations
of the hyper-parameters that lie within a specific range.

2.1.9 Neural networks

The model behind linear- and logistic regression can be interpreted as a graph or
network. In Figure 2.5A, the model of the multiple variable linear regression example
is depicted. This network representation has an input layer L0, with inputs x0 = 1

and x1 = house size and x2 = number of bedrooms. The arrows represent the
multiplication of xi with the weights wi and connect L0 to L1, the output layer. In
this last layer, the results of the arrows are summed to the output ŷ. In the example
of logistic regression, a sigmoid function is applied to the output ŷ. The generic term
for such a function is the activation function.

Figure 2.5: Linear regression as feed forward network (A) and feedforward network
with one hidden layer (B).

It has been shown that the model in Figure 2.5A can derive the binary functions
AND and OR, but fails to derive the binary function XOR [30]. This problem can
be resolved by transforming the network into a multi-layer feedforward network (or
multi-layer perceptron) by adding an extra layer of abstraction in the model. We can
visualise this by adding an extra layer in the network as depicted in Figure 2.5B. In
this network, there is one hidden layer L1 between the input layer L0 and output layer
L2. This extra layer also contains weights (or parameters) and may also contain an
activation function. These models are called networks because they compose different
functions together in a directed acyclic graph.

Gradient descent optimises the weights of the neural networks in three steps:
forward-propagation, back-propagation and weight adjustment. During forward-
propagation, input samples flow from the input layer through the hidden layers until
the output layer. The cost function computes the difference (or cost) between the
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ground truth and the predictions. Back-propagation computes the gradients of the
weights with respect to this cost. The negative gradients are used to adjust the weights
accordingly with the learning rate α.

2.2 Deep Learning

The number of hidden layers determines the depth of the network, and when
there are five or more hidden layers in a neural network, we enter the domain of deep
learning.

In the next sections, essential elements of deep learning are introduced chrono-
logically. This historical ordering was chosen to show that 1), we are standing on
the shoulders of giants and 2), deep learning is not some novel technique of the past
decade. For the sake of brevity, a short (and incomplete) history of deep learning
before 1998 is given as introduction. Afterwards, essential milestones that made deep
learning to the field as we know it today are presented. Each milestone is accompanied
with the theoretical explanation. Note that there is a strong focus on image related,
biomedical deep learning milestones. For an extensive history of deep learning, I refer
to the following works [30, 31].

2.2.1 A short history of deep learning before 1998

McCulloch and Pitts proposed the first mathematical model for neural networks in
1943 [32]. Seven years later, the father of modern computing, Alan Turing, proposed
the imitation game, a method to determine whether a computer can think [33]. This
method was renamed and is currently known as the Turing Test. The foundation
of deep learning was laid in 1958 when Frank Rosenblatt presented the perceptron
model. This model was a system that could recognise ‘similarities or identities between
patterns of optical, electrical, or tonal information, in a manner which may be closely
analogous to the perceptual processes of a biological brain’ [34]. In 1959, the term
“machine learning” was first coined by Arthur Samuel, when he presented a checkers
program that improved its ability to play by analysing more data [35]. Soon after
that, in 1960, Henry J. Kelly published his ideas about control theory, which described
the behaviour of systems with input [36]. This work led to the development of back-
propagation, which is now used to train neural networks. In 1965, Ivakhnenko and
Lapa proposed the first feedforward multi-layer perceptron network [37]. The same
authors presented a three-layered model six years later [38] (Figure 2.6A). In 1980, the
first convolutional neural network (CNN) was proposed [39] (Figure 2.6B). In 1986,
Rumelhart et al. discussed back-propagation in great detail [40].
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Figure 2.6: The first deep learning architectures: the neural network proposed in 1971
by Ivakhnenko [38] (A) and the CNN proposed in 1980 by Fukushima [39] (B).

All the work mentioned above laid the foundations for the deep learning milestones
presented in the next sections. These milestones are presented in combination with
theoretical aspects related to deep learning.

2.2.2 LeNet (1998)

The pioneering work of Yann LeCun and his collaborators classified 32x32 pixel
grey-scale images into digits and was applied to recognise hand-written numbers on
bank checks [41]. This dataset is currently standardised and known as the MNIST1

dataset. The seven-layered CNN, LeNet-5 (Figure 2.7), was trained with stochastic
gradient descent, a gradient descent algorithm.

Figure 2.7: The architecture of LeNet-5 from [41] including convolutional layers,
subsampling (or pooling) layers and full connection (or fully connected) layers.

The architecture of LeNet-5 consisted of convolutional layers, activation functions,
pooling layers and fully connected layers. These layers will be explained in the next
sections after which the optimisation process, data-augmentation and architectural
design will be discussed.

2.2.2.1 Convolutional layers

Convolutional layers contain the functionalities that form the core of CNN models.
In this section, the convolutional layer is explained by assuming the analysis of 2D
images. The convolutional layer consists of several trainable weights or kernels. Each

1Modified National Institute of Standards and Technology database
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kernel is smaller than the input but has the same depth. In the example of LeNet-5,
the first convolutional layer C1 has six different 5x5x1 kernels (width x height x depth).
Each kernel executes the convolution operation during forward-propagation. During
this operation, a kernel slides over the input image, and at each position, it computes
the dot product between the kernel and the current image patch. Each kernel will
produce a 2D feature map that contains the responses of the kernel at every spatial
position. The output of the convolutional layer is the concatenation of the produced
feature maps from all the kernels. In the example of LeNet-5, the first convolutional
layer C1 contains six feature maps as output.

Convolutional layers have the following variables: number of kernels, kernel size,
stride, padding and bias. The kernel size defines the shape of the kernel, and thus the
receptive field of the layer. The stride defines the step size of the kernel while sliding
over the image. Padding defines the border size, and bias determines whether or not
to use a learnable vector (the bias) equal to the number of kernels which is added
to the output during the forward pass. Figure 2.8 depicts a schematic overview of a
convolutional layer and the convolutional operation.

Figure 2.8: Schematic overview of a convolutional layer with kernel size = 3, stride =
1 and padding = 1.

Convolutional layers introduce sparse connectivity and parameters sharing. The
convolutional layers have sparse connectivity because the kernel size is smaller than
the input size. Intuitively, each kernel will recognise some feature that can be detected
at any part in the input image. The idea is that if one feature is useful to recognise in
some part of the image, it will be useful in other parts of the image. The parameters
of the convolutional layer are shared to analyse different parts of the input.

In the example of LeNet-5, the first convolutional layer C1 has six kernels and a
stride equal to one. When the convolutional operation starts, the kernel is positioned
in the upper left corner. Since there is zero padding and the kernel size is equal to
five, the first two pixels in each direction are omitted. This is why the feature maps
of C1 have the size of 28x28x6 (Figure 2.7).
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2.2.2.2 Activation functions

As previously stated, the sigmoid function is used as the activation function in
logistic regression to transform the output of the model into probabilities. Likewise,
we can insert an activation function after each layer in a (multi-layer) feedforward
network. If the activation function is non-linear, the layer can derive non-linear
functions which can assist in obtaining non-linear decision boundaries. Similarly, a
(non-linear) activation function can be placed after a convolutional layer.

In the example of LeNet-5, the tanh activation function was used after layers C1,
S2, C3, S4, C5 and C6.

Figure 2.9: The sigmoid (left) and tanh (right) activation functions and their deriva-
tives.

During forward-propagation, the output of the activation function is propagated to
subsequent layers, whereas during back-propagation, the derivative of this function is
used (Figure 2.9). A known problem is the vanishing gradient problem, which means
that the gradient becomes smaller and smaller each time it is back-propagated to
previous layers. The derivatives of the sigmoid and tanh functions are between 0 and
1, which means that each time the gradient is back-propagated, the signal gets smaller.
This problem prevented the construction of deeper networks.

2.2.2.3 Pooling layers

In the example of LeNet-5, average pooling was used in layers S2 and S4. In their
architecture, they refer to pooling layers as subsampling layers (Figure 2.7).
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Figure 2.10: Types of pooling layers: max pooling (left) and average pooling (right)

The pooling layer contains the operation that reduces the size of the input of that
layer. There exist several pooling operations such as max- and average pooling. The
pooling layer contains a size parameter which defines the dimensions in which to apply
the operation. This size is usually set to 2x2 (in case of 2D image) which reduces the
shape on the input by half. In Figure 2.10, max- and average pooling are depicted. It
was shown that the pooling operation could also be learned by using convolutional
layers with stride equal to the pooling size to reduce the shape of the input [42].

2.2.2.4 Fully connected layer

A fully connected layer or dense layer applies an affine transformation to the input
matrix X with shape [batch, features]. This layer contains a weight matrix W with
size [features, outputs] and bias vector ~b. The affine transformation is defined as
f(X) = W.X +~b. The layer connects the input features to the output features as each
node of the input feature is connected to each node of the output feature.

In the example of LeNet-5, layer C5 and C6 are fully connected layers. C5 has
400 input features and 120 output features, and layer C6 has 120 input features and
84 output features. The final fully connected layer contains 10 Euclidean radial basis
function units which compute the Euclidean distance between the input vector and
the parameter vector.

2.2.2.5 Optimisation

As previously mentioned, we can use gradient descent as the iterative optimisation
process to gradually alter the weights of a model. If applied to the entire training
dataset at once, it computes the correct cost at each epoch. However, this is impossible
when the training dataset does not fit in the memory of the computer. In order to
overcome this hurdle, gradient descent uses batches of the training dataset. If the
batch-size is equal to 1, the optimisation process is called stochastic gradient descent
(SGD). This process has the advantage that larger samples can be analysed. However,
it entails the disadvantage that the weights of the entire network are modified based on
a single experience. This modification may cause the training cost to fluctuate, which
increases the total training time. In order to overcome this, SGD with momentum was
introduced. This optimiser remembers the previous update and the next update is a
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linear combination of the current gradient and the previous update. In the example
of LeNet-5, SGD was used to train the model by reducing the MSE cost function.

2.2.2.6 Data augmentation

The training- and validation error are vital to detect under- and overfitting during
training. If the model’s capacity is large enough to understand the task, the training
error will be low. However, when the training dataset is too small, the model may not
capture relevant connections between features and target outputs, which will yield a
high validation- and test error. This can be resolved by adding more training samples
to the training dataset. However, medical images and supporting expert data may
be challenging, expensive or painful to acquire. In order to artificially increase the
training dataset, a data-augmentation strategy can be used. Such a strategy entails
realistic transformations of the samples in the training dataset. In the example of
LeNet-5, a robust data-augmentation strategy was presented that added noise and
transformations to the training samples, which made the model more robust and
prevented overfitting.

2.2.2.7 Architectural design

Deep learning models consist of multiple layers connected in a specific way to
each other. The layer types and organisation forms the architecture of the deep
learning model. Many types of architectures exist such as the convolutional neural
network (CNN), the auto-encoder, the recurrent neural network (RNN), the generative
adversarial network (GAN) and many others. The CNN is a model, such as LeNet-5,
which uses convolutional layers to encode the image, pooling layers to decrease the size
of the image and a stack of fully connected layers to decrease the size of the feature
vector into a c-sized vector (where c is the number of classes). A CNN model can be
designed following the available literature but can also be evolved (see Appendix B).
An auto-encoder is a model that uses an encoder and a decoder to transform an input
image into an output image. A variation of such an architecture will be explained in
section 2.2.10 of this chapter. RNN is a model which can be used to process sequential
data such as text, video or 4D ultrasound images of the heart (see Appendix C). A
GAN uses two models: a generating model and a CNN model (see Appendix A).

2.2.3 ReLU (2011)

The next deep learning milestone in this chapter is the rectified linear unit (ReLU)
activation function or ramp function. This novel non-linear activation function was
proposed to overcome the vanishing gradient problem [43]. The derivative of the ReLU
function is either 0 or 1. Therefore, the gradient will not vanish due to a decreasing
gradient. The function is non-differentiable at 0, but this is usually taken care of by
returning 0 or 1 in the used framework. Since ReLU is one-sided, this function may
become inactive after a while for any given input. This problem is called the dying
ReLU problem and was resolved by introducing leaky rectified linear unit (Leaky
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ReLU): a non-linear activation function similar to ReLU which allowed a small positive
slope for x < 0 (Figure 2.11).

Figure 2.11: The ReLU (left) and Leaky ReLU (right) activation functions and their
derivatives.

2.2.4 Dropout (2012)

Dropout is a regularisation technique for improving neural networks by reducing
overfitting. Deep learning models trained with gradient descent build up learned
features that work for the training data but may not work for unseen data. Random
dropout breaks up these learned features by making the presence of any particular
hidden unit unreliable.

Figure 2.12: Dropout layer. Image from [44].

This technique was found to improve the performance of neural nets in a wide
variety of application domains including object classification, digit recognition, speech
recognition, document classification and analysis is of computational biology data [44,
45].
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During the training at each iteration, a percentage (p) of randomly selected weights
are temporary set to zero in order to reduce the throughput of the network. Only
the reduced network is trained and forces the network to look for other solutions.
Afterwards, the removed nodes are reinserted into the network with their original
weights (Figure 2.12).

2.2.5 AlexNet (2012)

The next deep learning milestone is considered the beginning of the era of deep
learning in its decennium. Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
created a deep CNN model that won the ImageNet Large-Scale Visual Recognition
Challenge of 2012. ImageNet is an extensive and free database containing images
and their associated label and was created by Fei-Fei Li in 2009. AlexNet won the
competition as it was significantly better than the other competitors [23].

Figure 2.13: The architecture of AlexNet. Image from [23].

The AlexNet architecture consists of five convolutional layers, max-pooling layers,
dropout layers, and three fully-connected layers and ended by a 1000-softmax activation
function. The softmax activation function transforms the output of the layer into
probabilities, and the notation of n-softmax refers to the number of classes of the
classification task. Figure 2.13 depicts an abstract overview of this architecture. The
network was split into two streams because the authors needed to train the model
on two GPUs due to memory issues. This architecture was equipped with the ReLU
activation function, which enabled faster training when compared to the ‘traditional
saturating neuron models’ that would use a sigmoid or tanh activation function. The
reported total training time for the network was five to six days. The authors also used
a data-augmentation strategy that included techniques such as image translations,
horizontal reflections, and patch extractions. The authors used SGD with a batch-size
of 128 as optimiser to train the model.

2.2.6 Random orthogonal matrices (2013)

The initialisation strategy of the weights of fully-connected layers and convolutional
layers is another hyper-parameter which needs to be tuned. Unfortunately, there is
no superior initialisation scheme. The only certainty we have is that the weights of
these layers need to be initialised with random values in order to break the symmetry.
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If the weights of a model are initialised with a certain number, for example 42, all
weights will be adjusted by gradient descent in the same way, and the model would
not learn any different features.

In this milestone, a weight initialisation strategy was proposed that uses random
orthogonal matrices (ROM) [46]. This strategy helps to overcome the vanishing and
exploding gradient at the beginning of the training due to the norm-preserving property
of orthogonal matrices. Moreover, since orthogonal matrices have orthonormal rows,
the weights in fully-connected layers and the kernels in convolutional layers will learn
distinct features. In the rest of this thesis, ROM will be used to refer to this strategy.

2.2.7 VGGNet (2014)

Simonyan and Zisserman explored the depth of the deep learning architectures
in [47]. The authors experimented with architectures consisting of 11, 13, 16 and 19
layers. The model employed several convolutional layers with 3x3 kernels followed by
a max-pooling layer. The, currently standard, idea of doubling the number of features
after each max-pooling layer was first described in their work. In Figure 2.14, the
model with 16 layers is depicted.

Figure 2.14: The architecture of VGG-16. Image from [47].

2.2.8 Adam (2014)

Adaptive moment estimation (Adam) is a gradient descent algorithm that computes
individual learning rates by using the running averages of both the gradients and the
second moments of the gradients [48]. The Adam optimiser is considered faster than
SGD because of the combination of momentum and adapted learning rates which
may overcome saddle points or local minima. This optimiser was used for most of the
research described in this thesis.

2.2.9 Batch normalisation (2015)

The idea behind batch normalisation is similar to the idea of normalising the
dataset, as discussed in section 2.1.3. In the case of multi-layer feedforward networks
or CNN models such as VGG-16, changes in shallow layers will affect deeper layers.
In order to prevent this, batch normalisation ensures that the input of each layer is
normalised to zero mean and unit variance (by using the mean and standard deviation
of the current mini-batch). As a consequence of using a normalised input at each layer,
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regardless of its depth in the model, batch normalisation enables the construction of
deeper networks [49].

2.2.10 U-Net (2015)

U-Net was proposed in 2015 as a biomedical image segmentation algorithm and was
applied in several segmentation competitions which it won by a large margin [24]. This
auto-encoder architecture contains two paths: an encoder and a decoder path. The
encoder path captures the context of the image and contains five blocks, each stacking
two convolutional layers and one max-pooling layer. The decoder path reconstructs
the segmented image and uses transposed convolutions in combination with the output
of the encoded path to enable precise localisation. The ReLU activation function
was used in this model. In Figure 2.15, a schematic overview of the architecture is
depicted.

Figure 2.15: Overview of the U-Net architecture. Image from [24]

2.2.10.1 Transposed convolutions

Transposed (or fractional) convolutions were used in the U-Net architecture to
upscale the input in the decoder path. This layer reuses the convolution layer’s jargon
in the opposite direction: padding removes pixels from the output, stride results in
upsampling, and the filter can be learned or is fixed, for example, bilinear upsampling.

2.2.11 Inception (2015)

GoogLeNet [50] was one of the first models which introduced the idea that
convolutional layers do not have to be stacked up sequentially. Coming up with the
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Inception block, the authors showed that creative structuring of layers could lead to
improved performance and computational efficiency (Figure 2.16).

Figure 2.16: Inception block. Image from [50].

2.2.12 Dilated convolutions (2015)

Dilated convolutions [51] were used to increase the receptive field of the convo-
lutional kernels. Dilated convolutions introduce another parameter to convolutional
layers. The dilation rate defines the spacing in the receptive field (Figure 2.17).

Figure 2.17: Convolutional layer with kernel size = 3 (left) and dilated convolutional
layer with kernel size 3 and dilation rate = 1 (right).

2.2.13 ResNet (2016)

ResNet is a CNN model that proposed the residual block which enabled deeper
networks [52]. The idea behind the residual block is the shortcut connection. The
input x flows through a conv-relu-conv sequence which results in f(x) and is added
to the original input g(x) = f(x) + x. The residual block is trying to learn the true
output, g(x) but since there is an identity connection, the layers learn the residual.
Residual blocks can propagate larger gradients during the back-propagation to the
initial layers of the model. This means that the initial layers could learn as fast as the
final layers of the model and thus enable deeper networks (Figure 2.18).
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Figure 2.18: Residual block. Image from [52].

2.2.14 V-Net (2016)

V-Net is a biomedical volumetric segmentation model and was applied to segment
MR images of the prostate [25]. The auto-encoder architecture contains two paths
similar to U-Net: an encoder- and a decoder path. The encoder path is divided into
four stages that operate at different sizes of the input volume. Each stage contains
one to three convolutional layers and a pooling layer which reduces the size of the
image of the next stage. The decoder path is also divided into four stages, where
each stage contains a transposed convolution layer to increase the size of the input,
followed by a concatenation of fine-grained features from the encoder stage, followed
by one to three convolutional layers. All stages of both encoder and decoder, use a
residual block (Figure 2.19).

Figure 2.19: Overview of the V-Net architecture. Image generously provided by Fausto
Milletari (first author of [25]).
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2.2.14.1 Dice coefficient cost function

The authors of V-Net used a novel cost function to train the model: the Dice
score. Often when segmenting biomedical images, the region of interest (ROI) is small
compared to the image, for example, when segmenting the aortic root from a full-body
scan. This imbalance is difficult to resolve when training a deep learning model. One
possible way of resolving this is by applying more weights to the voxels that define the
ROI. However, this may become another hyper-parameter to tune. Another approach
is to choose the Dice score as the cost function. Since the Dice score is a metric that
measures the amount of overlap between images, the imbalance between the ROI and
available search space does not need re-weighting. The Dice score was implemented as
follows

D(ŷ, y) = 1.−
2 ∗

N∑
i=1

(ŷiyi)

N∑
i=1

(ŷ2i ) +
N∑
i=1

(y2i ) + ε

where N is the number of voxels inside the input image and ε is a small value to
avoid division by zero. The intersection in the nominator can be written as a sum
because the masks are one-hot encoded vectors, a vector of zeros with a single one at
the location of the class it represents.

2.2.15 DenseNet (2017)

After the introduction of residual connections in ResNet, it was clear that shortcut
connections were powerful tools to create deep networks. DenseNet used the effect of
shortcut connections and exploited this further by introducing dense blocks. Several
convolution layers are included in such a dense block, and every layer is connected
to all subsequent layers [53]. The input of each layer consisted of the output of the
previous layer and the original input of the dense block (Figure 2.20).

Figure 2.20: Dense block. Image from [53].
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2.2.16 DenseVNet (2018)

DenseVNet was proposed in 2018 as a biomedical volume segmentation algorithm
and was applied to identify multiple organs from CT images [26]. The DenseVNet
is an auto-encoder and is defined as follows: the encoder path is a sequence of
three dense feature stacks whereas the decoder path contains bilinear upsampling
to the final output of the network. Dilated convolutions [51] are utilised to increase
the receptive field of the convolutional kernels, which may help to detect smaller
regions. Dense blocks (or dense feature stacks) are used to encode identity functions
which allow effective gradient propagation and reduce the number of activation maps.
Finally, batch-wise spatial dropout was introduced, which prevents the computation of
activations which would be cancelled by the following dropout layer and thus reduces
the memory footprint (Figure 2.21).

Figure 2.21: Overview of the DenseVNet architecture. Image from [26].

2.3 Conclusions
This concludes the introductory chapter of deep learning. In the first part of

this chapter, the main principles of machine learning were introduced, which are
also applicable to deep learning. In the second part, deep learning was presented
chronologically with a focus on biomedical image analysis.



3
The human heart

Sometimes the heart sees
what is invisible to the eye.

H. Jackson Brown Jr.

This chapter begins with the explanation of the anatomy and functioning of the
human heart to establish context for the subsequent chapters. Afterwards, a brief
overview of valvular diseases and their treatments is presented, followed by an overview
of transcatheter-based solutions per valve with a focus on the aortic and mitral valve.
This chapter is concluded with a short overview of medical imaging and expert medical
image analysis tools.

3.1 The human heart

The human heart is a central organ that pumps blood through the blood vessels,
which allows nutrients and oxygen to reach the body and removes wastes from the
body. This muscular pump is connected to the rest of the cardiovascular system
with two circulations: systemic- and pulmonary circulation. The systemic circulation
includes the aorta and superior- and inferior vena cava and the pulmonary circulation
includes the pulmonary trunk and the left pulmonary veins. The veins are vessels
that transport blood to the heart and the arteries are vessels that transport blood to
the body. The heart is located between the lungs and in the middle compartment of
the chest. The pericardium, a double-layered sac, holds this fist-sized organ in place
while allowing it to move as it beats. The wall of the heart consists of three layers:
the epicardium, myocardium and endocardium.

The human heart is divided into four chambers: the left atrium (LA) and the right
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Figure 3.1: Overview of the blood flow in and around the human heart. Image from
Wikipedia.

atrium (RA) are the top chambers, and the left ventricle (LV) and the right ventricle
(RV) are the bottom chambers. Blood flows from the superior- and inferior vena cava,
into the RA and is pumped through the tricuspid valve into the RV. The RV pumps
blood through the pulmonary valve into the pulmonary trunk towards the lungs. In
the lungs, carbon dioxide is released from the blood and oxygen is absorbed. The
oxygen-rich blood arrives through the left pulmonary veins into the LA and is pumped
through the mitral valve into the LV. In the LV, the blood gets ejected through the
aortic valve into the aorta where it gets distributed to the rest of the body (Figure
3.1).

Blood flow is controlled by the cardiac cycle, which is a sequence of systolic and
diastolic phases (or pumping and filling phases) of the chambers. At the beginning
of the cycle, all the chambers are in diastole, and the atrioventricular valves (the
tricuspid- and mitral valve) are open. After this phase, the atrial systole occurs and
both atria contract. The blood flows from the atria into the ventricles. Next, during
the ventricular systole, the ventricles contract and the blood flows through the opened
semilunar valves (pulmonary- and aortic valve) into the great arteries (pulmonary
artery and aorta). The atrioventricular valves close to prevent backflow and the
atria are relaxed and receive blood. During the next phase, ventricular diastole,
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the ventricles relax, and the semilunar valves close to prevent backflow. Finally, all
chambers are once again in diastole and the cycle restarts.

The volume of blood within a ventricle at the end of diastole and systole is the
end-diastolic volume (EDV) and the end-systolic volume (ESV). Stroke volume (SV)
is the difference between EDV and ESV. The ejection fraction (EF) is the SV divided
by the EDV and it is the ratio of EDV that is ejected per heart beat.

3.1.1 Cardiovascular diseases

Unfortunately, the heart is prone to diseases and cardiovascular diseases are the
class of diseases that involve the heart or blood vessels. According to the world health
organization (WHO), the number of people dying from cardiovascular diseases will
increase from 17.5 million in 2012 to 22.2 million by 2030 [54]. Cardiovascular diseases
include coronary artery diseases, stroke, heart failure, rheumatic heart disease, congeni-
tal heart disease, valvular heart disease, and others. This thesis concerns transcatheter
heart valve interventions, which are treatments for valvular heart diseases.

3.2 Valvular heart diseases

Valvular heart diseases occur primarily as a consequence of ageing, but may also
be the result of congenital abnormalities or physiologic processes including rheumatic
heart disease. The valvular heart diseases can mainly be categorised into stenosis
and regurgitation. Stenosis is the stiffening of the tissue of the heart valve typically
caused by valvular calcification and causes the narrowing of the valvular orifice which
gradually obstructs the outflow of the blood. Regurgitation is the inability of a valve
to completely close, which influences the prevention of the backflow of the blood.
Stenosis can also result in regurgitation if the thickening of the annulus or leaflets
of the valve prevents the valve from closing correctly. The treatment may involve
medication but mostly involves surgical valve repair (valvuloplasty) or replacement
through the insertion of an artificial heart valve.

3.2.1 Treatments

Surgical valve replacement via sternotomy is currently the standard procedure for
replacing a diseased valve. This procedure requires general anaesthesia of the patient
and an incision is made in the chest to gain access to the heart. The heart is stopped,
and a heart-lung (bypass) machine takes over the function of the heart. The diseased
heart valve is removed and replaced with a new valve (e.g. a porcine heart valve).
The heart is restarted, and the incision in the chest is closed.
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Figure 3.2: Different ways to access the heart. Transcatheter-based solutions with
different entry points: the femoral artery (A), the apex (B) and the aorta (C). And
on the right, open heart surgery (D). Image adapted from CVT Surgical Center
(www.cvtsc.com/ transcatheter-aortic-valve-replacement).

During open-heart surgery, bone and muscle tissues are pulled and held apart in
order to gain access to the heart. Therefore there is a long recovery time and a high
post-operative discomfort for the patient. The risk of mortality is high, and therefore,
high-risk patients are excluded from this procedure. Mini-sternotomy tries to reduce
the recovery time of the patient by using smaller incisions. The risk involved with
this procedure is lower when compared to the open-chest procedure, but for high-risk
patients, this procedure is still not feasible.

Minimally invasive valve replacement tries to circumvent the long recovery time
and post-operative discomfort for the patient by gaining access to the diseased valve
through a small incision in the body. A new valve is inserted with a delivery system
such as a catheter. After the delivery of the prosthetic valve, the catheter is removed,
and the incision is closed. Since the incision and the area of muscle tissue that needs
to repair are small, this procedure is considered less invasive than (mini-) sternotomy.
Since there is no direct access to the heart, these procedures are also referred to as
closed-chest procedures. Different routes to access the heart are depicted in Figure
3.2.

3.2.2 The success of transcatheter-based solutions

The transcatheter heart valve interventions were applied to treat the aortic valve,
and due to the success in this domain, similar techniques and devices were developed
for the other heart valves. As a result, the global market for transcatheter heart valve
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treatment devices is predicted to grow from $4 billion in 2018 to $8 billion by 20231.
In the next sections, transcatheter-based solutions are discussed per valve.

3.2.2.1 Aortic valve

Figure 3.3: The schematic representation of the anatomy of the aortic root (left). The
top three images depict the LCC, the NCC and the RCC (from left to right). The
bottom three images show the AAP (dashed line), the LCO and the RCO.

The aortic valve lies between the left ventricle and the aorta. This semilunar
heart valve normally has three cusps or leaflets which prevent the blood from flowing
backwards during ventricular diastole. The three cusps are called the left coronary
cusp (LCC), the non coronary cusp (NCC) and the right coronary cusp (RCC). The
aortic annular plane (AAP) is a plane defined by the three hinge points of these cusps.
The orifices of the left- and right coronary artery are located above the left- and right
coronary cusps. These orifices are called the left coronary ostium (LCO) and the right
coronary ostium (RCO) (Figure 3.3).

Aortic stenosis (AS) is a progressive valvular heart disease that reduces the motion
of the aortic leaflets and valve area [3]. The conventional treatment for aortic stenosis
is open-chest surgical aortic valve replacement (SAVR) but for patients at high- and
intermediate surgical risk, a minimally invasive alternative, called transcatheter aortic
valve replacement (TAVR), has become a well-accepted procedure [4–6]. During this
minimally invasive alternative procedure, a crimped prosthetic valve is positioned in
the aortic root and deployed. The calcified native leaflets are crushed against the
aortic wall by expanding the metallic device frame and prosthetic leaflets attached to
this frame take over the valve’s function. The replacement valve can be delivered via
the upper leg (transfemoral) or through the lowest point of the heart (transapical).
The delivery of such a prosthesis is depicted in Figure 3.4.

1https://www.bccresearch.com/market-research/healthcare/
transcatheter-treatment-hlc204a.html
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Figure 3.4: Schematic overview of a TAVR procedure. From left to right: the catheter
is positioned through the aorta into the aortic valve (A), a balloon is inflated and
deploys the crimped prosthetic valve (B) and the prosthetic leaflets take over the valve’s
function (C). Image from [55]

Since TAVR is a closed-chest procedure, the pre-operative planning is image-based.
Multidetector computed tomography (MDCT) imaging is the gold standard during
the pre-operative planning and allows the heart team to gain insights on the cardiac
anatomy and functioning of the aortic valve [7, 56].

The first-in-human procedure started as an investigational technique (or last resort
method) for an inoperable patient in 2002 [8]. Due to increasing clinical evidence,
TAVR soon became an alternative for SAVR for certain patient groups [4, 57]. The
first randomised clinical trial compared treatment with TAVR with the standard
procedure for patients with severe aortic stenosis who were not suitable for surgery [9].
The conclusion of this trial2 was in favour of TAVR. In 2014, a similar non-randomised
clinical trial was performed using a Medtronic device with similar conclusions [10].
Finally, a clinical trial showed that TAVR had similar clinical outcomes than the
open-heart procedure [11]. These trials established TAVR as an alternative to surgery
for patients at high surgical risk. More recently, an investigation was conducted to
see whether the patients at intermediate risk could also be candidates for TAVR
instead of the surgical approach [12, 13]. Intermediate-risk patients are patients who
are estimated to survive 30 days after the procedure [58]. It was concluded that
for intermediate-risk patients, TAVR was similar to SAVR concerning the primary
end-point of death or disabling stroke. Very recently, clinical data showed that TAVR
is at least as good as SAVR in low-risk3 patients [14, 15].

Currently, there are four clinical trials ongoing to assess the inclusion of low-risk
patients for treatment with TAVR over SAVR. All of these trials will add significantly

2This trial was made possible by Edwards Lifescience, the company behind the SAPIEN 3,
a type of prosthesis for TAVR

3Low-risk patients are patients with an STS-PROM score ≤ 3% and absence of co-morbidity
that would increase surgical risk.
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to the current evidence for TAVR in intermediate- to low-risk patients and will also
allow first insights into long-term results on a broad basis [5] (Table 3.1).

Trial Name Patients End year Code Publication
DEDICATE 1600 2024 NCT03112980 No publication
Medtronic Evolut
TAVR in Low Risk
Patients

1200 2026 NCT02701283 [14]

PARTNER 3 1328 2027 NCT02675114 [15]
Nordic NOTION-2 992 2029 NCT02825134 No publication

Table 3.1: Overview of the currently ongoing clinical trials to compare TAVR vs SAVR
for low risk patients. The code refers to the reference used in the clinicaltrials.gov
webpage.

There will be a significant increase of the number of patients undergoing TAVR in
the upcoming years and the reasons for this are clear: younger patients are eligible
for TAVR because this minimally invasive procedure includes high-, intermediate-
and low-risk patients. The recent change to treat also bicuspid patients with TAVR
will also affect the age and number of patients administered [59]. The global TAVR
market revenue also reflects these numbers. It was valued at $2.7 billion in 2017 and
is expected to reach $8.2 billion by 2025, growing at a compound annual growth rate
(CAGR) of 13.8% from 2018 to 2025. The number of cases was 107011 in 2017 and is
expected to reach 337778 patients by 20254.

3.2.2.2 Mitral valve

The mitral valve resides between the left atrium and the left ventricle. This left
atrioventricular valve has two leaflets: the anterior leaflet and the posterior leaflet.
The leaflets are connected with the chordae tendineae to the papillary muscles to
prevent prolapse into the left atrium during ventricular systole. The mitral valve
annulus is a saddle-shaped fibrous ring attached to the leaflets, which changes in shape
throughout the cardiac cycle (Figure 3.5).

Mitral valve regurgitation is the most common valvular disease in the western
world, affecting 1 in 10 individuals aged 75 and older [16, 17] The prevalence of
moderate or severe mitral regurgitation in the United States is approximately 2.5
million and this is expected to reach 5 million by 2030 [60]. Severe mitral valve
regurgitation may result in heart failure if untreated. The standard of care for these
patients is surgical mitral valve repair or replacement. However, many patients are
deemed a too high risk for these highly invasive surgical interventions. Percutaneous
mitral valve repair can be a viable alternative for this high-risk patient group [18],
but recent data shows that also transcatheter mitral valve replacement (TMVR) is an
emerging option [17, 19].

4https://www.alliedmarketresearch.com/tavi-market
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Figure 3.5: Schematic representation of the details of the mitral valve. Image from
Medscape (emedicine.medscape.com).

The first-in-human native valve TMVR was performed in 2013 in patients with
severe mitral annular calcification (MAC) and mitral stenosis [61, 62]. This procedure
remains in the infancy of clinical trial testing because of the complexity of the mitral
valve apparatus [63, 64]. Currently, the only guideline-recommended transcatheter
treatment for mitral valve regurgitation is a valve repair technique using the MitraClip
device from Abbott.

First-in-human trans-apical valve-in-valve TMVR was in 2009 in a patient with
a stenotic mitral valve prosthesis [65]. After a considerable advancement in the
valve-in-valve TMVR field, it is now an established FDA approved therapy [66–69].

3.2.2.3 Tricuspid valve

Tricuspid valve regurgitation is a poorly recognised and frequently overlooked
pathology and is usually associated with pulmonary hypertension, a right heart disease
caused by inadequate blood flow in the lungs [70]. Transcatheter tricuspid valve repair
or replacement is the minimally invasive alternative for a surgical tricuspid valve repair
or replacement. The first-in-human transcatheter tricuspid valve repair was performed
in 2015 [71] and the first-in-human transcatheter tricuspid valve replacement was also
performed in 2015 [72].
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3.2.2.4 Pulmonary valve

Transcatheter pulmonary valve replacement is the minimally invasive alternative for
a surgical pulmonary valve replacement. The first-in-human procedure was performed
in 2000 [73], and this procedure was confirmed in 2015 during a clinical trial [74].
Recently, in 2018, there was a proposal to replace the surgical procedure by the
transcatheter approach [75].

The global transcatheter pulmonary valve market was worth $34 million in 2016
and it is projected to reach $51 million in 2023, expanding at a CAGR of 6.2% between
2017 and 20235. The global transcatheter pulmonary valve market is expected to
reach a value of $54 million by 20256, thanks to the increasing prevalence of various
cardiovascular diseases.

3.2.2.5 Transcatheter-based solutions in this thesis

This thesis concerns the medical image analysis prior to a TAVR, TMVR or to
facilitate prosthesis development in the mitral valve domain. The image analysis in
the tricuspid and pulmonary valve domain was not analysed during this research but
are included for completeness reasons and can identify potential future directions.

3.2.3 Diagnosis and pre-operative planning

In the previous sections, the different treatments for valvular heart diseases with
a strong focus on transcatheter-based solutions were described. The diagnosis, pre-
operative planning and treatment of valvular heart disease with minimally invasive
techniques are closed-chest and therefore image-based. The image analysis during
such procedures is crucial to the success of the procedure. Generally, an entire heart
team looks at the images before a procedure to assess the patient’s risk, evaluate the
vascular access and determine optimal implant size and position. In order to assess
the valve accurately, medical images and image analysis software are required. In
this section, medical images and expert medical image analysis software are briefly
introduced.

3.2.3.1 Medical images

Medical images are required to assess the diseased valve. There are a vast range of
image modalities such as magnetic resonance (MR) images, ultrasound (US) images,
positron emission tomography (PET) images, and many more. In this research, mainly
computed tomography images were analysed.

Computed tomography (CT) is an image recording method that uses combinations
of many x-ray measurements to produce an image of the inside of the scanned area
without cutting into human tissue7. Multidetector computed tomography (MDCT)

5http://www.digitaljournal.com/pr/4025571
6https://www.grandviewresearch.com/press-release/global-transcatheter-pulmonary-valve-market
7The term tomography comes from the Greek words tomos (a cut, a slice, or a section)

and graphein (to write or record).
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is the latest type of CT imaging and records the images faster. The x-ray images
are recorded along a single axis of rotation and produce virtual slices of the scanned
area [76]. These slices are generally stored as a sequence of 2D images and can be
stacked into a 3D CT volume. The values of the pixels in a 2D image are expressed
in Hounsfield units (HU) which is a linear transformation of the original attenuation
coefficient and is defined as

HU = 1000
µ− µwater
µwater − µair

where µwater and µair are the attenuation coefficient of water and air. Hounsfield
units enable the selection of specific anatomies with similar attenuation coefficients
e.g. soft tissue in contrast CT ranges from +40 to +80 HU or lung tissue ranges from
-600 to -400 HU.

CT images are stored in the DICOM format (digital image communication in
medicine standard) which also contains meta-information about the patient, recording
properties, image information and others. The information about the patient may
include name, age and gender. The recording properties may contain information
about the recording device manufacturer, the name of the radiologist, the name of the
contrast agent used in the study. The image information includes parameters to read
the CT image. For example, the number of rows, columns in the 2D slice or pixel
spacing which defines the size of a single pixel in the image, or the resolution of the
image (Figure 3.6).

Figure 3.6: Image and meta-information of CT slices.

The DICOM format uses a standardised method to include information; however,
the information included in the images may differ in each hospital or recording
manufacturer. For example, the pixel spacing and slice thickness are parameters that
usually differ between two DICOM stacks. Moreover, due to privacy regulations, the
images are anonymised when they are shared (for example, for research purposes).
This process makes sure that the images of the patient can never be linked to the
actual patient and removes some parts of the meta-information of the DICOM images.
However, this anonymisation process is also not standardised; some processes only
remove the name and study identifier from the DICOM meta-information, and other
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processes remove the name, age, gender and other parameters. During this research,
different cohorts of patients were analysed. The patients in these cohorts came from
multiple centers and all DICOM images were anonymised (see Appendix D for more
information about these cohorts).

3.2.3.2 Medical image software

The physician needs to inspect the recorded medical images in order to analyse the
anatomical features of the scanned area. Medical image software can read and view
these images. There are a few open-source packages such as 3D slicer 8, ITK-SNAP9

and FSLEyes 10. These tools allow researchers to view and work with medical images.
More professional tools such as Mimics Innovation Suite (Materialise, Leuven, Belgium),
4D Cardio-View (TomTec, Unterschlessheim, Germany) and 3mensio Structural Heart
(Pie Medical Imaging, Maastricht, Netherlands) are used in hospitals or companies
such as FEops.

The medical image software helps physicians to analyse the medical images, for
example, to assess the status of the valvular apparatus and to determine relevant
anatomical dimensions. The complexity of the images poses different requirements
to the software. A simple image viewer can analyse two-dimensional images. Three-
dimensional images, however, should be analysed with three adaptable planes that
slice through the volumetric image. Four-dimensional (4D) images (which are 3D
images over time), may require a temporal slider to inspect the 3D volumes at each
phase of the cardiac cycle.

Manual assessment of the functional behaviour of the valve and the relevant
dimensions can be difficult due to the complexity of the valve, disease progression
or dimensions of the images. This process typically requires anatomical feature
recognition in multiple dimensions and relies on a priori knowledge of the anatomical
subject, characteristics of the imaging modality and the tool for visualising the images.
It can be a time-consuming job, and the quality depends on the operator’s experience.
If the quality of the analysis is crucial, a second operator can introduce quality control.
This operator receives the data from the previous operator, verifies if the data is
correct and alters the data if needed. This second step usually does not take as long as
the first step and reduces the operator variability and therefore increases the quality
of the analysis.

3.2.3.3 Operators

The users involved in case processing-, case analysts and quality control (QC)
analysts go through an extensive training program during which all necessary knowledge
is taught. Analysts have to process a set of randomly selected examination cases and
pass a predefined set of criteria to obtain a qualification. Process instructions are
documented in standard operating procedures. Only after successful qualification,

8https://www.slicer.org
9http://www.itksnap.org

10https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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the analyst obtains access to the processing of the medical images. Training and
qualification are governed by an ISO 13485:2016 compliant quality management
system.

3.3 Conclusion
This chapter covered the introduction of the human heart and medical image

analysis in order to provide a foundation for the subsequent chapters. It started with
the basic anatomy and functioning of the human heart with a focus on the valves.
Next, the valvular diseases and their treatments were introduced, which was followed
by an overview of the transcatheter treatment per valve. Since transcatheter-based
solutions are closed-chest, the importance of pre-operative medical image analysis
was accentuated. Finally, the complexity of this (multi-dimensional) medical image
analysis and the potential limitations of medical image software were explained.



4
Classification

Science is the systematic
classification of experience

George Henry Lewes

Classification is the process of dividing things into groups according to their
type. In image analysis, this is the recognition of patterns or objects in images and
differentiating them into distinct categories.

This chapter begins with a literature overview of cardiac classification with deep
learning. After this overview, we present a deep learning classification method which
can differentiate bicuspid- and tricuspid aortic valve patients.

4.1 Literature overview of cardiac classification
with deep learning

In this section, the available literature of cardiac classification with deep learning
is summarised. In order to ensure brevity and relevance reasons, this literature study
is limited to the work related to cardiovascular classifications with deep learning. Most
of the described work concerns image analysis with a few exceptions where cardiac
electrocardiography (ECG) or other signals were analysed. The literature is presented
chronologically, and for each year, a summary and detailed overview are given. The
summary includes the number of patients, image modality (or signal), model type
and model dimensions. The reason for chronologically presenting the literature is to
show the evolution of deep learning over the past years. Note that some studies may
overlap with the subject of segmentation, which is covered in chapter 5.
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4.1.1 2015-2016

The published cardiac classification methods were fairly ‘simple’ in comparison to
what was known at that time. For example, architectures contained only convolutional,
max pooling and fully-connected layers in combination with the ReLU activation
function although dropout and batch normalisation layers were already known. The
datasets were relatively small, and efforts were made to balance the positive and
negative samples in the training and test phase. Still, there was creative usage of the
models, e.g. using the features of a convolutional neural network (CNN) model as
features for SVM [77] or using classification to segment a region of interest [78, 79].
Some of the studies already tried to predict clinically relevant measurements from the
images [80], which will become a pattern in the following years. Table 4.1 contains a
short summary of the discussed studies.

Authors Scope Year Patients Modality Method Dim.
Emad et al. [81] LV localisation 2015 33 MR CNN 2D
Vos et al. [78] 3D anatomy localisation 2016 100 CT CNN 2D
Zreik et al. [79] LV localisation 2016 60 CT CNN 2D
Zhang et al. [82] Apex and basal detection 2016 100 MR CNN 2D
Gülsün et al. [83] Coronary centerline pruning 2016 106 Data CNN 1D
Moradi et al. [77] Labelling cardiac slices 2016 226 CT CNN 2D
Wolterink et al. [80] CAC scoring 2016 250 CT CNN 2D

Table 4.1: Summary of cardiac classification with deep learning in 2015-2016.

4.1.1.1 Detailed literature overview

A new method was proposed by Emad et al. to locate the left ventricle (LV) from
cardiac magnetic resonance (MR) images by using a CNN model. The architecture of
the model consisted of four layers (conv + relu, max pool, conv + relu, max pool)
and concluded by a fully-connected layer and a softmax activation function. During
training, ten patches (of 20 x 20 pixels) were selected from a short-axis slice, of which
one patch contained the LV, and the other nine did not. The dataset consisted of 33
patients, of which 19 were used for training. During testing, a pyramid of scales was
used to compensate for the large variety of heart sizes in the dataset. This means that
each image was resized into four different scales after which the image was split into
patches of 20 x 20 pixels. In order to select the most probable patch that contained the
LV, the patch from the scale with the highest probability and least standard deviation
was selected. The authors reported a sensitivity of 83.9%, a specificity of 99.0% and
an accuracy of 98.6% [81].

In Vos et al., a 3D region of interest (ROI) detector from 2D cardiac non-ECG-gated
computed tomography (CT) images was proposed. One CNN model per orthogonal
axis was trained to distinguish whether a 2D CT slice was included in the ROI or
not. The predictions of the coronal-, sagittal- and axial model yielded a 3D cube
specifying the region of interest (Figure 4.1). The trained CNN models demonstrated
an excellent discriminatory power to correctly classify ROI (area under the roc curve
(AUC) = 0.99). The region of interest was evaluated and the median Dice score of the
heart, aortic arch, and descending aorta were 89%, 70%, and 85% [78].
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Figure 4.1: Region of interest classification from 2D CT images. The images inside
the ROI are classified as one, the others as zero. Clipped image from [78].

Going one step further, Zreik et al. proposed a method to segment the LV from
CT images in two steps. The first step used the method described by Vos et al. and
selected a ROI around the LV. The second step used a CNN model to segment the
anatomy within this ROI. The architecture of this model is shown in Figure 4.2. This
model was trained patch-wise with a balanced dataset, where the positive samples
contained the LV, and the negative samples did not. The accuracy of the automatic
segmentation resulted in the average Dice score of 85% and a mean absolute surface
distance of 1.1 mm [79].

Figure 4.2: Classification of patches to segment the LV from CT images. Image from
[79].

Zhang et al. proposed a new method to detect the basal and apical slices from MR
images with two CNN models. The two models used the same architecture with five
layers (conv + relu, maxpool, conv + relu, maxpool, conv + relu) and concluded with
a fully-connected layer and a softmax activation function. The models were trained to
label types of slices such as the apical slice or basal slice from the short-axis slices.
Instead of using a patch-wise approach with a fusion strategy (as described by Emad
et al.), the authors proposed a strategy that used the entire image. They reported
the precision and sensitivity of the missing apical slice (81.6% and 88.7%) and the
missing basal slice (74.1% and 88.7%) [82].
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The main scope of the method by Gülsün et al. concerned coronary centerline
detection from CT images. The deep learning part of the method was applied after
the coronary detection and distinguished true centerlines from false centerlines (or
leakages). The one-dimensional (1D) model architecture consisted of four layers
(conv + relu, max pool, conv + relu, max pool) and a fully-connected layer followed
by a softmax activation function. The 1D data that was used for training came
from the centerline detection method and consisted of vessel scale, image intensity,
centerline curvature, and other parameters. Their accuracy reporting did not include
the classification accuracy [83].

A novel hybrid-learning method was proposed by Moradi et al. where a CNN model
was applied to label cardiac CT slices. The features from a pre-trained CNN model with
five convolutional layers, two fully-connected layers and a softmax activation function
were used. The features of the convolutional layers were used in combination with
the training dataset in a support vector machine (SVM). The authors concluded that
convolutional features from the CNN model yielded higher accuracy than handcrafted
features [77].

In Wolterink et al., an automatic coronary artery calcification (CAC) detection
method was proposed. The authors used two fully convolutional neural network
(FCNN) models with the same architecture and added dropout layers as regulariser.
The first model was trained to distinguish the CAC voxels from all negative voxels,
and the second model was trained to recognise CAC voxels from CAC-like voxels. The
models were trained separately but tested in sequence, where the output of the first
model was the input of the second. A patch-wise sampling strategy was applied in
order to balance the imbalanced dataset. The authors combined all CNN pairs in an
ensemble which assigned 83% of the patients to the same cardiovascular risk category
based on the Agatston score1[80].

4.1.2 2017

Similar to the previous period, fairly ‘simple’ methods were used in comparison
to what was known at that time. A notable difference to the previous period is the
increase in depth of the models. The datasets that were used remained relatively
small. Table 4.2 contains a short summary of the discussed studies.

Authors Scope Patients Modality Method Dim.
Acharya et al. [85] Classify heartbeats 47 ECG CNN 1D
Pereira et al. [86] CoA detection in neonates 151 US NN 2D
Santini et al. [87] CAC segmentation 119 CT CNN 2D

Table 4.2: Summary of cardiac classification with deep learning in 2017.

4.1.2.1 Detailed literature overview

A novel method to classify ECG signals was proposed by Acharya et al. This
classification method used a CNN model to distinguish five different categories of

1This is a quantifier of coronary calcium assessed from cardiac CT [84]
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heartbeats. The CNN model consisted of nine layers: conv + relu, max pool, conv +
relu, max pool, conv + relu, max pool and concluded by three fully-connected layers
and a softmax activation function. To balance the training dataset, the authors added
a data augmentation strategy to the training procedure. When the model was trained
with the original imbalanced dataset, the validation on the test dataset yielded an
accuracy of 90%, and when it was trained with data-augmentation, it yielded an
accuracy of 94% [85].

In Pereira et al., a method to detect coarctation of the aorta (CoA), a congenital
heart defect, from 2D ultrasound (US) images was proposed. A stacked denoising
auto-encoder neural network was trained to detect features from predefined image
regions. Similar to Moradi et al., the generated features from the neural networks
were used in SVMs, which yielded a total error rate of 12.9% on the test dataset [86].

Extending the study of Wolterink et al., Santini et al. proposed a method to detect
CAC from 2D CT images. The 10-layered CNN model was trained to classify CAC-
and non-CAC image patches. The method was validated on 56 patients and yielded a
sensitivity of 91% and a specificity of 95% [87].

4.1.3 2018

The significance of the published work increased in 2018, which was reflected by
two works published in Nature [88, 89]. All available deep learning methods such as
batch-normalisation, generative adversarial network (GAN), recurrent neural network
(RNN) and DenseNet were used. Deep learning was not only used as a classifier but
also novel diagnostic methods were discovered, e.g. extracting cardiovascular risks
from retinal images [89]. There was an enormous increase in dataset size in comparison
to earlier years. Table 4.3 contains a short summary of the discussed studies.

Authors Scope Patients Modality Method Dim.
Dormer et al. [90] Multi-regional class. 12 CT CNN 2D
Madani et al. [88] Class. cardiac tasks 267 US CNN 2D
Silva et al. [91] Ejection fraction class. 5600 US CNN 3D
Poplin et al. [89] Predicting cardiac risks 297360 RI CNN 2D
Commandeur et al. [92] EAT and TAT class. 250 CT CNN 2D
Dormer et al. [90] Class. of LA 12 CT CNN 3D
Wong et al. [93] Cardiac semantic class. 371 CT CNN 2D
Shadmi et al. [94] Agatston score prediction 1051 CT CNN 2D
Xue et al. [95] Cardiac phase class. 145 MR RNN 2D
Miao and Miao [96] Coronary disease diagnose 303 Data DNN 1D
Lessmann et al. [97] Calcium scoring 1744 CT CNN 2D
Mazo et al. [98] Class. of cardiac tissues 6000 Hist. CNN 2D

Table 4.3: Summary of cardiac classification with deep learning in 2018

4.1.3.1 Detailed literature overview

In Dormer et al., a method to classify healthy and unhealthy patients from patches
of the left atrium (LA) was proposed. Unhealthy patients were diagnosed with
cardiovascular diseases before the image recording. The LA was segmented using
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an atlas technique, and patches were generated. The study included a comparison
between 2D and 3D patches and concluded that the usage of 3D patches yielded the
highest accuracy. The 2D and 3D CNN models were trained and validated with only
10 patients with leave-two-out cross-validation [90].

The significant study by Madani et al. evaluated two deep learning classification
methods by applying them to a view classification task and a left ventricle hypertrophy
(LVH) classification task2. The study used 2D US images. The authors compared
two approaches: a combined segmentation and classification approach and a GAN
approach [99]. The first approach used two famous models: U-Net and VGG-16.
U-Net was trained to segment the conic shape of the US images. The predicted
segmentation maps were used to select the ROI from the original image. These
ROIs were used to train the VGG-16 model to perform the classification task (Figure
4.3). The GAN approach used two models: a discriminator and a generator. The
discriminator model used structured blocks of three convolutions and was concluded
with two fully-connected layers of size 15 and 1. The former was used to represent
the number of classes defined by the classification task, and the latter was used to
distinguish generated and real images. For more information about GANs, I refer to
appendix A. All models used dropout- and batch normalisation layers. The classifiers
were trained to classify 15 categories which corresponded to 15 ultrasound views or
15 classes of hypertrophy. The segmentation + classification approach yielded an
accuracy of 94.4% for the view-classification and 91.2% for the LVH classification. The
GAN approach was trained with 4% of the images and resulted in an accuracy higher
than 80.0% for the view-classification task and 92.3% for the LVH classification [88].

Figure 4.3: View classification from 2D US images with U-Net and VGG-16. Image
from [88].

Silva et al. proposed a novel method to classify ejection fraction (EF) with a
CNN model from stacked sequences of 30 2D transthoracic US images. The 3D CNN
architecture consisted of residual blocks in combination with dropout layers and L2
regularisation to prevent overfitting. Grid search was applied to detect the optimal
values for the hyper-parameters. Ejection fraction was categorised into four classes:
<45%, between 45% and 55%, between 55% and 75%, >75% and an accuracy of 78%
was reported [91].

2Hypertrophy is an increased volume of organ or tissue due to enlargement of its cells
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Another major study was performed by Poplin et al., where cardiovascular risk
factors were predicted from retinal images (RI) using the Inception-v3 model. The
trained models predicted age, gender, body mass index, smoking status, systolic blood
pressure and other cardiovascular risk factors, which was information not thought to
be present in RI. The authors trained and evaluated different classifiers: from binary
classifiers to classifying all risk factors from RI. The models trained to classify all risk
factors yielded the highest test accuracy. This work was ground-breaking, not because
of the technical novelties but because the models were able to predict cardiovascular
risk factors from retinal images [89].

In Commandeur et al., a novel method to detect the epicardial- and thoracic
adipose tissues3 (EAT and TAT) from CT images was proposed. Two CNN models
were used in this study: the first CNN model classified and segmented the CT slices,
while the second CNN model segmented the pericardium. The models obtained
excellent correlations for both EAT and TAT (0.92 and 0.94). The total analysis time
was below 26 seconds per patient [92].

An original method was proposed by Wong et al. to classify 2D CT images into
semantic cardiac image levels such as aortic root, 4-chamber view and aortic arch.
The authors used a 2D segmentation model (inspired by U-Net) where the final
concatenated layers were used as input for the 2D classification model (inspired by
VGG-16). The scarcity of labelled data was tackled by re-using the weights of a
pre-trained segmentation model for the classification task, which achieved an accuracy
of 86% [93].

Figure 4.4: Models used to segment non-contrast chest CT scans to derive the Agatston
score. The U-Net model (a) and DenseNet (b). Image from [94].

3Adipose tissues are fat deposits related to coronary artery disease.
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Similar to Wolterink et al., a innovative method to predict Agatston score from
non-contrast chest CT scans was proposed by Shadmi et al. The authors compared
U-Net and DenseNet and trained these models to segment the coronary calcification
from which the Agatston score was derived during a post-processing step (Figure 4.4).
The classification task distinguished five ranges of the Agatston score: 0, 1-10, 11-100,
101-400, >400. DenseNet achieved the highest Pearson correlation coefficient of 0.98
when compared with expert manual annotations [94].

Another method to predict CAC from chest CT scans was proposed by Lessmann
et al. The method identified patients at increased cardiovascular risk in two steps.
The first step, similar to Wolterink et al., a CNN model classified 3D patches into
seven classes: left anterior descending artery calcification, left circumflex artery
calcification, right/left coronary artery calcification, thoracic aorta calcification, aortic
valve calcification, mitral valve calcification and background. In the second step, a
model was trained to detect the true positive voxels from the false positive voxels.
The coronary artery classification yielded the highest F1 score of 0.89 [97].

Xue et al. proposed an original method to quantify the LV from sequences of
MR images. The quantification included indices such as area, wall thickness and
phase. In order to deal with the temporal aspect of the images, the sequences were
encoded with a CNN encoder. These encodings were used in a RNN which was
concluded by a softmax activation function. Another RNN model was used to predict
LV identifiers such as wall-thickness, area and dimension. The reported error rate for
phase classification was 8.2% [95].

A new method to locate five areas of the heart was proposed by Dormer et al.
The 2D CNN model consisted of six layers (conv + relu, conv + relu, max pool,
conv + relu, conv + relu, max pool) and was trained to classify patches of pixels into
background, LV, RV, LA, or RA. The method yielded a final AUC of 0.84 [90]. An
overview of the workflow is depicted in Figure 4.5.

Figure 4.5: Workflow to detect five regions of the heart from CT images. Image from
[90].
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In Miao and Miao, a method to predict coronary heart diseases from patient
information such as age, gender, chest pain rating and others was proposed. A deep
neural network (DNN) was trained and the validation yielded an accuracy of 83.6%,
sensitivity of 93.5%, specificity of 72.8%, precision of 79.1%, F1 score of 0.85 and AUC
of 0.89 [96].

Mazo et al. performed a comparative study, where CNN models were trained
to classify tissue and organs from histology or micro-anatomy images. The authors
evaluated four networks: ResNet, VGG-19, VGG-16 and Inception-v1. The models
were trained to classify six tissue categories using transfer learning. Overall F1 scores of
0.83, 0.81, 0.82 and 0.75 were obtained for ResNet, VGG-19, VGG-16 and Inception-v1
[98].

4.1.4 2019

The peak of 2018 is at the moment of writing not matched. The published work
uses established networks (or small alterations thereof) to accomplish accurate results.
Still, there is creativity to be found, such as a two-way input network (Gessert et
al.) or an adapted L1 cost function (Lossau et al.). The sizes of the datasets are
considerably smaller when compared to 2018. Table 4.4 contains a short summary of
the discussed studies.

Authors Scope Patients Modality Method Dim.
Lossau et al. [101] Motion artefact recognition 17 CT CNN 2D
Østvik et al. [102] View classification 500 US CNN 2D
Togo et al. [103] CS class. 85 PET/CT CNN 2D
Gessert et al. [100] Plaque detection 49 OCT CNN 2D
Oh et al. [104] Arrhythmia diagnosis 47 ECG CNN 1D

Table 4.4: Summary of cardiac classification with deep learning in 2019

4.1.4.1 Detailed literature overview

In Lossau et al., a method to recognise and quantify coronary motion artefacts was
proposed. A 20-layered ResNet model was trained with coronary CT image-patches
to classify motion artefacts. The motion artefact data were obtained from a motion
field model, and the motion strength ranged from 0 to 10. The binary classification
model considered the values 0 to 1 as ‘motion-free’ and the values 6 to 10 as ‘motion-
perturbed’. The same architecture was used as a regression model to predict the real
motion strength and trained with an adapted L1 cost function defined as

l(yregr, ŷ) =


max(0, ŷ), if yregr = 0

|yregr − ŷ|, if 0 < yregr < 10

max(0, 10− ŷ), if yregr = 10

which improved the training procedure when compared to the L1 cost function. The
authors reported accuracy of 93.3% for the classification task and a mean absolute
error of 1.12 motion strength for the regression task [101].
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A new method was proposed by Østvik et al. that classified seven cardiac views
in the transthoracic US. The authors compared three CNN classification models:
AlexNet, Inception-v3 and a custom network that used inception blocks and residual
blocks. The best performing models were saved during training. Their custom model
obtained the highest accuracy of 98.3% and the real-time performance of 4.4 ms per
frame [102].

Togo et al. proposed a novel method to classify cardiac sarcoidosis (CS)4 and
non-CS pixels from positron emission tomography (PET) images. The Inception-v3
network was trained with polar maps generated from the PET images. After training,
the high-level features of the model were used in SVM, similar to Moradi et al. and
Pereira et al. This approach yielded a sensitivity and specificity of 94% and 85% [103].

Figure 4.6: The two-path architecture for simultaneous use of polar and Cartesian
representations. Image from [100].

In Oh et al., a computer-aided diagnostic system to speed up arrhythmia diagnosis
was proposed. The 1D U-shaped model was trained with ECG signals to classify five
classes: normal sinus beats, atrial premature beats, premature ventricular contractions,
left bundle branch block and right bundle branch block. The validation yielded a high
overall accuracy of 97.3% [104].

In Gessert et al., a method to detect untreated plaque deposits from intravascular
optical coherence tomography (OCT) images was proposed. OCT provides insights
into the pathology of coronary arteries by using near-infrared light. The authors
compared two CNN models: ResNet50-v2 [52] and DenseNet121 [53], which were
trained with both a Cartesian- and a polar dataset. A third model was also evaluated,
which had a two-way input path that took both Cartesian and polar images as
input (Figure 4.6). The binary classification task tried to distinguish two types of
images: plaque vs no plaque. The multi-class classification task tried to classify three
classes: calcified plaque, fibrous/lipid plaque and no plaque. In order to overcome the
imbalanced dataset, weights were added to the negative log-likelihood cost function,
which benefited the class representing calcified plaque. The hyper-parameters were
detected with restricted grid search and k-folding (k=3). The authors concluded that
the validation of the models trained with Cartesian images yielded the highest F1-score
(0.888), which was a surprise considering that the polar images contained a richer
representation of the plaque. However, the 2-way path model, which was trained with
both image representations yielded a higher F1-score (0.913). The multi-class models

4Sarcoidosis is a disease where an abnormal amount of inflammatory cells develop lumps
or granulomas.
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yielded a lower F1-score (0.833), which could indicate that there was confusion about
the types of plaque in the images [100].

4.1.5 Meta-analysis of the literature overview

In the above-mentioned literature overview, many medical image classification
methods were discussed in great detail; however not compared. In this section, a
meta-analysis of the presented classification methods is given. The presented methods
ranged from detecting anatomies from a stack of images (such as the apical view)
to assisting the risk stratification of a patient. This range can be interpreted in
terms of clinical relevance; the detection of the apical slice from MR [82] may assist
in the medical image analysis process, whereas the extraction of cardiovascular risk
factors from RI [89] may have an impact on how the patient is treated. The presented
literature overview can be categorised into four groups of clinical relevance: view
detection, anatomical localisation, quantification and risk analysis. These groups will
be discussed in the following section.

Classification of medical images can be used to classify an entire image related to
the view [77, 82, 88, 93, 102]. These methods can answer questions such as “Is the CT
slice the apical slice of the CT stack?” as seen in Zhang et al. [82]. This classification
may assist the image analysis; however it does not include the location of certain
anatomies. The second group encapsulates this localisation of anatomical markers [78,
79, 97, 98]. This group can answer questions such as “Where is the left ventricle in
the CT stack?” as seen in Zreik et al. [79] and Vos et al. [78]. This group contains
regions of interest but does not quantify them. This quantification is performed by
the third group where a particular clinically relevant quantification is extracted [83,
90, 91, 95, 101]. For example, how much is the ejection fraction in this patient (as
seen in Silva et al. [91])? This group provides clinical quantification; however, does
not assign a particular risk to it. This risk analysis is covered in the last group which
analyses the medical images (or signals) and predicts cardiovascular risks [80, 85–87,
89, 92, 94, 96, 100, 103, 104].

The different groups presented above show the potential of deep learning in medical
image analysis. However, it should be noted that the studies in these groups introduce
novel techniques but do not include some of the latest requirements in AI, mainly
related to reproducibility. In order to be able to reproduce the results of a method,
the following information should be available. First, an orchestrated reporting of the
experimental results which led to the final results should be available [105]. It would
be interesting to summarise this information from the presented methods (where
available). Next, a detailed overview of the patients in the cohort should be given,
or a public image database should be used. Currently, there is no standard method
to summarise the medical images from the patient cohorts in order to be able to
reproduce the results. Thirdly, a robustness test of the method could verify how
robust the method remains during changes of certain parameters specific to the cohort.
Examples of such a robustness test may include the age of the patients to see if the
method is resilient for younger or older patients. Another example of a robustness
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test may include the patient’s orientation, image noise or even patient’s pathology
(sick vs healthy patients). Finally, comparable to regulatory rules, the reproducibility
of a method could benefit from an indication for use and limitations of the method.
For example, if the model was trained on a cohort of patients between 80 and 90 years
old, a limitation could be to exclude younger or older patients. Age is taken as an
example here, but this could be extended to race and other demographic parameters.
It is essential to indicate that the requirements related to reproducibility have only
been introduced recently (and some are still under discussion or development) however
they originate from the success of deep learning in cardiovascular classification.

4.1.6 Conclusion

This concludes the literature overview of cardiac classification with deep learning.
As previously mentioned, deep learning has undergone quite the evolution in the past
decade, and this literature overview tried to convey this evolution; from a simple
method to locate the LV in 2015 [81] to standard methods for cardiac classification in
2018 [88, 89].

In the next section, a novel method is described that classifies an aortic valve
morphology from MDCT images using a 3D CNN model. In the presented literature
overview, there are a few studies which use a 3D model for the classification task [90,
91]. Other studies overcome the extra dimension by training a 2D model with a stack
of 2D images, yielding a 3D classification [78]. In Figure 4.7, a timeline with the most
significant milestones of the presented literature and the classification study in the
next section is depicted.
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Figure 4.7: Chronological overview of the most significant milestones of the presented
literature and the bicuspid aortic valve (BAV) classification study.
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4.2 Aortic valve morphology classification5

From the literature overview of this chapter, it was clear that deep learning can
be used for many medical image classification tasks. These tasks can range from
ROI detection in 3D CT images [78] to the detection of untreated plaque deposits in
intravascular OCT images [100]. In the first study, a model classifies an entire image
to identify the ROI, whereas, in the second study, the model looked for the presence
of small image features to assign a label to the image. In this section, a method is
presented that classifies aortic valve morphologies. The method will require both the
entire image and the presence of small image features to classify the bicuspid and
tricuspid aortic valves from MDCT images using a 3D CNN architecture.

First, some background is provided about bicuspid- and tricuspid aortic valves,
followed by a description of the method. Next, the results are presented, and finally, a
short discussion is given about the clinical impact of the obtained results.

4.2.1 Bicuspid aortic valve

Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation
that affects approximately 1% of the general population [106–108]. BAV include a
spectrum of deformed aortic valves with only two functional leaflets6. The spectrum
is classified according to the number of fusions or raphes between the leaflets. Type 0
or the congenital BAV has zero raphes and occurs in about 6% of the BAV patients.
Type 1 is characterised by a single raphe and is the most common one (89% of the
BAV patients). This type has three subcategories depending on which leaflets the
raphe fuses. Type 2 is identified with 2 raphes and occurs in 5% of the BAV patients
[109]. In Figure 4.8, a schematic overview of the different BAV types is given.

Figure 4.8: Schematic overview of the different types of bicuspid aortic valves. The
classification depends on the number of fusions or raphes between the leaflets. Image
from [109].

5in collaboration with Dr. Cameron Dowling
6Normally the aortic valve has three leaflets.
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People with a BAV are more likely to present with aortic stenosis (AS) at a younger
age when compared to people who have a tricuspid aortic valve [110]. Currently the
standard treatment is surgical aortic valve replacement (SAVR) [59]. In the early
days of transcatheter aortic valve replacement (TAVR), when only high-risk patients
were considered candidates for this procedure, the classification of BAV patients
during the pre-operative phase was not that important since most of them would have
been already operated at an earlier age. However, recent data shows that low-risk
patients treated with TAVR have a similar clinical outcome as compared to the surgical
approach [14, 15]. This implies that more and younger patients will be considered for
TAVR, including the patients with BAV.

Furthermore, for patients undergoing TAVR, the presence of BAV has significant
pre- and peri-procedural implications, such as the need to consider the assessment of
the supra-annular structure in order to size the transcatheter heart valve prosthesis
[111–113], and the consideration of pre-implantation balloon aortic valvuloplasty. The
correct identification of BAV on MDCT imaging can be challenging, especially without
the aid of specialised 3D reconstruction tools such as the 3mensio Structural Heart
version 9.1 (Pie Medical Imaging, Maastricht, Netherlands). As a result, many patients
with BAV are not correctly identified. Automated detection of BAV patients would,
therefore, be valuable.

In order to automatically detect BAV in MDCT images, the details of the pathology
must be explored. On valve level, the one or two leaflets of the aortic valve will be
attached, albeit for congenital reasons or due to aortic stenosis. In order to ensure
proper pathological classification and not just labelling high amounts of calcium, a
dedicated calcium analysis tool was used to quantify the volume of aortic leaflet calcium,
with the threshold for calcium set at 700 Hounsfield units (HU). Calcification of the
left ventricular outflow tract, sinotubular junction and coronary arteries were excluded
from the region of interest. On a broader level, different aortic dilation patterns are
described in BAV patients. Aortic dilation occurs due to the malfunctioning of the
bicuspid aortic valve. The dilation effect can be measured at the aortic root and arc
[114]. In Figure 4.9, examples of aortic dilation are presented.

Figure 4.9: Schematic overview of different aortic dilation patterns in bicuspid aortic
valve patients. Image from [114].
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Since this morphology can be detected on the valve/leaflet level and aortic root/arc
level, the field of view used to classify medical images becomes an essential factor. On
the one hand, low-level details must be included, and on the other hand, a broader
view of the aortic apparatus may also play an essential role in the final classification.

4.2.2 Materials and methods
4.2.2.1 MDCT images

The dataset consisted of ECG-gated contrast-enhanced cardiac MDCT images
of 96 patients. The average age of this cohort was 80.8 ± 7.1 years, and 50% of
the patients were male. An expert manually classified all images. The number of
bicuspid (48) and tricuspid (48) patients were kept equal in order to prevent imbalance
issues during the training and detecting phase. The patient characteristics of the
classification dataset can be found in Table 4.5.

Characteristic Value
Number of patients (N) 96
Age (years) 80.3±7.4
Male 48 (50%)
STS-PROM score 4.7± 1.1

Aortic valve morphology
Tricuspid 48 (50%)
Bicuspid 48 (50%)

Table 4.5: Patient characteristics. Values are mean ± standard deviation or n (%).
The society of thoracic surgeons predicted risk of mortality (STS-PROM) as a validated
predictor of 30-day mortality after cardiac procedures [115].

4.2.2.2 Manual classification

The cardiac MDCT imaging was post-processed in 3mensio Structural Heart
version 9.1 (Pie Medical Imaging, Maastricht, Netherlands) using the Aortic Root
analysis package. Automatic segmentation of the aortic root was performed, and
then the centerline was adjusted manually if deemed necessary. The lowest insertion
point of each aortic cusp was identified and used to define the basal annular plane.
Automatic short-axis views were then generated. A ‘hockey puck’ 3D reconstruction
of the aortic valve was created, and aortic valve morphology was then classified as
tricuspid or bicuspid (Figure 4.10).

Sievers type 0 7 (7.3)
Anterior-posterior 5 (5.2)
Lateral 2 (2.1)

Sievers type 1 39 (40.6)
Left-right raphe 33 (34.4)
Right-non raphe 6 (6.3)

Sievers type 2 2 (2.1)
Left-right / right-non raphe 2 (2.1)

Table 4.6: Subtype details of the BAV patients in the cohort. Values are number of
patients (%).
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The bicuspid valves were further classified using the Sievers classification system
[109] and the details are described in Table 4.6. The most frequent BAV classification
was a Sievers Type 1 valve with single left-right raphe.

Figure 4.10: The aortic valve perpendicular plane (gray) and the 3D hockey puck view
(coloured) of tricuspid (A) and bicuspid (B) aortic valve patients. Image courtesy of
Dr. Cameron Dowling.

4.2.2.3 Pre-processing

The anatomical differences between tricuspid and bicuspid patients vary from
patient to patient but mostly include malformations at the raphes, leaflets, coronaries,
valve or aortic arc. Since the MDCT images ranged from full body- to regional scans
and entire MDCT image would not fit the memory of the graphical processing unit
(GPU), a pre-processing step was required.

The volumetric MDCT images were resampled to five isotropic resolutions (0.25,
0.5, 1.0, 2.0, 3.0 mm) to ensure a homogeneous dataset. These multiple-resolutions
were used to increase the amount of information during training and was also observed
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in Emad et al. [81]. The original Hounsfield units were preserved during the resampling
process, which was performed with cubic spline interpolation. In order to focus on
the aortic root, all images were oriented around the center of the left-, right-, and
non-coronary cusp and clipped to 643 voxel cubes to fit the model’s input. The
locations of these cusps were identified by an expert in Mimics Innovation Suite 18
(Materialise, Leuven, Belgium). In Figure 4.11, an overview of the different resolutions
of the same area in a patient are depicted. It is visible that different resolutions of the
same area contain different anatomical information. As a final step, all images were
normalised using feature scaling.

Figure 4.11: Overview of the exported resolutions for both bicuspid (BAV) and tricuspid
(TAV) patients. From left to right: resolutions 0.25, 0.5, 1.0, 2.0 and 3.0 mm. Notice
the aortic root dilation of the BAV patient (visible in resolutions 2.0 and 3.0 mm).

4.2.2.4 Automatic classification

Since there was no 3D CNN deep learning architecture available in the literature
at that time, a model was developed to classify tricuspid- and bicuspid patients from
a single MDCT image. The model’s architecture followed a typical classification
architecture which contained two major elements: an encoder and a funnel. The
encoder was used to learn anatomical features while step-wise reducing the dimensions
of the input. After the encoding step, the entire output was flattened and presented as
a feature vector to the second element. The funnel consisted of stacked fully-connected
layers which gradually reduced the size of the feature vector and was concluded by
an average pooling layer which reduced the size of the feature vector to 1. Finally,
a sigmoid activation function transformed the output of the model to probabilities.
All tricuspid patients belonged to class 0, and the bicuspid patients to class 1. The
decision boundary was set to 0.5 to determine the class of predicted value.

Different experiments were conducted to assess the effect of the amount of anatom-
ical information on the performance of the classifier. The number of resolutions
controlled the amount of anatomical information, e.g. a model could be trained with
single resolution (1 mm) images or with multiple resolutions (0.25, 0.5, 1.0, 2.0, 3.0
mm). The resolutions were inserted in the channel dimension of the CNN model. In
Figure 4.12 an overview of the 3D classification architecture is given.
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Figure 4.12: The 3D architecture to classify bicuspid- and tricuspid patients. The
input signal flows from the encoder, through the funnel to the output. The number of
resolutions S is annotated in the Input(S, 64, 64, 64).

Training details The Adam optimiser [48] was used to minimise the negative log-
likelihood (NLL) cost function with an initial learning rate of 1e-4. A cosine annealing
schedule was used to reduce the learning rate towards 1e-6 over time. The weights
of the convolutional layers were initialised with random orthogonal matrices with
gain =

√
2

1+α2 where α is equal to the negative slope of the Leaky ReLU activation
function (= 0.01). Since the cohort size was small, the method was cross-validated
using k-folding (with k=4).

4.2.3 Results

The trained CNN models demonstrated excellent discriminatory power to cor-
rectly classify aortic valve morphology (Figure 4.13). The single resolution (1.0 mm)
(AUC=0.95, 95% CI 0.90-1.00, P<0.001), dual resolution (0.5, 1.0 mm) (AUC=0.96,
95% CI 0.92-1.00, P<0.001) and quintuple resolution (0.25, 0.5, 1.0, 2.0, 3.0 mm)
(AUC=0.95, 95% CI 0.90-1.00, P<0.001) trained models all demonstrated a similarly
high discriminatory power. An ensemble model, or bootstrap aggregation model, was
obtained by grouping all models into one [116] and this model displayed the highest
discriminatory power to identify the aortic valve morphology correctly (AUC=0.99,
95% CI 0.98-1.00; P<0.001).

Using a probability cut-off of 0.5, the bootstrap aggregation model demonstrated
a sensitivity of 100% and a specificity of 92% to correctly identify BAV, representing
a positive predictive value of 92% and a negative predictive value of 100%.

Leaflet calcium volume was higher in patients with BAV (1066± 652 vs. 408± 361

mm3, P<0.0001). Furthermore, leaflet calcium demonstrated a good discriminatory
power to correctly classify aortic valve morphology (AUC=0.85, 95% confidence
interval [CI] 0.77-0.92, P<0.001).

The training time for one CNN model was about two hours per fold. Average
processing time for the trained network was under one second per patient.
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Figure 4.13: Receiver operating characteristic curve to correctly classify aortic valve
morphology.

The output was captured during the test phase of a trained CNN model to discover
what the CNN model learned. The trained kernels developed functions such as edge
detection and calcium identification (Figure 4.14).

Figure 4.14: Output of the second 3D convolutional layer of a bicuspid patient (A)
and a tricuspid patient (B). The kernels are capable of identifying edges (blue) and
calcium (orange).
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4.2.4 Discussion

As TAVR continues to expand into younger, lower-risk patient cohorts, the correct
identification of aortic valve morphology will be paramount. While outcomes of TAVR
in BAV have improved with increased operator experience and newer-generation
devices [110, 117, 118], the incidence of paravalvular regurgitation and permanent
pacemaker implantation remains higher than with surgery [119, 120]. As such, major
society guidelines recommend that surgery should be favoured in patients with BAV
[59]. Furthermore, for patients undergoing TAVR, the presence of BAV has significant
pre- and peri-procedural implications, such as the need to consider the assessment of
the supra-annular structure in order to size the transcatheter heart valve prosthesis
[111–113], and the consideration of pre-implantation balloon aortic valvuloplasty.

Also, for patients with aortic dilatation, the presence of BAV has important man-
agement implication, with major society guidelines recommending a lower threshold
for surgical intervention on the aorta, in the presence of BAV [59].

The identification of BAV can be challenging on transthoracic echocardiography,
especially in the late stages of aortic stenosis when the valve becomes heavily calcified
and leaflet motion is reduced. MDCT imaging offers superior diagnostic accuracy over
transthoracic US when compared to the gold standard of operative findings [121, 122].
However, correct identification of BAV on MDCT imaging can also be demanding,
especially without the aid of specialised 3D reconstruction tools. It is therefore likely
that many patients with BAV are not correctly identified.

In this study, it was demonstrated that a trained 3D CNN had an excellent ability
to classify aortic valve morphology from MDCT imaging correctly, with a high degree
of both sensitivity (100%) and specificity (92%). These results are very favourable,
especially given the relatively small dataset on which the neural network was trained.

BAV is frequently associated with aortopathy [123] such as aortic dilation (Figure
4.9). In our study, three CNN models were trained, based on increasing volumes
of anatomical information. A bootstrap aggregation model displayed the highest
discriminatory power to classify aortic valve morphology correctly. It is therefore likely
that the trained models have learned to identify the subtle anatomical information
contained within the ascending aorta associated with BAV.

BAV is also often related with heavy calcification [124]. These findings were con-
firmed, and thus, aortic leaflet calcium was a reasonable discriminator for the presence
of BAV. However, the trained CNN models demonstrated a superior discriminatory
power to identify aortic valve morphology correctly.

Although these results are promising, this study entails a few limitations. First,
the MDCT images were all taken from patients with severe aortic stenosis and
further validation would be required to assess whether the 3D CNN could correctly
classify patients without severe aortic stenosis. Next, the CNN model required image
pre-processing to identify the location of the three coronary cusps and could be
improved through automation of this process. Thirdly, the dataset was relatively
small, necessitating the division of our dataset into four cross-validation folds. The
limited size of our dataset also meant that the CNN model could only be trained to
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classify aortic valve morphology in a binary manner. Our study could, therefore, be
improved by a larger dataset, which could potentially be used to create a 3D CNN to
subclassify Sievers Type 0, Type 1 and Type 2 bicuspid aortic valve morphology, by
using a softmax as the final activation function. Finally, the dataset was balanced
with an equal amount of bicuspid- and tricuspid patients due to the small dataset.
This equilibrium does not reflect a realistic setting, where bicuspid patients represent
approximately 1% of the general population. This study could be repeated with a
dataset which reflects this imbalance in which case the NLL should be weighted to
order to counter this imbalance. However, the question remains which of the two
strategies (balanced vs imbalanced) would yield the most accurate results.

This study used a 3D CNN model to classify a morphology that can be detected
on the level of the aortic root/arc and leaflets. This model was trained on CT images
of 96 patients and yielded excellent results. When comparing this work with the
available literature, there are only a few studies that used a 3D CNN model to perform
classifications [90, 91]. The first study classified the EF from stacked sequences of 2D
US images and used the data of 5600 patients. The second study classified the LA
from patches of CT images using the data of only 12 patients. None of these studies
analysed the entire 3D ROI as input. Adding multiple resolutions in the training or
testing phase is a known trick in image analysis, and an example in the presented
literature overview of this chapter can be found in Emad et al. In this study, different
resolutions of the same view were added in the channel dimension of the deep learning
model to increase the field of view from aortic leaflet to aortic root/arc.

4.3 Conclusion
In the first part of this chapter, a literature overview of cardiac classification with

deep learning between 2015 and 2019 was given. The studies were chronologically
presented in order to show the evolution of deep learning in the past years: starting
from ‘simple’ CNN models to robust methods for classification.

In the second part of this chapter, a method to classify tricuspid and bicuspid aortic
valve patients from MDCT images with a custom 3D CNN model was presented. The
trained 3D CNN models demonstrated an excellent ability to correctly classify tricuspid
and bicuspid aortic valve morphology from MDCT images. The discriminative power
of the CNN models is interesting for the field of TAVR, where younger patients, and
thus, more and more BAV patients, will be considered for this minimally invasive
treatment.
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Segmentation

To measure the man,
measure his heart.

Malcom Forbes

Segmentation is the division of something into smaller parts or sections. In
image analysis, this is the annotation or selection of one or many specific areas of
interest. Segmentation methods and applications can also be found in medical image
analysis literature. Given the recent upswing of deep learning, many deep learning
segmentation strategies have been proposed in the field of medical image analysis.
This chapter starts with a literature overview of cardiac segmentation methods that
use deep learning. Afterwards, two novel methods that use segmentation with deep
learning are presented.

5.1 Literature overview of cardiac segmentation
with deep learning

In this section, a literature overview of cardiac segmentation with deep learning is
presented. The presentation of this overview is similar to the previous chapter and is
also limited to the work related to cardiovascular segmentation with deep learning for
brevity and relevance reasons.

5.1.1 Before 2016

The authors mentioned in this section proposed pioneering studies where the focus
was to provide insights in gradient-based learning. However, the architecture choices
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were primitive compared to the available literature; for example, AlexNet was already
available in 2012. Also, the sizes of the datasets were small. Table 5.1 contains a short
summary of the discussed work.

Authors Scope Year Patients Modality Method Dim.
Carneiro et al. [125] LV segment. with DBN 2012 14 US DBN 2D
Carneiro and Nasci-
mento [126]

Tracking LV endocardium 2013 14 US DBN 2D

Ngo and Carneiro [127] LV segment. with level set 2013 45 MR DBN 2D

Table 5.1: Summary of cardiac segmentation with deep learning before 2016.

5.1.1.1 Detailed literature overview

Carneiro et al. proposed a new method to segment the left ventricle (LV) from two-
dimensional (2D) ultrasound (US) images. The method used two deep belief network
(DBN) models: one classifier for object detection, and one classifier for segmentation.
The architecture of a DBN model is similar to the architecture of a neural network,
but they are trained differently. The first model was trained to recognise the correct
view, and the second model was trained to detect the LV contour from 2D ultrasound
images. The method was evaluated in 14 patients, and the authors reported high
true-positive rates (0.95) and low false-positive rates (0.008) [125].

Going one step further, Carneiro and Nascimento tracked the endocardium of
the LV from US images. A deep neural network was used as a motion model and
combined systolic and diastolic motion patterns. A mean absolute distance of 0.94
between prediction and ground truth was reported [126].

A novel method was proposed by Ngo and Carneiro, where a pre-processing step
and a DBN were combined to segment the LV from a limited number of magnetic
resonance (MR) images. The pre-processing step introduced a priori knowledge about
the segmented subject, whereas the DBN handles the parameter tuning required to
segment the LV. The method was evaluated in 15 patients and achieved an average Dice
score of 90%. The authors reported 2-3 minutes per patient, which was comparable to
state of the art at that time [127].

5.1.2 2016

Different types of segmentation methods can be identified in 2016 [79, 128, 129].
The first method used an encoder followed by a fully-connected layer, which was
translated into the segmented 2D image (Figure 5.1). The second method used an
encoder and a transposed convolution layer to segment a ROI (Figure 5.2). And the
third method, already introduced in chapter 4, used a patch-based method to classify
pixels (Figure 4.2). It is fascinating to observe that different types of segmentation
methods with different image modalities were used to perform a similar task, which
shows the potential of deep learning. Table 5.2 contains a short summary of the
discussed work.
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Authors Scope Patients Modality Method Dim.
Avendi et al. [128] LV segment. with deform. models 45 MR CNN 2D
Rupprecht et al. [130] Deep active contours 45 MR CNN 2D
Tan et al. [131] LV segment. 45 MR CNN 2D
Chen et al. [132] LV segment. 42894 US CNN 2D
Ghesu et al. [133] Marginal space deep learning 150 US FC 3D
Nascimento and
Carneiro [134]

Manifold learning with DBN 14 US FC 2D

Zhen et al. [135] Bi-ventricular volume estimation 100 MR CNN 2D
Tran [129] Bi-ventricular segment. 45 MR CNN 2D
Yang et al. [136] LV myocardium segment. 33 MR CNN 2D
Andermatt et al. [137] Segment. of the brain 20 MR RNN 3D
Dong et al. [138] Direct ESV, EDV estimation with

random forest
30 US CNN 3D

Table 5.2: Summary of cardiac segmentation with deep learning in 2016.

5.1.2.1 Detailed literature overview

Avendi et al. proposed a novel method to segment the LV from short-axis 2D MR
images with two deep learning models. The first model was a convolutional neural
network (CNN) model and was used to determine the square region of interest (ROI)
in each slice (Figure 5.1). The second model was a fully connected auto-encoder. This
model was trained to determine the contours of the LV from each ROI. The method
employed a deformable model to improve the final segmentation and was evaluated in
15 patients. The evaluation yielded an average Dice score of 96.7% with a detection
time of 1 second per patient [128].

Figure 5.1: A deep learning architecture to segment the LV from MR images. Image
from [128].

In Rupprecht et al., a contour detection method was proposed. A framework for
active contours was used, and a simplified AlexNet model evaluated the proposed
contour. Patches from the contour were given to the CNN model which predicted the
vector field pointing from the center of each patch to the closest point in the actual
contour. This work was evaluated on medical and non-medical images [130].

A new method was proposed by Tan et al., where the LV endocardium was
segmented from MR images with two CNN models. The first model was trained to
detect the center of the LV endocardium from 2D MR images. The second CNN model
was trained to detect the endocardial contour from a 2D slice in polar coordinates.
The method was validated and yielded an average Dice score of 88% [131].
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A large study was performed by Chen et al., where the data of 42894 patients
were used. The method segmented the LV from 2D US images with two CNN models.
The first model segmented the LV mask from a single 2D image (from multiple views)
and the second model was used to refine the segmentation by patch-wise contour
segmentation. The models were trained to minimise the negative log-likelihood (NLL)
and regularised with L2 regularisation. The method was evaluated on images of 8533
patients, which yielded an average Dice score of 89.2% [132].

Ghesu et al. proposed a new method to segment the aortic valve from US images.
The method first detected a three-dimensional (3D) bounding box by using three deep
neural networks to classify the correct candidate patches. After the 3D bounding box
detection, a second part of the proposed method segmented the aortic valve from
US images after which the predicted mesh was generated. The validation yielded an
average distance to the ground truth mesh of 0.9 mm [133].

A new approach was proposed by Nascimento and Carneiro, to detect and segment
the LV from US. The method used manifold learning, which partitions the data into
several patches and learns to segment these patches. A DBN classified these patches
in order to fuse them into a final segmentation [134].

In Zhen et al., a method to estimate the volumes of the two ventricles from
MR was proposed. The method employed a CNN model as an image encoder and
trained a regression forest with the CNN features. The authors used leave-one-out
cross-validation on a dataset of 100 patients to validate the method [135].

Tran also proposed bi-ventricle segmentation. The fully convolutional neural
network (FCNN) was trained and validated on a dataset containing the MR images of
45 patients. The validation yielded a Dice score of 96% and 92% for the segmentation
of the epi- and endocardium [129]. Figure 5.2 depicts a schematic overview of the
architecture that was used in this study.

Figure 5.2: Schematic overview of a segmentation architecture in 2016: 15-layer deep
FCNN. Image from [129].

A new method to segment the myocardium of the left ventricle was proposed by
Yang et al. A CNN model was used to segment the myocardium from MR images
and consisted of six convolutional layers, two pooling layers and one transposed
convolutional layer. The validation yielded an average Dice score of 75% [136].
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Andermatt et al. proposed a new method to segment MR images of the brain with
a recurrent neural network (RNN). This work is only included to identify all possible
deep learning methods for segmenting medical images [137].

In Dong et al., a method to directly predict the end-diastolic volume (EDV), end-
systolic volume (ESV) and ejection fraction (EF) from 3D US images was proposed.
The feature representations of CNN models were used to train random forests. The
predicted EDV, ESV and EF were compared to the ground truth and yielded R2

values of 0.85, 0.87 and 0.86 [138].

5.1.3 2017

The studies in this section show that segmenting medical images with deep
learning becomes more robust. The presented studies explore the usage of deep
learning elements such as optimisers, batch normalisation, residual connections, model
architectures and cost functions [139–141]. The dataset sizes are relatively similar
when comparing to the dataset sizes in 2016. Table 5.3 contains a short summary of
the discussed work.

Authors Scope Patients Modality Method Dim.
Giannakidis et al. [142] Two-path RV segment 26 MR CNN 3D
Li et al. [143] Whole heart segment 20 MR CNN 3D
Luo et al. [144] Direct ESV and EDV estimation 937 MR CNN 2D
Luo et al. [145] localisation and segment of RV 48 MR CNN 2D
Yu et al. [146] Fractal net 20 MR CNN 2D
Dou et al. [147] Full heart segment 20 MR CNN 3D
Wolterink et al. [148] Dilated CNN for heart segment 20 MR CNN 2D
Lieman-Sifry et al. [139] LV, RC segment (model eval) 1143 MR CNN 2D
Curiale et al. [141] Myocardial segment (model eval) 45 MR CNN 2D
Tan et al. [149] localise-and-segment method (polar)

for LV
200 MR CNN 2D

Liao et al. [150] LV ESV, EDV estimation 1140 MR CNN 2D
Yang et al. [151] localise-and-segment method for LV 45 MR CNN 2D
Romaguera et al. [140] Endocardium segment from LV (op-

tim eval)
45 MR CNN 2D

Avendi et al. [152] localise-and-segment method for RV 48 MR CNN 2D
Ngo et al. [153] DL & level set segment epi- and en-

docardium
45 MR FC 2D

Kabani and El-Sakka
[154]

LV localisation 25 MR CNN 2D

Yang et al. [155] Multi-region segment (loss eval) 60 CT, MR CNN 3D
Baumgartner et al. [156] RV, LV segment (loss and network

eval)
100 MR CNN 2D

Table 5.3: Summary of cardiac segmentation with deep learning in 2017.

5.1.3.1 Detailed literature overview

Giannakidis et al. proposed a novel strategy to segment the right ventricle (RV)
using a CNN model with two input paths. The model was trained to classify the voxels
of the RV from MR images (similar to [79]). In order to learn the surrounding and
detailed anatomy, image patches around the voxels were selected in two resolutions:
low and normal. The method was validated on 26 patients and yielded an average
Dice score of 80%. Figure 5.3 shows a schematic overview of the architecture and
method that was used in this study [142].
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Figure 5.3: Segmentation through low- and normal resolution patches. The CNN model
with two input paths learns the surrounding and detailed anatomy around each voxel.
Image from [142].

In Li et al., a 3D fully convolutional neural network (FCNN) model was used to
segment the whole heart from MR images. The model was equipped with dilated
convolutional layers. The reported test average Dice score was 70%, which is low when
comparing to other segmentation methods [143].

A novel method to predict ESV and EDV from MR images was proposed by Luo
et al. The CNN model was trained to predict the ESV and EDV from multiple views:
base-, mid- and apical slice from the four- and two chamber view of both target phases.
The predicted ESV, EDV and EF yielded correlation coefficients 0.92, 0.95 and 0.9
when compared with the ground truth [144].

Luo et al. proposed a new strategy to localise and segment the RV from MR
images using two CNN models. The first CNN model was used to predict the center
of the ROI directly and was optimised by minimising the Euclidean distance between
the predicted- and the ground truth center. The second model was trained to segment
the ROI. The validation of the localisation was not reported in their results. The
segmented endo- and epicardium was validated and yielded average Dice scores of
86% and 84% when compared to the ground truth [145].

The method proposed by Yu et al. segmented the whole heart from MR images. A
fractal rule constructed the CNN network. The method was validated on ten patients
and yielded an average Dice score of 78% on the segmentation of the myocardium,
which is low when comparing to other segmentation methods [146].

A method to segment the liver and the whole heart from 3D medical images was
proposed by Dou et al. The liver was segmented from computed tomography (CT)
images and the whole heart from MR images. The authors trained the models with
the NLL as a cost function and added L2 regularisation. The authors used many
metrics for comparing the predicted segmentation with the ground truth such as
volumetric overlap error, volume difference, average symmetric surface distance, and
others. The validation yielded an average Dice score of 73% on the segmentation of
the myocardium of the whole heart. Figure 5.4 shows a schematic overview of the
architecture that was used in this study [147].
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Figure 5.4: Image flow from 3D medical image to 3D segmentation in 2017. Image
from [147].

Wolterink et al. presented a method that used dilated convolutions in the CNN
model, which was used to segment the whole heart from MR images. It was shown
that dilated convolutions reduced the number of required parameters without limiting
the model’s field of view. The method was validated on a small test set of 10 patients
and yielded an average Dice score of 80% for segmenting the myocardium [148].

Lieman-Sifry et al. performed a comparative study between two CNN models. The
models were trained to segment the LV and RV from 2D MR images. U-Net inspired
the first model, and the second model was inspired by the Inception model and was
optimised to reduce the memory- and computation footprint. The authors reported
no significant difference between the two models and used relative absolute volume
error as metric [139].

Another comparative study was presented by Curiale et al. In this work, a method
to segment the myocardium of the LV from MR images was proposed. The target
model was a 2D CNN model inspired by U-Net. The authors compared the usage of
residual connections, batch normalisation and different cost functions, i.e. the Jaccard
index and the Dice score. The Jaccard index identifies the similarity between finite
sample sets. It was concluded that the model that used batch normalisation, residual
connections and was trained with the Jaccard index yielded the highest average Dice
score of 90% [141].

Building on top of their work from 2016, Tan et al. proposed a two-step method
to segment the contours of the LV. The first step localised the center of the LV using
a CNN model and the second step segmented polar images which were derived from
the center of the LV. The output of the first CNN model was a 2D coordinate and
the output of the second CNN model were the epi- and endocardial distances from
the center of the LV. The second model used a coarse- and fine-grained version of the
input to include more anatomical information. The validation was performed on 100
patients and yielded an average Jaccard index of 77% [149].
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In Liao et al., a LV volume estimation technique from MR images was proposed.
First, a ROI was selected and next the LV was segmented from this ROI. The final
LV volume was estimated by summing all predicted areas from a 2D MR image. The
proposed work was 4th at the Second National Data Science Bowl competition of
Kaggle in 2015 [150].

Similarly, a method to localise and segment the LV from MR images was proposed
by Yang et al. The localisation method used a 2D CNN model to predict the top-left
and bottom-right corner and the segmentation method used a 2D CNN model (inspired
by U-Net). The segmentation model was optimised using the Dice score as the cost
function. The method was trained and validated on two datasets containing images of
33 and 45 patients. The validation was performed on 15% of the datasets and yielded
an average Dice score of 90% for both datasets [151].

The LV was segmented from MR images in a comparative study between two
optimisers by Romaguera et al. The CNN model was a 16-layered model that used
an encoder and one transposed convolution layer to predict the segmentation mask.
The authors compared the SGD and the RMSProp optimiser, each with a learning
rate decay strategy (multi-step for SGD and inverse for RMSProp). The method was
cross-validated with 5-fold cross-validation, and an average Dice score of 92% and
90% was obtained for the SGD and the RMSProp [140].

Avendi et al. proposed a method to segment the RV from MR images using two
2D CNN models. The method used a localisation- and a segmentation model. The
localisation model was a regression model that was trained to predict the x- and y
coordinates of the center of the RV in the MR slice. This center was used to select
the ROI which was segmented by the second CNN model. The method was validated
with 32 patients and yielded an average Dice score of 82,5% [152].

A novel method was proposed by Ngo et al., where the endo- and epicardium of
the LV was segmented from MR images using a combination of deep learning and
image analysis methods. The method is subdivided in several steps starting with a 2D
ROI mask detection from MR slices using a DBN. From the ROI, the endocardium
was segmented using another DBN, level set contour approximation and by using a
shape prior. A similar approach was performed for the epicardium. The method was
validated on 15 patients and yielded an average Dice score of 86% and 92% for the
segmentation of the endo- and epicardium [153].

In Kabani and El-Sakka, a method to localise and segment the LV at end-systolic
and end-diastolic phase from MR images was proposed. The localisation method
was similar to [78] and the segmentation method used the U-Net model. After the
segmentation, the ESV, EDV and EF were derived and validated [154].

Yang et al. proposed a method to segment seven partitions of the heart from
CT and MR images. U-Net inspired the 3D CNN model, and the authors evaluated
different cost functions. The weighted NLL was used as a baseline and compared with
a hybrid cost function that combined the weighted NLL and the weighted Dice score.
The method was trained and validated on a CT and a MR dataset each containing
images of 60 patients. The validation yielded an average Dice score of 75% and 77%
for the NLL and the hybrid cost function [155].
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The study of Baumgartner et al. provided an overview of different methods to
segment the LV, RV and myocardium from MR images using CNN models. The
authors compared three 2D and one 3D architecture(s): VGG (with upsampling),
U-Net, a modified U-Net (with a smaller upsampling path) and 3D U-Net [157]. The
authors also compared three different cost functions: the NLL, the weighted NLL and
the Dice score [25]. The experiments were conducted on a dataset of 100 patients
(with an 80:20 training-test split). In almost all of the experiments, the 2D U-Net
or the modified version of it, yielded the highest average Dice score. The weighted
NLL yielded the highest average Dice score when training the U-Net model [156]. No
explanation was given why the V-Net architecture [25] was not used (although the
cost function from the same study was used).

5.1.4 2018

Segmenting medical images with deep learning was almost standardised in 2018
when looking at the available literature. Some studies presented interesting work
while also evaluating deep learning elements such as optimisers [158]. There are more
studies which use a 3D CNN model and more studies that analyse sequences of 2D
images. The datasets are larger when compared to the studies in 2017. Table 5.4
contains a short summary of the discussed work.

Authors Scope Patients Modality Method Dim.
Payer et al. [159] Whole heart segment with two

models
20 CT CNN 2D

Xue et al. [95] LV quantification 145 MR RNN 2D+t
Dong et al. [160] LV segment 45 US CNN 2D
Oktay et al. [161] LV segment with super resolu-

tion
45 CT, US CNN 2D

Zhang et al. [162] RV segment with multi-task
network

514 MR CNN 2D

Romaguera et al. [158] Myocardial segment (opti-
miser eval)

45 MR CNN 2D

Tan et al. [163] localise-and-segment method
(polar) for LV

1340 MR CNN 2D

Du et al. [164] Bi-ventricle contour detection 145 MR CNN 2D
Zheng et al. [165] localise and segment ventricles 3834 MR CNN 2D
Savioli et al. [166] Temporal LV segment 68 MR RNN 2D+t
Isensee et al. [167] LV and RV cavity and LV my-

ocardium segment
150 MR CNN 3D

Vigneault et al. [168] Multi-regional cardiac seg-
ment

63 MR CNN 2D

Duan et al. [169] localise and segment ventricles 2480 MR CNN 2D
Bai et al. [170] Segment ventricles 4875 MR CNN 2D
Mortazi et al. [171] Whole heart segmentation 60 CT, MR CNN 2D
Zotti et al. [172] LV, RV and myocardium seg-

ment
100 MR CNN 2D

Patravali et al. [173] LV, RV and myocardium seg-
ment

150 MR CNN 3D

Winther et al. [174] LV and RV segment 1031 MR CNN 2D

Table 5.4: Summary of cardiac segmentation with deep learning in 2018
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5.1.4.1 Detailed literature overview

In Payer et al., a method to localise and segment the whole heart from CT and MR
images was proposed. The method employed two models, which were both inspired
by U-Net. The first CNN model applied heatmap regression to detect the center of
the heart. This model was trained with a low-resolution down-sampled version of the
medical images. Once the center of the heart was detected, the second CNN model
was trained to segment the whole heart into seven different segments. The average
Dice score was 79% for the MR image dataset and 88% for the CT dataset [159].

A novel method to quantify the LV from sequences of MR images was proposed
by Xue et al. The method used a CNN encoder and two recurrent models. A CNN
model encoded the sequences of images into vectors (of length 1000). These sequences
of vectors were used in the recurrent models. The first RNN was trained to estimate
the indices (such as LV area, wall thicknesses, and others) and the second RNN was
trained to estimate the cardiac phase [95].

Dong et al. proposed a method to segment the LV from 2D US in two steps. The
first step used a trained 2D CNN model to segment the US slices into segmentation
masks, which resulted in a coarse segmentation. This segmentation was corrected in a
second step. During this step, the segmented masks were re-centered using the radius
and centers of the masks. The validation yielded an average Dice score of 91% and
88% of the ED and ES volumes [160].

A comparative study between optimisers was presented by Romaguera et al. where
the myocardium of the LV was segmented from MR images. The model used a
known approach: starting with a CNN encoder, which was followed by a transposed
convolutional layer and concluded by a softmax layer (Figure 5.5). The validation of
the method was performed on 45 patients and yielded an overall average Dice score of
90%. The authors also performed a thorough study on the optimisers, where different
optimisers were compared with each other on the same task. The included optimisers
yielded the following average Dice score: RMSProp (93%), SGD (92%), Nesterov
(90%), Adam (89%), Adadelta (88%) and Adagrad (88%) [158].

Figure 5.5: An deep learning architecture to segment medical images in 2018. Image
from [158].
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Going a step further, the method proposed by Oktay et al. segmented anatomic
features from US and MR. The method included super-resolution, which is a technique
to enrich the input images with more information. The segmentation method was
validated on the US image data from 30 patients and yielded an average Dice score of
91%, which is high, considering the coarse image quality of US images [161].

In Zhang et al., the segmentation of the RV from MR images was proposed using
a CNN model with three different tasks. The first task was to classify the size of the
contour of the RV, the second task consisted of segmenting the entire image, and the
third task was responsible for segmenting the smaller, cropped image. The method
was validated on 30% of the dataset and yielded an average Dice score of 80% [162].

Building on top of their previous work [131, 149], Tan et al. used two cohorts of
200 and 1140 patients to train their models [163].

Du et al. proposed a method to determine the bi-ventricle contours from MR
images. The method used a DBN to encode the input image into features. From these
features, 100 points were proposed as a contour. The method was validated on 145
patients and yielded an average Dice score of 91% and 94% when segmenting the endo-
and epicardium [164].

In Zheng et al., ventricle segmentation was performed in two-steps. First, the
ROI was determined by a U-Net model. The model was trained to classify a region
including both ventricles. Secondly, an adaptation of U-Net was used to perform the
segmentation. The model used the MR slices and the previously segmented mask as
input. The output of the segmentation model was a segmented mask of the current
MR slice and was used as input for the next MR slice (Figure 5.6). This method used
3078 patients for training and 902 patients for validation. The patients were selected
from four different datasets. The validation yielded average Dice scores from 71% to
88% [165].

Figure 5.6: Bi-ventricle segmentation using a dual input CNN model. Image from
[165].
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A novel recurrent model was proposed by Savioli et al., where the LV was segmented
from temporal 2D MR images. The model was inspired by U-Net and used a gated
recurrent unit [175] in between the encoding and decoding path. The method used a
cohort of 68 patients, and the validation was performed on 15% of the patients, which
yielded an average Dice score of 98% [166].

The novel segmentation method proposed by Isensee et al., where the RV cavity,
LV cavity and LV myocardium were segmented from MR images. An ensemble of 2D
and 3D U-Net models was used for the segmentation. The method used 150 patients
from which 50 were used for validation, which yielded an average Dice score of 90%.
The trained models were used as feature generators to train classifiers to distinguish
healthy from unhealthy patients [167].

The previous method was used as a point of reference in Vigneault et al., where
the authors proposed a novel architecture. The architecture was trained to segment
five regions of cardiac MR image. The validation yielded an average Dice score of 89%
when segmenting the myocardium, which was lower than the state of the art. Only
the segmentation of the blood pools yielded a higher average Dice score [168].

In Duan et al., a method to segment the LV and RV from 2D MR images was
proposed. The method used a CNN model that was trained to segment the ROIs
and locate their center. Two models were trained: one with high- and one with
low-resolution images. The method was validated on 600 patients and yielded average
Dice scores between 69% and 95% [169].

Similarly, Bai et al. proposed a method to segment the LV and RV from MR
images. The method used a 2D FCNN model which was trained and validated on a
large dataset of 4875 patients. The validation itself was performed on 600 patients
and yielded an average Dice score of 90% [170].

A novel method to segment the whole heart from MR and CT images was proposed
by Mortazi et al. This method used three CNN models, which were inspired by U-Net
and were trained with three orthogonal views: axial, sagittal and coronal. After the
segmentation step, a post-processing step fused all predictions. The validation of the
whole heart segmentation yielded an average Dice score of 85% and 90% for MR and
CT [171].

In Zotti et al., a method to segment the LV, RV and myocardium from MR images
was proposed. The model resembled U-Net with an encoding and decoding path,
where the encoding path was responsible for reducing the spatial resolution. The
authors also employed a custom cost function, which included segmentation, contour
and point detection. The method was validated on 25 patients and yielded an average
Dice score of 90% [172].

Going a step further, a 3D CNN model was used to segment the LV, RV and
myocardium from MR images in Patravali et al. The method was validated on 20
patients which yielded an average Dice score of 90% [173].

Winther et al. proposed a method to segment the LV and RV from MR images.
The predicted segmentations were used to estimate the ESV, EDV and other cardiac
parameters. The authors used a CNN model similar to U-Net and the method was
validated on four different datasets, which yielded an average Dice score of 88% [174].
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5.1.5 2019

The number of available literature at the moment of writing was less than in 2018.
Table 5.5 contains a short summary of the discussed work.

Authors Scope Patients Modality Method Dim.
Khened et al. [176] LV and RV segmentation 1140 MR CNN 2D
Curiale et al. [177] LV function prediction 140 MR CNN 2D

Table 5.5: Summary of cardiac segmentation with deep learning in 2019

5.1.5.1 Detailed literature overview

In Khened et al., a method to segment the LV and RV from MR images was
proposed. The authors proposed a 2D CNN model that was inspired by DenseNet
and compared it with other networks. The validation was performed on three public
datasets and yielded an average Dice score of 90% [176].

A novel method to quantify the LV was proposed by Curiale et al. The quantification
included the LV mass, ejection fraction and stroke volume which were derived from
MR images. The U-Net model was used as a baseline but was expanded with residual
blocks. The models were trained to detect the myocardial tissues, and the validation
yielded an average Dice score of 86% [177].

5.1.6 Meta-analysis of the literature overview

The above-mentioned literature can be categorised into the following categories;
anatomical region, pre-processing step and reported metric. Since this literature
overview was limited to the cardiovascular domain and deep learning, the available
anatomical regions are limited. However, when matching other aspects such as
technical differences and reported metrics, certain perspectives can be observed and
will be discussed in this section.

5.1.6.1 Anatomical region

In the literature overview, the following anatomical regions are discussed: the left
ventricle, the right ventricle, both ventricles and the whole heart. The subdivision of
endo-, epi- and myocardium is excluded for brevity reasons.

Left ventricle The following studies introduce novel methods to analyse medical
images and segment the left ventricle: [95, 125–128, 130–132, 134, 136, 140, 141,
149–151, 153, 154, 158, 160, 161, 166, 177].

From these studies (and where the information was available), the evaluation
metric was extracted. The highest Dice score of 98% was found in the study of Savioli
et al. [166], and the lowest Jaccard index of 77% was found in Tan et al. [149] (Jaccard
index and Dice score are similar metrics). The first study used a deep learning model
based on U-Net with recurrent layers and used the MR images of 68 patients (15 for
validation). The second study used a CNN model and the MR images of 200 patients
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(100 for validation). Based on these results, one may develop a preference for the
study with the highest validation value; however, when looking at the ground truth
data, the following can be observed. In the study with the highest validation value,
the ground truth displayed the highest level of detail and followed the ventricular wall
(Figure 5.7 A). This level of granularity was not present the study with the lowest
validation value, where the ground truth consisted of almost elliptical shapes coarsely
following the ventricular wall (Figure 5.7 B). This difference between the two studies
could explain the vast difference between the validation values. If the segmentation
ground truth follows the delineations in the anatomy, the deep learning models display
a higher accuracy. However, it remains to be investigated if there are other reasons,
such as superior architectural design, which can explain the difference between the
two studies.

Figure 5.7: Comparison of two methods that segmented the left ventricle from MR. At
the top(A), a sample of the validation data from Savioli et al. [166] is shown. The blue
and green line indicates the output of a model and the red line indicates the clinical
ground truth. At the bottom (B), a sample of the ground truth validation data from
Tan et al. [149] is shown. The blue line indicates the epicardium and the red line
indicates the endocardium.

Right ventricle The following studies introduce novel methods to analyse medical
images and segment the right ventricle: [142, 145, 152, 162].

These studies used the Dice score as a validation metric, which was between 80%
and 86%. Two studies used the same dataset [178], which contained the MR images
of 48 patients and the ground truth segmentation of the epi- and endocardium of the
right ventricle. These two studies are compared in the next section.



Segmentation 85

The first study obtained an average Dice score of 85% using 32 patients for
validation (Luo et al. [145]). The second study reported an average Dice score of
82.5% and also used 32 patients in their validation (Avendi et al. [152]). Both studies
included a pre-processing step to detect the region of interest. Moreover, the first
study reported a worse performance if this pre-processing step was excluded. Both
studies used a similar pre-processing step where a CNN regression model predicted
the center of the region of interest. However, in the segmentation step of both studies,
differences can be observed. The study with the slightly higher validation Dice score
used a rudimentary model with only 5 CNN layers to segment the right ventricle,
whereas the other study used a fully connected regression model to predict the contours
directly. After this contour detection, another step was required to obtain the final
segmentation. Since the validation values were similar, one may conclude that both
approaches are equivalent to segment the right ventricle from MR images; however
this should be verified.

Both ventricles The studies in the two sections above were limited to a single
ventricle and thus analysed a smaller region. The following studies introduce novel
methods to analyse medical images and segment both ventricles: [129, 135, 139, 156,
165, 167, 169, 170, 172–174, 176]. Segmenting two ventricles implies that the models
will need to learn to segment a larger region of interest which can be challenging.

All of the aforementioned studies (except two [135, 139]) use the Dice score as a
validation metric which ranged from 88% to 96%. There are six studies which use a
patient cohort greater than 1000 patients [139, 165, 169, 170, 174, 176].

Since the anatomical region includes both ventricles, different methods are used
to handle the image-space. Some studies use a low-and high-resolution version of the
medical images [169] whereas others use a method to detect the region of interest first
[164, 165, 169] in order to limit the amount of image-space.

Whole heart In this last section, studies that segmented the whole heart as the
anatomical region are discussed [143, 146–148, 155, 159, 168, 171]. The size of the
image volume becomes challenging when segmenting the whole heart.

Two studies are compared, which obtained a similar validation Dice score and
used an equivalent amount of patients. The first study used an hourglass-shaped CNN
model to refine the output of the first U-Net model [168]. The second study used a
CNN model which was inspired by U-Net [171]. Both methods use 2D input images
for the models and fixed size and thus crop of pad the medical images in order to
overcome the variational size of medical images.

5.1.6.2 Pre-processing step

Some methods used a pre-processing step in order to detect the center of bounding
box the region of interest [128, 131, 133, 145, 149–153, 159, 165, 169, 179]. These
studies used a method (albeit with deep learning) to detect the region of interest from
the medical images prior to the actual segmentation.
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Some of the novel methods to segment the left ventricle used the same dataset
which contained the MR images of 45 patients [127, 128, 130, 131, 140, 141, 151,
153, 158]. The study with the highest reported validation Dice score of 96.7% [128]
included a pre-processing step. This may indicate that adding a pre-processing step
before segmenting increases the accuracy of the model.

5.1.6.3 Reported metric

Finally, the reported metrics (and the results thereof) can also be compared. It is
not possible to compare methods with different anatomical regions, image modality,
image source, ground truth or cohort size by a single metric. However, when observing
the reported validation values of the anatomical region categories, the following can be
observed. The studies which analysed the left ventricle (21) displayed a median Dice
score of 90% whereas the studies which segmented the right ventricle (4) displayed a
median Dice score of 80%. The studies which analysed both ventricles (12) obtained
a median Dice score of 90%, and the studies of the segmentation of the whole heart
(8) obtained the lowest median Dice score of 79%. This difference may indicate that
segmenting the whole heart is the most challenging task, followed by segmenting
the right ventricle. It remains to be established if methods that segment the left
ventricle are also applicable to segment the right ventricle. Also, it remains to verified
if deep learning models are better at a single (simple) segmentation task than multiple
segmentation tasks at once (left ventricle vs whole heart).

5.1.7 Conclusion
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Figure 5.8: Chronological overview of the most significant milestones of the presented
literature, the TAVR device size selection study and the mitral valve annulus detection
study.
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This concludes the literature overview of cardiac segmentation with deep learning.
As in the previous chapter, the evolution of deep learning can also be noticed in this
overview, starting from pioneering studies which were applied to just a few patients
[125, 127] towards a standardised method for segmenting medical images in 2018.
In the next sections, novel methods that apply deep learning to segment medical
images are presented. A timeline with the most significant milestones in the presented
literature overview and these novel methods are depicted in Figure 5.8.

5.2 Enabling automated device size selection for
TAVR

5.2.1 Introduction

Before a TAVR procedure, the patient’s cardiovascular anatomy - including the
aortic valve, aortic root/arch and possible access vessels, have to be assessed in detail.
Since TAVR is a closed-chest procedure, the pre-operative planning is image-based.
The MDCT images are analysed by a trained operator to obtain the dimensions of
the aortic annulus, amount of calcium, and other measurements in order to assess risk
factors and select a correct prosthesis size. Correct sizing is of paramount importance
because over-sizing may cause aortic annulus rupture or conduction abnormalities
[180] and under-sizing may cause device migration or valvular regurgitation. Therefore,
image quality and operator experience are essential to select correct device size selection
and influence the optimal procedural outcome.

The number of TAVR procedures is increasing each year [181], and as a result,
scalability of the complete procedure, including pre-operative planning becomes an
important aspect. To address this, experienced operators can enlarge their volume
of TAVR cases, for example, by increasing the efficiency. On the other hand, many
new operators will need to be trained, which logically leads to increased risks due
to their limited experience. When focusing on the pre-operative planning, accurate
automated detection of the aortic annulus dimensions directly from MDCT images
could not only increase efficiency but at the same time reduce operator variability,
thereby minimising the impact of experience on TAVR sizing.

In this study, a deep learning method is presented that can predict aortic annulus
perimeter and area automatically. The method is validated against an inter-observer
variability study to assess its accuracy. As a final step, the impact of the proposed
method on the prosthesis size selection for both the Edwards Lifesciences and Medtronic
transcatheter aortic bioprostheses was evaluated.

5.2.2 Materials and methods
5.2.2.1 MDCT imaging

This retrospective study used the anonymised data of 473 patients collected from
multiple centra. The mean age of this cohort was 80.8 ± 7.2 years, and 55% of the
patients were female. There were 36 bicuspid patients in this cohort. The patient
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data consisted of volumetric MDCT images, which were acquired to support the
pre-operative phase of a TAVR procedure. Therefore, all MDCT images were contrast-
enhanced and contained a certain degree of aortic stenosis. The average row, column,
slice thickness and pixel-spacing of the MDCT images were 512.1, 511.7, 0.8 and 0.5
mm.

The aortic annular plane (AAP) was manually identified by an expert from the
volumetric MDCT images using the standard method [182] and validated by a second
observer.

5.2.2.2 Manual detection

The aortic annulus was segmented from the aortic annular planes for all patients
by observer one. The data of the first observer was considered the ground truth
in this study. A second observer re-segmented the aortic annulus from the AAP of
118 randomly selected patients in order to assess the inter-observer variability. Both
observers applied the same manual method, which consists of visual detection of the
aortic annulus within the AAP and annotating it using Materialise Mimics Innovation
Suite 18 (Mimics, Leuven, Belgium). The manual segmentation of the aortic annulus
was considered a robust yet time-consuming procedure.

5.2.2.3 Automatic detection

This study was focused on automating manual segmentation and deriving clinical
patient-specific information. The pre-processing of the ground truth images and aortic
annulus annotations was necessary in order to prepare the data for training of the
deep learning models.

Figure 5.9: Example of the aortic annular planes and the accompanying binary masks.
The resampled and clipped aortic annular planes (left) and the binary masks (right)
with different resolutions 1.0 mm (top) and 0.5 mm (bottom).
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Pre-processing The aortic annular planes were clipped and resampled in order
to fit the model’s input. The aortic annular planes were resampled to an isotropic
resolution of 1 mm to create a homogeneous dataset. The original Hounsfield units
were preserved during the resampling process, which was performed with cubic spline
interpolation. Since the average slice thickness and pixel-spacing were 0.8 and 0.5
mm in this dataset, the level of detail was reduced by resampling all images to a 1
mm resolution. In order to prevent this data loss and increase the level of detail, the
second resolution of 0.5 mm was also exported, which is a known trick in literature
[142, 159, 169]. As the deep learning network expected a 128 x 128-pixel plane as
input, the resampled aortic annular planes were clipped around the center of the aortic
annulus. The time to pre-process the data of a single patient was within seconds.

The ground truth annotations were used to create binary masks that would mark
the aortic annulus within the aortic annular plane for both resolutions (Figure 5.9).

Architecture The baseline architecture in this study was U-Net [24]; however, it
was observed that this architecture was not able to yield the required details. It is
therefore that this study used a deep learning architecture inspired by U-Net and
ResNet [52], and consisted of a down-scaling- and an up-scaling path. The down-
scaling path extracted information from the aortic annular plane, and the up-scaling
path translated this information into a segmented aortic annulus. The final sigmoid
activation function transformed the output of the model into probabilities (Figure
5.10).

Figure 5.10: Schematic overview of the architecture used to segment the aortic annulus.
The down- and up scaling path of the architecture are defined by the down- and up
blocks.

The down-scaling path consisted of down blocks which decreased the resolution
of its input with a convolutional layer (with stride=2). The up-scaling path used up
blocks to increase the resolution of its input with a transposed convolutional layer.
The down- and up blocks contain a residual block followed by an alpha dropout layer
(with p=0.5) [183] which maintained the self-normalising property within the model
after performing a dropout.

The residual block introduced an identity shortcut connection, which enables
deeper networks without degrading network performance due to poor convergence
of learning [52]. After a sequence of convolutional layers with kernel size 3, batch
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normalisation [49] and ReLU activation function [43], the output is summed with the
output of the first convolutional layer followed by a final ReLU activation function
(Figure 5.11).

Figure 5.11: The residual block of the aortic annulus segmentation architecture.

Training Two models were trained using the training dataset and validated with
the validation dataset. One model was trained with the 1 mm resolution image data,
and the other with the 0.5 mm resolution image data. The validation dataset consisted
of the same 118 patients that were used for the inter-observer variability study and
the training dataset consisted of the remaining 355 patients. The 36 bicuspid patients
were distributed equally over the training and validation dataset. Training details can
be found in Table 5.6.

Optimiser Adam Learning rate 1e-2 Weight init. ROM
Cost Dice [184] Learning rate decay 1e−2√

epoch
Bias init. 0.1

Max. epochs 10000 Regulariser L2 (λ = 1e-3) K-folding k = 5

Table 5.6: Training details for the aortic annular plane segmentation. All hyper-
parameters were obtained by performing k-fold cross-validation on the training set
(with k = 5) and a fixed random seed.

The following data augmentation strategies were used: random rotation, random
value dropout and random calcification placement, each with probability 0.5 of oc-
curring during sample generation. Random rotation rotates the input images with
a random angle (sampled between -45 and 45 degrees) to increase the robustness of
the model against rotation. Random value dropout fills randomly positioned squares
in the aortic annular planes with zeros, which is similar to the working of dropout
[46] but was added to control the Hounsfield values of the input before the batch
normalisation of the model. Most of the aortic annular planes contained an amount of
calcification around the aortic annulus which interfered with the accuracy. Therefore
the addition of random calcification in the aortic annular plane was used during
training, which was done to increase the robustness of the model for calcified areas.
This addition was achieved by filling randomly positioned squares in the aortic annular
planes with Hounsfield values that represent calcification. The calcification values
were sampled from a normal distribution (µ = 1100 and σ = 50, which were obtained
from the training cohort). Table 5.7 contains the summary of the data-augmentation
parameters.
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Rotation Rotates the input images with a random angle:
sampled between -45 and 45 degrees.

Calcification placement Add random areas of calcification in the input images:
samples from normal distribution µ=1100 and σ = 50.

Table 5.7: Data-augmentation details for training the aortic annulus segmentation
model.

Detection After training one model for each resolution, a detection strategy was
used to combine the output of both models and use the segmented aortic annulus to
derive patient-specific anatomical information: the area and perimeter of the aortic
annulus.

The detection of the area and perimeter of the aortic annulus of a single patient
was performed in two steps: a deep learning step and a post-processing step. During
the deep learning step, the aortic annular planes were analysed by both models, and
the output was combined and normalised to a probability output that identified the
region of interest. During the post-processing step, the contour of the region of interest
was located with Canny edge detection [185] from the probability output. The area
and perimeter were derived from this contour and serve as the final predicted output
of the detection phase (Figure 5.12).

Figure 5.12: General overview of the method: the model predicts the probability plane
from the original aortic annular plane. The contours are detected, and the predicted
area and perimeter are compared with the ground truth.
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After the detection phase, the patient-specific anatomical information of the aortic
annulus was available. As a final step, this anatomical information was used to
assess correct prosthesis size. The perimeter was used to select the proper Medtronic
Evolut TAVR prosthesis size, and the area was used to identify the Edwards Sapien 3
prosthesis size similar to the manufacturer’s sizing charts used in clinical practice.

5.2.2.4 Statistical Analysis

The Shapiro-Wilk test was performed to test for normal distribution, and none of
the predicted distributions were normally distributed. Pearson correlation coefficient
was computed to evaluate the correlation between model and both observers (with
excellent correlation R2 > 0.9). The agreement between the manual and predicted
indices were evaluated using the non-parametric signed Wilcoxon test (with a significant
p-value < 0.05). Bland-Altman analysis for area and perimeter between model and
observer 1 and between both observers was performed.

5.2.3 Results

The detection phase was validated using the 118 patients who were also used in
the inter-observer variability study. By using the same patients for validation and
observer-variability assessment, it was possible to compare the method with both
observers.

The detection phase consisted of a deep learning phase and a post-processing
phase. The deep learning phase was validated by comparing the predicted segmentation
(model) with the segmentation of both observers using the Dice score. The average
Dice score between the model and the first observer was 96% whereas the average
Dice score between the model and the second observer was 89%. The average Dice
score between both observers was also 89%. The higher Dice score between model
and observer one is expected because the model was trained with the data from this
observer.

The post-processing phase derived the area and perimeter from the predicted
segmentation and was validated by comparing the predicted area and perimeter
with the area and perimeter of both observers. When comparing the predicted
anatomical measurements of the model with the data of both observers, a significant
difference between model and both observers can be observed. However, the mean
paired difference between model and both observers was around zero, which indicates
adequate accuracy of the predicted anatomical measurements (Table 5.8).

Model vs Observer 1 Model vs Observer 2 Observer 1 vs Observer 2
Paired diff. p-value Paired diff. p-value Paired diff. p-value

Area (mm2) 3.3± 16.8 0.008 2.0± 22.4 0.046 1.3± 21.1 0.752
Perimeter (mm) 0.6± 1.7 0.0001 0.5± 2.6 0.0016 0.2± 2.5 0.513

Table 5.8: Comparison of the aortic annulus perimeter and area between model and
both observers. Paired difference (Paired diff.) reported as mean ± standard deviation.
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Furthermore, excellent correlation values were obtained between model and ob-
server one for the area (0.98) and perimeter (0.97). The correlation values between
observer one and two for the area (0.96) and perimeter (0.94) indicate that the manual
method is accurate (Figure 5.13). These results provide additional evidence that the
predicted anatomical measurements could be used in the same manner as the output
of observer one or two. In Figure 5.14, the Bland-Altman plots of the predicted and
measured (observer one) area and perimeter are depicted.

Figure 5.13: Scatter plots comparing the inter-observer correlation for area (left) and
perimeter (right).

Figure 5.14: Bland-Altman plots for area and perimeter measurements between observer
1 and the model
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The validation of the segmentation abilities and the area and perimeter assess-
ment were required to validate the method’s ability to predict the correct prosthesis
size (compared to both observers). The predicted area and perimeter were used to
retrieve the Edwards Sapien 3 and Medtronic Evolut TAVR prosthesis sizes. The
automatically selected valve sizes were compared with valve sizes resulting from the
annular measurements of both observers. The ratio of agreement for Edwards Sapien
3 between model and both observers is equal: 0.86 between model and observer 1 and
0.88 between both observers. The ratio of agreement for the Medtronic Evolut TAVR
prosthesis sizes between model and both observers is similar: 0.89 between model and
observer 1 and 0.86 between both observers (Figure 5.15).

Figure 5.15: The agreement between prosthesis sizes from the Edwards Sapien 3 (left
panel) and Medtronic Evolut TAVR sizing chart (right panel). The plots represent
how many sizes were measured of each available device size for model, observer 1 and
observer 2. The arrows between the plots indicate disagreement with observer 1 (under-
or over-estimation). The weights indicate the number of patients that were missized
compared to observer 1.

After the validation of the predicted prosthesis sizes, it remains to report the
processing time of the manual and automated method. Both observers, reported 5 to
10 minutes of analysis time per patient to segment the aortic annulus. The time to
derive the prosthesis size from the anatomical measurements is ignored. The automatic
processing time from aortic annular plane to segmentation, anatomical measurement
and prosthesis size is below 1 second.

5.2.4 Discussion

In the literature, similar studies have been conducted. Queirós et al. proposed a
method for detecting the correct TAVR prosthesis size from the aortic valve annulus
area [186]. This method was build on top of aortic segmentation with statistical
shape models from previous studies of the same author [187, 188]. In order to detect
the correct TAVR prosthesis size, a fully automatic approach and a semi-automatic
approach are proposed. Their fully-automatic approach detected 92% of the prosthesis
sizes and their semi-automatic approach 100%. This single-center study included 104
patients with a severe degree of calcification, mitral valve prosthesis and pacemakers.
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The authors introduced an overlapping area of 35 mm2 and 40 mm2 between the
three available prosthesis sizes of the Edwards Sapien 3 and XT. Unfortunately, this
overlapping area makes it difficult to assess the real predictive power of the method
and to compare with our results. Also, the final processing time was not reported.

Our presented method is based on a different technique and goes, in our opinion,
a step further than the work described in Queirós et al. Our study includes both
aortic valve annulus perimeter and area; therefore, the prosthesis size selection can be
expanded to perimeter as well as area dependent devices. Next, multi-center image
data was used for training and validating the model, which may indicate robustness to
unknown centers. No overlapping region was used in order to follow the manufacturers’
guidelines and leave the final interpretation of the output of the method to the
physician. Finally, the processing time is around one second per patient, which makes
the method efficient.

The method can detect the area and perimeter from the aortic annular plane
within seconds, which may have an impact on reducing operator analysis time and
errors in an exponentially growing market. In addition to a time reduction of analysis
and, thus, procedure planning, the physician saves time as he/she is liberated from
this analysis. Also, the analysis concerns an independent automated process that
will enhance the output quality. Reduced overall TAVR costs may be obtained by
embedding the method in software that allows manual corrections (e.g. to correct
outliers). This embedding could also yield a continuous learning platform where the
data of a new patient, validated by an expert, can be added to the training dataset,
thus improving future detections.

Although the presented method has proven to be reliable, there are a few limitations
related to the current approach. In a few cases, relatively significant differences remain
between the predicted area from our model and that from an individual human
observer. Compared to observer one, the most substantial overestimation of our model
amounts to 10% and the most substantial underestimation to 9%. However, in those
cases, the second observer tended to agree with the predicted value (1% difference
between observer two and the model). This agreement may indicate that the model
has generalised beyond the ground truth; in other words, it has learned to look beyond
the few inaccuracies of its teacher. The maximum difference between the predicted
perimeter and observer one was the same patient as the areas maximum difference
(with a 7% overestimation). The minimum difference between predicated area and
observer one was a 5% underestimation (a 3 mm difference).

It should be noted that the proposed method is not a TAVR planning tool, nor
does it intend to replace the interventional cardiologist. There are other measurements
required for the planning of a TAVR which are not included in this study. These
measurements include the distance from the aortic annular plane to the ostium of the
coronary arteries, the area of Sinus of Valsalva, sino-tubular junction and others and
will be addressed in future work. It would also be interesting to measure the impact
of this method prospectively.

In the literature, there are no methods that used deep learning to segment a
medical image, derive measurements and use those measurements to predict prostheses
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sizes. However, as presented in the literature overview, several studies analysed medical
images and yielded some quantification [95, 138, 150, 177, 189]. The quantification
typically concerned the LV where methods derived the ESV, EDV, EF, LV mass and
stroke volume. Some studies predicted the values directly (regression), and other
studies derived these values from the segmentation. In this study, we chose the latter
approach because we did not know beforehand if it would be feasible to segment the
aortic annulus from MDCT images.

Many studies used segmentation with deep learning at the time of this study.
However, these studies analysed well-defined areas, e.g. the endocardium of the LV can
be delineated visually. In this study, the aortic annulus was segmented. The annular
ring also delineates this structure, but calcified areas make the segmentation not
straightforward. The operator can include or exclude these calcified areas depending
on the size. By segmenting the aortic annulus first, we could establish the confidence
that further quantification would yield accurate results. Secondly, we expected that
physicians would not appreciate black-box methods. If a model was trained to analyse
the MDCT image and yield the area and perimeter as output, it would be difficult to
convince a physician how the model came up with these values. Moreover, it would
also be challenging to inspect the cause of outliers.

Conclusion A method was presented that automatically selects the TAVR device
size. The method is efficient, accurate and reproducible. The accuracy was confirmed
by comparing the obtained results with the measurements of two independent observers.
This accuracy confirmed the reliability of this strategy. Embedding this tool in the
pre-operative planning routine may have an impact on the TAVR program by reducing
time and cost while ensuring accuracy.

5.3 Towards safe and efficient pre-operative plan-
ning of TMVR

Transcatheter mitral valve interventions are emerging as a viable alternative for
patients at high surgical risk. Two key aspects are crucial during pre-operative planning:
left ventricular outflow tract (LVOT) assessment and anatomical analysis. Given
that the manual anatomical analysis is time-consuming, an automated approach may
introduce efficiency during pre-operative planning. In this study, an automatic method
is presented to detect the mitral valve annulus, and the possible implementation of
this method in clinical practice is discussed.

5.3.1 Introduction

Since transcatheter mitral valve replacement (TMVR) is a closed-chest procedure,
pre-operative imaging is of paramount importance for identifying patients eligible for
TMVR and optimal pre-operative planning. A life-threatening and relatively frequent
complication after TMVR is an obstruction the LVOT, so it is crucial to assess the
risk on this complication pre-operatively. A simple overlay of an undeformed device
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on the computed tomography (CT) images can help to understand this risk [190, 191],
or a more detailed analysis involving computational modelling can be performed [192].
When a patient is considered eligible for TMVR, a detailed anatomical analysis needs
to be performed, for example, to determine device size. This analysis is not a trivial
task due to the complexity of the mitral valve apparatus. For example, the mitral
valve annulus is a non-planar structure of which the dimensions can significantly vary
throughout the cardiac cycle. Identifying this structure is, therefore, a time-consuming
process.

In this work, we show how deep learning can be used to detect the mitral valve
annulus automatically with excellent efficiency. Next, we evaluate the accuracy of
the derived mitral annulus dimensions and finally, a possible implementation of this
technology in clinical practice is presented and discussed.

Figure 5.16: Overview of the procedure to manually detect the mitral valve annulus.
First, the 24 points of the mitral valve annulus were detected (A, B). Next, the 24
points were interpolated into a closed 3D curve (C). Finally, a 2D curve was generated
from which the clinical measurements were derived (D).



98 Chapter 5

5.3.2 Materials and methods
5.3.2.1 MDCT images

This retrospective study used the data of 71 patients collected from multiple centra.
The average age of this cohort was 74.2± 13.1 years, and 43.9% of the patients were
male and 56.1% female. The patient data consisted of a contrast-enhanced volumetric
MDCT image that was recorded at the end-systolic phase of the cardiac cycle. The
average slice thickness of the MDCT images was 0.7 mm. The entire dataset was used
in both manual and automatic detection.

5.3.2.2 Manual detection

The mitral valve annulus was detected in the volumetric MDCT images for all
patients by a trained operator. This person manually detected 24 mitral annular
points and the left- and right trigone for the entire cohort with the Mimics Innovation
Suite 18 (Materialise, Leuven, Belgium). A second expert inspected all annotations
during a quality control check.

First, the center of the planar part of the mitral annulus was identified, and the
coronal axis was aligned with the valve in the axial and sagittal views. Then, in both
the axial and sagittal view, the edges of the mitral valve were identified, and four
points were marked. Next, the sagittal axis in the coronal view was rotated 15 degrees
clockwise, and the process of picking the points in the axial and sagittal views was
repeated. This process was repeated four more times, which resulted in a total of 24
points (4 points in angles 0, 15, 30, 45, 60, 75). The left- and right trigone points were
detected using similar reslicing planes (Figure 5.16 A and B).

The mitral valve annulus and trigone points were considered the ground truth in
this study. The manual segmentation of the mitral valve annulus was considered a
robust yet time-consuming procedure.

5.3.2.3 Automatic detection

In order to automate the manual detection of the mitral valve annulus from MDCT
images, pre-processing of the MDCT images and the ground truth was required in
order to prepare the data for the deep learning models.

Pre-processing The volumetric MDCT images were resampled to an isotropic
1 mm resolution to ensure a homogeneous dataset. The original Hounsfield units
were preserved during the resampling process, which was performed with cubic spline
interpolation. The images were centered around the center of the mitral valve annulus
points and clipped to 1283 voxel cubes to fit the input of the model.

The ground truth annotations needed to be transformed into volumetric binary
masks in order to teach the deep learning models how to segment the mitral valve
annulus. These masks had the same dimensions as the MDCT images and contained
the information of the area around the mitral valve annulus. The transformation for a
single patient was performed in three steps. First, the 24 ground truth coordinates
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were transformed into a closed 3D curve which was smoothed by applying b-spline
interpolation (Figure 5.16 C). Next, the smoothed curve was used as centerline to
construct a 3D cylinder around it. Finally, the 3D cylinder was positioned in the
volumetric binary mask to annotate the area around the mitral valve annulus. In
order to increase the level of granularity, different binary masks with different radii
(2, 3 and 5mm) for the 3D cylinders were exported per patient. The binary masks
were used to train three deep learning models (one per radius) that could segment the
mitral valve annulus with a different degree of precision. The time to pre-process the
data of a single patient was below one minute.

Architecture In order to focus on the clinical part of this study, an already estab-
lished deep learning architecture was chosen. The DenseVNet architecture [26] is an
image-to-image deep learning segmentation architecture which is composed of a down-
sampling path followed by an upsampling path yielding its v-shape. The downsampling
path reduces the resolution of the input image to low-resolution representations by
using strided convolutions, and the upsampling path increases the output of the
downsampling path to the original dimensions by using bilinear upsampling. An input
image x flows from the downsampling path to the upsampling path which is followed
by the non-linear softmax activation function which generates the segmentation image
ŷ. During training and detection, an input image x is analysed by the network, and
the segmentation image ŷ is produced as output.

5.3.2.4 Training and validation

Three models were trained and cross-validated using k-folding with k=4. The
entire dataset was split into four subsets, and for each fold, a different subset was
excluded from the training dataset and used as the validation dataset. With k-folding,
the limitation of a small dataset was evaded, and the entire cohort was used to validate
the method.

One model was trained for each of the three radii (2, 3 and 5 mm) defining the mitral
valve annulus in the MDCT images. In order to improve the convergence speed of the
training process, the MDCT images were normalised using feature standardisation [49].
The training details are summarised in Table 5.9. The following data augmentation
strategies were used: random rotation and random scaling. Random rotation (in
degrees) and random scaling (in percentage) was performed by sampling values from
a uniform distribution ranging between -3 and 3.

Optimiser Adam Learning rate 1e-4 Cost Dice [26]
Weight init. ROM with gain =

√
2 Bias init. 0.1 Regulariser L2 (λ = 1e-4)

Table 5.9: Training details of the mitral valve annulus segmentation training. All
hyper-parameters were obtained by performing k-fold cross-validation on the training
set (with k = 4) and a fixed random seed.
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5.3.2.5 Detection

The detection of the mitral valve annulus of a single patient was performed in two
steps: a deep learning step and a post-processing step.

During the deep learning step, a medical image was segmented as follows. A
volumetric MDCT image was analysed by the three trained models (or ensemble
[116]). The output of these models had the same dimensions as the MDCT image and
contained information where the deep learning models detected the area around the
mitral valve annulus. These three output volumes were combined and normalised into
a volumetric probability output (Figure 5.17 A).

Figure 5.17: Overview of the automatic mitral annulus detection strategy. The output
of the deep learning models was normalised into one output mask (A). Next, the
decision boundary was applied to create a binary mask (B), after which the closed 3D
curve was extracted (C). Finally, the clinical measurements were derived from a 2D
curve (D).
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During the post-processing step, a closed 3D curve was extracted from the proba-
bility volume as follows. First, the probability volume was transformed into a binary
mask by using a decision boundary of 0.5 (Figure 5.17 B). Next, in order to obtain a 3D
centerline of the detected area around the mitral valve annulus, the 3D medial surface
and axis thinning algorithm [193] was used. This algorithm yields a 3D skeleton from
a binary image. In case of a perfect detection, this 3D skeleton would form a closed
3D curve. However, due to occasional outliers in the segmentation, this skeleton could
contain additional non-circular paths attached to it. This issue was addressed in the
final step, where the largest circular path in this skeleton was obtained as follows. The
3D skeleton was transformed into a bidirectional graph by using the 3D coordinates of
the skeleton as nodes and all neighbouring nodes within a radius of 3 mm were added
as edges. The biggest cycle in this graph was selected using the algorithm described in
[194]. This cycle or closed 3D curve was considered the predicted mitral valve annulus
in this study (Figure 5.17 C).

As a final step, clinical measurements were determined from the 2D posterior
points of the predicted mitral valve annulus. The posterior points were selected and
projected onto a two dimensional (2D) plane using principal component analysis
(PCA). The predicted 2D posterior points were used in order to obtain the following
clinical measurements: trigone-to-trigone (TT)-, septal-to-lateral (SL)-, commissure-
to-commissure (IC)-distance and the centroid and perimeter of the 2D posterior points
[191] (Figure 5.17 D).

5.3.2.6 Metrics

In order to compare predicted and ground truth closed 3D curves with each other,
the Hausdorff distance was used. This metric measures the greatest of all distances
from one point in a set to the closest point in another set.

5.3.3 Results

The detection phase consisted of a deep learning phase and a post-processing
phase. The deep learning phase was validated by measuring the Dice score between
the prediction and ground truth. This validation yielded an average Dice score of 74%
between the predicted segmentation (model) and ground truth binary masks. After
the deep learning phase, the post-processing phase was responsible for extracting the
predicted mitral valve annulus. The paired difference between predicted and ground
truth closed 3D curves was 4.57 ± 1.64 mm (Hausdorff distance). This difference is
acceptable since Hausdorff represents the maximal distance between the ground truth
and the predicted closed 3D curve and thus reveals that the predictions are close to
the ground truth. A visual comparison between predicted and ground truth mitral
valve annulus is presented in Figure 5.18.
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Figure 5.18: A visual comparison between ground truth (GT) and prediction (Model)
of 4 patients. The mitral valve annular plane (top) and the sagittal view (bottom)
are depicted. The mitral valve annulus of the prediction is presented in red, and the
ground truth is presented in green.

Following the validation of the segmentation and the closed 3D curve, clinically
relevant anatomical measurements were derived from the predicted mitral valve
annulus, using the posterior part of the mitral valve annulus. The predicted 2D and
3D perimeter were compared to the ground truth and displayed excellent correlation
despite a slight overestimation of these predictions. Similarly, the predicted TT-, SL-
and IC-distance were compared to the ground truth, showing a strong correlation
between the predicted- and ground truth distances (Table 5.10).

Observer vs. Model
Measurement [mm] Paired diff. [mm] p-value R2

3D Perimeter −2.4± 6.3 <0.001 0.92
2D perimeter −1.2± 4.6 0.02 0.93
TT-distance 0.12± 2.56 0.5 0.86
SL-distance −0.32± 2.19 0.2 0.86
IC-distance −0.06± 1.88 0.5 0.90

Table 5.10: Comparison between the clinical measurements of the observer and the
predicted measurements. Paired difference (Paired diff.) reported as mean ± standard
deviation.

Bland-Altman and correlation plots of the measurements of the 2D perimeter are
depicted in Figure 5.19.

Besides the accuracy of the anatomical measurements, it is also essential to report
the processing time of the manual and automated method. The trained operator
reported approximately 25 minutes of processing time per segmentation of a single
phase of the cardiac cycle. The automatic processing time from single pre-processed
MDCT image to the predicted segmentation and mitral valve annulus with 2D clinical
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Figure 5.19: Bland-Altman and correlation plot comparing the 2D perimeter of the
predicted mitral valve annulus (Model) and ground truth (Observer 1).

measurements was below 1 second which is a speed-up of a factor of 1500 compared
to the manual analysis time.

5.3.4 Discussion

Treating mitral regurgitation patients through transcatheter mitral valve replace-
ment has enormous potential. However, early experience clearly showed that detailed
screening and planning are required to minimise the risk of life-threatening compli-
cations [19]. Two crucial aspects of this are the assessment of the risk of LVOT
obstruction and detailed quantification of the mitral valve anatomy. In this study, a
method to automate the latter was proposed.

One way of introducing the proposed automatic anatomical quantification into
clinical practice is through a web-based service model. Pre-operative MDCT images
are uploaded to a web platform, triggering the automatic anatomical analysis of the
images as described in this work. As with any prediction model, the automated
annulus detection may lead to inaccurate results, mainly when the images of a new
patient differ significantly from the data on which the deep learning model has been
trained. Therefore, it is vital that the workflow contains human quality control (QC)
and allows manual corrections. During a final step, a report is generated. Since the
anatomical detection and derived measurements are verified by an expert, the MDCT
image and anatomical data can be used to increase the dataset and thus to yield a
continuous learning platform (Figure 5.20).

As mentioned above, the assessment of the risk of left ventricular outflow tract
obstruction is another crucial aspect when considering transcatheter mitral valve
replacement. A simple overlay of an undeformed device on the CT images [190, 191]
or computational modelling [192] have been proposed to evaluate the risk of left
ventricular outflow tract obstruction. These analyses could be perfectly integrated
into a web-based service.
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Figure 5.20: Schematic overview of the implementation of the proposed method in a
clinical workflow for planning transcatheter mitral valve interventions

In the literature, few studies have been conducted to detect (parts of) the mitral
valve apparatus. Voigt et al. presented an algorithm to detect and track the mitral
valve annulus over long image sequences. This study was validated on twelve 4D
transesophageal echocardiography (TEE) images [195]. In the work of Stralen et al., a
mitral valve plane detection algorithm from 3D echocardiograph was presented and
validated on 25 patients [196]. In the work of Schneider et al., 3D graph cutting was
applied to segment the mitral valve leaflets from the 4D ultrasound [20]. Pouch et
al. proposed a semi-automatic mitral valve detection method based on shape-fitting
from 3D TEE images [21]. Pedrosa et al. proposed a fully automatic mitral valve
morphology detection using a b-spline explicit active surfaces framework from 3D
TEE images of the end-systolic and end-diastolic phase. A cohort of 15 patients
was analysed and the validation of the automatic morphology detection yielded a
Hausdorff distance of 6.70± 1.97 mm at end-systolic phase and 5.79± 1.25 mm at the
end-diastolic phase [197].

The studies mentioned above propose methods to detect (parts of) the mitral valve
apparatus from 3D or 4D TEE images. The validation of these studies was limited to
a few patients but yielded accurate results. To the best of our knowledge, our study is
the first that detects the mitral valve annulus and the clinical measurements thereof
from MDCT images, including a validation on 71 patients which is higher than the
related state-of-the-art.

The accuracy of this method is confirmed by comparing the obtained measure-
ments to the work of Mak et al. [198]. In this study, the authors compared two
image modalities by analysing 41 patients and observed a good correlation between
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measurements made with 3D TEE and 3D CT images of the mitral valve annulus.
They report a mean 2D mitral annulus circumference from CT of 123.9± 15.5 mm
which is similar to the mean circumference of our findings: 147.97± 14.96 mm (ground
truth) and 146.40±15.21 mm (model). They also reported mean SL- and TT-distances
of 32.5± 4.4 mm and 32.6± 3.6 mm which is comparable to our findings: 28.5± 4.2

mm vs 28.2± 3.9 mm (model) and 32.0± 4.8 mm vs 32.2± 4.7 mm (model).
Although we showed the efficiency and accuracy of this method, there are a few

limitations related to the current approach. First, the deep learning models expect
a volume that is centered around the mitral valve annulus. Providing this location
may introduce a bias given that the original DICOM may range from full-body scans
to ROI images around the left ventricle and atrium. This bias can be resolved by
introducing a pre-processing landmark- or ROI-detection model before the proposed
method. Secondly, the size of the dataset used in this work is small. This size limitation
was handled by adding data-augmentation during the training and using k-folding to
cross-validate the method appropriately. Adding more patients to the cohort would
benefit the robustness of the proposed method, which could be obtained by enabling
the continuous learning platform, as previously explained. Finally, transcatheter mitral
valve intervention pre-operative planning is not limited to a single phase of the cardiac
cycle. Currently, the models are trained with MDCT images of the end-systolic phase,
and the extension of the detection for the full cardiac cycle will be tackled as a next
research step.

In this work, we demonstrated a method that can detect the mitral valve annulus
and derive clinically relevant measurements automatically from MDCT images. In the
presented literature study, there are no studies that use deep learning to segment a
medical image to derive the mitral valve annulus and secondary measurements thereof.
There are a few studies that use deep learning and other methods to detect the
contours of the LV [130, 199]. The scope of our work targets a less-defined anatomical
structure, i.e. the LV is a well-delineated on CT images whereas the mitral valve
annulus is not.

Conclusion A method was presented that detects the mitral valve annulus and the
clinical measurements thereof in an efficient, accurate and automatic way. A possible
implementation of this method in clinical practice was proposed and discussed that
moves us closer towards safe and efficient pre-operative planning of transcatheter
mitral valve interventions.

5.4 Conclusion
In the first part of this chapter, a literature study of cardiac segmentation with

deep learning between 2012 and 2019 was presented. In this overview, the evolution of
deep learning over the past years is made clear: starting from “simple” CNN models
towards a standardised method for segmentation.

In the second part of this chapter, two studies which used segmentation with
deep learning were presented. The first study described a method to automatically
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determine the TAVR device size from the aortic annular plane. The second study
segmented the mitral valve annulus from volumetric MDCT images and derived clinical
measurements from the annulus. Both presented methods were efficient and accurate,
which could benefit the transcatheter aortic- and mitral valve solutions.



6
Landmark detection

Needle in a haystack is easy,
just bring a magnet

Keith R.A. DeCandido

Landmark detection is the recognition of a specific feature in a defined search
space. This definition is similar to the definition of segmentation but the difference
between these two is that landmark detection deals with very small solutions when
compared to the available search space. This chapter starts with a literature overview
of landmark detection in medical images with deep learning. Subsequently, two
different approaches of landmark detection will be presented and applied to detect
three-dimensional (3D) landmarks, which are essential during the transcatheter aortic
valve replacement (TAVR) pre-operative planning.

6.1 Literature overview of landmark detection
with deep learning

In this section, a literature overview of landmark detection is presented. This
literature study is limited to landmark detection in medical images with deep learning.
As the number of papers is limited, also non-cardiovascular work was considered.

6.1.1 2015-2019

This literature overview of landmark detection with deep learning in medical
images starts with a ‘simple’ deep neural network model in 2015 [200]. Note that at
this point, methods and architectures such as AlexNet, U-Net and batch normalisation
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were already established. Other studies used 3D CNN models [201–203] or even
deep reinforcement learning methods such as deep q-learning (DQL) [204]. Table 6.1
contains more information about the discussed work.

Authors Scope Year Patients Modality Method Dim.
Zheng et al. [200] DNN approach 2015 455 CT FC 3D
Payer et al. [205] Regressing heatmaps 2016 895 CT/MR CNN 2/3D
Zhang et al. [189] Displacement vector with coor-

dinate prediction
2017 700 MR CNN 3D

Xue et al. [206] LV indices prediction 2017 73 CT CNN 3D
Ghesu et al. [204] DQL agent path prediction 2017 532 CT RL 3D
Al et al. [201] Colonial walk 2018 71 CT Regr 3D
O’Neil et al. [202] Regressing heatmap and land-

mark atlas
2018 201 CT CNN 3D

Noothout et al. [203] Patch-based displacement vec-
tor prediction

2018 198 CT CNN 3D

Dangi et al. [207] LV short-axis re-alignment 2018 97 MR CNN 2D

Table 6.1: Summary of landmark detection with deep learning in 2015-2019

6.1.1.1 Detailed literature overview

In Zheng et al., a deep neural network (DNN) landmark detection strategy was pro-
posed and applied to detect the carotid artery bifurcation from computed tomography
(CT) images. The authors used a shallow neural network to identify 2000 candidate
image-patches, which may include these landmarks. A second, three-layered neural
network was used to remove the false positives and detect the target landmarks. The
authors increased the accuracy of their method by using an image pyramid with three
resolutions and using an ensemble of different models. The final accuracy obtained
was a mean error of 2.64 mm with a detection speed of 1 second per volume [200].

A novel method was proposed by Payer et al., where a single model was used to
detect bone landmarks from magnetic resonance (MR) and CT images in hands. In
this method, heatmaps were used to represent the location of the landmarks. The
method was applied to a two-dimensional (2D) CT and 3D MR dataset of landmarks
annotated by experts. Four types of models were evaluated: a convolutional neural
network (CNN) model, a fully convolutional neural network (FCNN) model, U-Net
and a custom model that used channel-wise convolutions. The authors concluded that
the U-Net model was slightly better than other approaches with an average error of
0.87 mm in 2D and 1.18 mm in 3D [205].

Zhang et al. proposed a two-step approach to detect 3D landmarks in MR images
of the brain and CT images of the prostate. The first step consisted of a CNN model
and a patch-wise training strategy where the model learned a displacement vector map
from the input patches to the target landmarks. The cost function was adapted to
give preference to nearby landmarks. In the second step, the weights of the first-stage
model were used and frozen. The architecture was expanded to predict the coordinates
of the landmarks directly. This method depended on a 3D linear registration of
the entire dataset before any learning in order to obtain the anatomical correlation
between the input images. The average error that was obtained from the CT images
was 3.34 mm, and the detection speed was 1 second per volume [189].
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Similar to Zhang et al., a 3D patch-based displacement vector mapping strategy
was proposed by Noothout et al. The CNN model was a six-layered CNN model
followed by two fully-connected layers and concluded with two outputs. This model
was trained to detect the 3D displacement vector from image patches (Figure 6.1).
The model was also trained to classify these patches whether or not they included the
target landmarks. The method was applied to detect six TAVR-related landmarks
from CT images. The target points included the aortic ostia (2), the aortic commissure
points (3) and the bifurcation of the left main coronary artery (1). The overall average
error was 2.44 mm [203].

Figure 6.1: The vector field prediction used to trace TAVR landmarks. Image from
[203].

In Xue et al., a method to predict cardiac indices from MR images was proposed.
The method used two CNN models: an image-to-image auto-encoder and a multiple-
output CNN. The first model was used for cardiac image representation and the second
model used the output of the auto-encoder to predict six indices of the left ventricle
(LV) wall thickness, the cavity area of the LV and the area of the myocardium. The
average error distance of the linear indices was 1.44 ± 0.71 mm [206].

A different approach was proposed by Ghesu et al., where deep q-learning (DQL)
was used to detect the target landmarks. An agent was trained to find the most
optimal path from anywhere within the 3D CT images to the target landmarks. The
method used a scaling technique to overcome the vast search area introduced by
full-body scans. The method was applied to many target landmarks, with the most
relevant one being the left subclavian artery bifurcation where the average error was
3.09 mm with a reported median run-time of 33 ms [204].

Al et al. proposed a regression tree-based machine-learning algorithm and applied
it to detect 3D landmarks in CT images. The eight target landmarks consisted of
TAVR-related landmarks: aortic valve hinge points (3), the commissure points (3)
and the coronary ostia (2). The reported average distance error was 2.09 mm and
was obtained by applying the method to non-TAVR patients. The reported average
run-time per patients was 12 ms [201].

Similar to Payer et al., a two-step method to detect landmarks using regression to
Gaussian points with a CNN model was proposed by O’Neil et al. The six-layer 3D
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CNN model (concluded by a linear activation function) was trained with a weighted
mean squared error (MSE) cost function. The first step resulted in proposals for
the landmarks which were transformed into atlas coordinate maps. The second pass
used these in combination with the input image from the first pass. The method was
applied to detect 22 landmarks from head CT scans, which yielded an average error
of 3.38 mm and 2.93 mm after the first and second pass [202].

In Dangi et al., a method to re-align short-axis MR images during segmentation
was proposed. The CNN model was trained to predict the center of the LV in the
slices directly. The method was validated on nine patients, and the slice misalignment
was reduced from a median of 3 pixels to a median of 2 pixels [207].

6.1.2 Conclusion

This concludes the literature overview of landmark detection with deep learning.
In Figure 6.2, a timeline with milestones in this literature overview and the research
in this chapter are depicted. In the next sections, two different methods that detect
landmarks from medical images are presented.
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Figure 6.2: Chronological overview of the most significant milestones of the presented
literature, the aortic landmark detection study and landmark detection with curriculum
deep Q-learning.
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6.2 Aortic annular plane and coronary ostia de-
tection

6.2.1 Introduction

As we already saw in the previous chapter (Section 5.2), the selection of the
optimal aortic prosthetic valve size is crucial for the short- and long term success
of a TAVR procedure. Incorrect sizing may lead to adverse events: over-sizing may
cause aortic annulus rupture, coronary obstruction or conduction abnormalities while
under-sizing may increase the risk for paravalvular regurgitation or device migration.

The aortic annulus perimeter, area or diameters are measured at the aortic annular
plane (AAP), which is defined by the three basal attachment points of the aortic valve
leaflets: the left coronary cusp (LCC), non coronary cusp (NCC) and right coronary
cusp (RCC). The pre-operative MDCT images are also used to identify patients at
risk for other complications. For example, the distances from the AAP to the left
coronary ostium (LCO) and the right coronary ostium (RCO) are typically measured to
understand the risk of coronary obstruction, a potentially life-threatening complication
during which the blood flow to a coronary artery is significantly reduced. Detecting
the aforementioned landmarks (LCC, NCC, RCC, LCO, RCO) on MDCT using the
manual method [182] is time-consuming and both accuracy and reproducibility are
strongly dependent on the operator experience and image quality.

TAVR is rapidly expanding towards intermediate and low-risk patients. Therefore
the need for a fast, automatic, reproducible and accurate method becomes even more
critical as optimal sizing and adequate risk assessment are of paramount importance
for these patient groups. An automatic method that fulfils the above criteria has the
potential to speed up the pre-operative planning and to improve device and patient
selection, thereby reducing costs and the risk of procedural failure.

In this study, an automated method to extract landmarks for pre-operative TAVR
planning from MDCT using deep learning techniques is proposed. The accuracy of
the proposed method are assessed using a cohort of 100 patients. The results are
compared with an inter-observer variability study on the same 100 patients.

6.2.2 Materials and methods

6.2.2.1 MDCT imaging

This retrospective study used the data of 444 patients collected from multiple centra.
The average age of this cohort was 80.8 ± 7.1 years, and 55% of the patients were
female and 45% male. The patient data consisted of volumetric MDCT images, which
were acquired to support the pre-operative phase of a TAVR procedure. Therefore,
all MDCT images were contrast-enhanced and contained a certain degree of aortic
stenosis. The average row, column and slice thickness of the MDCT images were 512.1,
511.7 and 0.8 mm. The MDCT images were collected from multiple hospitals, which
introduced a variety in recording methods and image qualities. Some images showed
motion artefacts due to cardiac motion, whereas others displayed metallic artefacts
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due to the presence of medical devices in the patient. Few images contained regions
of noise with no cardiac information.

6.2.2.2 Manual detection

A trained operator manually detected the five landmarks from the entire cohort
with Materialise Mimics Innovation Suite 18 (Mimics, Leuven, Belgium). The LCC,
NCC and RCC were detected following the guidelines [182]. First, the center of the
aortic root was detected and used to align the longitudinal axis of the coronal and
sagittal plane. Next, the transverse plane was aligned at the level of the valve. The
plane was lowered from the aorta towards the ventricle until the basal attachment
points of the aortic valve leaflets were visible in this view. Depending on the orientation
of the aortic plane, all three basal attachment points need to disappear at the same
time; otherwise, re-orientation is required. This re-orientation proved to be a difficult
task when patients presented with a high calcium load or when the image quality was
not sufficient to identify the basal attachment points. The LCO and RCO were visually
detected. In order to measure the coronary heights, the AAP was reconstructed from
the three basal attachment points. The distances from the AAP to the LCO and RCO
were measured. These five manually detected landmarks were used as ground truth in
this study. Figure 6.3 depicts an overview of the landmarks.

A second trained operator re-detected the five landmarks blindly for 100 randomly
selected patients using the same method as mentioned earlier. This data was used to
assess the inter-observer variability. The same 100 randomly selected patients were
used during the validation of the proposed method.

Figure 6.3: The schematic representation of the anatomy of the aortic root (left). The
top three images show the three basal attachment points: LCC, NCC and RCC (from
left to right). The bottom three images are (from left to right) the AAP (with the three
basal attachment points), the LCO (with AAP, dashed line) and the RCO (with AAP,
dashed line).
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6.2.2.3 Automatic detection

The automatic detection of 3D landmarks in MDCT images can be a difficult
task due to the image quality and size variation. Methods to detect landmarks from
medical images have already been proposed [137, 189, 200–202, 205, 208], and although
these methods showed promising results, their coarse accuracy or image modalities
did not apply to this problem. Therefore, a heatmap detection method similar to
Payer et al. was proposed with varying heatmap sizes as an incremental novelty.

This study focused on automating the manual landmark detection which required
the pre-processing of the ground truth data and MDCT images.

Pre-processing The volumetric MDCT images were resampled in order to obtain
a homogeneous dataset. Each MDCT image was resampled to isotropic resolutions of
1.0 mm. The original Hounsfield units (HU) were preserved during the resampling
process, which was performed with cubic spline interpolation. Next, a 1283-voxel
volume centered around the ground truth landmarks was extracted from the resampled
volumes. The centering was required because the scanned regions ranged from aortic
root-specific to entire body scans (Figure 6.4). In order to improve the convergence
speed of the training process, the MDCT images were normalised using feature
standardisation [49].

Masks were generated in order to teach the model where to find the target
landmarks. A zero-valued 1283-cube containing five spheres centered at the location
of the manually detected landmark in the associated MDCT image. Each sphere was
assigned with its own value: LCC = 1, NCC = 2, RCC = 3, LCO = 4, RCO = 5
(Figure 6.4). In order to increase the accuracy, masks with three sphere radii (3, 5
and 7 mm) were exported.

Figure 6.4: Overview of the MDCT images and the created mask. The extraction of a
cube from the full MDCT image (left). An interpolated 1283-voxel volume centered
around the aortic valve (center). The mask: a zero-valued cube containing five uniquely-
valued spheres centered around their associated landmark (right).

Architecture In order to focus on the clinical part of this study, an already
established image-to-image DenseVNet architecture [26] was chosen. An input image
flows from the downsampling path to the upsampling path followed by the non-linear
softmax activation function, which generates the probability segmentation image.
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Training Three models (N3, N5 and N7) were trained using the training dataset
and validated using the validation dataset. One model was trained for each sphere
radius (3, 5 and 7 mm). The validation dataset consisted of the same 100 patients that
were used for the inter-observer variability study and the training dataset consisted of
the remaining 344 patients. Table 6.2 contains the summary of the training details.

Optimiser Adam Learning rate 1e-4 Input size 643

Weight init. ROM with gain =
√

2 Bias init. 0.1 Nr. of epochs 2500
Cost Dice [25] Regulariser L2 (λ = 1e-4)

Table 6.2: The training details of the aortic landmark detection training. All hyper-
parameters were obtained by performing k-fold cross-validation on the training set
(with k = 5) and a fixed random seed.

Random image transformations and randomised window clipping were used as
a data-augmentation strategy. The values for random scaling (mm) and rotating
(degrees) were sampled from a uniform distribution ranging between -3 and 3. The
random transformations and window clipping decreased the dependency upon the
ground truth when centering the 1283-voxel MDCT volumes around the five landmarks
in the pre-processing step.

Detection A detection strategy was used to combine the output of the three trained
models and use the five predicted landmarks to derive patient-specific anatomical
information.

The detection of the five landmarks of a single patient was performed in two steps:
a deep learning step and a post-processing step. During the deep learning step, the
volumetric MDCT images were analysed by the three models and the output was
combined and normalised to a final probability output volume that identified the
regions of interest (Figure 6.5).

Figure 6.5: Overview of the aortic landmark detection strategy in 3D (left) and for
clarity in 2D (right). The MDCT volume is analysed by the three models each yielding
five segmentation volumes. The output of the three models is averaged into five
probability output volumes.
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During the post-processing step, all voxels with values above 0.5 were selected and
clustered with hierarchical clustering (clustering details: Euclidean distance was used
as criterion with a threshold of 1.1 mm). From the largest cluster, all points with
values higher than 0.9 were used to compute the centroid, which was the final predicted
point. This procedure was performed for each of the five landmarks (Figure 6.6). The
output landmarks of the post-processing step were considered as the final predicted
landmarks. After the detection phase, the aortic annular plane was reconstructed
from the LCC, NCC and RCC. The distances from this plane to the LCO and RCO
were measured. These measurements are referred to as the left- and right coronary
ostium height.

Figure 6.6: Overview of the post-processing step depicted in 2D for clarity. From the
averaged volume, the points with values higher than 0.5 were clustered. The largest
cluster was selected and the centroid was computed from the points with values higher
than 0.9. This centroid was used as the final predicted point.

6.2.2.4 Statistical Analysis

The accuracy of the landmark detection was assessed by measuring the Euclidean
distances from the predicted landmarks to the ground truth values. The Shapiro-
Wilk test was performed to test for normal distribution, and none of the predicted
distributions was normally distributed. All variables were reported as median [lower
quartile (LQ) - upper quartile (UQ)]. The agreement between manual and the automatic
landmark locations were evaluated using the non-parametric signed Wilcoxon test
(with a significant p-value < 0.05). Pearson correlation coefficient was computed
for the coronary distances to observe their correlation (with excellent correlation R2

>0.9)). The Bland-Altman analysis was performed for the coronary height results.

6.2.3 Results

The proposed method was validated using the 100 patients also used in the inter-
observer variability study. By using the same patients for validation and observer
variability assessment, it was possible to compare the method with both observers.
The predicted landmarks were compared to the ground truth landmarks (observer
one) using the Euclidean distance. The median difference for all landmarks combined
was 1.5 mm, which is accurate considering the 1 mm resolution of the MDCT images
used to obtain these predictions. The median Euclidean distance for all landmarks
between the manually detected landmarks from the first and second observer was 2.0
mm. The distances between model and observer one are lower than the distances
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between both observers, and the overall paired difference of -0.5 ± 1.3 mm is expected
because the model was trained with data from observer one (Table 6.3).

Landmark Model vs. ground
truth (d1) [mm]

Observer 1 vs. ob-
server 2 (d2) [mm] Paired diff. (d1-d2) p-value

LCC 1.6 [1.2-2.3] 2.4 [1.4-3.4] 0.8± 1.3 <0.001
NCC 1.5 [0.9-2.1] 2.4 [1.4-3.2] −0.9± 1.3 <0.001
RCC 1.6 [1.3-2.2] 2.4 [1.9-3.6] −0.9± 1.4 <0.001
LCO 1.3 [0.9-1.9] 1.4 [1.0-2.2] −0.1± 1.0 0.2
RCO 1.4 [0.9-2.0] 1.4 [1.0-1.8] 0.1± 1.0 0.4
All 1.5 [1.1-2.1] 2.0 [1.3-2.8] −0.5± 1.3 <0.001

Table 6.3: Comparison of the Euclidean distances between the predicted and ground
truth target points (d1), and the target points identified by the two observers (d2).
Paired difference (Paired diff.) is in mm.

As a final step, the left- and right coronary ostium heights were computed from
ground truth and predicted points. There was a small overestimation by the model
for the LCO height (model vs. observer one respectively: median height 16.3 mm vs.
15.8 mm) and a smaller overestimation for the RCO height (model vs. observer one
respectively: median height 17.3 mm vs. 17.2 mm) (Table 6.4).

Landmark Corr. (R2) Model [mm] Observer 1 [mm] Paired diff. (model -
observer 1) [mm] p-value

LCO height 0.8 16.3 [15.2-17.7] 15.8 [14.7-17.5] 0.5 ± 1.5 <0.001
RCO height 0.8 17.3 [15.5-19.3] 17.2 [15.1-20.1] -0.2 ± 2.0 0.4

Table 6.4: Comparison between the predicted (model) and the ground truth (observer
1) coronary ostium heights.

The predicted left- and right coronary ostium height also correlated well with
the ground truth (both with R2=0.8). The left- and right coronary height derived
from the manually detected landmarks of the second observer correlated well with the
ground truth (respectively, R2 = 0.80 and R2 = 0.84) (Figure 6.7).

Figure 6.7: The correlation between the predicted coronary ostium heights and the
ground truth from observer 1.
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Bland-Altman plots for left- and right coronary ostium height were created. The
LCO height presented with a mean paired difference of 0.54 mm for observer one
whereas the RCO height resulted in a mean paired difference of -0.16 mm (Figure 6.8).

Figure 6.8: Bland-Altman analysis for left- and right coronary ostium height.

After the validation of the predicted landmarks and coronary heights, it remains
to report the processing time for the manual and automated method. Both observers,
reported 5 to 10 minutes of analysis time per patient to detect the five landmarks (the
time to derive the coronary heights is ignored). The automatic processing time from
volumetric MDCT image to the five predicted landmarks and the coronary heights is
below 1 second. An example of the predicted output is depicted in Figure 6.9.

Figure 6.9: An example of the detected landmarks from an unseen patient. From left
to right: LCC, NCC, RCC, LCO and RCO. From top to bottom: a slice of the MDCT
image at the location of the predicted point (annotated), a slice of the averaged final
output volume at the location of the predicted point and an overlay of the final output
volume on the MDCT image at the location of the predicted point (probability 0.0
(blue) to 1.0 (red)).
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6.2.4 Discussion

The literature offers (semi-) automatic strategies for landmarks detection in the
TAVR field [209–212]. The limitations of these works can be summarised as follows:
all studies validated their proposed method with single-center data, which leaves the
question about the generic inter-center property of the method unanswered. Some
automatic methods were still operator dependent. Therefore, the robustness of the
method can not be properly assessed, and quality may depend on the experience of
the operator. Some studies presented difficulties to adapt to specific pathological
conditions, e.g. high calcium load, which is a common aspect for patients requiring a
TAVR procedure. The size of the validation cohort was in most studies limited, and
the inter-observer validation was in few studies absent or not entirely blind.

The presented method overcomes almost all aforementioned limitations. The
methodology is fully automated and is insensitive to the amount of calcium load.
Even if the patient cohort is relatively small, the number of patients used for training
and validation is higher than in the reported literature. We used 344 patients for
training and 100 for validation where we proved robustness of the method with a
multi-centered patient cohort which displayed a good agreement with both observers.

Deep learning methods for landmark detection from medical images can be found
in the literature. In Zheng et al., a two-stage classification system for detecting
landmarks from head-neck CT scans is proposed. The reported error is 2.6± 5.0 mm
[200]. In Payer et al., a method to detect landmarks from 2D CT-scans and 3D MR
images using heatmaps is proposed with a reported error of 1.2± 1.3 mm [205]. In
Zhang et al., CNNs are used to detect landmarks of the brain from MR images with
a reported error of 3.0± 1.6 mm. The same method is applied to detect landmarks
of the prostate from CT-scans with a reported error of 3.3± 2.5 mm [189]. In Al et
al., a colonial walk method is proposed to detect similar aortic anatomical landmarks
included in this study. Although the method is fast (12 ms per patient), the overall
landmark error for non-TAVR patients is 1.94± 0.93 mm and for TAVR patients is
2.74± 1.78 mm [201]. In Lalys et al., an automatic segmentation method is proposed.
Their results show high precision for the two ostia with distance errors of 1.80± 0.74

mm and 1.96 ± 0.87 mm for the LCO and RCO. These errors are slightly higher
compared to our results. The study does not include the hinge points of the aortic
valve [213]. Finally, in O’Neil et al., a two-pass method for localising 22 anatomical
landmarks from head CT scans is proposed. Their method combines a neural network
with a landmark atlas technique. The reported median error of 1.5 mm is equal to
our findings. However, 10.8% of the detected landmarks had an error distance greater
than 4.0 mm (computed on 20 scans and a total of 417 landmarks) [202]. Our results
showed a 0.03% landmark error distance greater than 4.0 mm (computed on 100 scans
and a total of 500 landmarks). Only in Payer et al., the reported error is sufficiently
fine-grained, which can be expected considering that MR images contain more details
than CT images and bone landmarks are very recognisable landmarks in medical
images. In our study, we obtained similar or more accurate results when detecting
soft tissue landmarks in a coarser-grained image modality (CT). Since the reported
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errors were too coarse-grained or the image modalities of the studies mentioned above
differed from ours, a heatmap detection method with varying sizes is used.

The potential impact of this work may manifest itself in different frontiers. The
method is faster than the state-of-the-art, which may have an impact on reducing
operator analysis time in a rapidly growing market. Reduced overall TAVR costs may
be obtained by embedding the method in software that allows manual corrections (e.g.
to correct outliers). This embedding could also yield a continuous learning platform
where the coordinates of a new patient, validated by an expert, can be added to
the training dataset, thus improving future detections. The coronary ostia heights
were derived from the predicted landmarks, which are vital measurements during the
pre-operative planning of a TAVR procedure [214]. Other clinical parameters, such
as the virtual basal ring’s minimum and maximum diameter with the circumference,
could be derived as well, which could be done by training a CNN to learn to predict
these clinical parameters from images or with the method described in chapter 5. The
same method could be applied for the planning of other cardiovascular interventions,
e.g. left atrial appendage occlusion or mitral valve repair/replacement.

Although the presented method has proven to be reliable, there are a few limitations
related to the current approach. The maximum outlier for the predicted LCC compared
to the first observer was 4.9 mm, which is acceptable when compared to the inter-
observer difference of 5.8 mm for the same patient. The difference between both
observers might indicate a wrong detection by observer one. The maximum outlier
of the predicted RCC was 11.5 mm, with an inter-observer measurement of 9.4 mm
of the same patient. Investigation showed that the images of that patient contained
movement, thus making the detection of the landmark difficult for the observer and
the algorithm. The predicted measurement lies closer to the measurement of observer
two, which may indicate that the models are capable of learning the general location
of a landmark and thus contradicting the ground truth. The predicted NCC, LCO and
RCO landmarks presented with maximum outliers smaller than 5 mm. The maximum
outliers of the predicted coronary ostium heights were smaller than 5 mm. Although
the predictive power has been shown, the outliers indicate that the method is not
fail-safe. The final predicted result needs to be validated by an experienced operator,
which could benefit the continuous learning method, as described in the previous
section. As a final limitation, the MDCT images were of good to excellent quality with
a few exceptions of images containing movement or having poor quality. Including
poor quality MDCT scans, in the training dataset could improve the robustness of
the method.

Conclusion In this work, an automated method is presented to extract landmarks
for pre-operative TAVR planning from MDCT using deep learning techniques. When
comparing to other methods in the available literature, the accuracy, efficiency of the
method for detecting landmarks in soft tissue and blood environments has not been
surpassed. Embedding this tool based on deep learning in the pre-operative planning
routine may have an impact on the TAVR environments by reducing the time and
cost and improving accuracy.
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6.3 Curriculum deep reinforcement learning with
different exploration strategies:
A feasibility study on cardiac landmark de-
tection

Although TAVR is less-invasive than SAVR, it is associated with an increased
incidence of higher grade atrioventricular (AV) block that requires permanent pace-
maker implantation [13]. The conduction abnormalities are due to the mechanical
interaction between the prosthesis and the AV conduction path located near the aortic
valve. Pre-operative assessment of the location of the AV conduction path and the
expected contact pressure in this region can help to understand the risk of post-TAVR
conduction abnormalities [215, 216]. As the AV conduction path itself is not visible
on the cardiac CT images, the inferior border of the membranous septum can be
used as an anatomical landmark (Figure 6.10). Detecting the inferior border of the
membranous septum can be a difficult task and is dependent on operator experience,
image quality, and the patient’s anatomy. Detecting these points in an automatic,
accurate, and efficient manner would save operator time and thus benefit pre-operative
planning.

Figure 6.10: Schematic drawing of the aortic root and the membranous septum. Image
from [27].
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According to the literature, supervised deep learning methods are available that
detect landmarks in medical images [189, 200–202, 205, 208]. These methods analyse
a delimited region of interest and thus share the same limitation because they require
a region of interest annotation. In this study, we wished to overcome this limitation
and analyse medical images that range from scans of the entire body to region-specific
scans.

Recent studies have shown that deep reinforcement learning can be used to detect
landmarks in medical images regardless of their dimensions [204, 217]. In both
studies, accurate results were obtained using a cluster of computational resources.
However, the following difficulties may arise when exploring their methods. Deep
reinforcement learning introduces novel hyper-parameters on top of the already existing
hyper-parameters specific to deep learning and machine learning. When a cluster of
computational resources is unavailable, the hyper-parameter search may require a
considerable amount of time. Since deep reinforcement learning is still developing, it
is essential to look into mechanisms that require additional research, e.g. the studies
as mentioned earlier have different opinions on the definition of the halting signal for
the artificial agent. Moreover, novel strategies should be researched and evaluated in
a reproducible manner.

In this preliminary study, we aimed to identify the feasibility of 3D landmark
detection in cardiac CT images with curriculum deep q-learning. This novel method
of learning allowed us to use limited computational resources and tune the hyper-
parameters accordingly. It also enabled us to evaluate three strategies that drive the
exploring character of the artificial agent: the already established ε-decay strategy
and two novel strategies α-decay and action-dropout. Each strategy was validated
with k-folding; a cross-validation method that allows one to use the entire dataset for
validation while maintaining a strict separation between the training and validation
dataset. An inter-observer variability study was conducted to assess the accuracy of
the method.

6.3.1 Method

6.3.1.1 Patient and imaging data

This retrospective study used the anonymised data of 278 patients from multiple
centers. The average age of this cohort was 80.7 ± 6.6 years, and 56% of the patients
were female. The patient data consisted of volumetric cardiac CT images, which were
acquired to plan a TAVR procedure. Therefore, all CT images were contrast-enhanced
and contained a certain degree of aortic stenosis. The dimensions of the images ranged
from regional scans, centred around the aortic valve, to scans of the entire body. The
volumetric CT images were resampled to obtain a homogeneous dataset and each
image was interpolated to isotropic resolutions of 5.0, 3.0 2.0 and 1.0 mm using cubic
spline interpolation. These different resolutions were used to enlarge the agent’s field
of view. A pre-processing step normalised all the images.
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Figure 6.11: The 3D view (left) and the coronal view (right) of the aortic valve with
the annotated ground truth points: MS1, MS2 and MS3.

An expert analysed all images and identified the inferior border of the membranous
septum. This border was defined by three 3D points: MS1, MS2 and MS3 (Figure
6.11). These three landmarks were considered the ground truth in this study.

6.3.1.2 Landmark detection with reinforcement learning

The task of detection landmarks in medical images with reinforcement learning
is defined as follows. An artificial agent is positioned in an environment (an image)
where it can walk around in search of the target landmark. Based on its current
position, the agent has a limited field of view, causing it to see only a small image
patch (state). From its current state s, the agent needs to choose an action a, which
will move him closer to the target landmark. After performing that action, the agent
will be at a new position in the image and thus have a new state s’. The reward r for
choosing an action is the delta between the Euclidean distance from the previous- and
current position to the target landmark. The agent’s experience is defined as s, a, s’
and r and needs to be stored in order to learn from past experiences. Thus, eventually
improving the agent’s decision-making in the future (Figure 6.12).
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Figure 6.12: Overview of landmark detection in a medical image using reinforcement
learning. The agent will stop after a maximum number of steps or when it has found
the target landmark. The ‘select action’ box in the figure is annotated with a dashed
line because this is where the action-selection strategies will occur.

6.3.1.3 Landmark detection with deep reinforcement learning

The agent needs to have a map from states to actions to select the action that
would yield the maximum future reward. Mapping all possible image patches in
cardiac CT to actions is currently in terms of computational memory, impossible.
Deep q-learning [218] therefore uses deep CNN to approach the required mapping (or
q-function) from states to actions. In both studies [204, 217], a deep CNN or deep
q-network (DQN) was trained with the experience of the agent to predict q-values.
The size of the q-values coincided with the size of the action-space. The index of the
highest q-value is selected as the action that yields the maximum future reward for
the agent.

In this study, the agent was positioned in a cardiac CT image with multiple
resolutions (5.0, 3.0, 2.0 and 1.0 mm) and all the movements of the agent were
performed in the CT image with resolution 1.0 mm. The state s was defined by an
8x8x8 cube. In literature, state sizes of 45x45x45 (Alansary et al.) and 25x25x25
(Ghesu et al.) were selected however since multiple resolutions were used as input
in our study, a state size of 8x8x8 sufficed. The agent could choose from 26 actions.
This action-space covered all the possible single-step directions in a 3D grid (besides
standing still). After each move, the experience of the agent was stored in prioritised
experience replay memory [219]. This memory enabled the optimisation process to
train with experiences which had a higher priority (or learning value) and resulted in
faster convergence.

A double duelling DQN method was used to approximate the mapping between
the states and actions. Two identical models were used to reduce the overestimation
of the q-values. While the first DQN model was used to retrieve the actions of the
current observations, a second (frozen) DQN model was used to yield q-values during
the optimisation process [220]. After a variable number of iterations (τ), the weights
of the first DQN were transferred to the frozen DQN. In order to learn which states
were valuable regardless of the effect of the action, the architectural modification
proposed in [221] was used. The channel dimension of the model stores the multiple
resolutions of the state. (Figure 6.13).
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Figure 6.13: The architecture of the duelling DQN model. The input has the dimensions
of the state and the output of the model is the combination of the advantage- and value
output signals [221].

6.3.1.4 Landmark detection with curriculum deep q-learning

Curriculum learning [222] is inspired by the human education system, where
students start with a straightforward concept before learning more advanced con-
cepts. This multiple-concept approach was already applied to object detection, where
straightforward networks were trained first [82]. In this study, we defined the concepts
as the distances to the target point T. The goal was to find a route from starting
point S to T. The distance between these points was split into ten sub-starting points.
The first and most straightforward concept was defined as the route from the closest
sub-starting point s1 to T. When the agent had learned this path, the subsequent
concepts were processed until the model had learned the most difficult concept or
route from S to T (Figure 6.14).

Figure 6.14: Graphical representation of the curriculum learning approach. The final
goal was to learn an entire pathway from the starting point S to the target point T.
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6.3.1.5 The exploring agent

To learn the pathway towards the target point, the agent needs to explore and
exploit paths. The exploration is required at the beginning of the training to discover
new directions towards the target point. The exploitation is required near the end of
the training to establish discovered routes. In this study, we compared three strategies
to balance exploration and exploitation: the known exponential ε-decay and two novel
strategies: α-decay and action-dropout.

Figure 6.15: Overview of the three action-selection strategies: ε-decay, α-decay and
action-dropout.

Exponential ε-decay uses a value ε that drives the decision for predicting the action
or randomly selecting an action. During training, an ε value needs to be decayed, and
when a random value is smaller than the current ε value, random action is chosen.
Otherwise, the model predicts the q-values from the current state and the action with
the highest q-value is selected as the predicted action (Figure 6.15).

Linear α-decay always uses the model to predict the q-values from the current
state of the agent. An α value needs to be linearly decayed from 1.0 to 0.0 during
training. If a random value is smaller than the current α value, the action with the
highest q-value is ignored, and a random action between the remaining 25 actions is
selected. When applied, this strategy ignores the highest q-value on purpose, causing
the agent to find other routes to the target landmark. Otherwise, the action with the
highest q-value is selected as the predicted action (Figure 6.15).

Similar to α-decay, action-dropout uses the model to predict the q-values from the
current state of the agent. A threshold value needs to be linearly decayed from 1.0 to
0.0 during training. Each time action-dropout is applied, a percentage p of actions
are removed from the action-space, and a random action is selected from the reduced
action-space. If action-dropout is not applied, the action with the highest q-value is
selected (Figure 6.15).

6.3.1.6 Algorithmic details

The pseudo-code of the used curriculum deep q-learning algorithm is presented in
Algorithm 1. The model learns the paths from starting point s1 to s10 or S. In this
section; we explain a few parameters. The maximum number of steps that the agent
could make was initially set to 15 to avoid the agent getting lost at the beginning
of the algorithm. The algorithm gradually increased the maximum number of steps
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to ensure that the agent had enough time to reach the target point. The number of
iterations τ triggered the weight transfer from the first DQN to the frozen DQN and
was initially set to a small value. Therefore, numerous patients would pass before
the weight transfer. We observed that transferring the weights too quickly resulted
in models which were not able to find the target point. The algorithm increased the
parameter τ when the starting points were set further away from the target points.

Algorithm 1 Pseudo code of the curriculum deep q-learning algorithm.
1: procedure Train(patients)
2: batchsize = 128
3: model = initModel()
4: model_frozen = model.copy()
5: memory = initMemory()
6: for i in [1..10] do
7: τ = i ∗ 500
8: total number of steps = 0
9: max steps = i ∗ 15
10: while threshold > minimum do
11: p = getRandomPatient(patients)
12: t = p.getTargetPoint()

13: si = p.getStartingPoint(i)
14: for step in max steps do
15: state = p.getState()
16: action = p.selectAction()
17: reward, new state, is done = p.step(action)
18: memory.push(state, action, new state, reward)
19: optimize()
20: total number of steps+ = 1
21: if is done then
22: break
23: end if
24: end for
25: if total number of steps % τ == 0 then
26: model_frozen = model.copy()
27: end if
28: end while
29: end for
30: end procedure

6.3.1.7 Validation

The cohort size was relatively small (278 patients) and k-folding was employed as
a cross-validation strategy to maximise the amount of data available for training and
validating the models. K-folding (k=4) divided the entire dataset into four sub-sets,
and the training and validation process was repeated four times or folds. Each fold
used a different sub-set as the validation dataset, and the remaining three subsets
were used as the training dataset. K-folding allowed us to use the entire dataset as
the validation dataset while preserving the separation between training and validation
dataset. Note that the validation process was similar to the training process except
that the threshold value was set to -1. This value forced the agent to use the model
to predict the action from the current state by selecting the action with the highest
q-value from the predicted q-values.
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6.3.2 Results

The validation process was applied to all three action-selection strategies. Cross-
validation was applied to train and validate the method for all three target landmarks:
MS1, MS2 and MS3. We obtained 278 validated patients per target landmark as
a result of using k-folding. The action-selection strategies were compared to each
other by grouping the results of the three target landmarks into 834 validated patients
per strategy. A total of 24 trained models was used to validate one action-selection
strategy.

The final path from starting point S to target point T was the longest and the
most difficult one for the agent. The Euclidean distance from the agent’s final position
to the target point was measured. This final position was considered the predicted
landmark of the method. The ε-decay and action-dropout strategy yielded similar
results. Whereas the α-decay strategy was more accurate than the other strategies.
The prediction time of the full path for a single patient was below 1 second (Table
6.5).

Name Distance from target landmark [mm]
ε-decay α-decay action-dropout

MS1 2.4 [0.0 - 4.9] 1.2 [0.0 - 4.2] 2.3 [0.0 - 4.5]
MS2 3.0 [0.0 - 4.7] 0.0 [0.0 - 4.6] 2.0 [0.0 - 4.2]
MS3 2.2 [0.0 - 4.5] 1.4 [0.0 - 4.3] 1.0 [0.0 - 4.2]
All 2.4 [0.0 - 4.6] 0.0 [0.0 - 4.4] 2.0 [0.0 - 4.4]

Table 6.5: A summary of the Euclidean distances from the predicted landmark to the
target landmark for all three action-selection strategies.

The agent learned the path from the starting point S to the target point T by
gradually moving the starting point further away from T. The agent’s performance
during the curriculum learning process was measured by validating the models before
moving to the next sub-starting point. This inter-algorithmic-validation resulted in
Euclidean distances between the predicted points and T for each of the ten sub-starting
points. In order to compare action-selection strategies, the distances for each starting
point were grouped per strategy. The distances to the target landmarks reduced
overtime for all three strategies. The α-decay strategy is similar to the other strategies
until the final starting point S, where the median distance to the target landmark was
zero (Figure 6.16).

An inter-observer variability study was conducted on 20 patients to assess the
accuracy of the method. The Euclidean distances between the landmarks annotated
by the two observers were used as the difference between both observers. These
differences were compared to the predicted landmarks of the α-decay strategy of the
same 20 patients. The differences between the predictions of the model and observer
one were overall lower than the differences between observer one and two (Table 6.6).
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Name α-decay vs observer
1 (d1) [mm]

Observer 1 vs ob-
server 2 (d2) [mm]

Paired diff.
(d1 − d2)

p-value

MS1 2.7 [0.0 - 5.1] 3.8 [2.8 - 5.6] 0.2 ± 7.9 0.1
MS2 0.0 [0.0 - 4.5] 3.4 [1.8 - 4.4] -1.3 ± 2.1 0.01
MS3 3.0 [0.0 - 4.3] 2.3 [1.4 - 4.8] -0.1 ± 3.0 1.0
All 2.6 [0.0 - 4.5] 3.1 [1.6 - 4.9] -0.4 ± 5.1 0.4

Table 6.6: Comparison of the Euclidean distances between the predicted and target
landmarks (d1), and the target points identified by the two observers (d2). Paired
difference (paired diff.) in mm.

Figure 6.16: The evolution of the distances to the target landmarks for each sub-starting
point for all three action-selection strategies.

6.3.3 Q-landscapes

The agent was trained to find a path from starting point S to target point T.
During validation, the actions provided by the trained model guided the agent. In
order to provide additional insight into the agent’s world view, we plotted q-landscapes
which show the highest q-values for the entire image. These landscapes were generated
by convolving a state-sized cube over the entire image and selecting the highest q-value.
This operation produced a volumetric q-landscape where each voxel represents the
highest q-value of that particular position. In order to depict the 3D path of the agent,
the path was projected on a plane. This plane was defined by the starting point, the
target point and the centre of those two (Figure 6.17).
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Figure 6.17: The agent’s path in the cardiac CT image (top) and the q-landscape
(bottom) for each of the target landmarks: MS1, MS2 and MS3. The higher q-values
are depicted in red and the lower q-values in blue. It is visible that the q-values around
the target landmark are lower, as mentioned in [217].

6.3.4 Discussion

In this feasibility study, a curriculum deep q-learning method was proposed to
detect the inferior border of the membranous septum. We compared three action-
selection strategies: ε-decay, α-decay and action-dropout and showed that α-decay
yielded the most accurate results. The method was efficient since the prediction time
per patient was below 1 second, and the inter-observer variability study confirmed the
accuracy of the method.

Previous studies [204, 217, 223] presented accurate and efficient landmark detection
methods from medical images using deep q-learning. The authors used clusters of
computational resources. In this study, the computational resources were limited
to a single graphics processing unit (GPU). Additionally, these studies reported the
usage of six actions (defined by the three Cartesian axes), whereas this study used 26
actions. This is to the best of our knowledge, the first time such a large action-space
was used to detect landmarks from volumetric (medical) images. We expected that by
using a larger action-space, convergence would take longer. However, we observed that
convergence was faster when using 26 actions. By using curriculum learning, where
easy tasks were learned first, the model was given the time and positive feedback to
understand the task. It is our opinion that the incremental character of curriculum
learning is responsible for this convergence speed-up.

Although this preliminary study has proven to be promising, there are a few
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limitations to be noted. First, the model only learns the path from the centre of
the aortic annular plane (with small random oscillations) to the target landmarks.
When the agent enters areas outside the trained area or discovers image artefacts,
it can get lost. This limitation will be handled in future work, wherein the agent
will be put on the surface of a sphere around the target landmark with a gradually
increasing radius. Next, the cohort size was relatively small and adding more patients
will increase the robustness of the method. This limitation can also be addressed by
applying data-augmentation.

There are a couple of recommendations for future work. First, a halting signal
should be included. This mechanism can be obtained by adding a stopping action
or measure oscillations in q-values as described by [204, 217]. Next, searching for
multiple landmarks by using multiple agents could be considered [224]. Finally, the
task of detecting landmarks with curriculum deep q-learning in volumetric images is
computationally cheap yet difficult enough to serve as a baseline to experiment with
novel deep reinforcement learning techniques.

Conclusion Curriculum deep q-learning was applied to detect the inferior border
of the membranous septum. The output of this study is three-fold: first, the predicted
landmarks were detected accurately and efficiently. Next, we have proposed and vali-
dated two novel action-selection strategies: α-decay and action-dropout and compared
it to the already established ε-decay strategy. Finally, the incremental character of
curriculum learning enabled the research into novel mechanisms and strategies in the
domain of deep reinforcement learning.

6.4 Conclusion
In the first part of this chapter, we presented a literature study of landmark

detection in medical images with deep learning methods between 2015 and 2019.
In the second part of this chapter, two landmark detection methods are presented.
The first study described an automatic method to detect five landmarks, which are
crucial in the pre-operative phase of a TAVR procedure. After thorough validation,
we concluded that the method was efficient and accurate and adopting this method in
clinical practice may benefit the overall procedure in terms of time and accuracy. The
second study uses curriculum DQL to detect the inferior border of the membranous
septum. It was shown that this reinforcement learning approach could detect the
target landmarks within acceptable accuracy.
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Conclusions and future perspectives

We lose the precious sense
that an end
is only a beginning in disguise.

Craig D. Lounsbrough

AI is rising fast and even surpassing human abilities on many levels. Furthermore,
AI is already replacing human jobs. On the one hand, some scientists are tentative,
telling us that AI can outperform humans, but note that very few systems are actually
in place [225]. On the other hand, others are claiming that AI has achieved a medical
degree, residency and fellowship degree in just one year, yet the evidence is lacking
that AI may be used to bypass decision-making [226]. Others, try to look into the
future by querying the experts of AI and conclude that there is a 50% chance that all
human jobs will have been surpassed or replaced in 120 years [227]. These are all very
different opinions, but the common denominator is that things will change, including
the field of medical image analysis. How we are going to respond to this change is up
to us. Baring in mind the AI winters of 1973 and 1987, where the hype could not fulfil
its promises and funding would halt until the next AI spring [228], moving forward
with care and caution may be the best thing to do.

The analysis of medical images is a field where human experts are essential; however,
AI can contribute in various ways to the analysis. In this thesis, I have introduced
and discussed studies where deep learning models captured expert knowledge and
even went beyond human capabilities. For example, one significant study showed that
retinal images images contained cardiovascular risk factors, which was thought not to
be included in this image modality [89]. Such findings are astonishing and speak in
favour of the analytical power of deep learning. Encapsulating such power in tools



132 Chapter 7

that assist human experts can only benefit the analysis, which in return will benefit
the patient.

Similar to deep learning, transcatheter treatments have gained considerable mo-
mentum in the past decade. Treatments, such as the transcatheter aortic valve
replacement (TAVR), are established as a standard procedure while others, such as the
transcatheter mitral valve replacement, still struggle with the technical and anatomical
aspects due to the complexity of this valve.

This thesis focused on transcatheter heart valve interventions and the automation of
some of the medical image analyses in this field. The number of patients and currently
novel treatments will increase in the following years and since these interventions
are closed-chest procedures, efficient and accurate medical image analysis will have
a crucial influence on the patient’s treatment and hospital time. The accuracy and
efficiency of these presented methods provide the confidence for medical image analysis
pipelines where images can be automatically analysed. This pipeline can be interpreted
as a virtual expert or the physician’s assistant, who has seen more patients than the
physician yet is not flawless, and therefore has no role in the final decision-making
process.

In this final chapter, we present an outline of the main conclusions from this work.
Afterwards, some future directions are presented per study followed by some general
future directions.

7.1 Research conclusions

In this thesis, cardiovascular medical image analysis methods, fueled by deep
learning, have been presented. These methods can be categorised in classification,
segmentation and landmark detection, which are all essential aspects of medical image
analysis.

Classification plays a crucial role during medical image analysis. For example, the
detection of bicuspid and tricuspid aortic valve patients influences the pre-operative
planning of a TAVR. Segmentation is an essential medical image pre-processing
step that assists in further critical anatomical measurements. Landmark detection
influences crucial decisions and is vital for further analysis of the patient. For example,
the proper detection of the three lowest hinge points of the aortic leaflets defines the
aortic annular plane (AAP).

7.1.1 Classification

In chapter 4, we presented a retrospective study to classify aortic valve morphology
from multidetector computed tomography (MDCT) imaging from patients who had
been referred for transcatheter aortic valve replacement (TAVR). A three-dimensional
(3D) convolutional neural network (CNN) was developed to classify the MDCT images
and label the aortic valve morphology as tricuspid or bicuspid. The cross-validation
of the dataset showed that a trained 3D CNN had an excellent ability to classify
aortic valve morphology, with a high degree of both sensitivity (100%) and specificity
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(92%). These results are very favourable, especially given the relatively small dataset
on which the model was trained. Given these features, it is foreseeable that a tool
such a this could be used by clinicians to identify BAV. When looking at the available
literature, there are no studies which have used a 3D CNN model to classify entire 3D
region of interest (ROI) as input.

7.1.2 Segmentation

In chapter 5, two studies have been presented where deep learning was applied to
segment medical images in the transcatheter heart valve intervention domain. Both
studies applied a post-processing step to derive clinically relevant measurements from
the segmentation.

7.1.2.1 Enabling automated device size selection for TAVR

In the first study, a method was proposed to facilitate and optimise the pre-
operative TAVR planning by analysing the AAP from MDCT images. Measurements
of the aortic annulus are vital during the decision-making process before a TAVR
procedure. For example, the area or perimeter of the measured aortic annulus
determine, among other measurements, the final prosthesis device size. The aortic
annulus is measured on the AAP, a two-dimensional (2D) plane defined by the lowest
hinge points of the aortic valve’s leaflets.

In this retrospective study, the MDCT images of a substantial amount of patients
were used to train two CNN models to segment the aortic annulus. The area and
perimeter were derived from the predicted segmentation and were used to select
prosthesis sizes for the Edwards Sapien 3 and the Medtronic Evolute device. The
validation was performed in three steps. First, a test dataset of 118 patients was
used to evaluate accuracy. These patients were excluded from the training phase of
the models. Results showed that the area and perimeter could be predicted in an
automatic, reproducible, efficient and accurate manner using our method. Secondly,
the differences between the manually obtained aortic annulus measurements and
the automatic predictions were similar to the differences between two independent
observers. This indicates a satisfying accuracy of the proposed approach. Finally,
when inserting the predicted area and perimeters in the sizing charts of the Edwards
Sapien 3 and the Medtronic Evolute device, it was found that the automatically
selected device sizes accorded well with the manually determined device sizes. The
total analysis time from AAP to prosthesis size was below 1 second, which is much
faster than the manual processing time of approximately 10 minutes. Therefore, our
proposed method can speed-up the current pre-operative TAVR planning as well as
reduce analysis errors in new centers.

When comparing this work to the available literature at the time of this study,
many studies used deep learning to segment images. However, these studies analysed
well-defined areas, e.g. the endocardium of the left ventricle (LV) can be delineated
visually. In this study, the aortic annulus was segmented. The annular ring also
delineates this structure, but calcified areas make the segmentation not straightforward.
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The operator can include or exclude these calcified areas depending on the size of these
areas. By segmenting the aortic annulus first, we could establish the confidence that
further quantification would yield accurate results. We also expected that physicians
would not appreciate black-box methods. If a model was trained to analyse the MDCT
image and yield the area and perimeter as output directly, it would be difficult to
convince a physician how the model came up with these values. Moreover, it would
also be challenging to inspect the cause of outliers.

7.1.2.2 Towards safe and efficient pre-operative planning of tran-
scatheter mitral valve replacement (TMVR)

In the second study, a method was proposed to detect the mitral valve annulus
from MDCT images automatically and derive clinically relevant measurements. The
detection of the mitral valve annulus is a time-consuming and challenging process.
The mitral valve annulus has a saddle-shaped anatomy and changes in size and shape
during the cardiac cycle. From the detected mitral annulus, necessary measurements
need to be assessed, such as the area, 2D and 3D perimeter, trigone-to-trigone-,
septal-lateral- and commissure-to-commissure distance. The mitral valve annulus
and the derived measurements are crucial during TMVR procedures and mitral valve
prosthesis development.

This retrospective study used the MDCT images and expert data of a small number
of patients to train deep learning models to segment the mitral valve annulus from
medical images. Once segmented, the measurements described above were derived
from the mitral valve annulus during a post-processing step. The method was cross-
validated due to the small size of the dataset, which contained the image data of 71
patients. The accuracy of the method was confirmed by comparing the predicted and
manually derived measurements. The total analysis time of our proposed method was
less than 1 second per patient, which is much faster the manual processing time of
approximately 25 minutes per patient. The efficiency and accuracy of our proposed
method provide the confidence to move towards implementation of this technology in
clinical practice. A proposal for a clinical application for medical image analysis was
presented in this study.

In literature, there are currently no studies that used deep learning to segment a
medical image to derive the mitral valve annulus and secondary measurements thereof.
There are a few studies which use deep learning and other methods to detect the
contours of the LV [130, 199]. The scope of this work targets a less-defined anatomical
structure, i.e. the LV is well-delineated on CT images, whereas the mitral valve
annulus is not.

7.1.3 Landmark detection

In chapter 6, two studies have been presented where deep learning was applied to
detect landmarks from medical images.
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7.1.3.1 Aortic annular plane and coronary ostia detection

In the first study, an automated method was presented to extract landmarks for
pre-operative TAVR planning from MDCT using deep learning techniques. During
the pre-operative phase of a TAVR procedure, the MDCT images are used to identify
the patient’s risk. For example, the distances from the AAP to the coronary ostia
help to understand the risk of coronary obstruction. This obstruction is a potentially
life-threatening complication during which the blood flow to a coronary artery is
significantly reduced. The AAP is defined by the three lowest hinge points of the
aortic valve’s leaflets: the left coronary cusp (LCC), the non coronary cusp (NCC)
and the right coronary cusp (RCC).

In this retrospective study, the MDCT images and expert data of a substantial
cohort were used to train models that could detect the five landmarks mentioned above.
The method combined the results of three trained CNN models and a post-processing
step. Three steps were applied to validate the method. First, a test dataset of 100
patients (these were excluded from the training phase) was used to evaluate the
accuracy of our method and results showed that the five landmarks could be detected
efficiently and accurately. Next, an inter-observer variability study was conducted. The
difference between the manually and automatically identified landmarks was generally
smaller when compared to differences observed between two independent operators.
This indicates that the suggested approach detects these landmarks within acceptable
accuracy. Finally, it was also illustrated that the method allows to accurately and
automatically determine clinically relevant measurements such as coronary height.
The total analysis time from MDCT image to the predicted landmarks was less than
one second, which clearly shows the potential of our proposed method to speed up
current pre-operative planning workflows.

It was shown that the accuracy and efficiency of the method for detecting landmarks
in soft tissue environments have not been surpassed when compared to other methods
in the available literature.

7.1.3.2 Curriculum deep reinforcement learning with different ex-
ploration strategies: A feasibility study on cardiac landmark
detection

In this second study, the curriculum deep q-learning (DQL) algorithm was used
and applied to detect the inferior border of the membranous septum automatically.
This border is a known anatomical landmark for the atrioventricular conduction path.
Pre-operative assessment of the location of the atrioventricular conduction path is
crucial to understand the risk of conduction abnormalities following a TAVR.

The idea behind curriculum DQL is that an artificial agent gradually learns to find
the landmarks within the medical image. The agent has a limited view and learns to
walk towards the target landmarks. During the walk, it tries to maximise some notion
of cumulative reward. The model was cross-validated due to the small dataset, and the
validation illustrated that the method was accurate and efficient. An inter-observer
variability study confirmed the accuracy of the method. The output of this study
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was three-fold: first, the predicted landmark locations were detected accurately and
efficiently. Next, two novel action-selection strategies α-decay and action-dropout
were validated and compared to the already established ε-decay. Finally, the task
of detecting these landmarks was computationally cheap (when compared to similar
methods) yet difficult enough to serve as a baseline to experiment with novel DQL
techniques.

7.2 Future directions
In the following sections, we will present an outline of possible future directions

for the presented studies in this thesis. This chapter concludes with a few general
future directions.

7.2.1 Future directions per study

One future direction which is applicable for all the presented studies is the following:
all studies would have benefited from more expert data. It should be apparent that
including a wider variety of anatomical differences in the training dataset would make
the trained models more resilient to anatomical differences. Moreover, the confidence
in the validation of the proposed studies would increase by similarly expanding the
test dataset. However, how much data is enough? The question remains how much
data is required to perform a specific task. This question should be addressed in both
ways. First, we can add more data to the dataset but this should enrich the variety of
the dataset. For example, the patient’s age. Preference should go to add patients with
different ages in order to increase the variety in the dataset. Secondly, we execute
performance measure studies where we remove data from the dataset in order to
establish how much data is required to perform a task. This could be performed by
using the current studies (and datasets) as baselines and incrementally reducing the
amount of training data to perform the same task.

7.2.1.1 Aortic valve morphology classification

In this study, a deep learning classification model was able to distinguish the
bicuspid aortic valve patients from the tricuspid aortic valve patients (Section 4.2).

This study can be extended to a multi-class classification where all types of bicuspid
aortic valves are included. Including all subcategories would provide more insights into
the classification abilities of the deep learning model and may provide more clinical
information to the physician. This method can be encapsulated in an automated
pre-operative TAVR medical analysis tool. This tool would predict measurements
and labels such as bicuspid aortic valve type from the medical images efficiently and
accurately.

Both binary and multi-class studies would benefit from identifying the anatomical
parts, which contributed to the final classification. This identification can be performed
by using a classification activation map [229]. By localising the anatomical features
that enabled correct predictions, we may gain novel insights to understand which
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parts of the anatomy cause the classification. In its current status, this method can
act as a virtual referee in case of doubt. However, incorporating the classification
activation map may add signification value to the refereeing abilities.

The ability to classify a morphology or anatomical deformations from medical
images applies to other fields. When limited to the field of cardiovascular medical
image analysis, the following applications such as classifying the level of mitral annular
calcification (MAC), atrial septal defect (ASD) or patent foramen ovale (PFO) from
medical images comes to mind. Although severe MAC patients are visually easy to
detect, capturing early-stage MAC patients may benefit the patient. Both ASD and
PFO describe an unclosed foramen ovale located at the septum between the atria.
This defect allows oxygen-rich blood to leak into the oxygen-poor blood chambers and
may be automatically detectable with this architecture and strategy.

The 3D CNN classification model can be used as a baseline for architecture
evolution research since this study yielded excellent accuracy. The 3D CNN model
was developed by using state-of-the-art methods, parameter tuning methods and
an enthusiastic dose of trial-and-error. Recent developments [230, 231] in deep
learning architecture evolution have been made where architecture is evolved instead
of developed. Small steps in this field were made, and preliminary results yielded
surprising discoveries, i.e. the activation function is of less importance for simple tasks
(see Appendix B). This 3D classification task is difficult enough to serve as a realistic
benchmark to see if we can 1), outperform this architecture (with fewer parameters)
and 2), potentially discover new efficient patterns of layers such as residual blocks or
dense blocks with evolution.

7.2.1.2 Enabling automated device size selection for TAVR

In this study, deep learning was used to automatically predict the TAVR device
size from the aortic annular plane (Section 5.2).

The study was limited to the Edwards Lifesciences and Medtronic transcatheter
aortic bioprostheses and could be extended to other devices. A different approach
could be evaluated and compared to the current study: in order to circumvent the
post-processing step, one could use a model with multiple outputs for segmentation,
anatomical measurements and device sizes. If the results are sufficiently accurate, this
multiple-output approach could yield an all-round aortic annular plane analysis tool.

Being able to measure area and perimeters in a 2D plane of the aortic annulus,
enables the following research directions. Estimating the volume from the left ventricle
(LV), right ventricle (RV), left atrium (LA) or right atrium (RA) by stacking the
predicted segmentation. This has already been done, mainly for the LV and RV. Going
a step further, one could measure the left ventricle outflow tract from medical images
with the proposed strategy. This measurement is paramount in the field of mitral
valve replacement [232]. In the field of left atrial appendage occlusion, an interesting
measurement is the maximum diameter of the appendage. Based on this measurement,
device sizes are determined in order to occlude the opening. The proposed method
could be used to identify this measurement.
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7.2.1.3 Towards safe and efficient pre-operative planning of TMVR

In this study, the mitral valve annulus was segmented from 3D MDCT images
and anatomical measurements were derived from this segmentation (Section 5.3). The
manual detection of the mitral valve annulus is a time-consuming job, and experts say
that it is more of an art than a science.

Since the mitral valve is a complex structure, more and more centers will move
towards four-dimensional (4D) MDCT images in order to fully understand the valve’s
apparatus. A follow-up on this study would be to include multiple phases of the
cardiac cycle, thus expanding the detection from 3D to 4D images. The same 3D
architecture may perform this dimension extension, or when dealing with sequences
of data, recurrent neural networks come to mind. It would be interesting to see how
they could assist with this task, but a good starting point could be cardiac phase
classification from 4D MDCT images. This initial step could be accomplished by
adding recurrent layers inside the current 3D network as was done for 2D images in
[166]. In Appendix C, a 4D frame classifier is presented which analyses 4D ultrasound
images.

In this study, the ROI around the mitral valve annulus was segmented. Afterwards,
the annulus was detected in a post-processing step. Similarly, the leaflets of the mitral
valve could be approximated. Combined with the mitral annulus, this would provide
a broader insight into the working of the entire mitral valve apparatus.

Going beyond the mitral valve field, other anatomical features which are difficult
to detect can be measured - for example, the membranous septum area and anatomical
elements of the tricuspid valve.

Another direction of this study would be to experiment with the detection of the
mitral valve annulus as a 3D polygon directly. This can be accomplished by landmark
detection as presented in Section 6.2, vector field prediction [130, 189], regression [163]
or by combining image-based deep learning with geometric deep learning [233, 234].
This latter approach was, unfortunately, not included in this research due to time
limitations.

7.2.1.4 Aortic annular plane and coronary ostia detection

In this study, five landmarks were detected from MDCT images. These landmarks
are crucial during the pre-operative planning of a TAVR procedure (Section 6.2).

The robustness of this method entails that 1), this method can also be encapsulated
in an automatic pre-operative TAVR medical image analysis tool and 2), that this
landmark detection strategy could be applied to many other problems. Many of
the studies in this thesis start from the assumption that the images are centered
around a ROI. This method could detect this center and thus serve as an automatic
pre-processing tool for other automated methods.

Other applications for robust landmark detection may include mitral valve annu-
lus detection, membranous septum detection, papillary muscle detection and other
cardiovascular landmark detection problems. Other applications may include plane
detection from medical images. In order to provide clinical feedback, known views
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such as the four-chamber view can be detected using this method. A four-chamber
view is a plane that is defined by the apex, mitral valve center and aortic valve center,
which could be detected using the proposed strategy.

7.2.1.5 Curriculum deep reinforcement learning with different ex-
ploration strategies: A feasibility study on cardiac landmark
detection

In this study, three landmarks were located using deep reinforcement learning.
An immediate follow-up study originates from a current limitation. The current
algorithm starts at the center of the aortic root and tries to find the three landmarks.
Generalising this would imply that the starting point should be placed anywhere in
the medical image.

The current state of this study can also serve as a baseline for future experiments
with DQL. This 3D environment and current landmark detection task are difficult
enough to be challenging and inexpensive in terms of computation time. The following
novel methods could be tested. First, different reward strategies could be implemented;
for example, an agent receives a higher reward for finding a solution faster. Next,
implementing different halting methods such as adding a dedicated action as the
halting mechanism.

7.2.2 General future direction
7.2.2.1 Continuous learning

The presented strategies for automatic medical image analysis in chapters 4, 5 and
6 used the images of cohorts of patients. These cohorts were collected, anonymised
and stored appropriately for further analysis. The described methods in this thesis
used the images and expert data to train models. The environment in which this
took place was under control, which implies that the detected hyper-parameters and
obtained accurate results are specific to that cohort. In most cases, a model learns
how to mimic this expert but preferably, a model learns to generalise beyond this
expert. It is at this point that the model can correct the mistakes of this expert which
was seen in Section 6.2.

In this context, continuous learning refers to continuously learning models by
adding new samples in the dataset. Usually, models are trained and validated on
a dataset. When a previously unseen sample is added to the training dataset, the
models need to be re-trained, validated and hopefully obtain the same or better
results. The life-cycle of hyper-parameter re-calibration, re-training and re-validation
of the models has not been developed yet. This life-cycle is preferably automatic and
presumably requires the necessary tuning. For example, with the expected declining
age of TAVR patients, a difference in anatomical features can be expected. Another
example might involve adding data from another hospital with a different contrast
agent policy. One possibility is to redo the hyper-parameter tuning, training and
validation but considering that more and more automated methods will be transformed
into pipelines, it might be beneficial to initiate the continuous learning approach. This
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would also introduce novel hyper-parameters such as balancing of the training and test
dataset. This balance could be determined by age, or gender or other meta-features.
Moreover, introducing a continuous learning system would initiate a step towards real
(artificial) intelligence which implies the ability to adapt.

7.2.2.2 Medical image pipelines

In section 5.3, a web-based medical image pipeline has been proposed for the
automatic analysis of the mitral valve annulus in a clinical environment. The schematic
overview of the proposal is slightly adapted and depicted in Figure 7.1. The proposed
medical image pipeline can be generalised as follows: the hospital transfers the DICOM
images of the patient to a web-based platform where the images are automatically
analysed with deep learning methods. The measurements are derived within seconds,
and after quality control, a report is generated containing all required information and
sent back to the hospital. The output of the quality control and the medical images the
patient is paired and stored in a database. Since a trained, human operator performs
quality control, the output may contribute to the continuous learning strategy as a
new sample in the dataset. The proposed pipeline from section 5.3 is applicable to
the studies described in sections 4.2, 5.2 and 6.2.

Figure 7.1: Schematic overview of an generic web-based medical image analysis pipeline.

7.2.2.3 Learning with less data

As previously mentioned, all studies described in this thesis would benefit from
more data, which means that more medical images need to be annotated by experts. In
order to make claims that methods are accurate, preferably large varying datasets are
required. In some of the presented studies in the field of TAVR, the dataset consisted
of elderly patients with an average age of 80 years (Sections 6.2 and 5.2). However,
since the age of TAVR patients is expected to decrease, and thus, younger patients
will become candidates for the TAVR procedure, we can ask ourselves whether or not
these models will be as accurate as they are now. One way to resolve this question
is to train with more data. If we acquire more data, e.g. from younger patients, the
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model should be resilient to varying anatomies. What if this data is not available or
the number of older patients is much higher than the number of younger patients? Or
the data is scarce because it is too expensive or painful to acquire?

One way to address this issue is to use less data, as was proposed in Madani et
al. [88]. In this study, a semi-supervised method employed a generative adversarial
network which used only 4% of the available expert data. The authors also used a
supervised method that used all expert data. When comparing both methods, it was
observed that both methods accomplished similar accurate results. This study showed
that the hurdle of a small dataset could be resolved.

In the example of TAVR, where younger patients will need to be analysed, but
the automatic methods were trained with older patients. If the dataset would be
expanded with a few younger patients, it remains a question of which strategy would
yield the most accurate results. One strategy could use the study mentioned above to
tackle the dataset size or only increase the younger population in the dataset. Another
strategy would be to re-balance the dataset where each age would be represented
equally. Maybe less, properly balanced data is more.
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A
Towards realistic and

tailored medical image generation

A.1 Introduction

Data-sciences such as deep learning require large datasets. Bigger datasets are
generally speaking equivalent to more robust models. When data is expensive or
difficult to obtain, large datasets are rare. In the domain of medical image analysis,
this is often the case. Although great efforts are being made to create a large publicly
available dataset, generally speaking, the amount of available medical images and
expert annotations are low. The cohort sizes can be extended by applying data-
augmentation to the samples during the training (and test) phase. However, this is
limited by the chosen transformations, which preferably insert a realistic prior in the
transformed images. For example, if a model is trained to segment the left ventricle
from computed tomography (CT) images and all patients have the same orientation,
realistic rotations of the left ventricle (LV) can be inserted by rotating the images
with some degrees. Flipping the images is a bad idea since this would never occur in
this scenario. How much or which data-augmentation techniques need to be added is
currently an art rather than a science. Moreover, some data-augmentation techniques
are challenging to implement, for example, adding calcified areas in the aortic annular
plane is challenging to achieve augmentation method because calcification can only
appear inside the aortic annulus and not randomly in the image.

In this study, a tailored-data generation method was explored. This strategy might
become an excellent candidate to generate data which meets specific criteria. The
strategy was applied to images of the aortic annular plane (AAP). The generated
images were evaluated, and we submitted an expert to a visual Turing test. The first
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steps towards tailored image generation were explored.

A.2 Material and methods

A.2.1 MDCT images

The multidetector computed tomography (MDCT) images of 455 transcatheter
aortic valve replacement (TAVR) patients with a certain degree of aortic stenosis were
used during this study. The mean age of this cohort was 80.8± 7.1, and 55% of the
patients were female. This dataset was the same as the study described in Section 5.2.
The AAP was exported using the standard method [182]. The images of the AAP
were used to train the models.

A.2.2 Generative adversarial network

A generative adversarial network (GAN) uses two models: the generator model
G and the discriminator model D. The idea is that G tries to trick D by generating
realistic images. The binary classification model D, on the other hand, tries to classify
generated images from G and the real dataset as generated or real [99].

Figure A.1: Overview of the architecture of the generator model G. Latent space Z is
a vector of size 100 in this example. Image from [235].

Training GANs entails a couple of problems such as non-convergence, mode-
collapse, diminished gradient, and unbalance between G and D. Non-convergence
occurs when the parameters of the models oscillate and never converge with poor
performing models as a result. Mode-collapse is the phenomenon when the generator
’collapses’ and is not able to produce the full variety of the training set. The diminished
gradient is caused by a successful model D with a vanishing gradient in model G
as a consequence. Finally, the unbalance between D and G can be caused by high
sensitivity to the hyper-parameters and failing to reach a balance or Nash equilibrium
[236]. GAN is based on zero-sum game or mini-max. Both models D and G want to
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maximise their actions and minimise the opponent’s actions. The Nash equilibrium is
reached when the actions of an opponent do not influence one owns actions.

It has been shown that deep convolutional generative adversarial networks (DC-
GAN) can generate realistic images from a latent space Z [235]. In Figure A.1, an
example of an architecture of a generator model is depicted.

A.2.3 Training, evaluation and Z-arithmetic

The model and training scheme used in this study were inspired by [235]. After
successful training, the generator model was able to generate realistic images from a
latent space Z.

As a next step, the trained generator model G was used to generated images from
random latent spaces. A virtual Turing test was performed where ten real and ten
generated images were presented to an expert. At first, the expert was not informed
about the experiment and was only asked to grade the image quality of the 20 aortic
annular planes (with zero being the worse quality and five the best quality). In the
second phase, the expert was informed about the experiment and was asked to label
the generated and real images. Finally, we hypothesised that certain anatomical
features in the generated images were linked to specific properties of the latent space
Z. Therefore, exploratory arithmetic operations were performed on the latent spaces
in order to measure the effect on specific features in the generated images.

Figure A.2: Comparison between a real (left) and generated (right) image of the aortic
annular plane.

A.3 Results and discussion
The expert was presented with ten real and ten generated images. The mean

quality score (in %) for the real images was 62% and for the generated images 48%.
The difference may indicate that the generated images lacked some realistic details
(Figure A.2). When asked to label the 20 images as real or generated, the expert
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labelled 40% of the images correctly, which may indicate that the generated images
were sufficiently realistic.

Arithmetic operations were performed on the latent space Z (Figure A.3). Anatom-
ical shape differences of the left ventricle, lungs and others were observed. This
observation could indicate that parts of the latent space may influence anatomical
features.

Figure A.3: Generated images (top) and the histogram of their associated latent space
Z (bottom).

In conclusion, it was shown that DCGAN could be used to generate realistic
medical images which can endure a visual Turing test. Experiments with the latent
space indicate that generating images with specific criteria need further investigation.
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B
Light-weight algorithm for deep learning

architecture evolution

Recent studies have shown that algorithms for evolving deep learning architectures
for image classification can be used to generate high-performing deep learning models
[230, 231]. These algorithms, however, require a lot of computation time and power.
In this study, a light-weight algorithm for generating deep learning architectures for
image-classification is proposed and validated.

B.1 Introduction

Deep learning has become an established approach in the past decade for numerous
image based-applications such as classification [23], segmentation [24], generation [99],
and reinforcement learning [224]. All these applications share similar properties:
a dataset, a well-formed cost function, a deep learning architecture and numerous
enthusiastic training sessions. During these training sessions, the researcher(s) may
start from an already established deep learning architecture and experiment with
new ideas and some educated guesses. With each experiment or new idea, the deep
learning architecture is manually adapted, trained and preferably compared to prior
training sessions and already published data. Recent studies [230, 231] have proposed
to abandon this manual step and automate this process by evolving architectures.
One of the shared property of these studies is that they require a lot of computation
time and power to obtain high-performing models.

In this study, a light-weight algorithm for generating deep learning architectures
for image-classification is proposed and validated against the MNIST dataset [237]. It
is shown that this method does not require substantial computation time and power
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to obtain high-performing models.

B.2 Material and methods

B.2.1 Data

The MNIST dataset was used in this study to ensure readability and reproducibility.
This dataset is used as a benchmark dataset in the supervised learning community
and consists of grey-scale images of handwritten numbers and their associated label.
The numbers in the images and labels range from 0 to 9 (Figure B.1). The dataset
was split in a training dataset and a validation dataset to prevent data overlap during
training and validation of the generated deep learning architectures.

Figure B.1: Examples from the MNIST dataset: handwritten numbers ranging from 0
to 9.

B.2.2 Individual

In this study, an evolution algorithm is applied to grow deep learning architectures.
The individual in this process is defined to contain all elements that could mutate
during this evolution. Elements such as the learning rate and a initially empty deep
learning architecture are contained in each individual (Figure B.2). The deep learning
architecture was represented by a directed graph which could grow, shrink or alter
due to mutations which will be presented in the next section.
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Figure B.2: The initial deep learning architecture of an individual. The input consisted
of samples with the following dimensions: a batch-size (b), number of channels (c),
height (h) and width (w). The reshape operations flattened the number of channels,
height and width and average pooling was applied over the input-signal. The final
output consisted of the following dimensions: a batch-size (b) and the number of classes
(C) of the classification task.

Before the training, the graph needed to be resolved in order to enforce consistency.
The first condition resolved potential size mismatches. The graph was traversed from
the root until the end, and each node was checked. Subsequent nodes would receive the
sizing information from the previous check. This step was necessary with operations
that could alter the size of the input signal such as convolutions with stride >1, the
number of features >1 or skip connections. The second condition made sure that the
total size of the last node in the graph would not be smaller than the number of classes
of the classification task. After successfully resolving the graph, the architecture was
built and ready for training and validation.

B.2.3 Mutations

Random mutations were required in order to evolve individuals. The process
of trial-and-error during architecture development inspired the available mutations:
altering the learning rate, adding or removing layers or altering existing layers. When
the individual was selected for mutation, one mutation was selected at random and
applied to the individual.

The following strategy was used for adding or removing layers and skip-connections
[52]. In order to add a layer, a random node was selected from the graph. The size
of this node was used to set (or alter) the size of the new layer. In order to remove
a layer, a random node was selected from the graph and removed. In order to add
a skip-connection, two random insertion nodes were selected from the graph. After
sorting the nodes to ensure proper direction, a skip-connection between both nodes was
added to the graph. Finally, to remove a skip-connection, a random skip-connection
was selected and removed from the graph.
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B.2.3.1 Mutation details

The following mutations were available in the evolution algorithm (inspired by
[230]). All random alterations based on old values were obtained by multiplying the
old value with a uniform random value between 0.5 and 1.5.

1. Altering the learning rate: generated at random based on the old value.
2. Insert a convolutional layer: with kernel size 3, padding 1, stride 1 and feature

size equal to the number of channels or generated at random based on the old
value.

3. Remove convolution layer.
4. Insert activation layer: insert a ReLU activation function.
5. Remove activation layer.
6. Insert batch normalisation layer.
7. Remove batch normalisation layer.
8. Keep training: the identity operation.
9. Add skip-connection.
10. Remove skip-connection.
11. Alter stride: randomly selecting a convolutional layer and alter the stride value

(randomly selected from the following range: 1,2,4).
12. Alter number of features: randomly selecting a convolutional layer and alter

the number of features based on the old value.

B.2.4 Training and validation

The training set was used to train an individual’s architecture for 25000 training
steps to prevent overfitting and ensure fast evolution of individuals. The stochastic
gradient descent with a momentum of 0.9 was used as optimiser with the negative
log-likelihood as cost function. The learning rate was taken from the individual.

The entire validation set was used to validate the model, and a fitness score was
set to the ratio of correct/incorrect number of classified images or accuracy of the
model.

B.2.5 Evolution algorithm

The following algorithm was used to evolve deep learning architectures for image
classification. A population was trained with initially n empty individuals. After
training, the individuals were validated. Next, a random selection was applied to
the population where all alive individuals were randomly paired, and the individual
with the largest fitness score was kept alive while the other one was marked as dead.
The surviving individuals were randomly mutated, trained, validated and put back in
the population. Finally, the process of random selection and mutation, training and
validation were repeated for several generations.
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B.3 Results

Figure B.3: A grown deep learning architecture with a fitness score of 0.94. The
convolutional nodes are marked with the following numbers (number of input features,
number of output features, stride). The batch normalisation layers are marked with
the number of input- and output features.

A population of 10 individuals was used in the execution of our evolution algorithm.
The initial individuals started with the lowest fitness value while mutated individuals
progressed to higher fitness scores. After 100 generations, high fitness score reached
a ceiling (Figure B.4). The entire evolution took 12 hours on a single graphical
processing unit (GPU).

Figure B.4: A plot of the fitness of the individuals in time (red=low fitness, green=high
fitness value). Time is measured in amount of individuals.

After 100 generations, an individual reached a fitness score of 0.94 in the population.
Figure B.3 depicts the associated deep learning architecture of this individual. Note
that there are only two ReLU activation functions in this architecture which is unusual
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in deep learning architectures.

B.4 Discussion
In this study, a light-weight algorithm for evolving deep learning architectures

for image-classification is proposed. The algorithm is validated against the MNIST
dataset, and after 500 mutations, an evolved deep learning model yielded a validation
accuracy of 0.94.

In literature, high performing models have already been obtained with deep
learning architecture evolution. In [231], the authors explored the idea of learning
deep network structures automatically. The authors proposed a genetic algorithm
to create new network structures. Tests on MNIST and CIFAR-10 have shown the
methods ability to evolve and find high-quality structures. The complete evolution
takes "2 GPU-days". In [230], the authors proposed a method that evolves network
structures and applies simple evolutionary techniques at unprecedented scales to
discover models for the CIFAR-10 and CIFAR-100 datasets. The complete evolution
takes 256 hours wall time with 250 parallel workers. The previous studies clearly
show that architecture evolution can be used to obtain high-performing deep learning
models, however, on the condition that a high amount of computation time and power
is available.

More research is required to see if other datasets such as CIFAR-10 and CIFAR-100
can be analysed with this method. It would also be interesting to see whether it is
possible to grow novel blocks such as the residual or dense blocks.

B.5 Conclusion
In this study, we showed that similar high performing deep learning models could

be obtained without a high amount of computation time and power. Moreover, our
evolution algorithm discovered an unusual deep learning architecture which used only
two activation function.
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C
Echocardiographic analysis

with deep learning:
from cardiac cycle classification

to cardiac output regression

C.1 Introduction

The detection of the end-systolic (ES) and end-diastolic (ED) phase in ultrasound
(US) series is an important step prior to medical image analysis and patient care.
From these two phases, operators derive vital cardiac output, such as the ES- and ED
volume.

In literature, the classification of the cardiac cycle from 3D US images has been
performed with deep learning [238].

In this exploratory study, we measured the effect of medical image quantity in an
automatic 4D US analysis workflow. A cycle classification model classified the frames
of the varying length US series into three classes, and a regression model predicted
the cardiac output.
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C.2 Material and methods

The cohort consisted of 4D echocardiography1 of 128 patients. Each patient was
analysed by an expert using 4D Cardio-View (TomTec, Unterschlessheim, Germany)
which produced the necessary ground truth cardiac output (end systolic volume,
systolic volume, end diastolic volume and ejection fraction). The length of the time
series was not predetermined. (Figure C.1).

Figure C.1: Example of US images from the cardiac cycle. The frames were classified
as; others (0), ED (1) and ES (2). The regression task used the ED and ES images.

C.2.1 Classification

The cycle classification task was performed by a deep learning architecture consist-
ing of an image encoder (CNN), a time series encoder (LSTM) and a funnel (Dense
layers). A schematic overview of this architecture is depicted in Figure C.2. A novel
referee function (inspired by [239]) was added to the weighted negative-log-likelihood
cost function to enforce sureness and abolish doubt in the model. The referee function
used the predicted classes and computed the absolute difference between the ground
truth classes, thus pushing the model to certainty.

1Medical ultrasound is a diagnostic imaging technique to create an image of internal body
structures. Ultrasound images are made by sending pulses of ultrasound (>20,000 Hz) into
tissue using a probe and recording the different reflection properties.
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Figure C.2: A schematic overview of the temporal classification architecture where t
is the number of frames of the 4D image, b is the batch size, and δ is the number of
images used in the configuration.

C.2.2 Regression

The regression model consisted of an image encoder and a funnel to predict the
cardiac output. A schematic overview of this architecture is depicted in Figure C.3.

Figure C.3: A schematic overview of the temporal regression architecture where b is
the batch size, and δ is the number of images used in the configuration.

C.2.3 Configurations

In order to measure the effect of medical image quantity, we defined different
configurations based on the number of images that were taken per axis: A=1, B=3,
C=6 and D=13 (Table C.1).

C.3 Results

All the models were cross-validated with k-folding (k=10). Both tasks yielded
similar results for each configuration with a classification accuracy of 0.89, 0.88, 0.88
and 0.89 and a mean paired difference of 3.8, 4.2, 3.2 and 2.3 for configuration A, B,
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Config name Selected slice indices
Total
amount of
images

A 64 3
B 32, 64, 96 9
C 16, 32, 48, 64, 80, 96 18
D 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104 39

Table C.1: Image quantity configuration overview. The selected slice indices refer to
the three axes: sagittal, coronal and axial.

C and D (Figure C.4). The training time for configuration A was substantially faster
compared to configuration D .

Figure C.4: The receiver operating characteristic curves of the configurations.

C.4 Discussion and conclusion
These findings require further investigation; however, since the advent of AI, the

amount of available medical data has been increasing. Subsequently, the question
arises how much data is required for useful insights?
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D
Cohort overview

D.1 Aortic cohort

The anonymised cohort consisted of volumetric MDCT images, which were acquired
to support the pre-operative phase of a TAVR procedure. Most of the MDCT images
were contrast-enhanced and contained a certain degree of aortic stenosis. The cohort
consisted of 437 tricuspid patients 36 bicuspid patients and the average row and
column size were 512.1, 511.7. Average slice thickness of the images was 0.8 mm, and
the average pixel spacing was 0.53 mm for both row- and column spacing.

As introduced in chapter 3, all DICOM images contain meta-information which
can be extracted and provide insights into the cohort’s demography. In the following
sections, the next topics; gender, age, contrast and manufacturer are summarised.

Figure D.1: Gender and age distribution of the aortic cohort
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The gender was known in almost 60% of the patients, and the age was known
in 76% of the patients. The lacking gender or age information indicates that the
meta-data is incomplete or has been removed. The known age distribution had a
median value of 81 and lower and upper quartile values of 76 and 86. The minimum
and maximum age were 48 and 95 (Figure D.1).

Almost 90% of the used contrast information in the aortic cohort was known.
These known contrasts were filtered and categorised into 11 categories. Note that
32% of the known contrasts was called “Applied”, which does not provide information
about which type of contrast was used (Figure D.2).

Figure D.2: Contrast information of the aortic cohort

Unfortunately, more than 90% of the manufacturers of the recording devices were
unknown. The eight unique manufacturers were Somatom, Discovery, Brilliance,
Revolution CT, Sensation Cardiac 64, LightSpeed, iCT and Aquilion (Figure D.3).

Figure D.3: Manufacturers information of the aortic cohort
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D.1.1 Classification cohort

In this dataset, a subset of patients from the aortic cohort was taken and included
48 tricuspid patients and 48 bicuspid patients. The median age was 82 with lower and
upper quartile of 76 and 86. The minimum and maximum age were 63 and 91. The
unique contrasts used in this dataset were; Niopam, Visipaque, IsoVue, Iomeron and
Ultravist. The unique manufacturer’s names of the recording devices were; Discovery,
Somatom and Revolution.

D.1.2 Membranous Septum Detection

A subset of the aortic cohort was used in this dataset due to the availability of
the ground truth. The trained operators detected the membranous septum of 278
patients.

D.2 Mitral cohort

This anonymised cohort of 71 patients was collected from multiple centra and is
summarised in this final section.

The gender was known in 80% of the patients, and the age was known in 77% of
the patients. The known age distribution had a median value of 77 and lower and
upper quartile values of 71 and 82. The minimum and maximum age were 0 and 90.
The minimum age indicates an error in the available meta-data of the DICOM images
(Figure D.4).

Figure D.4: Gender and age distribution of the mitral cohort

Almost 90% of the used contrast in the mitral cohort were known. These known
contrasts were filtered and categorised into eight categories. Note that 32% of the
known contrasts was called “Applied”, which does not provide information about which
type of contrast was used (Figure D.5).
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Figure D.5: Contrast information of the mitral cohort

Almost 60% of the manufacturers of the recording devices were unknown. The five
unique manufacturers were Somatom, Discovery, Revolution CT, iCT and Aquilion
(Figure D.6).

Figure D.6: Manufacturers information of the mitral cohort


