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9 j-Coefficients and higher

Joris Van der Jeugt

12.1 Introduction

3 j-Coefficients (or 3 j-symbols), 6 j-coefficients, 9 j-coefficients and higher (referred to as 3n j-
coefficients) play a crucial role in various physical applications dealing with the quantization
of angular momentum. This is because the quantum operators of angular momentum satisfy
the su(2) commutation relations. So the 3n j-coefficients in this chapter are 3n j-coefficients
of the Lie algebra su(2). For these coefficients, we shall emphasize their hypergeometric ex-
pressions and their relations to discrete orthogonal polynomials. Note that 3n j-coefficients
can also be considered for other Lie algebras. For positive discrete series representations of
su(1, 1), the 3n j-coefficients carry different labels but have the same structure as those of
su(2) [29, 37], and the related orthogonal polynomials are the same. For other Lie algebras,
the definition of 3 j-coefficients (i.e., coupling coefficients or Clebsch–Gordan coefficients re-
lated to the decomposition of tensor products of irreducible representations) is more involved,
since in general multiplicities appear in the decomposition of tensor products [35, 11]. Note
that there is also a vast literature on the q-analogues of 3n j-coefficients in the context of quan-
tum groups or quantized enveloping algebras: for the quantum universal enveloping algebra
Uq(su(2)), the 3 j- and 6 j-coefficients are straightforward q-analogues of those of su(2), and
the related discrete orthogonal polynomials are the corresponding q-orthogonal polynomials
in terms of basic hypergeometric series [21, 23, 1, 2].

Here, we shall be dealing only with 3n j-coefficients for su(2). First, we give a short sum-
mary of the relevant class of representations of the Lie algebra su(2). An important notion is
the tensor product of such representations. In the tensor product decomposition, the impor-
tant Clebsch–Gordan coefficients appear. 3 j-Coefficients are proportional to these Clebsch–
Gordan coefficients. We give some useful expressions (as hypergeometric series) and their
relation to Hahn polynomials. Next, the tensor product of three representations is considered,
and the relevant Racah coefficients (or 6 j-coefficients) are defined. The explicit expression
of a Racah coefficient as a hypergeometric series of 4F3-type and the connection with Racah
polynomials and their orthogonality is given. 9 j-Coefficients are defined in the context of the
tensor product of four representations. They are related to a discrete orthogonal polynomial
in two variables (but no expression as a hypergeometric double sum is known). Finally, we
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consider the general tensor product of (n + 1) representations and “generalized recoupling
coefficients” or 3n j-coefficients.

There are several standard books on quantum theory of angular momentum and 3n j-coeffi-
cients. A classical reference is [13], and an interesting collection of historical papers on the
subject is [10]. The books by Biedenharn & Louck [8, 9] treat the subject thoroughly. An
excellent collection of formulas is found in [38]. Srinivasa Rao & Rajeswari [33] emphasize
the connection with hypergeometric series and some special topics such as zeros and the
numerical computation. In [37], a self-contained mathematical introduction is given for 3n j-
coefficients of both the Lie algebras su(2) and su(1, 1).

12.2 Representations of the Lie algebra su(2)

An introduction to Lie algebras and their representations is not given here; it can be found e.g.
in [18]. We shall just recall some basic notions related to sl(2,C) and su(2). As a vector space,
the Lie algebra sl(2,C) consists of all traceless complex (2 × 2) matrices. In this matrix form,
the Lie algebra bracket [x, y] is the commutator xy − yx. We consider the following standard
basis of sl(2,C):

J0 :=
(

1/2 0
0 −1/2

)
, J+ :=

(
0 1
0 0

)
, J− :=

(
0 0
1 0

)
.

The basic commutation relations then read: [J0, J±] = ±J±, [J+, J−] = 2J0. In the universal
enveloping algebra of sl(2,C), the following element (called the Casimir operator) is central
(i.e., it commutes with every element):

C := J+J− + J2
0 − J0 = J−J+ + J2

0 + J0.

A ∗-operation on a complex Lie algebra is a conjugate-linear anti-automorphic involution.
With a ∗-operation there is associated a real subalgebra (real form) consisting of all elements
x in the complex Lie algebra for which x∗ = −x. For sl(2,C), there exist two non-equivalent
∗-operations, one corresponding to su(2) and one to su(1, 1). For the real form su(2), this is

explicitly given by J∗0 = J0, J∗± = J∓. It consists of the matrices
(

ia b
−b −ia

)
(a ∈ R, b ∈ C).

A representation of the Lie algebra g in a finite dimensional complex vector space V is a
linear map φ : g → End(V) such that φ([x, y]) = φ(x)φ(y) − φ(y)φ(x) for all elements x, y ∈ g.
V is then called the representation space. It is convenient to use the language of modules, thus
to refer to V as a g-module and to the action φ(x)(v) as x · v (v ∈ V). The representation φ
or the representation space V is irreducible if V has no non-trivial invariant subspaces under
the action of g. It is completely reducible if V is a direct sum of irreducible representation
subspaces. A representation φ of a real Lie algebra g is unitary if V is a vector space with
hermitian inner product 〈 . , . 〉 and 〈x · v,w〉 = −〈v, x · w〉 for all x ∈ g and all v,w ∈ V . In this
case, one also refers to V as a unitary representation. Unitary representations are completely
reducible.
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The following lists all irreducible unitary representations of su(2).

Theorem 12.2.1 For every j ∈ 1
2N =

{
0, 1

2 , 1,
3
2 , 2, . . .

}
, there is a unique (up to equivalence)

irreducible unitary representation of su(2) of dimension 2 j + 1. An orthonormal basis for the
corresponding representation space D j is denoted by

{
e( j)

m | m = − j,− j + 1, . . . , j
}
. The action

of J0, J± is given by:

J0 e( j)
m = m e( j)

m , J+ e( j)
m =

√
( j − m)( j + m + 1) e( j)

m+1, J−e ( j)
m =

√
( j + m)( j − m + 1) e( j)

m−1.

(12.2.1)
For the Casimir operator, one has C∗ = C and C e( j)

m = j( j + 1) e( j)
m .

In the following, D j will denote both the representation space and the representation on that
vector space.

12.3 Clebsch–Gordan coefficients and 3 j-coefficients

An important notion to introduce is the concept of tensor product of two unitary representa-
tions of a real Lie algebra g. Let V and W be g-modules, and let V ⊗W be the tensor product
of the underlying vector spaces. Recall that if V and W have respective bases v1, v2, . . . and
w1,w2, . . ., then V ⊗ W has a basis consisting of the vectors vi ⊗ w j. Now V ⊗ W has the
structure of a g-module by defining:

x · (v ⊗ w) := x · v ⊗ w + v ⊗ x · w. (12.3.1)

This tensor product space is naturally equipped with an inner product by 〈v ⊗ w, v′ ⊗ w′〉 :=
〈v, v′〉〈w,w′〉. If V and W are unitary representations, then the tensor product representation is
also unitary with respect to this inner product.

Turning to the case of su(2), let j1, j2 ∈ 1
2N, and consider the tensor product D j1 ⊗ D j2 ,

sometimes denoted by ( j1) ⊗ ( j2). A set of basis vectors of D j1 ⊗ D j2 is given by

e( j1)
m1 ⊗ e( j2)

m2 , m1 = − j1,− j1 + 1, . . . , j1; m2 = − j2,− j2 + 1, . . . , j2.

This basis is often referred to as the uncoupled basis. The total dimension of D j1 ⊗ D j2 is
(2 j1 + 1)(2 j2 + 1). The action of the su(2) basis elements on these vectors is determined
by (12.3.1).

In general, the module D j1 ⊗ D j2 is not irreducible, but it is completely reducible. Its ir-
reducible components are again representations D j of the form given in Theorem 12.2.1:
D j1 ⊗ D j2 = ⊕ jD j. Herein, j takes the values | j1 − j2|, | j1 − j2| + 1, . . . , j1 + j2 (each value
once, i.e. there is no multiplicity in the decomposition). So it must be possible to write a ba-
sis of D j1 ⊗ D j2 in terms of the standard basis vectors of the representations D j appearing in
the decomposition. This basis is referred to as the coupled basis. The coefficients expressing
the coupled basis vectors in terms of the uncoupled basis vectors are known as the Clebsch–
Gordan coefficients of su(2). They appeared already in the work of Clebsch and Gordan on
invariant theory of algebraic forms. But it was Wigner [26, 42, 43] who studied these coeffi-
cients systematically and who introduced the related 3 j-coefficients.
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Theorem 12.3.1 The tensor product D j1⊗D j2 decomposes into irreducible unitary represen-
tations D j of su(2), D j1 ⊗ D j2 =

⊕ j1+ j2
j=| j1− j2 |

D j. An orthonormal basis of D j1 ⊗ D j2 is given
by the vectors

e( j1 j2) j
m =

∑
m1

C j1, j2, j
m1,m−m1,m e( j1)

m1 ⊗ e( j2)
m−m1

(| j1 − j2| ≤ j ≤ j1 + j2, − j ≤ m ≤ j), (12.3.2)

where the coefficients C j1, j2, j
m1,m−m1,m are Clebsch–Gordan coefficients of su(2), for which an ex-

pression is given below by (12.3.4). The action of J0, J± on the basis vectors e( j1 j2) j
m is the

standard action (12.2.1) of the representation D j.

In (12.3.2), the summation index m1 runs from − j1 to j1 in steps of 1, and such that
− j2 ≤ m − m1 ≤ j2: thus max(− j1,m − j2) ≤ m1 ≤ min( j1,m + j2). The Clebsch–Gordan
coefficient C j1, j2, j

m1,m2,m can be considered as a real function of six arguments from 1
2N. Following

Theorem 12.3.1, these arguments satisfy the following conditions:

(c1) ( j1, j2, j) forms a triad, i.e., − j1 + j2 + j, j1 − j2 + j and j1 + j2 − j are nonnegative
integers;

(c2) m1 is a projection of j1, i.e., m1 ∈ {− j1,− j1 + 1, . . . , j1} (and similarly, m2 is a projection
of j2 and m is a projection of j);

(c3) m = m1 + m2.

Usually, one extends the definition by saying that C j1, j2, j
m1,m2,m = 0 if one of the conditions (c1),

(c2), (c3) is not satisfied. Then one can write

e( j1 j2) j
m =

∑
m1,m2

C j1, j2, j
m1,m2,m e( j1)

m1 ⊗ e( j2)
m2 . (12.3.3)

An explicit formula for C j1, j2, j
m1,m2,m can, for instance, be obtained by using a differential operator

realization of su(2) and a polynomial realization of the basis vectors of the representations.
One finds:

C j1, j2, j
m1,m2,m =

√
(2 j + 1) ∆( j1, j2, j) δ( j1,m1, j2,m2, j,m)

×
∑

k

(−1)k

k! ( j1 − m1 − k)! ( j1 + j2 − j − k)! ( j2 + m2 − k)! ( j − j2 + m1 + k)! ( j − j1 − m2 + k)!
,

(12.3.4)

where

∆( j1, j2, j) =

√
(− j1 + j2 + j)! ( j1 − j2 + j)!( j1 + j2 − j)!

( j1 + j2 + j + 1)!
, (12.3.5)

δ( j1,m1, j2,m2, j,m) =
√

( j1 − m1)! ( j1 + m1)! ( j2 − m2)! ( j2 + m2)! ( j − m)! ( j + m)! .

This rather symmetrical form is due to Van der Waerden [40] and Racah [27]. The expression
is generally valid (that is, for all arguments satisfying (c1)–(c3)). The summation is over all
integer k-values such that the factorials in the denominator of (12.3.4) are nonnegative.

It is clear that the summation in (12.3.4) can be rewritten in terms of a terminating 3F2
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series of unit argument; indeed, assume that j − j2 + m1 ≥ 0 and j − j1 − m2 ≥ 0, then this
sum equals(

( j1 − m1)! ( j1 + j2 − j)! ( j2 + m2)! ( j − j2 + m1)! ( j − j1 − m2)!
)−1

× 3F2

(
− j1 + m1,− j1 − j2 + j,− j2 − m2

j − j2 + m1 + 1, j − j1 − m2 + 1
; 1

)
. (12.3.6)

Once the Clebsch–Gordan coefficient is rewritten as a terminating 3F2(1), one can use a trans-
formation [4, Corollary 3.3.4] (known as Sheppard’s transformation, and sometimes referred
to as Thomae’s transformation) to find yet other formulas. Applyication of Sheppard’s trans-
formation to (12.3.6), while keeping − j1 + m1 as negative numerator parameter, yields

C j1, j2, j
m1,m2,m = C′ 3F2

(
− j1 + m1,− j1 − j2 + j,− j1 − j2 − j − 1

−2 j1,− j1 − j2 + m
; 1

)
; (12.3.7)

herein C′ is some constant determined in (12.3.9). This expression is generally valid under
conditions (c1)–(c3).

Various symmetries can be deduced for Clebsch–Gordan coefficients. Some of these sym-
metries follow by replacing the summation index in (12.3.4). Others can be deduced by per-
forming permutations of the numerator and/or denominator parameters in a 3F2(1) expression
as in (12.3.7). In order to express these symmetries, one often introduces the so-called 3 j-
coefficient (due to Wigner) (

j1
m1

j2
m2

j
−m

)
:=

(−1) j1− j2+m√
2 j + 1

C j1, j2, j
m1,m2,m

From (12.3.4) one finds the classical expression for the 3 j-coefficient:

Proposition 12.3.2 Let j1, j2, j3,m1,m2,m3 ∈
1
2N. If ( j1, j2, j3) forms a triad, mi is a

projection of ji (i = 1, 2, 3) and m1 + m2 + m3 = 0, then the 3 j-coefficient is determined by(
j1

m1

j2
m2

j3
m3

)
= (−1) j1− j2−m3 ∆( j1, j2, j3) δ( j1,m1, j2,m2, j3,m)

×
∑

k

(−1)k

k! ( j1 − m1 − k)! ( j1 + j2 − j3 − k)! ( j2 + m2 − k)! ( j3 − j2 + m1 + k)! ( j3 − j1 − m2 + k)!
.

(12.3.8)

In all other cases, the 3 j-coefficient is zero. In (12.3.8), the summation is over all integers
such that the arguments in the factorials are nonnegative. Alternatively, one can write:(

j1
m1

j2
m2

j3
m3

)
= (−1) j1− j2−m3

(2 j1)! ( j1 + j2 + m3)! ( j3 − m3)!
( j1 − j2 + j3) ( j1 + j2 − j3)!

×
∆( j1, j2, j3)

δ( j1,m1, j2,m2, j3,m3) 3F2

(
m1 − j1, j3 − j1 − j2,− j1 − j2 − j3 − 1

−2 j1,− j1 − j2 − m3
; 1

)
. (12.3.9)

The symmetries of the 3 j-coefficient can be described through the corresponding Regge
array [30]:
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(
j1

m1

j2
m2

j3
m3

)
= R3 j


− j1 + j2 + j3 j1 − j2 + j3 j1 + j2 − j3

j1 − m1 j2 − m2 j3 − m3

j1 + m1 j2 + m2 j3 + m3

 .
In this 3× 3 array, all entries are nonnegative integers such that for each row and each column
the sum of the entries equals J = j1 + j2 + j3; conversely, every 3 × 3 array with nonnegative
integers such that all row and column sums are the same, corresponds to a Regge array or a
3 j-coefficient. The symmetries are easy to describe in terms of the Regge array. They generate
a group of 72 symmetries, described as follows:

• The Regge array is invariant under transposition.
• Under permutation of the rows (resp. columns), the Regge array remains invariant up to a

sign. For cyclic permutations this sign is +1; for non-cyclic permutations this sign is (−1)J .

Observe that for certain special values of the arguments, the single sum expression in equa-
tion (12.3.8) reduces to a single term. This is the case, e.g., when m1 = j1. Many such closed
form expressions (i.e. without a summation expression) are listed in [38].

The coupled and uncoupled basis vectors in (12.3.3) are orthonormal bases for D j1 ⊗ D j2 .
So the matrix relating these two bases in (12.3.3) is orthogonal. This implies that the Clebsch–
Gordan coefficients satisfy the following orthogonality relations:∑

m1,m2

C j1, j2, j
m1,m2,m C j1, j2, j′

m1,m2,m′ = δ j, j′ δm,m′ , (12.3.10a)∑
j,m

C j1, j2, j
m1,m2,m C j1, j2, j

m′1,m
′
2,m

= δm1,m′1 δm2,m′2 . (12.3.10b)

These relations can also be expressed by means of 3 j-coefficients, e.g.,∑
m1,m2

(2 j3 + 1)
(

j1
m1

j2
m2

j3
m3

) (
j1

m1

j2
m2

j′3
m′3

)
= δ j3, j′3 δm3,m′3 .

The orthogonality relations for su(2) Clebsch–Gordan coefficients or 3 j-coefficients are ac-
tually related to the (discrete) orthogonality of Hahn polynomials. Consider the expression
(12.3.7), and let us write

N = 2 j1, x = j1 − m1, n = j1 + j2 − j, α = m − j1 − j2 − 1, β = − j1 − j2 − m − 1.

Suppose j1, j2 and m are fixed numbers, with j2 − j1 ≥ |m|. Then m1 can vary between − j1
and j1, and j can vary between j2 − j1 and j2 + j1. In terms of the new variables, this means:
N is a fixed nonnegative integer, α and β are fixed (with α, β ≤ −N − 1); the quantities x and n
are nonnegative integers with 0 ≤ x ≤ N and 0 ≤ n ≤ N. The 3F2 series appearing in (12.3.7)
is then of the following form:

Qn(x;α, β,N) = 3F2

(
−x,−n, n + α + β + 1

−N, α + 1
; 1

)
.

Herein, Qn(x;α, β,N) is the Hahn polynomial of degree n in the variable x, see [22, §9.5].
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Interestingly, the orthogonality (12.3.10a) of su(2) Clebsch–Gordan coefficients (or 3 j-coeffi-
cients) is equivalent to the orthogonality [22, (9.5.2)] of Hahn polynomials. In a similar way,
one can verify that the orthogonality relation (12.3.10b) is equivalent to the orthogonality
relation [22, (9.6.2)] of dual Hahn polynomials. The relation between Hahn polynomials and
su(2) 3 j-coefficients was known to some people, but appeared explicitly only in 1981 [24].
There, the relationship is established in the context of representations of the Lie group SU(2)
rather than in terms of representations of the Lie algebra su(2), as here.

To conclude this section, let us mention that the action of J+ or J− on (12.3.3) yields certain
recurrence relations for Clebsch–Gordan coefficients or 3 j-coefficients. Appropriately com-
bined recurrence relations then lead to the classical 3-term recurrence relation of Hahn or dual
Hahn polynomials [22, Sections 9.5, 9.6].

12.4 Racah coefficients and 6 j-coefficients

Consider the tensor product of three irreducible unitary representations of su(2),

D j1 ⊗ D j2 ⊗ D j3 = (D j1 ⊗ D j2 ) ⊗ D j3 = D j1 ⊗ (D j2 ⊗ D j3 ). (12.4.1)

Clearly, a basis for this tensor product is given by e( j1)
m1 ⊗ e( j2)

m2 ⊗ e( j3)
m3 , where mi is a pro-

jection of ji. This is the uncoupled basis. In order to decompose the actual tensor product
D j1 ⊗ D j2 ⊗ D j3 into irreducible su(2) representations, one can proceed in two ways. First,
decompose D j1 ⊗ D j2 into irreducibles, say ⊕D j12 , and then decompose each tensor product
D j12 ⊗ D j3 into irreducibles D j. Secondly, decompose D j2 ⊗ D j3 into irreducibles, say ⊕D j23 ,
and then decompose each tensor product D j1 ⊗ D j23 into irreducibles D j. So one can immedi-
ately define two sets of orthonormal basis vectors for the irreducible components of (12.4.1),
corresponding to these two coupling schemes:

e(( j1 j2) j12 j3) j
m =

∑
m12,m3

C j12, j3, j
m12,m3,me( j1 j2) j12

m12 ⊗ e( j3)
m3 (12.4.2a)

=
∑

m1 ,m2 ,m3
m1+m2+m3=m

C j1, j2, j12
m1,m2,m12C

j12, j3, j
m12,m3,m e( j1)

m1 ⊗ e( j2)
m2 ⊗ e( j3)

m3 ,

and

e( j1( j2 j3) j23) j
m =

∑
m1,m23

C j1, j23, j
m1,m23,me( j1)

m1 ⊗ e( j2 j3) j23
m23 (12.4.2b)

=
∑

m1 ,m2 ,m3
m1+m2+m3=m

C j2, j3, j23
m2,m3,m23C

j1, j23, j
m1,m23,m e( j1)

m1 ⊗ e( j2)
m2 ⊗ e( j3)

m3 .

Let us denote the matrix transforming the basis (12.4.2a) into (12.4.2b) by U. Its matrix ele-
ments are given by 〈e( j1( j2 j3) j23) j

m , e(( j1 j2) j12 j3) j′

m′ 〉. From the action of the su(2) Casimir operator C
and of the su(2) diagonal operator J0, it is easy to see that this element is zero if j′ , j and if
m′ , m. Furthermore, by the action of J+ one verifies that this element is independent of m.
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So one can write

〈e( j1( j2 j3) j23) j
m , e(( j1 j2) j12 j3) j′

m′ 〉 = δ j, j′ δm,m′ U j1, j2, j12
j3, j, j23

. (12.4.3)

The coefficients U j1, j2, j12
j3, j, j23

are called the Racah coefficients. So, we can write

e(( j1 j2) j12 j3) j
m =

∑
j23

U j1, j2, j12
j3, j, j23

e( j1( j2 j3) j23) j
m , (12.4.4a)

and vice versa, since U is an orthogonal matrix,

e( j1( j2 j3) j23) j
m =

∑
j12

U j1, j2, j12
j3, j, j23

e(( j1 j2) j12 j3) j
m . (12.4.4b)

The orthogonality of the matrix is also expressed by:∑
j12

U j1, j2, j12
j3, j, j23

U j1, j2, j12
j3, j, j′23

= δ j23, j′23
,

∑
j23

U j1, j2, j12
j3, j, j23

U j1, j2, j′12
j3, j, j23

= δ j12, j′12
.

An expression for the Racah coefficient follows from (12.4.3), (12.4.2a) and (12.4.2b):

U j1, j2, j12
j3, j, j23

=
∑

m1 ,m2 ,m3
m1+m2+m3=m

C j1, j2, j12
m1,m2,m12 C j12, j3, j

m12,m3,m C j2, j3, j23
m2,m3,m23 C j1, j23, j

m1,m23,m. (12.4.5)

Herein, m is an arbitrary but fixed projection of j. The sum is over m1, m2 and m3 such that
m1 + m2 + m3 = m; m12 stands for m1 + m2 and m23 for m2 + m3. So this is a double sum over
the product of four Clebsch–Gordan coefficients. This is clearly a rather complicated object;
Racah was the first to simplify this expression by various summation manipulations and to
rewrite it as a single sum [27].

The Racah coefficient has a number of symmetries that can be deduced from symmetry
properties of Clebsch–Gordan coefficients. In this context, it is appropriate to introduce the
so-called 6 j-coefficient. Wigner was the first to introduce the 6 j-coefficient in his Princeton
Lectures (1940), published much later in [43]. They take the form{

a
d

b
e

c
f

}
:= (−1)a+b+d+e

Ua,b,c
d,e, f√

(2c + 1)(2 f + 1)
,

where (a, b, c), (d, e, c), (d, b, f ) and (a, e, f ) are triads. Then the 6 j-coefficient is invariant un-
der any permutation of its columns, or under the interchange of the upper and lower arguments
in each of any two columns.

Even more, one can also use the Regge symmetries of the Clebsch–Gordan coefficients,
and obtain similar symmetries for the 6 j-coefficient. In order to describe these, let the Regge
array for the 6 j-coefficient be defined as the 3 × 4 array [31]{

a
d

b
e

c
f

}
= R6 j


d + e − c b + d − f a + e − f a + b − c
d + f − b c + d − e a + c − b a + f − e
e + f − a b + c − a c + e − d b + f − d

 .
Then the value of the Regge array is invariant under any permutation of its rows or columns.
Note that the arguments of the Regge array are such that all entries are nonnegative integers,
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and the differences between corresponding elements of rows (resp. columns) are constant.
Conversely, every 3 × 4 array of nonnegative integers with this property corresponds to a
Regge array, or a 6 j-coefficient.

As mentioned, Racah managed to obtain a single sum expression for the Racah coefficient
(or 6 j-coefficient). A simple method to obtain this single sum expression from (12.4.5) is
outlined in [39] or in [37]. The final result is:

Proposition 12.4.1 Let a, b, c, d, e, f ∈ 1
2N, where (a, b, c), (d, e, c), (d, b, f ) and (a, e, f )

are triads. Then the 6 j-coefficient is given by{
a
d

b
e

c
f

}
= ∆(a, b, c) ∆(c, d, e) ∆(a, e, f ) ∆(b, d, f )

×
∑

k

(−1)k (1 + k)!
(k − t1)! (k − t2)! (k − t3)! (k − t4)! (c1 − k)! (c2 − k)! (c3 − k)!

. (12.4.6)

Herein, the ti correspond to the four triad sums (t1 = a + b + c, t2 = d + e + c, t3 = d + b + f ,
t4 = a + e + f ) and the ci correspond to the sums of two columns (c1 = a + d + b + e,
c2 = a + d + c + f , c3 = b + e + c + f ). The sum is over all integer k-values such that all
factorials assume nonnegative arguments, and ∆ is defined by (12.3.5).

By replacement of the summation variable in (12.4.6), one can (under certain assumptions)
rewrite the sum in terms of a 4F3 series:{

a
d

b
e

c
f

}
=

(−1)b+c+e+ f ∆(a, b, c) ∆(c, d, e) ∆(a, e, f ) ∆(b, d, f )
(b + c − a)! (c − d + e)! (e + f − a)! (b − d + f )!

×
(1 + b + c + e + f )!

(a + d − b − e)! (a + d − c − f )!

× 4F3

(
a − b − c, d − b − f , a − e − f , d − c − e

−b − e − c − f − 1, a + d − b − e + 1, a + d − c − f + 1
; 1

)
. (12.4.7)

This expression is valid for a + d ≥ b + e and a + d ≥ c + f (which can always be assumed
after applying a symmetry corresponding to a permutation of columns of the 6 j-coefficient).
The 4F3 in (12.4.7) is a terminating balanced 4F3 of unit argument; for such series there exist
transformation formulas due to Whipple [41], [4, Theorem 3.3.3]. This allows the relation
between 6 j-coefficients and 4F3 series to be written in various forms, see [38]. One of these
forms is{

a
d

b
e

c
f

}
= (−1)b+c+e+ f (2b)! (b + c − e + f )! (b + c + e + f + 1)!

∇(b, a, c)∇(c, d, e)∇( f , a, e)∇(b, d, f )

× 4F3

(
a − b − c, d − b − f ,−a − b − c − 1,−b − d − f − 1

−2b,−b − c + e − f ,−b − c − e − f − 1
; 1

)
, (12.4.8)

where

∇(a, b, c) =
√

(a + b − c)! (a − b + c)! (a + b + c + 1)! / (−a + b + c)! . (12.4.9)
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Expression (12.4.8) is valid for all possible arguments of the 6 j-coefficient, provided of course
that (a, b, c), (d, e, c), (d, b, f ) and (a, e, f ) are triads.

Let us rewrite:

n = −a + b + c, x = b − d + f , α ≡ −N − 1 = −1 − b − c + e − f ,

β = −1 + f − b − c − e, γ = −2b − 1, δ = −2 f − 1.

Let b, c, e and f be fixed numbers (parameters), with e− f ≥ |b− c| and e− c ≥ |b− f |. Then
a and d can be thought of as variables, with a varying between e − f and b + c, and d running
from e − c to b + f . In terms of the new parameters/variables, this means that N is a fixed
nonnegative integer parameter, and x and n are nonnegative integer variables with 0 ≤ x ≤ N
and 0 ≤ n ≤ N. The 4F3-series of (12.4.8) is of the following form:

Rn(λ(x);α, β, γ, δ) := 4F3

(
−n, n + α + β + 1,−x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1
; 1

)
, λ(x) := x(x+γ+δ+1).

This is the Racah polynomial Rn(λ(x)) ≡ Rn(λ(x);α, β, γ, δ), see [22, (9.2.1)]. The orthogo-
nality of the Racah coefficients – appropriately rewritten – is equivalent to the orthogonality
relation [22, (9.2.2)] of Racah polynomials. The orthogonality of Racah coefficients is of his-
torical importance: it motivated J. A. Wilson to introduce Racah polynomials in his Ph.D.
thesis [44] (1978). Soon afterwards, this led Askey and Wilson to q-Racah polynomials and
Askey–Wilson polynomials [5, 6].

The coupled vectors (12.4.2a), (12.4.2b) in D j1 ⊗ D j2 ⊗ D j3 , related by Racah coefficients,
are examples of binary coupling schemes [9, 37]. In an obvious notation, this reads:

e(( j1 j2) j12 j3) j
m =

j,m

j

jjj

12

321

, e( j1( j2 j3) j23) j
m =

j,m

j

jjj 321

23 , (12.4.10)

and to express one type in terms of the other, one uses Racah coefficients, see (12.4.4a) or
(12.4.4b).

Consider now the tensor product of four su(2) representations D j1 ⊗ D j2 ⊗ D j3 ⊗ D j4 . Us-
ing (12.4.4a) twice, according to the order

12

4321

123

jjj

j,m

j

j

j

→
3412

4321

j,m

jj

jjjj

→
234

34

4321 jjj

j

j,m

j

j

one has

e((( j1 j2) j12 j3) j123 j4) j
m =

∑
j34, j234

U j12, j3, j123
j4, j, j34

U j1, j2, j12
j34, j, j234

e( j1( j2( j3 j4) j34) j234) j
m . (12.4.11)

Alternatively, one can use (12.4.4a) three times according to a different order:

12

4321

123

jjj

j,m

j

j

j

→
123

431 2

j,m

k

j

jjjj

→
234

4321

j,m

k

j

jjjj

→
234

34

4321 jjj

j

j,m

j

j
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Then

e((( j1 j2) j12 j3) j123 j4) j
m =

∑
k, j234, j34

U j1, j2, j12
j3, j123,k

U j1,k, j123
j4, j, j234

U j2, j3,k
j4, j234, j34

e( j1( j2( j3 j4) j34) j234) j
m . (12.4.12)

Comparison of (12.4.11) with (12.4.12) yields [7, 14]:

Theorem 12.4.2 The Racah coefficients of su(2) satisfy the following identity, known as
the Biedenharn–Elliott identity:

U j1, j2, j12
j34, j, j234

U j12, j3, j123
j4, j, j34

=
∑

k

U j1, j2, j12
j3, j123,k

U j1,k, j123
j4, j, j234

U j2, j3,k
j4, j234, j34

.

In terms of 6 j-coefficients, this can be rewritten as:∑
x

(−1)J+x(2x + 1)
{

a
c

b
d

x
p

}{
c
e

d
f

x
q

}{
e
b

f
a

x
r

}
=

{ p
e

q
a

r
d

} {
p
f

q
b

r
c

}
,

where J = a+b+c+d+e+ f +p+q+r, and all labels are representation labels (elements of 1
2N).

The sum is over all x (in steps of 1) with max(|a−b|, |c−d|, |e− f |) ≤ x ≤ min(a+b, c+d, e+ f ).

The Biedenharn–Elliott identity can be considered as a master identity for special func-
tions, since it gives rise to many known identities for orthogonal polynomials as limit cases
(sometimes after analytic continuation); see e.g. [37, §5.5].

12.5 The 9 j-coefficient

Consider again the tensor product of four su(2) representations D j1 ⊗D j2 ⊗D j3 ⊗D j4 , and the
vectors corresponding to the following couplings:

v = e(( j1 j2) j12( j3 j4) j34) j
m =

3412

321 4

j,m

jj

jjjj

(12.5.1a)

v′ = e(( j1 j3) j13( j2 j4) j24) j
m =

2413

4231

j,m

jj

jjjj

(12.5.1b)

In terms of Clebsch–Gordan coefficients, these read:

v =
∑

m1 ,m2 ,m3 ,m4
j12 , j34

C j1, j2, j12
m1,m2,m12C

j3, j4, j34
m3,m4,m34C

j12, j34, j
m12,m34,m e j1

m1 ⊗ e j2
m2 ⊗ e j3

m3 ⊗ e j4
m4 , (12.5.2a)

v′ =
∑

m1 ,m2 ,m3 ,m4
j13 , j24

C j1, j3, j13
m1,m3,m13C

j2, j4, j24
m2,m4,m24C

j13, j24, j
m13,m24,m e j1

m1 ⊗ e j2
m2 ⊗ e j3

m3 ⊗ e j4
m4 . (12.5.2b)
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The matrix relating the basis (12.5.1a) and (12.5.1b) consists of the 9 j-coefficients. More
precisely, one defines [43]

j1 j2 j12

j3 j4 j34

j13 j24 j

 :=
〈e(( j1 j2) j12( j3 j4) j34) j

m , e(( j1 j3) j13( j2 j4) j24) j
m 〉√

(2 j12 + 1)(2 j34 + 1)(2 j13 + 1)(2 j24 + 1)
. (12.5.3)

Since the two bases (12.5.2a), (12.5.2b) are orthonormal, the corresponding transformation
matrix is orthogonal, and this leads to orthogonality relations of 9 j-coefficients:

∑
j12, j34

(2 j12 + 1)(2 j34 + 1)


j1 j2 j12

j3 j4 j34

j13 j24 j




j1 j2 j12

j3 j4 j34

j′13 j′24 j

 =
δ j13, j′13

δ j24, j′24

(2 j13 + 1)(2 j24 + 1)
. (12.5.4)

From (12.5.2a), (12.5.2b) it is clear that the 9 j-coefficient can be written as a multiple sum
over the product of six Clebsch–Gordan coefficients. Rewriting this in terms of 3 j-coefficients
yields, in an appropriate notation:

a b c
d e f
g h j

 =
∑
all m

(
a

ma

b
mb

c
mc

) (
d

md

e
me

f
m f

) (
g

mg

h
mh

j
m j

) (
a

ma

d
md

g
mg

) (
b

mb

e
me

h
mh

) (
c

mc

f
m f

j
m j

)
.

(12.5.5)
Alternatively, just as in (12.4.12), the two vectors (12.5.1a) and (12.5.1b) can be related
through the product of Racah coefficients, according to

3412

321 4

j,m

jj

jjjj

→
34

3421

j,m

x

j

jjjj

→
24

4231

j,m

x

j

jjjj

→
2413

4231

j,m

jj

jjjj

This leads to a single sum over the product of three Racah coefficients for the 9 j-coefficient.
When rewritten in terms of 6 j-coefficients, this gives:

a b c
d e f
g h j

 =
∑

x

(−1)2x(2x + 1)
{

a
f

b
j

c
x

}{
d
b

e
x

f
h

}{
g
x

h
a

j
d

}
. (12.5.6)

From symmetry properties of 3 j and 6 j-coefficients and by (12.5.5) and (12.5.6), one obtains
the symmetries of 9 j-coefficients. The 9 j-coefficient is, up to a sign, invariant with respect
to permutations of its columns, permutations of its rows, and under transposition. Even per-
mutations (and transposition) leave the 9 j-coefficient unchanged, whereas odd permutations
introduce a factor (−1)J , where J is the sum of all nine arguments of the 9 j-coefficient.

Just as the orthogonality of 3 j and 6 j-coefficients can be related to the orthogonality of
a discrete polynomial, this can be done for the 9 j-coefficient. For this purpose, write the
arguments as 

a b a + b − x
c d c + d − y

a + c − m b + d − n a + b + c + d − N

 ,
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where m, n, x and y take nonnegative integer values with m+n ≤ N and x+y ≤ N. This expres-
sion can be written as a factor times Rm,n(x, y) ≡ Rm,n(x, y;α, β, γ, δ,N), where Rm,n(x, y) is a
polynomial of degree N−n in λ(x) = x(x+α+β+1) and of degree N−m in µ(y) = y(y+γ+δ+1),
and where (α, β, γ, δ) is equal to (−2a − 1,−2b − 1,−2c − 1,−2d − 1) [36] (see also [28] for a
different approach). The orthogonality relation (12.5.4) then reads:

N∑
x=0

N−x∑
y=0

w(x, y)Rm,n(x, y)Rm′,n′ (x, y) = δm,m′δn,n′hm,n, (12.5.7)

where w(x, y) is some expression in x, y and the five parameters α, β, γ, δ,N, and hm,n is an
expression involving m, n and the same five parameters. So the Rm,n(x, y) are a discrete version
of orthogonal polynomials on the triangle (see §2.3.3 in Chapter 2 for the continuous case).
In terms of the common convention for Pochhammer symbols, the weight function is

w(x, y) =
(−1)x+y(−N)x+y

x!y!(α + β + γ + δ + N + 3)x+y

(α + 1)x(δ + 1)y

(β + 1)x(γ + 1)y

×
(α + β + 1)x(α + β + 2)2x

(α + β + 1)2x(α + β + N + 2)x−y

(γ + δ + 1)y(γ + δ + 2)2y

(γ + δ + 1)2y(γ + δ + N + 2)y−x
;

the expression for hm,n is more complicated [36].
Although (12.5.7) looks like a neat two-variable extension of the orthogonality of Hahn

and Racah polynomials, the setback is that the known forms of the expression Rm,n(x, y) are
complicated. Although the transposition symmetry for the 9 j-coefficient implies a duality be-
tween (m, n) and (x, y), none of the known expressions for Rm,n(x, y) [36] displays this duality
explicitly (see also [17]). Furthermore, no difference operators are known for which Rm,n(x, y)
are eigenfunctions. Ideally, one would expect a double sum expression of hypergeometric
type for Rm,n(x, y). So far, such an expression is not available. This is because all known ex-
pressions of 9 j-coefficients are rather involved. One such form is obtained as follows: one
starts from a formula similar to (12.5.5) but expressing the product of one 3 j-coefficient with
the 9 j-coefficient as an essentially double sum over the product of five 3 j-coefficients. Then,
making appropriate choices for the projection numbers appearing in these 3 j-coefficients (i.e.
choices that reduce some 3 j’s to closed forms), this gives for the 9 j-coefficient an expression
as a double sum over the product of three 3 j-coefficients (times factors). So using (12.3.8),
this reduces to a fivefold summation expression. It is not too difficult to see that one of these
summations can be performed due to Vandermonde’s theorem [4, Corollary 2.2.3], leaving a
complicated fourfold summation expression for the 9 j-coefficient. This fourfold expression
can be found in some books, e.g. in [38] and in [19].

Ališauskas & Jucys [3] went on manipulating this fourfold sum expression, changing sum-
mation variables in several ways, and by this tour de force they managed to perform one
further sum (again using Vandermonde’s theorem) and finally ended up with a triple sum
series for the 9 j-coefficient [3]. Their method was later reproduced in the book by Jucys
& Bandzaı̆tis [19]. Much later, Rosengren [32] deduced Ališauskas’s triple sum series in a
simpler way: starting from the single sum over the product of three 6 j-coefficients (12.5.6),
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expressing these coefficients as single sums through (12.4.6) or an alternative single sum,
then manipulating the summation variables such that one summation can be performed using
a summation formula for a very well poised 4F3(−1) series [4, Corollary 3.5.3] following from
a limit of Dougall’s formula [4, Theorem 3.5.1], and thus ending up with a triple sum series.

Ališauskas [1, 2] later derived several triple sum series, also for the q-case. We present one
form here:

a b c
d e f
g h j

 = (−1)c+ f− j∇(d, a, g)∇(b, e, h)∇( j, g, h)
∇(d, e, f )∇(b, a, c)∇( j, c, f )

×
∑
x,y,z

XxYyZz
(a + d − h + j − y − z)!

(−b + d − f + h + x + y)!(−a + b − f + j + x + z)!
(12.5.8)

with

Xx = (−1)x (2 f − x)! (d + e − f + x)! (c − f + j + x)!
x! (e + f − d − x)! (c + f − j − x)!

,

Yy = (−1)y (−b + e + h + y)! g + h − j + y)!
y! (2h + 1 + y)! (b + e − h − y)! (g − h + j − y)!

,

Zz = (−1)z (2a − z)! (−a + b + c + z)!
z! (a + d + g + 1 − z)! (a + d − g − z)! (a − b + c − z)!

.

Herein ∇(a, b, c) has been defined in (12.4.9) and the sum in (12.5.8) is over all integer
values of x, y and z such that all factorials in the summation are nonnegative. Srinivasa
Rao [33] rewrote this expression as a triple hypergeometric series (generalizations of Ap-
pell’s series, see Chapter 3), and deduced some identities from this for so-called stretched
9 j-coefficients [34].

12.6 Beyond 9 j: graphical methods

More generally, one can consider the tensor product of n+1 irreducible unitary representations
of su(2) and their related 3n j-coefficients. In the tensor product V = D j1 ⊗ D j2 ⊗ · · · ⊗ D jn+1 ,
a basis (the uncoupled basis) is given by e( j1)

m1 ⊗ e( j2)
m2 ⊗ · · · ⊗ e( jn+1)

mn+1 , where mi is a projection
of ji. Just as in (12.5.1a), coupled basis vectors can be defined by means of binary coupling
schemes. The idea is a simple extension of the two ways in which the tensor product of three
representations can be “coupled”, see (12.4.1). Of course, as n increases, the number of ways
that representations can be coupled also increases. A 3n j-coefficient is then, as in (12.5.3),
proportional to the inner product of two vectors corresponding to different couplings. E.g.,
when n = 4, there are essentially two distinct 12 j-coefficients (that do not reduce to products
of 9 j and/or 6 j-coefficients). The 12 j-coefficient of the first type corresponds to the inner
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product of the vectors described by

1234

123

12

54321

j,m
j

j
j

jjjj j

4235

235

35

53241

j,m
j

j
j

jjjjj

,

and the 12 j-coefficient of the second type to

j

jj

jjjjj

j,m

21 4

2345

4523

53

j
j,m

jj

jjjj j

1234

3412

54321

.

Since 3n j-coefficients relate two sets of orthonormal basis vectors, they satisfy an orthog-
onality relation like (12.5.4). For 12 j-coefficients, this orthogonality relation involves a triple
sum, see e.g. [38, §10.13]. As far as we know, orthogonality relations for 12 j-coefficients or
higher have not explicitly been related to the orthogonality of discrete multivariable polyno-
mials. But there exist other interesting interpretations: for example, 3n j-coefficients have been
identified as connection coefficients between orthogonal polynomials in n variables [25].

From the above example of 12 j-coefficients, it is clear that in general a 3n j-coefficient is
determined by two binary coupling schemes T1 and T2 on n + 1 elements. Just as in the case
of the 9 j-coefficient (see the sequence of binary coupling schemes preceding (12.5.6)), one
can find a sequence of binary coupling schemes starting with T1 and ending with T2, such that
two consecutive elements in the sequence are related through an elementary transformation
(i.e., a transformation turning the left-hand side of (12.4.10) into its right-hand side). Conse-
quently, as in (12.5.6), this yields an expression of the 3n j-coefficient as a (multiple) sum over
products of 6 j-coefficients. This method is usually referred to as the method of trees, see [9,
Topic 12]. It involves combinatorial problems (enumeration of all binary coupling schemes),
and interesting graph theoretical problems (e.g. finding the shortest sequence to go from T1 to
T2 by means of elementary transformations), see [16].

The method of trees, as described here briefly, is still quite general: e.g., it could also be
applied to 3n j-coefficients of su(1, 1) [37]. For 3n j-coefficients of su(2), there exists however
a more powerful method, namely that of Jucys graphs. The Jucys graph of a 3n j-coefficient is
obtained by “gluing” the n + 1 leaves of the binary coupling trees T1 and T2 together (thereby
deleting these leaves as vertices of the resulting graph) and connecting their two roots by an
extra edge, thus yielding a cubic graph. On such a cubic graph, various transformations or
rules can be applied, which reduce the cubic graph (four basic reduction rules are sufficient,
see [15]). Each reduction rule yields a certain contribution to a formula, and in this way
new expressions can be obtained for 3n j-coefficients. This graphical method of Jucys has
become an art of its own, leading to magnificent formulas relating sums over products of
3n j-coefficients; see [20, 38, 12].
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