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Abstract. We consider the notion of mixed multiplicities for multigraded modules
by using Hilbert series, and this is later applied to study the projective degrees of
rational maps. We use a general framework to determine the projective degrees of a
rational map via a computation of the multiplicity of the saturated special fiber ring.
As specific applications, we provide explicit formulas for all the projective degrees of
rational maps determined by perfect ideals of height two or by Gorenstein ideals of
height three.

1. Introduction

Let B be a standard multigraded algebra B =
⊕

ν∈Nr [B]ν over an Artinian local
ring A = [B](0,...,0). Let M be a finitely generated Zr-graded B-module. It is known

that the Hilbert function

ν ∈ Zr 7→ lengthA
(
[M]ν

)
∈ N

of M coincides with a polynomial PM(X) = PM(X1, . . . , Xr) for ν � (0, . . . , 0) ∈ Nr

(see [15, Theorem 4.1]). This polynomial PM(X) is referred to as the Hilbert polynomial
of M, and its total degree is equal to the dimension d++ = dim

(
Supp++(M)

)
of the

relevant support Supp++(M) of M. Let N ⊂ B be the multigraded irrelevant ideal N =⊕
ν1>0,...,νr>0 [B]ν . Then, the relevant support Supp++(M) is given by Supp++(M) =

{p ∈ Supp(M) | p is Nr-graded and p 6⊇ N}. If we write

PM(X) =
∑

n1,...,nr≥0

e(n1, . . . , nr)

(
X1 + n1

n1

)
· · ·
(
Xr + nr
nr

)
,

then 0 ≤ e(n1, . . . , nr) ∈ Z for all n1 + . . . + nr = d++. For n ∈ Nr with |n| =
n1+· · ·+nr = d++, the non-negative integer e(n1, . . . , nr) is called the mixed multiplicity
of M of type n = (n1, . . . , nr) and it is denoted as e(n; M) = e(n1, . . . , nr; M).

The concept of mixed multiplicities provides the right generalization of multiplicities
(or degrees) to a multigraded setting, and its study goes back to seminal work by
van der Waerden [28]. These invariants have been further studied and developed by
Bhattacharya [1], by Katz, Mandal and Verma [20], by Herrmann, Hyry, Ribbe and
Tang [15], and by Trung [27]. For more details, see the survey paper [25] and the
references therein.

Motivated by the notion of multidegree defined by Miller and Sturmfels in [24, §8.5],
in this paper, we develop the theory of mixed multiplicities for multigraded modules by
using Hilbert series. Contrary to the single-graded case, in a multigraded setting the
approaches with Hilbert polynomials or Hilbert series may yield different results. This
comes from the fact that the Hilbert polynomial can only read irreducible components
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which are relevant in the multigraded geometric sense. To be more precise, let d =
dim(M) and denote the Hilbert series of M by

HilbM(t) = HilbM(t1, . . . , tr) =
∑
ν∈Zr

lengthA ([M]ν) tν11 · · · t
νr
r .

In our first main result we provide a different notion of mixed multiplicities (defined
in terms of Hilbert series) and we relate it to the above notion of mixed multiplicities
(defined in terms of Hilbert polynomials). For the moment, note that dim

(
M/H0

N(M)
)

=
r+d++ (see Lemma 3.3). We show that the mixed multiplicities e(n; M) can be expressed
in terms of the new ones applied to the module M/H0

N(M), i.e., after modding out the
torsion with respect to N.

Definition-Theorem A (Theorem 2.2, Lemma 2.3, Definition 2.4, Theorem 3.4).
Let B be a standard multigraded algebra B =

⊕
ν∈Nr [B]ν over an Artinian local

ring. Let M be a finitely generated Zr-graded B-module. Let d = dim(M) and d++ =
dim

(
Supp++(M)

)
.

(I) [A structural result for Hilbert series] For each n = (n1, . . . , nr) ∈ Nr with |n| =
d, there exists a Laurent polynomial Qn(t) = Q(n1,...,nr)(t, . . . , t) ∈ Z[t, t−1] =

Z[t1, . . . , tr, t
−1
1 , . . . , t−1

r ] with Qn(1) = Q(n1,...,nr)(1, . . . , 1) ≥ 0, such that

HilbM(t) =
∑
|n|=d

Qn(t)

(1− t1)n1 · · · (1− tr)nr
,

and the following statements hold:
(a) There is at least one n ∈ Nr with |n| = d such that Qn(1) > 0.
(b) The values of Qn(1) are uniquely determined by the module M.

(II) [Definition] For each n = (n1, . . . , nr) ∈ Zr with ni ≥ −1 and |n| = d − r, we de-
fine the mixed multiplicity of M of type n = (n1, . . . , nr) in terms of

Hilbert series as

en (M) = e(n1,...,nr) (M) = Qn+1(1),

where Qn+1(t) = Q(n1+1,...,nr+1)(t, . . . , t) ∈ Z[t, t−1] are Laurent polynomials
obtained in part (I).

(III) [Relation between the two notions of mixed multiplicities] For each n ∈ Nr with
|n| = d++, we have the following equality

e(n; M) = en

(
M/H0

N(M)
)
.

One advantage of our approach with Hilbert series is that we can read certain mixed
multiplicities which cannot be read using the Hilbert polynomial approach. For instance,
if M has a minimal prime of maximal dimension containing the irrelevant ideal N, then
the contribution of that minimal prime is summed up in some en(M) but not in any
e(n; M).

After defining the new mixed multiplicities, we prove several general results about
these invariants (see Lemma 2.7, Theorem 2.8 and Theorem 3.10). We also provide a
different proof for the existence of the Hilbert polynomial in a multigraded setting (see
Theorem 3.4). Similarly to [27], we use filter-regular elements to substitute the notion
of general elements.
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In the second half of the paper, we consider the multidegrees of multiprojective
schemes as mixed multiplicities (see Definition 4.3). In particular, our main focus will
be on the projective degrees of rational maps. The projective degrees of rational maps
are fundamental and classical invariants in Algebraic Geometry. For more details on
the subject, the reader is referred to [14, Example 19.4] and [9, §7.1.3]. Recently, the
projective degrees of rational maps have also been considered in the area of Algebraic
Statistics in [23, §5].

Next, we describe our results regarding projective degrees. Let k be a field and R be
the polynomial ring R = k[x0, . . . , xd]. Let n ≥ d and

(1) F : Pdk = Proj(R) 99K Pnk

be a rational map defined by n+ 1 homogeneous elements {f0, . . . , fn} ⊂ R of the same
degree δ > 0 and I ⊂ R be the homogeneous ideal I = (f0, . . . , fn). The projective
degrees of F are defined as the multidegrees of the graph of F (see Definition 5.2), and
they are denoted as di(F) for 0 ≤ i ≤ d. In classical geometrical terms, di(F) equals the
number of points in the intersection of the graph Γ ⊂ Pdk ×k Pnk of F with the product

H ×k K ⊂ Pdk ×k Pnk , where H ⊂ Pdk and K ⊂ Pnk are general subspaces of dimension
d− i and n− d+ i, respectively.

Our main tool for the computation of the projective degrees di(F) will be to exploit
the saturated special fiber ring [5] (see Theorem 5.4).

As specific applications, we compute all the projective degrees for rational maps
determined by perfect ideals of height two or by Gorenstein ideals of height three. In
both cases we assume the condition Gd+1, that is, µ(Ip) ≤ dim(Rp) for all p ∈ V (I) ⊂
Spec(R) such that ht(p) < d+1. However, it should be noted that the condition Gd+1 is
always satisfied by generic perfect ideals of height two and by generic Gorenstein ideals
of height three.

In the conditions expressed in the theorem below, we use the fact that the minimal
resolution of any perfect ideal of height two is described by the Hilbert-Burch theorem
(see, e.g., [10, Theorem 20.15]).

Theorem B (Theorem 5.7). With the notations above, assume the following conditions:

(i) I is perfect of height two with Hilbert-Burch resolution of the form

0→
n⊕
i=1

R(−δ − µi)
ϕ−→ R(−δ)n+1 → I → 0.

(ii) I satisfies the condition Gd+1.

Then, the projective degrees of the rational map F : Pdk 99K Pnk in (1) are given by

di(F) = ed−i(µ1, µ2, . . . , µn)

where ed−i(µ1, µ2, . . . , µn) denotes the elementary symmetric polynomial

ed−i(µ1, µ2, . . . , µn) =
∑

1≤j1<j2<···<jd−i≤n
µj1µj2 · · ·µjd−i

.

In the theorem below, we use the fact that the minimal resolution of any Gorenstein
ideal of height three is described by the Buchsbaum-Eisenbud structure theorem [4].

Theorem C (Theorem 5.8). With the notations above, assume the following conditions:

(i) I is a Gorenstein ideal of height three.
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(ii) Every non-zero entry of an alternating minimal presentation matrix of I has degree
D ≥ 1.

(iii) I satisfies the condition Gd+1.

Then, the projective degrees of the rational map F : Pdk 99K Pnk in (1) are given by

di(F) =

{
Dd−i∑bn−d+i

2
c

k=0

(
n−1−2k
d−i−1

)
if 0 ≤ i ≤ d− 3

δd−i if d− 2 ≤ i ≤ d.

The basic outline of this paper is as follows. In Section 2, we introduce the notion of
mixed multiplicities in terms of Hilbert series. In Section 3, we relate this notion with
the usual mixed multiplicities in terms of Hilbert polynomials. In Section 4, we consider
the multidegrees of multiprojective schemes and we prove van der Waerden’s original
result [28] in a multigraded setting. In Section 5, we concentrate on the projective
degrees of rational maps and we obtain the formulas of Theorem B and Theorem C.

2. Mixed multiplicities of multigraded modules via Hilbert series

During this section, we study and develop a definition of mixed multiplicities that
depends on Hilbert series. The results in this section can be seen as a natural continua-
tion of [24, §8.5]; in particular, our approach does not depend on the existence of finite
free resolutions. We begin by fixing some notation and recalling some basic facts.

We use a multi-index notation. For any ν ∈ Zr, we define its weight as |ν| =
ν1 + · · · + νr. If µ, ν ∈ Zr are two multi-indexes, we write µ ≥ ν whenever µi ≥ νi,
and µ > ν whenever µi > νi. For 1 ≤ i ≤ r, let ei be the i-th elementary vector
ei = (0, . . . , 1, . . . , 0). Let 0 ∈ Nr and 1 ∈ Nr be the vectors 0 = (0, . . . , 0) and
1 = (1, . . . , 1) of r copies of 0 and 1, respectively.

The following setup is fixed throughout this section.

Setup 2.1. Let (A, n, k) be an Artinian local ring with maximal ideal n and residue
field k = A/n. Let B be a finitely generated standard Nr-graded algebra over A, that
is, [B]0 = A and B is finitely generated over A by elements of degree ei with 1 ≤ i ≤ r.

For any Zr-graded B-module M, its graded part of degree ν ∈ Zr is denoted by [M]ν .
Unless specified otherwise, a graded B-module M will always means an Zr-graded B-
module, that is, M =

⊕
ν∈Zr [M]ν . If ν ∈ Zr and x ∈ [B]ν , we say that x is homogeneous

of degree ν and its total degree is |ν|. Let M ⊂ B be the graded ideal M :=
⊕

ν 6=0 [B]ν ,

and for 1 ≤ i ≤ r let Mi ⊂ B be the graded ideal Mi :=
⊕

ν≥ei [B]ν . In this multigraded
setting the irrelevant ideal is defined as the graded ideal

N := M1 ∩ · · · ∩Mr =
⊕
ν>0

[B]ν .

Similarly to the single-graded case, we can define a multiprojective scheme from B.
The multiprojective scheme MultiProj(B) is given by the set of all graded prime ideals
in B which do not contain N, that is,

MultiProj(B) :=
{
p ∈ Spec(B) | p is graded and p 6⊇ N

}
,

and its scheme structure is obtained by using multi-homogeneous localizations (see,
e.g., [18, §1]). The closed subsets of MultiProj(B) are given by V++(J ) := V (J ) ∩
MultiProj(B) = {p ∈ MultiProj(B) | p ⊇ J } for J ⊂ B a graded ideal. For a finitely
generated graded B-module M, set Supp++ (M) to be the closed subset Supp++ (M) :=
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Supp(M) ∩ MultiProj(B) = {p ∈ MultiProj(B) | Mp 6= 0} = V++(Ann(M)). Given a
graded B-module M, we denote as Mgr the single-graded module given as

Mgr :=
⊕
n∈Z

⊕
ν∈Zr

|ν|=n

[M]ν

 .

We have that Mgr is naturally a graded module over the single-graded A-algebra Bgr.
For any n ∈ Zr, the terms tn and (1− t)n represent the elements tn1

1 · · · tnr
r and

(1−t1)n1 · · · (1−tr)nr , respectively. Note that any graded part [M]ν of a finitely generated
graded B-module M is a finitely generated module over the Artinian local ring A, and
so a module of finite length. The length of a finitely generated A-module E is denoted
as lengthA(E). The Hilbert series of a finitely generated graded B-module M is denoted
as HilbM(t) and given by

HilbM(t) :=
∑
ν∈Zr

lengthA
(

[M]ν
)
tν .

For any ν ∈ Zr, M(ν) denotes the shifted graded B-module given as [M(ν)]µ = [M]ν+µ.

Also, we have that HilbM(−ν)(t) = tνHilbM(t).
The following theorem gives a structural result for the Hilbert series of a finitely

generated graded B-module.

Theorem 2.2. Assume Setup 2.1. Let M be a finitely generated graded B-module. Let
d = dim(M). Then, for each n ∈ Nr with |n| = d, there exists a Laurent polynomial
Qn(t) ∈ Z[t, t−1] with Qn(1) ≥ 0, such that

HilbM(t) =
∑
|n|=d

Qn(t)

(1− t)n
,

and the following statements hold:

(i) There is at least one n ∈ Nr with |n| = d such that Qn(1) > 0.
(ii) If Qn(t) 6= 0 and Qn(1) = 0, then Qn(t) is divisible by (1− ti) for some 1 ≤ i ≤ r

such that ni 6= 0.

Proof. We proceed by induction on d.
For the statement in part (ii), we will actually prove that, ifQn(t) 6= 0 andQn(1) = 0,

then n ≥ e1 and (1− t1) divides Qn(t).
There exists a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk = M

of M such that Ml/Ml−1
∼= (B/pl) (−νl) where pl ⊂ B is a graded prime ideal with

dimension dim(B/pl) ≤ d and νl ∈ Zr. The short exact sequences

0→ Ml−1 → Ml → (B/pl) (−νl)→ 0

and the clear additivity of Hilbert series yield that

HilbM(t) =

k∑
l=1

tνlHilbB/pl(t).

Let dl = dim (B/pl) and suppose for the moment that we have shown that

HilbB/pl(t) =
∑
|n|=dl

Q
(l)
n (t)

(1− t)n
,
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where Q
(l)
n (t) ∈ Z[t, t−1] satisfy the same conditions of parts (i) and (ii) (with i = 1).

By an abuse of notation, for any m 6≥ 0 we set Q
(l)
m (t) = 0. Then, we would get the

equation

HilbM(t) =

k∑
l=1

tνl
(1− t1)d−dl

(1− t1)d−dl
HilbB/pl(t)

=
∑
|n|=d

∑k
l=1 tνl(1− t1)d−dlQ

(l)
n−(d−dl)e1(t)

(1− t)n
.

Therefore, it is enough to consider the case M = B/p where p ⊂ B is a graded
prime ideal. Suppose that d = dim (B/p) = 0. Since A is an Artinian local ring, it
follows that p is equal to the unique maximal graded ideal n+M. Hence, it follows that
HilbB/p(t) = 1, and the result is clear.

Suppose that d = dim (B/p) > 0. Then, we may choose a homogeneous element
0 6= x ∈ B/p of degree deg(x) = ei where 1 ≤ i ≤ r. From the short exact sequence

0→ (B/p) (−ei)
x−→ B/p→ B/(x, p)→ 0

we obtain the equation

HilbB/(x,p)(t) = HilbB/p(t)− tiHilbB/p(t) = (1− ti)HilbB/p(t).

Since dim (B/(x, p)) = d− 1, from the induction hypothesis we may assume that

HilbB/(x,p)(t) =
∑
|n|=d−1

Qn(t)

(1− t1)n1 · · · (1− tr)nr
,

where Qn(t) ∈ Z[t, t−1] satisfy the same conditions of parts (i) and (ii) (with i = 1).
Thus, the equation HilbB/p(t) = 1

1−ti HilbB/(x,p)(t) implies that

HilbB/p(t) =
∑
|n|=d−1

Qn(t)

(1− t1)n1 · · · (1− ti)ni+1 · · · (1− tr)nr
,

and so the statement of the theorem is obtained. �

Although the decomposition of the Hilbert series HilbM(t) given in Theorem 2.2 is
not necessarily unique, we can easily see from the simple lemma below that the values
of Qn(1) are uniquely determined by the module M.

Lemma 2.3. Suppose that ∑
|n|=d

Qn(t)

(1− t)n
=
∑
|n|=d

Q′n(t)

(1− t)n

where n ∈ Nr and Qn(t), Q′n(t) ∈ Z[t, t−1]. Then, we have that Qn(1) = Q′n(1) for all
n ∈ Nr with |n| = d.

Proof. Take m ∈ Nr such that Pn(t) = tmQn(t) ∈ Z[t] and P ′n(t) = tmQ′n(t) ∈ Z[t],
i.e., Pn(t) and P ′n(t) become polynomials in t. Multiplying both sides of the above
equation by (1− t)dtm (where d = (d, d, . . . , d) ∈ Nr) gives us that∑

|n|=d

Pn(t)(1− t)d−n =
∑
|n|=d

P ′n(t)(1− t)d−n.
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Then, the substitution t 7→ 1− t yields∑
|n|=d

Pn(1− t)td−n =
∑
|n|=d

P ′n(1− t)td−n.

Since both sums above are restricted to the multi-indexes n ∈ Nr with |n| = d, by
comparing the terms of the smallest possible degree |d− n| = (r − 1)d, we obtain that
Qn(1) = Pn(1) = P ′n(1) = Q′n(1), and so the result follows. �

We are now ready to define the following notion of mixed multiplicities in a multi-
graded setting.

Definition 2.4. Assume Setup 2.1. Let M be a finitely generated graded B-module.
Let d = dim(M). From Theorem 2.2 choose any decomposition

HilbM(t) =
∑
n∈Nr

|n|=d

Qn(t)

(1− t)n
.

For any n = (n1, . . . , nr) ∈ Zr with n ≥ −1 = (−1, . . . ,−1) ∈ Zr and |n + 1| ≥ d, the
mixed multiplicity of M of type n defined in terms of Hilbert series is given by

en (M) :=

{
Qn+1(1) if |n + 1| = d

0 if |n + 1| > d.

From Lemma 2.3, the mixed multiplicities en (M) are uniquely determined by M.

Remark 2.5. In the above definition we have chosen to enumerate the mixed multiplic-
ities for multi-indexes with n ≥ −1. We made this choice so that we can relate en(M)
with the usual definition in terms of Hilbert polynomials for n ≥ 0 (see Theorem 3.4
below).

For instance, let K be a field and S = K [x1, . . . , xn, y1, . . . , ym] be a bigraded polyno-
mial ring with deg(xi) = (1, 0) and deg(yi) = (0, 1). Then, the Hilbert polynomial and
the Hilbert series of S are given by

PS(ν1, ν2) =

(
ν1 + n− 1

n− 1

)(
ν2 +m− 1

m− 1

)
and

HilbS(t1, t2) =
1

(1− t1)n(1− t2)m
,

respectively. Therefore, from both definitions, we obtain that en−1,m−1(S) = e(n −
1,m− 1;S) = 1 and that ei,j(S) = e(i, j;S) = 0 for other i, j ≥ 0, i+ j = n+m− 2.

Remark 2.6. In Definition 2.4 we allow the flexibility of having |n + 1| ≥ d so that
the function en(•) becomes additive in the full subcategory of finitely generated graded
B-modules with dimension at most |n + 1| (for the same setting in the single-graded
case, see, e.g., [3, Corllary 4.7.7]).

Next we derive some basic properties of the mixed multiplicities en(•).

Lemma 2.7. Let M be a finitely generated graded B-module with dim(B) = d. Let
n ∈ Zr such that n ≥ −1 and |n + 1| ≥ d. Then, the following statements hold:

(i) For any ν ∈ Z, we have that en (M(−ν)) = en(M).
(ii) (additivity) Let 0 → M′ → M → M′′ → 0 be a short exact sequence of finitely

generated graded B-modules. Then

en(M) = en(M′) + en(M′′).
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(iii) (associativity formula)

en(M) =
∑

p∈Supp(M)
dim(B/p)=d

lengthBp

(
Mp

)
en (B/p) .

Proof. (i) It follows from the fact that HilbM(−ν)(t) = tνHilbM(t).
(ii) Since

HilbM(t) =
(1− t1)d−dim(M′)

(1− t1)d−dim(M′)
HilbM′(t) +

(1− t1)d−dim(M′′)

(1− t1)d−dim(M′′)
HilbM′′(t),

the result is obtained from Theorem 2.2 and Lemma 2.3.
(iii) Take a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

of M such that Ml/Ml−1
∼= (B/pl) (−νl) where pl ⊂ B is a graded prime ideal with

dimension dim(B/pl) ≤ d and νl ∈ Zr. From parts (i) and (ii), it follows that en(M) =∑n
l=1 en (B/pl). The inequality dim (B/pl) ≤ d − 1 implies that en (B/pl) = 0. On

the other hand, for any p ∈ Supp(M) with dim (B/p) = d, the cardinality of the set
{l | p = pl} ⊆ {1, 2, . . . , n} is equal to lengthBp

(
Mp

)
. So, the result follows. �

The following theorem is a generalization of the results of [15, Theorem 4.3] and
[20, Theorem 4.1]. Additionally, it characterizes when multiplicities of negative type
are positive, that is, when en(M) > 0 for n 6≥ 0 and some finitely generated graded
B-module M.

Theorem 2.8. Assume Setup 2.1. Let M be a finitely generated graded B-module with
dim(M) = d. Then, the following statements hold:

(i) We have the equality

e
(
Mgr
)

=
∑
n≥−1
|n+1|=d

en (M) .

(ii) {p ∈ Supp (M) | dim(B/p) = d} ∩ V (N) 6= ∅ if and only if en(M) > 0 for some
n 6≥ 0.

Proof. (i) The Hilbert series HilbMgr(t) of the single-graded module Mgr can be (uniquely)

written as HilbMgr(t) = Q(t)
(1−t)d for some Q(t) ∈ Z[t, t−1] (see, e.g., [3, §4.1]), and can be

obtained from HilbM(t) by making the substitutions ti 7→ t for 1 ≤ i ≤ r. Hence, taking
a decomposition of HilbM(t) from Theorem 2.2 gives the equation

Q(t)

(1− t)d
=

∑
n≥−1
|n+1|=d

Qn+1(t, . . . , t)

(1− t)d
.

Therefore, the equality

e
(
Mgr
)

=
∑
n≥−1
|n+1|=d

en (M)

follows from the fact that e (Mgr) = Q(1) and en (M) = Qn+1(1).
(ii) Suppose that em(M) > 0 for some −1 ≤m ∈ Zr such that |m + 1| = d and that

mi = −1 for some 1 ≤ i ≤ r; and fix such m and i. From Lemma 2.7(iii), there exists a
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prime p ∈ Supp(M) with dim (B/p) = d such that em (B/p) > 0. By using Theorem 2.2
take a decomposition

HilbB/p(t) =
∑
n≥−1
|n+1|=d

Qn+1(t)

(1− t)n+1
.

Since em (B/p) > 0, it follows that Qm+1(t) 6= 0. Let t′ = (t1, . . . , ti−1, ti+1, . . . , tr)

and write Qm+1(t) =
∑c

j=0 t
j
iGj(t

′) where Gj(t
′) ∈ Z[t′].

For any F (t) =
∑

ν≥0 fνt
ν ∈ Z[[t]] power series we use the notation〈
F (t)

〉i
c

:=
∑
ν≥0
νi≤c

fνt
ν ∈ Z[[t]].

Clearly, the function
〈
•
〉i
c

: Z[[t]]→ Z[[t]] is additive.
From the following isomorphism

B/
(
p,Mc+1

i

) ∼= ⊕
ν≥0
νi≤c

[B/p]ν ,

we then obtain that

HilbB/(p,Mc+1
i )(t) =

〈
HilbB/p(t)

〉i
c

=
∑
n≥−1
|n+1|=d

〈 Qn+1(t)

(1− t)n+1

〉i
c

.

Since
〈
Qm+1(t)

(1−t)m+1

〉i
c

= Qm+1(t)
(1−t)m+1 , Lemma 2.3 and Theorem 2.2 imply that

dim
(
B/
(
p,Mc+1

i

))
= dim (B/p) = d.

But then we get the containment p ⊇Mi ⊇ N because p is a prime ideal. Therefore, it
follows that {p ∈ Supp (M) | dim(B/p) = d} ∩ V (N) 6= ∅.

For the reverse implication, assume that

Z = {p ∈ Supp (M) | dim(B/p) = d} ∩ V (N) 6= ∅,
and choose p ∈ Z. Since p ⊇ N, [B/p]ν = 0 for ν > 0 and so it follows that a
decomposition from Theorem 2.2 can be written as

HilbB/p(t) =
∑
n∈Σ

Qn+1(t)

(1− t)n+1

where Σ = {n ∈ Zr | n ≥ −1, |n + 1| = d and ni = −1 for some 1 ≤ i ≤ r}. Therefore,
Lemma 2.7(iii) implies that en(M) > 0 for some −1 ≤ n ∈ Zr such that |n + 1| = d and
that ni = −1 for some 1 ≤ i ≤ r.

So, the result of the theorem follows. �

3. Relation with mixed multiplicities via Hilbert polynomials

In this section we relate the mixed multiplicities introduced in Definition 2.4 with
the usual mixed multiplicities defined in terms of Hilbert polynomials. Here we also
study how mixed multiplicities behave after taking quotients by filter-regular sequences.
Throughout this section we continue using all the notations and conventions of the
previous section.

The following theorem shows that in a multigraded setting we can define a multi-
graded Hilbert polynomial, which provides the usual approach for defining mixed mul-
tiplicities. Below in Theorem 3.4 we obtain a different proof of this result.
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Theorem 3.1 ([15, Theorem 4.1]). Assume Setup 2.1. Let M be a finitely generated
graded B-module. Then, there exists a polynomial PM(X) = PM(X1, . . . , Xr) ∈ Q[X] =
Q[X1, . . . , Xr] which can be written as

PM(X) =
∑

n1,...,nr≥0

e(n1, . . . , nr)

(
X1 + n1

n1

)
· · ·
(
Xr + nr
nr

)
,

where e(n1, . . . , nr) ∈ Z, and that satisfies the following conditions:

(i) The total degree of PM(X) is equal to dim
(
Supp++(M)

)
.

(ii) e(n1, . . . , nr) ≥ 0 for any n1 + · · ·+ nr = dim
(
Supp++(M)

)
.

(iii) PM(ν) = lengthA ([M]ν) for all ν � 0.

Motivated by the previous theorem, we have the following definition which goes back
to the work of van der Waerden ([28]).

Definition 3.2. Assume Setup 2.1. Let M be a finitely generated graded B-module.
Let d++ = dim

(
Supp++(M)

)
. Let PM(X) = PM(X1, . . . , Xr) be the polynomial

PM(X) =
∑

n1,...,nr≥0

e(n1, . . . , nr)

(
X1 + n1

n1

)
· · ·
(
Xr + nr
nr

)
obtained according to Theorem 3.1. For any n = (n1, . . . , nr) ∈ Nr with |n| ≥ d++, the
mixed multiplicity of M of type n defined in terms of Hilbert polynomials is given by

e (n; M) :=

{
e(n1, . . . , nr) if |n| = d++

0 if |n| > d++.

The next simple lemma will be needed to relate Definition 2.4 and Definition 3.2.

Lemma 3.3. Let M be a finitely generated graded B-module. Then, the following state-
ments hold:

(i) [M]ν =
[
M/H0

N(M)
]
ν

for all ν � 0.

(ii) Ass
(
M/H0

N(M)
)

= Ass(M) \ V (N).

(iii) dim
(
Supp++(M)

)
= dim

(
M/H0

N(M)
)
− r.

Proof. (i) Follows from the fact that Nk ·H0
N(M) = 0 for some k ≥ 0.

(ii) It is well-known (see, e.g., [10, Proposition 3.13]).
(iii) By using part (ii) and Supp++ (M) = Supp++

(
M/H0

N(M)
)
, we get

dim
(
Supp++ (M)

)
= sup

{
dim

(
MultiProj (B/p)

)
| p ∈ Supp++(M)

}
and

dim
(
M/H0

N(M)
)

= sup
{

dim (B/p) | p ∈ Supp++(M)
}
.

Finally, for any p 6⊇ N it is known that dim (MultiProj(B/p)) = dim(B/p) − r (see,
e.g., [15, Lemma 1.1], [18, Lemma 1.2]). If Supp++(M) = ∅, then by convention we have

dim
(
Supp++(M)

)
= −∞ and dim

(
M/H0

N(M)
)

= −∞. �

The following theorem shows that the mixed multiplicities in terms of Hilbert poly-
nomials can be expressed as the ones in terms of Hilbert series after modding out the
torsion with respect to N. Additionally, we provide a different proof of Theorem 3.1.

Theorem 3.4. Assume Setup 2.1. Let M be a finitely generated graded B-module. Let
d++ = dim

(
Supp++(M)

)
. Then, the following statements hold:
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(i) For ν � 0, the function lengthA ([M]ν) becomes a polynomial in Q[X] of total
degree d++ which can be written in the form

∑
|n|=d++

en

(
M/H0

N(M)
)

n!
Xn + (terms of total degree < d++) .

(ii) For each n ∈ Nr with |n| ≥ d++ we have the equality

e(n; M) = en

(
M/H0

N(M)
)
.

Proof. (i) For simplicity of notation set M = M/H0
N(M). Note that Lemma 3.3(iii) yields

d++ = dim(M)− r. From Theorem 2.2 take a decomposition

HilbM(t) =
∑

|n|=d++
n≥−1

Qn+1(t)

(1− t)n+1
.

None of the hypotheses or conclusions change if we consider instead the shifted module
M(−ν) for any ν ≥ 0; therefore, without any loss of generality we may assume that
Qn+1(t) ∈ Z[t] are polynomials in t. Let

F (t) = HilbM(t)−
∑

|n|=d++
n≥0

Qn+1(1)

(1− t)n+1
=

∑
|n|=d++
n≥−1

Pn+1(t)

(1− t)n+1

where

Pn+1(t) =

{
Qn+1(t)−Qn+1(1) if n ≥ 0

Qn+1(t) if n 6≥ 0.

From Lemma 3.3(ii) and Theorem 2.8(ii) we obtain that en(M) > 0 only when n ≥ 0.
Then, Theorem 2.2(ii) implies that, for any n 6≥ 0, Pn+1(t) = Qn+1(t) and (1− t)n+1

are both divisible by some (1 − ti). For n ≥ 0, since Pn+1(1) = 0, we can write
Pn+1(t) =

∑
|α|>0 p

α
n+1(1− t)α where pαn+1 ∈ Z. By summing up, we conclude that

F (t) can be written in the following form

F (t) =
∑

|n|<d++
n≥−1

Gn+1(t)

(1− t)n+1

where Gn+1(t) ∈ Z[t], i.e., F (t) can be written as the sum of rational functions with
quotients of total order strictly less than r + d++.

Expanding these series we get that

HilbM(t) =
∑
ν

 ∑
|n|=d++
n≥0

Qn+1(1)

(
ν + n

n

) tν +
∑
ν

 ∑
|n|<d++
n≥−1

Gn+1(t)

(
ν + n

n

) tν

where we use the notation(
ν + n

n

)
=

(
ν1 + n1

n1

)
· · ·
(
νr + nr
nr

)
.
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By using Lemma 3.3(i) and expanding the polynomials Gn+1(t), we obtain that for
ν � 0 the function lengthA([M]ν) becomes a polynomial in Q[X] of the form∑

|n|=d++

Qn+1(1)

n!
Xn + (terms of total degree < d++) .

Therefore, we are done since en(M) = Qn+1(1).
(ii) It follows from part (i). �

To further study mixed multiplicities we use the concept of filter-regular sequence,
also known as almost regular sequence (see, e.g., [26, 27], [16, §4.3.1]).

Definition 3.5. Let 1 ≤ i ≤ r and M be a finitely generated graded B-module. A
homogeneous element is said to be filter-regular on M if z 6∈ p for all associated primes
p ∈ Ass(M) of M such that p 6⊇ N. A sequence of homogeneous elements z1, . . . , zm ∈ B
is said to be filter-regular on M if zj is a filter-regular element on M/ (z1, . . . , zj−1) M for
all 1 ≤ j ≤ m.

Lemma 3.6. Let 1 ≤ i ≤ r, z ∈ [B]ei and M be a finitely generated graded B-module.
Then, the following statements are equivalent:

(i)
[

(0 :M z)
]
ν

= 0 for ν ∈ Zr with ν � 0.

(ii) Nk · (0 :M z) = 0 for some k > 0.
(iii) Supp ((0 :M z)) ⊆ V (N).
(iv) z is filter-regular on M.

Proof. The equivalence (i) ⇔ (ii) is clear. For the equivalence (ii) ⇔ (iii), note that

Supp((0 :M z)) = V (Ann((0 :M z))) ⊆ V (N) is equivalent to N ⊆
√

Ann ((0 :M z)).
(iii) ⇒ (iv) Suppose that Supp ((0 :M z)) ⊆ V (N) and let p ∈ Ass(M) such that

p 6⊇ N. Then, there is an injection R/p ↪→ M, and if z ∈ p then we would get the
contradiction 0 6= Rp/pRp =

(
0 :Rp/pRp

zRp

)
↪→

(
0 :Mp zRp

)
= (0 :M z)p. Therefore

z 6∈ p.
(iv)⇒ (iii) Suppose z is filter-regular on M. Since the minimal primes of Ass ((0 :M z))

and Supp ((0 :M z)) coincide, it is enough to show that Ass ((0 :M z)) ⊆ V (N). Take
p ∈ Ass(M) such that p 6⊇ N, then we obtain (0 :M z)p =

(
0 :Mp zRp

)
=
(
0 :Mp Rp

)
= 0

because z 6∈ p. Therefore Ass ((0 :M z)) ⊆ V (N). �

The following lemma shows that under the assumption that the residue field k = A/n
is infinite we can always find filter-regular elements.

Lemma 3.7. Let 1 ≤ i ≤ r, M be a finitely generated graded B-module and suppose that
the residue field k = A/n of A is infinite. Let V be the finite dimensional k-vector space

V = [B]ei⊗Ak, choose a basis for V and consider the Zariski topology on V ∼= kdimk(V ).
Denote by π the canonical map π : [B]ei → V = [B]ei ⊗A k. Then

U = {w ∈ V | w = π(z) for some z ∈ [B]ei filter-regular on M}

is a dense open subset of V .

Proof. Let Ass(M) \ V (N) = {p1, . . . , pm}. Since pj 6⊇ Mi, then Nakayama’s lemma
implies that Vj = π

(
pj ∩ [B]ei

)
is a proper linear subspace of V . Since n is nilpotent,

pj ⊃ n and in particular pj ⊃ n[B]ei . Then, for any z ∈ [B]ei we have that z is filter-
regular on M if and only if π(z) 6∈ V1 ∪ · · · ∪ Vm. Therefore, using that k is an infinite
field, the result follows and we obtain U = V \ (V1 ∪ · · · ∪ Vm). �
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Remark 3.8. As customary, the assumption on the infiniteness of k = A/n can be
achieved by making the faithfully flat base change B⊗A B where B = A[x]nA[x] and x

is an indeterminate. Note that the residue field of B is k(x) and that lengthA ([M]ν) =
lengthB ([M⊗A B]ν) for all ν ∈ Zr and M a finitely generated graded B-module.

The next proposition shows that mixed multiplicities behave nicely when taking quo-
tient by a filter-regular element.

Lemma 3.9. Let 1 ≤ i ≤ r, M be a finitely generated graded B-module with d++ =
dim

(
Supp++(M)

)
and z ∈ [B]ei be a filter-regular element on M. Then, we obtain that

dim
(
Supp++(M/zM)

)
≤ d++ − 1 and

e(n; M) = e (n− ei; M/zM)

for all ei ≤ n ∈ Nr such that |n| ≥ d++.

Proof. The four-term exact sequence

0→ (0 :M z) (−ei)→ M(−ei)
z−→ M→ M/zM→ 0,

Theorem 3.1 (or Theorem 3.4) and Lemma 3.6 give the equation

PM/zM(X) = PM(X)− PM(X− ei).

It is easy to check that PM(X)− PM(X− ei) is a polynomial of total degree smaller or

equal than d++ − 1 and that its coefficient of degree n− ei is equal to e(n;M)
(n−ei)! . So, the

result follows from Theorem 3.1 (or Theorem 3.4). �

Finally, we now extend [27, Theorem 2.4] to a multigraded setting. It reduces the
computation of mixed multiplicities to the computation of a single-graded module.

Theorem 3.10. Assume Setup 2.1. Let M be a finitely generated graded B-module.
Let d++ = dim

(
Supp++(M)

)
and n ∈ Nr with |n| = d++. For 1 ≤ i ≤ r, let zi =

zi,1 . . . , zi,ni ∈ [B]ei . Suppose that z1, . . . , zr is a filter-regular sequence on M. Set E to
be the single-graded module

E =

 M/(z1, . . . , zr)M

H0
N

(
M/(z1, . . . , zr)M

)
gr

.

Then, the following equation holds

e(n; M) =

{
e(E) if dim(E) = r

0 otherwise.

Proof. Applying Lemma 3.9 successively it follows that e(n; M) = e(0; M/(z1, . . . , zr)M).
Therefore, from Theorem 3.4(ii) and Theorem 2.8 we obtain the result. �

4. Multidegrees of multiprojective schemes

In this section, we study the degrees of multiprojective schemes via the use of mixed
multiplicities. The main objective here is to obtain a direct generalization of van der
Waerden’s result [28] in a multigraded setting. The results exposed in this short section
are probably well-known and part of the folklore, but, for the sake of completeness,
we include a very short account that depends directly on the previous sections. Per-
haps worthy of mentioning, our approach here is completely based upon the use of
filter-regular elements (as introduced in Definition 3.5). The following setup is used
throughout this section.
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Setup 4.1. Let k be a field, A be the standard multigraded polynomial ring

A = k[x1,0, . . . , x1,d1 ]⊗k · · · ⊗k k[xr,0, . . . , xr,dr ]

and P be the corresponding multiprojective space P = MultiProj(A) = Pd1k ×k · · ·×k Pdrk .

First, we recall the notion of degree for zero-dimensional schemes over k (see, e.g.,
[11, §II.3.2]).

Definition 4.2. Let Y be a k-scheme of finite type with dim(Y) = 0. The degree of Y
relative to k is given by

degk (Y) :=
∑
y∈Y

[k(y) : k] length (OY,y) ,

where k(y) denotes the residue field of the local ring OY,y.

Next we define the multidegrees of closed subschemes of P in terms of mixed multi-
plicities.

Definition 4.3. Let X ⊂ P be a closed subscheme of P defined as X = MultiProj (A/J )
where J ⊂ A is a graded ideal. Let n ∈ Nr with |n| ≥ dim(X). The multidegree of X of
type n with respect to P is given by

degnP (X) := e

(
n;

A

J

)
.

Note that, equivalently, the multidegrees of a closed subscheme of P can be defined
easily in terms of Chow rings.

Remark 4.4. The Chow ring of P = Pd1k ×k · · · ×k Pdrk is given by

A∗(P) =
Z[ξ1, . . . , ξr](

ξd1+1
1 , . . . , ξdr+1

r

)
where ξi represents the class of the inverse image of a hyperplane of Pdik under the

canonical projection πi : P → Pdik . If X ⊂ P is a closed subscheme of P of dimension
d = dim(X), then the class of the cycle associated to X coincides with

[X] =
∑

0≤ni≤di
|n|=d

degnP (X) ξd1−n1
1 · · · ξdr−nr

r ∈ A∗(P).

Definition 4.5. For a closed subscheme X = MultiProj (A/J ) ⊂ P, we say that H ⊂ P
is a filter-regular hyperplane on X if H is given by H = V++(h) where h ∈ [A]ei , for some
1 ≤ i ≤ r, is a filter-regular element on A/J . Similarly, we say that H1, . . . ,Hm ⊂ P is
a filter-regular sequence of hyperplanes on X if Hk is a filter-regular hyperplane on the
closed subscheme X ∩H1 ∩ · · · ∩Hk−1 for all 1 ≤ k ≤ m.

We say that H ⊂ P is a hyperplane in the i-th component of P if H = V++(h) for
some h ∈ [A]ei .

Remark 4.6. (i) A property P is said to be satisfied by a general hyperplane in the
i-th component of P, if there exists a dense open subset U of [A]ei with the Zariski
topology such that every hyperplane in U satisfies the property P .

(ii) If we fix a closed subscheme X ⊂ P and assume that k is an infinite field, then
Lemma 3.7 implies that a sequence H1, . . . ,Hm ⊂ P of general hyperplanes will be a
filter-regular sequence of hyperplanes on X.
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Since it could be of interest, we do not assume that the field k is infinite and we
express the following result in terms of filter-regular hyperplanes.

Theorem 4.7. Assume Setup 4.1. Let X ⊂ P be a closed subscheme of P. Let n ∈ Nr

with |n| = dim(X). For 1 ≤ i ≤ r, let Hi,1, . . . ,Hi,ni ⊂ P be a sequence of hyperplanes
in the i-th component of P. Suppose that

H1,1, . . . ,H1,n1 , . . . , Hi,1, . . . ,Hi,ni , . . . , Hr,1, . . . ,Hr,nr ⊂ P

is a filter-regular sequence of hyperplanes on X. Then, the following equality holds

degnP(X) = degk

X ∩

 ⋂
1≤i≤r

1≤j≤ni

Hi,j


 .

Proof. Suppose that X = MultiProj(B) with B = A/J . Let hi,j ∈ [A]ei such that
Hi,j = V++(hi,j) ⊂ P. The closed subscheme

Y = X ∩

 ⋂
1≤i≤r

1≤j≤ni

Hi,j


can be expressed as Y = MultiProj

(
B/ (h1,1, . . . , hr,nr)B

)
.

By using Lemma 3.9 and Theorem 3.1 (or Theorem 3.4), it follows that either
dim(Y) = 0 or Y = ∅ and that

degnP(X) = e(n;B) = e
(
0;B/ (h1,1, . . . , hr,nr)B

)
.

From Serre’s Vanishing Theorem (see [21, Lemma 4.2] for a multigraded setting) we get
that

e
(
0,B/ (h1,1, . . . , hr,nr)B

)
= dimk

(
[B/ (h1,1, . . . , hr,nr)B]m

)
= dimk

(
H0 (Y,OY(m))

)
for m � 0. Since dim(Y) = 0, we obtain that Y ∼=

∐
y∈Y Spec(OY,y) and that

H0 (Y,OY(m)) = H0 (Y,OY) for any m (see, e.g., [12, Proposition 5.11]). By summing
up, we have

degnP(X) = dimk
(
H0 (Y,OY)

)
=
∑
y∈Y

[k(y) : k] length (OY,y) .

So, the result follows. �

5. Projective degrees of rational maps

During this section, we concentrate on the projective degrees of a rational map. These
numbers are defined as the multidegrees of the graph of a rational map. As applications,
we provide explicit formulas for the projective degrees of rational maps determined by
perfect ideals of height two or by Gorenstein ideals of height three. The following setup
will be used throughout this section.

Setup 5.1. Let k be a field, R be the polynomial ring R = k[x0, . . . , xd] and m ⊂ R be
the graded irrelevant ideal m = (x0, . . . , xd). Let n ≥ d and F : Pdk = Proj(R) 99K Pnk
be a rational map defined by n+ 1 homogeneous elements f = {f0, . . . , fn} ⊂ R of the
same degree δ > 0. Let I ⊂ R be the homogeneous ideal I = (f0, . . . , fn) and P be the
biprojective space P = Pdk ×k Pnk . Let Y ⊆ Pnk and Γ ⊆ P be the closed subschemes
given as the closures of the image and the graph of F , respectively.
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Definition 5.2. For 0 ≤ i ≤ d, the i-th projective degree of F : Pdk 99K Pnk is given by

di(F) := degi,d−iP (Γ)

(see Definition 4.3).

Equivalently, the projective degrees of a rational map can be defined as in Remark 4.4
(see, e.g., [14, Example 19.4] and [9, §7.1.3]).

First, we describe Y and Γ in algebraic terms as follows (for more details, see, e.g.,
[8, §3]). Let A be the bigraded polynomial ring A = R[y0, . . . , yn] where bideg(xi) =
(1, 0) and bideg(yi) = (0, 1). The Rees algebra R(I) =

⊕∞
q=0 I

qtq ⊂ R[t] gives the
bihomogeneous coordinate ring of Γ and can be presented as a quotient of A via the
canonical R-epimorphism

Ψ : A � R(I) ⊂ R[t]

yi 7→ fit.

The standard graded k-algebra S = k[f0, . . . , fn] =
⊕∞

q=0 [Iq]qδ gives the homogeneous

coordinate ring of Y and we have the canonical epimorphism k[y0, . . . , yn]� S, yi 7→ fi.
In geometrical terms, we obtain the closed immersions Γ = BiProj(R(I)) ↪→ P =
BiProj(A) and Y = Proj(S) ↪→ Pnk = Proj(k[y0, . . . , yn]).

Our main tool for the computation of the projective degrees of a rational map will
be the saturated special fiber ring.

Definition 5.3 ([5]). The saturated special fiber ring of I is given by the graded k-
algebra

F̃(I) :=
∞⊕
q=0

[(
Iq : m∞

)]
qδ
.

A very important feature of F̃(I) is that it is a finitely generated S-module and that

its multiplicity is equal to e
(
F̃(I)

)
= deg(F) degPn

k
(Y ) (i.e., the product of the degrees

of the map F and its image Y ; see [5, Theorem 2.4]). Although it is well-known that
d0(F) = deg(F) degPn

k
(Y ), in the following theorem we provide a direct proof of the

equality d0(F) = e
(
F̃(I)

)
.

Theorem 5.4. Assume Setup 5.1. If F : Pdk 99K Pnk is a generically finite map, then

d0(F) = e
(
F̃(I)

)
.

Proof. For notational purposes set b = (y0, . . . , yn), N = m ∩ b and M = m + b. The
Mayer-Vietoris sequence (see, e.g., [2, Theorem 3.2.3]) yields the exact sequence

Hi
M(R(I)) → Hi

m(R(I))⊕Hi
b(R(I)) → Hi

N(R(I)) → Hi+1
M (R(I))

for all i ≥ 0. Since
[
Hi

M(R(I))
]
(0,j)

= 0 and
[
Hi

b(R(I))
]
(0,j)

= 0 for all j � 0, it follows

that

(2)
[
Hi

m(R(I))
]
(0,j)
∼=
[
Hi

N(R(I))
]
(0,j)

for all i ≥ 0 and j � 0.
Let X = ProjR-gr (R(I)) be the projective scheme obtained by considering R(I) as

single-graded with the grading of R (i.e., by setting deg(xi) = 1 and deg(yi) = 0). Then,

F̃(I) is also given by

F̃(I) ∼= H0(X,OX)
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(see [5, Lemma 2.8]).
We have following relations between sheaf and local cohomologies (see, e.g., [18,

Corollary 1.5], [10, Appendix A4.1])

(3) 0→
[
H0

N(R(I))
]
(0,j)
→ [R(I)](0,j) → H0

(
Γ,OΓ(0, j)

)
→
[
H1

N(R(I))
]
(0,j)
→ 0

and

(4) 0→
[
H0

m(R(I))
]
(0,j)
→ [R(I)](0,j) →

[
H0
(
X,OX

)]
j
→
[
H1

m(R(I))
]
(0,j)
→ 0.

Combining (2), (3) and (4) we obtain that

(5)
[
F̃(I)

]
j

∼=
[
H0(X,OX)

]
j
∼= H0

(
Γ,OΓ(0, j)

)
for j � 0.

The bigraded Hilbert polynomial of R(I) is given by

PR(I)(u, v) =
d∑
i=0

di(F)

i!(d− i)!
uivd−i + (terms of total degree < d) .

By using the bigraded version of the Grothendieck-Serre formula (see, e.g., [21, Lemma
4.3],[19, Theorem 2.4]), we obtain that

PR(I)(0, j) =
∑
i≥0

(−1)i dimk

(
Hi (Γ,OΓ(0, j))

)
for all j. Then, (2), [18, Corollary 1.5] and (5) imply that

PR(I)(0, j) = dimk

([
F̃(I)

]
j

)
+
∑
i≥1

(−1)i dimk

([
Hi+1

m (R(I))
]
(0,j)

)
for j � 0. From [8, Corollary 4.5] (also, see [5, Proposition 3.1]), we have that[
Hi

m(R(I))
]
(0,∗) is a finitely generated graded S-module with

dim
([

Hi
m(R(I))

]
(0,∗)

)
≤ d+ 1− i.

Since S ↪→ F̃(I) is an integral extension and F is generically finite, it follows that

dim
(
F̃(I)

)
= dim(S) = d + 1. Therefore, for j � 0, dimk

([
F̃(I)

]
j

)
becomes a

polynomial of degree d whose leading coefficient coincides with the leading coefficient
of PR(I)(0, v). This implies that

d0(F) = e
(
F̃(I)

)
,

and so we are done. �

We recall a condition that will be assumed in the next subsection. We say that I
satisfies the condition Gd+1 when

µ(Ip) ≤ dim(Rp) for all p ∈ Spec(R) such that ht(p) < d+ 1.

Remark 5.5. In terms of Fitting ideals, I satisfies the condition Gd+1 if and only if
ht(Fitti(I)) > i for all 1 ≤ i < d+ 1.

Proof. It follows from [10, Proposition 20.6]. �

The proposition below contains some reductions to be used later.
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Proposition 5.6. Assume Setup 5.1 and suppose that k is an infinite field. There exist
elements h1, . . . , hd ∈ [R]1 such that, if we set Si = R/(h1, . . . , hi)R and Ji = ISi for
1 ≤ i ≤ d, then the following statements hold:

(i) di(F) = e
(
0, d− i;RSi(Ji)

)
.

(ii) If ht(I) = c, then di(F) = δd−i for all d− c+ 1 ≤ i ≤ d.
(iii) If R/I is Cohen-Macaulay with minimal graded free resolution

F• : 0→ Fc → · · · → F1 → F0 → R/I → 0,

then, for all 1 ≤ j ≤ d − c, Sj/Jj is Cohen-Macaulay with minimal graded free
resolution

F• ⊗R Sj : 0→ Fc ⊗R Sj → · · · → F1 ⊗R Sj → F0 ⊗R Sj → Sj/Jj → 0.

Additionally, if I satisfies the condition Gd+1, then Jj satisfies the condition
Gd+1−j for all 1 ≤ j ≤ d− c.

Proof. Set Li ⊂ R to be the ideal Li = Fitti(I) for 1 ≤ i < d+ 1. By using Lemma 3.7
we can find a sequence h1, . . . , hd ∈ [R]1 = [R(I)](1,0) which is filter-regular on R(I), on

grI(R) = R(I)⊗R (R/I) =

∞⊕
q=0

Iq/Iq+1,

on R/I, and on R/Li for all i.
(i) Applying −⊗R Si to the inclusion R(I) ↪→ R[t] yields a natural map

s : R(I)⊗R Si � RSi(Ji) ⊂ Si[t].

For p ∈ Spec(R) \ V (I), localizing the surjection s : R(I) ⊗R Si � RSi(Ji) at R \ p,
we easily see that it becomes an isomorphism. It then follows that some power of I
annihilates Ker(s), that is, I l ·Ker(s) = 0 for some l > 0. We have that dim (grI(R)) =
dim(R) = d+ 1 and dim (R(I)) = dim(R) + 1 = d+ 2 (see, e.g., [17, §5.1]). Therefore,
Lemma 3.9 and [18, Lemma 1.2] yield that

dim
(
Supp++ (Ker(s))

)
≤ dim

(
Supp++

(
(R(I)⊗R Si)⊗R (R/I)

))
= dim

(
Supp++ (grI(R)⊗R Si)

)
≤ dim(grI(R))− 2− i = d− 1− i

and

dim
(
Supp++ (R(I)⊗R Si)

)
= dim

(
R(I)

)
− 2− i = d− i.

Hence, from the short exact sequence 0 → Ker(s) → R(I) ⊗R Si → RSi(Ji) → 0 and
the additivity of multiplicities, it follows that

e(0, d− i;R(I)⊗R Si) = e(0, d− i;RSi(Ji)).

By using Lemma 3.9 successively we obtain

di(F) = e
(
i, d− i;R(I)

)
= e
(
0, d− i;R(I)⊗R Si

)
.

So, the result follows.
(ii) The condition of h1, . . . , hd being a filter-regular sequence on R/I yields that Ji

is an mSi-primary ideal for d − c + 1 ≤ i ≤ d. It then follows that di(F) = e
(
0, d −

i;RSi(Ji)
)

= δd−i (see, e.g., [22, Observation 3.2]).
(iii) Since pd(R/I) = c, the Auslander-Buchsbaum formula implies that depth(R/I) =

d− c. When R/I is Cohen-Macaulay and k is infinite, we can assure that h1, . . . , hd−c
is a regular sequence on R and on R/I (see, e.g., [3, Proposition 1.5.12]). Then, using
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that h1, . . . , hd−c is a regular sequence on R and on R/I, for 1 ≤ j ≤ d − c, it follows
that Sj/Jj ∼= R/(I, h1, . . . , hj) is Cohen-Macaulay and that

Hl (F• ⊗R Sj) ∼= TorRl (R/I, Sj) ∼= Hl

(
K•(h1, . . . , hj ;R/I)

)
= 0

for l ≥ 1 (here K•(h1, . . . , hj ;R/I) denotes the Koszul complex). Thus, F•⊗R Sj is the
minimal graded free resolution of Sj/Jj .

For 1 ≤ j ≤ d − c, since F2 ⊗R Sj → F1 ⊗R Sj → Jj → 0 is a presentation of Jj ,
we get that Fitti(Jj) = LiSj . Since h1, . . . , hd−c is a filter-regular sequence on R/Li,
the assumption of the condition Gd+1 yields that ht(LiSj) = min{ht(Li), dim(Sj)} ≥
min{i + 1,dim(Sj)} for all 1 ≤ j ≤ d − c. This implies that Jj satisfies Gd+1−j for all
1 ≤ j ≤ d− c.

So, we are done. �

5.1. Certain families of rational maps. In this short subsection we compute all
the projective degrees of the rational map F : Pdk 99K Pnk when I is a perfect ideal of
height two or a Gorenstein ideal of height three, under the assumption of the condition
Gd+1. The results of this subsection are easy consequences of the previous developments
together with [6, Theorem A] and [7, Theorem A]. It should be noted that the condition
Gd+1 is always satisfied by generic perfect ideals of height two and by generic Gorenstein
ideals of height three.

Theorem 5.7. Assume Setup 5.1 with the following conditions:

(i) I is perfect of height two with Hilbert-Burch resolution of the form

0→
n⊕
i=1

R(−δ − µi)
ϕ−→ R(−δ)n+1 → I → 0.

(ii) I satisfies the condition Gd+1.

Then, the projective degrees of F : Pdk 99K Pnk are given by

di(F) = ed−i(µ1, µ2, . . . , µn)

where ed−i(µ1, µ2, . . . , µn) denotes the elementary symmetric polynomial

ed−i(µ1, µ2, . . . , µn) =
∑

1≤j1<j2<···<jd−i≤n
µj1µj2 · · ·µjd−i

.

Proof. We can assume that k is an infinite field. From Proposition 5.6, we can find
h1, . . . , hd such that, if we set Si = R/(h1, . . . , hi) and Ji = ISi, then di(F) = e

(
0, d−

i;RSi(Ji)
)

and, for all 1 ≤ j ≤ d − 2, Jj is a perfect ideal of ideal height two that
satisfies Gd+1−j with syzygies of degrees µ1, µ2, . . . , µn.

For 0 ≤ j ≤ d−2, note that dj(F) = e
(
0, d−j;RSi(Jj)

)
is equal to the 0-th projective

degree of a rational map determined by the minimal generators of Jj , then Theorem 5.4
and [6, Theorem A] yield that

dj(F) = e
(
F̃Sj (Jj)

)
= ed−j (µ1, . . . , µn) .

On the other hand, the case d− 1 ≤ j ≤ d follows directly from Proposition 5.6(ii).
So, we are done. �

Theorem 5.8. Assume Setup 5.1 with the following conditions:

(i) I is a Gorenstein ideal of height three.
(ii) Every non-zero entry of an alternating minimal presentation matrix of I has degree

D ≥ 1.
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(iii) I satisfies the condition Gd+1.

Then, the projective degrees of F : Pdk 99K Pnk are given by

di(F) =

{
Dd−i∑bn−d+i

2
c

k=0

(
n−1−2k
d−i−1

)
if 0 ≤ i ≤ d− 3

δd−i if d− 2 ≤ i ≤ d.

Proof. The proof follows verbatim to the one of Theorem 5.7 but now using [7, Theorem
A] (instead of using [6, Theorem A]). More explicitly, for 0 ≤ j ≤ d− 3, by substituting
in the formula of [7, Theorem A] we obtain that

dj(F) = D(d−j+1)−1

⌊
(n+1)−(d−j+1)

2

⌋∑
k=0

(
(n+ 1)− 2− 2k

(d− j + 1)− 2

)
.

Again, the case d− 2 ≤ j ≤ d follows directly from Proposition 5.6(ii). �
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