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Abstract—LoRWAN nodes can be localized using the TDoA
(Time Difference of Arrival) approach. A big advantage is
that the geo-location does not consume a lot of energy when
compared to GPS approaches. Depending on the use case, the
accuracy of the geo-localization (200m) might be a disadvantage.
Therefore we propose activating an E-compass in the LoRa node
and frequently communicating this directional information over
the LoRaWAN network. This extra information can then be
fused with TDoA in a map matching algorithm to improve the
estimations. We show that our sensor fusion technique is 8 times
more accurate than raw TDoA at the cost of only embedding a
low-cost e-compass.

Index Terms—LoRaWAN, Geo-location, TDoA, Tracking,
Map Matching, Compass, Sensor fusion

I. INTRODUCTION

Currently a lot of objects are being connected to the internet
by means of wireless sensors: the Internet of Things (IoT).
Supporting wireless networks for IoT are NB-IoT, Sigfox and
LoRaWAN. Typical sectors are smart cities, industry, logistics
and agriculture. Although the networks are designed to provide
communication for sensor devices, many of them also have
geo-location abilities. These location based services (LBS)
are mostly not as accurate as Global Navigation Satellite
System (GNSS) but they do allow for low cost and low power
localization without the need for a GNSS receiver. Some
examples of LBS are localizing construction site materials,
pallets (and their goods) and containers. For such assets an
accuracy of, e.g., 200m is more than sufficient and a battery
life of the attached sensor of 5+ years is a clear advantage.

LoRaWAN deployments come in different options. The
deployment can be either done with gateways which only
record the incoming received signal strength as metadata
(option A) or they may also record the timestamps of the
received packets (option B) . The latter allows for localization
using the Time Difference of Arrival (TDoA) method. In this
method the sensor node transmits a packet to the network
which is assumed to be received by 3 or more gateways. Each
gateway is equipped with a GPS receiver and is therefore
able to record the timing of when the packet was exactly
received and recorded. The recorded timestamps and location
of the gateways allow for localization of the sensor node which
transmitted the packet. The accuracy of the method depends on
many factors such as gateway density, environment, timestamp
accuracy, Line-of-Sight (LOS) or Non Line-of-Sight (NLOS)
scenario. The median accuracy is around 200m for moving

Figure 1: Measurement setup carried within a jacket: Left: TX
LoRaWAN node for which we estimate its location. Right:
Smartphone which logs the GPS ground truth

(single shot) TDoA estimates [1]. In some cases the accuracy
can be improved when a stationary node is assumed: multiple
measurements can be averaged and improved accuracies are
possible. The disadvantage of LoRa localization is that it
provides discrete points on a map. When an asset is to be
retrieved, one may demand for a tracking mode but currently
this mode is not available. To overcome this limitation, one
may use for example higher uplink frequency LoRa transmis-
sions (every 5 seconds) in combination with a Viterbi road
map matching algorithm [1] that restricts the reconstructed
trajectory to the road network and takes into account the
limited mobility of the sensor. For example a maximum speed
of 30km/h may be assumed for a sensor attached to a rental
bike which needs to be tracked. In this work, we propose to
embed an electronic compass into the transmitting LoRa node
and transmit this data over LoRaWAN. The general idea is to
combine the info from the compass with the TDoA estimates
in a sensor fusion algorithm. In this manner, the most likely
trajectory can be estimated with even a higher accuracy. The
fusion operates by first estimating the inertial trajectory from
compass data and an assumed constant speed. Then the ‘best
fit’ with the TDoA updates is estimated for different speeds.
The result gives the most likely trajectory. The improvement
using this method versus raw TDoA is in most cases over
50%, enabling median accuracies of 100m and lower.
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Figure 2: Ground truth (trace) and estimated TDoA locations
(dots) from Semtech solver

Figure 3: Ground truth (green) and estimated trajectory after
map matching (blue) without using a compass.

The paper is structured as follows. In Section II we provide
an overview of related work concerning LoRa-geolocalization
methods and improvements proposed in literature. Section III
describes our materials and methods, describing our obtained
data collection method, trajectory and algorithm implemen-
tation. The obtained results using our technique and method
are presented in Section IV. These results are then discussed
in Section V. We conclude our findings in Section VI where
we provide recommendations and suggest directions for future
work.

II. RELATED WORK

One way to locate sensor nodes in a LoRaWAN network
is making use of the RSS metadata received on the gateways
after a transmission. This has been studied in the works of
[2]and [3]. In [2], the RSS received from up to 3 gateways
was mapped to a location using different algorithms and an
obtained median accuracy between 1250 and 2500 m was
obtained. With known mobility, improvements are possible
using map matching which can reduce the median error to 700
m. An improvement is possible using RSS fingerprinting [3]
after collecting a large training database. The mean obtained
accuracy for this approach was around 400 m. Simular results
using other fingerprinting methods were reported in [4] where
a mean accuracy of around 350 m was obtained. The downside

Figure 4: Ground truth (green) and estimated trajectory after
map matching (blue) with (relative) compass heading

Figure 5: Ground truth (green) and estimated trajectory after
map matching (blue) with (absolute) compass heading

of such approaches is the fact it requires a lot of work to
build and maintain a LPWAN fingerprinting database on a
large scale.

Many deployed LoRaWAN networks are currently using
gateways that can accurately determine the Time of Arrival
(ToA) of an incoming packet sent by a node. The recorded
time stamps and known locations of the gateways can be used
as input to a Time-Difference-of-Arrival (TDoA) algorithm
to estimate the location with a higher degree of accuracy.
The median accuracy of using this method with the use
of a maximum likelihood (ML) algorithm was around 200
m as reported in the works of [2], [5] and [1]. A new,
improved TDoA algorithm is proposed in [6] and compared
with a Least Squares (LS) approach. It was shown that the
95th percentile was improved from 2200 m to 840 m in a
simulated environment. Correcting the received timestamps of
a mobile node by the use of machine learning in combination
with stationary reference nodes is reported in [7]. Using this
method, the best reported accuracy was around 61 m. It
remains unclear how many reference nodes are needed and
this approach might not be economically feasible for large
deployments.

In this work, we base on real performed experiments in
public LoRaWAN networks. We consider moving nodes and
compare our implementation with the best state-of-the-art
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algorithms available.

III. MATERIALS AND METHODS

A. Data Collection and Trajectory

The sensor node we use for our localisation experiments
is the MCS iTalks 1608. The device is provisioned on the
Belgium Proximus LoRaWAN network. The firmware in the
device has been adjusted to obtain a short interval between
successive transmissions. Every 5 seconds, a 5-byte packet
is transmitted on spreading factor (SF) 7. Airtime for each
transmission is around 50ms and therefore we still comply
with the ETSI regulation of a 1 percent duty cycle. Packets
are received by the gateways deployed in the area around the
node and are then forwarded to the network server (NS). The
available data we use from the NS is as follows:

• A 5-byte payload from the device which contains the 5
compass values (also called heading or bearing) from the
last 5 seconds. Due to the unavailability of the compass
in the node, the compass values are simply emulated
on a (SamSung Galaxy A20E) smart-phone application
(OSMTracker for Android) which was carried together
with the device.

• Nano-second Timestamp of the arrived packet on each
gateway denoted with their ID

The network deployment of the gateways is known for the
Proximus network (ID versus latitude/longitude coordinates)
and together with the recorded data allows us to post process
the data into estimated locations and/or a trajectory using a
suitable algorithm. The ground truth (and time) was logged
with a GPS application on the smart-phone (OSMTracker for
Android).
Our LoRa device and smart-phone were carried in the front
pocket of a jacket (See Fig. 1) and was carried along a walking
trajectory in the city of Ghent. The ground truth trajectory
is shown in a black trace in Figure 2. The length of the
trajectory was 3.1 km and at an average walking speed of 4.6
km/h it therefore took 40 minutes to complete. The considered
measurement area was around 500 m x 1200 m.

B. Scenarios

We consider different scenarios which are applicable for dif-
ferent use cases. Firstly we investigate possible improvement
when using map matching without using a compass. Next we
consider an (emulated) compass node for which heading values
are available and use this info to improve the map matching.

Finally, we also distinguish between a device which
is assumed to have no compass (Agnostic) and a device
equipped with Compass sensor. To emulate an agnostic
device without compass we simply ignore the compass data
we receive in our algorithms. We denote the agnostic or
compass-enabled device by the letters ’A’ or ’C’ respectively.

We investigate 4 scenarios
• Semtech solver: Our starting point is to use a third-party

TDoA solver such as the one from Semtech [8]. The col-
lected ToA timestamps and location of the gateways are

forwarded to their server which estimates the locations
using a (TDoA) algorithm. These locations are shown as
dots in figure 2.

• TDoA MM: Our TDoA map matching algorithm (without
compass) which takes the road map, max mobility speed,
timestamps and locations of the gateways as input to solve
for the most likely trajectory.

• TDoA MM abs compass: This is our map matching
technique with compass sensor fusion and it is assumed
that the compass bearing gives absolute headings. eg.
0 degrees means the asset moves towards North. This
implementation may be well suited to track bicycles for
which one knows how the compass was installed relative
to the bicycle.

• TDoA MM rel compass: This implementation is similar
to the previous one but it only uses relative headings from
the compass. eg. a 90 to 180 degree bearing or a 30 to 120
degree transition means a turn to the right. This method
is more suitable to track parcels in transit for which one
does not know the absolute orientation of the installed
compass node relative to the direction of movement.

C. Algorithm

The pseudo-code of the map matching method is shown in
Algorithm 1 and the variables and steps are discussed in the
text below.

The map matching algorithm is initialized based on the first
TDoA measurements (TM0) for which a solver can calculate
a location (L0), e.g., if three gateways are visible. Then,
a predefined number of other locations (MP ) are selected
around this location (from open street maps data) and their
probability is initialized to one, e.g., the 1000 closest grid
points to the current position. This ensures that the map
matching algorithm can recover from initially noisy data, e.g.,
1000 grid points and a grid size of 10 m results in covered
surfaces of around 50 hectares (the exact area depends on
the density of the road network). The initialization forms the
starting point of all possible paths that are kept in the memory
of the location tracking algorithm (paths).

Next, for the subsequent TDoA measurements (TM ), all
reachable positions (RGP ) starting from the path’s current
endpoint (E) are determined for all paths in memory by mak-
ing use of the surrounding road network, the time elapsed since
last location update (∆t), the mode of transportation (MoT ),
and OpenStreetMap metadata, i.e., maximum speed, type of
road, and one-way information. These reachable positions,
which are also grid points, are the candidate positions for
the next location update. The transitions between grid points
are limited by the road infrastructure. Each candidate position
(CP ) retains a link to their parent (i.e., the previous endpoint
E), a list with visited road segments RS, and a probability
that represents this new branch along the road network. This
new path (branch) and updated probability are added to the
temporary list (tmp) as a tuple (pathnew, Pnew). The updated
probability is the product of the previous probability P with
a TDoA and compass contribution (Ptdoa and Pcomp).
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Algorithm 1: Map matching technique.
Input: compass data + TDoA measurements (TMS)
Result: map matched trajectory (MMT)

1 MoT ← mode of transportation
2 TM0 ← first TDoA measurements
3 L0 ← location based on TM0

4 tprev ← first timestamp
5 MP ← 1000 // maximum paths in memory
6 paths← list with MP grid points closest to L0

initialized with probability 1
// iterate over all TDoA measurements

7 for TM ∈ TMS do
8 t← current timestamp
9 ∆t← t− tprev

10 tmp← empty list
11 for path ∈ paths do
12 P ← current probability of path
13 E ← current endpoint of path (parent)
14 RGP ← reachable grid points along roads with

MoT within time span ∆t starting from E
15 CD ← compass data between tprev and t

// update new path probabilities
16 for CP ∈ RGP do

// CP: candidate position
17 RS ← road segments between E and CP

// compass probability
18 Pcomp ← probability of RS given CD

// tdoa probability
19 Ptdoa ← probability of CP given TM
20 pathnew ← path + RS + CP
21 Pnew ← P · Ptdoa · Pcomp

22 add (pathnew, Pnew) to tmp

23 paths← retain MP paths from tmp based on
highest probability

24 tprev ← t

25 MMT ← reconstruct trajectory along path with
highest probability in paths

Ptdoa is based on the probability of the TDoA measurements
given CP , the gateway locations, and the standard deviation
of LoRa TDoA measurements, e.g., 383 m in our experimental
validation. Pcomp is based on the probability of the compass
data between tprev and t given the bearing of the visited road
segments RS and the standard deviation of the compass, e.g.,
29◦ in our experimental validation.

Lastly, the MP paths with highest probability are retained
to serve as input for the next iteration. After all TDoA
measurements are processed, the entire trajectory of the path
with highest probability in memory is reconstructed. As men-
tioned in our scenarios we consider 3 implementations of this
algorithm

• TDoA MM which does not take into account the compass
values. The algorithm is the same but with Pcomp = 1.

• TDoA MM abs compass: The probability Pcomp is cal-
culated as the likelihood (combined probability) of all
segment headings in RS given the compass data CD.

• TDoA MM rel compass: The probability Pcomp is calcu-
lated as the likelihood (combined probability) of all rel-
ative segment headings in RS given the relative compass
data CD.

IV. RESULTS

Figure 6: CDF of the different approaches

The obtained accuracy when using the 3rd party Semtech
TDoA solver is shown in a red trace in Fig. 6. From the CDF
we obtain a median accuracy of 175 m and in 90% of the
cases the error is less then 413 m. When we use our TdoA
map matching technique (which takes into account the road
infrastructure and limited mobility of the considered asset),
we obtain a large improvement as we see from the black vs
red trace in Fig 6). The median drops to 69m and the 90th
percentile drops to 121 m for our approach. The technique
is therefore 60% more accurate when compared to Semtech.
Additional improvement is further possible if the device has a
compass embedded in the LoRa node and transmits its heading
information to the network. Using the TDoA MM abs or
TDoA MM rel compass algorithm, the median can be further
reduced to 23 m and 43 m respectively. The 90th percentile
errors using this approach were further reduced to respectively
98 m and 107 m. The error distribution is shown in respectively
green and blue in Fig. 6. The additional improvement on
the median accuracy is 67% for TDoA MM abs compass
algorithm and is 38 % when using the TDoA MM rel compass
algorithm. Table I gives an overview of all obtained accuracies
and quantifies the improvement when using the Semtech solver
as reference.
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Method p50 [m] n50 [%] p90 [m] n90 [%]
Semtech 175 Ref. 413 Ref.
TDoA MM 69 61 121 71
TDoA abs compass 23 87 98 76
TDoA rel compass 43 75 107 74

Table I: Obtained accuracy results for the different approaches

V. CONCLUSION

Tracking assets without using a GPS receiver in the device
attached to the asset is possible when using a transmitting
LoRa node. LoRaWAN gateways from the surrounding net-
work time-stamp the incoming packets and the network server
calculates the position using a TDoA solver. This approach
enables joint communication and localization using a single
low cost and low power technology. During our test along a
walking trajectory, the median accuracy of the Semtech TDoA
solver was around 175 m. In this paper, we proposed a map
matching technique which takes into account the road infras-
tructure to reduce this median error to 69m. Our algorithm was
able to further reduce the error when the device would have an
electronic compass embedded and communicates this info the
network. Fusing the compass data in the proposed TDoA map
matching algorithm significantly reduced the error to 23m in
our test. Further work will focus on changing the transmission
interval from 5 seconds to higher intervals and re-evaluate its
tracking accuracy. This would allow higher spreading factors
to be used which are beneficial in less dense LoRa networks.
Different types of mobility scenarios (e.g. cycling and driving
trajectories) and repeating the tests to check the reproducibility
of the results are also part of future work.
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