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Abstract—In music analysis, one of the most fundamental tasks
is note onset detection — detecting the beginning of new note
events. As the target function of onset detection is related to
other tasks, such as beat tracking or tempo estimation, onset
detection is the basis for such related tasks. Furthermore, it
can help to improve Automatic Music Transcription (AMT).
Typically, different approaches for onset detection follow a similar
outline: An audio signal is transformed into an Onset Detection
Function (ODF), which should have rather low values (i.e. close
to zero) for most of the time but with pronounced peaks at onset
times, which can then be extracted by applying peak picking
algorithms on the ODF. In the recent years, several kinds of
neural networks were used successfully to compute the ODF
from feature vectors. Currently, Convolutional Neural Networks
(CNNs) define the state of the art. In this paper, we build up
on an alternative approach to obtain a ODF by Echo State
Networks (ESNs), which have achieved comparable results to
CNNs in several tasks, such as speech and image recognition.
In contrast to the typical iterative training procedures of deep
learning architectures, such as CNNs or networks consisting
of Long-Short-Term Memory Cells (LSTMs), in ESNs only a
very small part of the weights is easily trained in one shot
using linear regression. By comparing the performance of several
feature extraction methods, pre-processing steps and introducing
a new way to stack ESNs, we expand our previous approach to
achieve results that fall between a bidirectional LSTM network
and a CNN with relative improvements of 1.8 % and —1.4 %,
respectively. For the evaluation, we used exactly the same 8-fold
cross validation setup as for the reference results.

Index Terms—Reservoir computing, echo state networks, note
onset detection.

I. INTRODUCTION

Note onset detection — detecting the beginning of new
musically relevant note events in an acoustic signal — is often
used as a starting point for related high-level-tasks, such as note
beat tracking or tempo estimation. Furthermore, onset detection
can support multipitch tracking [1], in which all active notes
present in an audio signal should be detected. In [2], we have
provided an extensive review on onset detection. The main
outline for onset detection can be summarized as follows: An
audio signal is transformed into an Onset Detection Function
(ODF). In the ideal case, the ODF is (very close to) zero for
most of the time. In case of onsets, the ODF has pronounced
peaks. By applying peak picking algorithms on the ODF, the
onset times are extracted. In recent studies [3]—[5]], different
neural networks such as bidirectional LSTM networks and

CNNs have been introduced as state of the art in learning
an ODF from input feature vectors. This led to F'-Measures
(defined later) of 0.873 and 0.903 on the Bock dataset [6]]. The
CNN approach [5] is the current state of the art.

In our previous study [2] that also includes a detailed review
about onset detection, we have introduced Echo State Networks
(ESNs) to learn the ODF from input feature vectors. The
best result (F-Measure of 0.806) there was obtained with a
bidirectional ESN with 8000 neurons. This was promising, but
still far behind the state of the art.

In this paper, we build upon our preliminary results in [2]]
and expand it in several directions:

o We compare different approaches for standardization of

the feature vectors.

o We explore the impact of using different window lengths
and the concatenation of different feature vectors.

o We investigate whether the first and second derivatives
as additional features both provide additional information
for the ESN.

o We propose a novel way of stacking ESNs and show that
this strongly improves the performance of onset detection.

The remainder of this paper is structured as follows. Section
presents a brief introduction the outline of onset detection
with ESNs, introducing the proposed extensions. The experi-
mental setup including the dataset used is described in Section
Section continues with a detailed discussion of the
different experiments conducted for this work, and the results
are compared to the current state of the art. Finally, in Section
we summarize our conclusions and give a brief overview
about the future work.

II. ONSET DETECTION WITH ECHO STATE NETWORKS

Echo State Networks (ESNs) [7] belong to the family
of Recurrent Neural Networks (RNNs). In contrast to the
typical iterative training procedures of RNNs and deep-learning
architectures, in ESNs only a very small part of the weights is
trained in one shot using linear regression.

The recurrent connections inside the reservoir, the core
element of an ESN, can retain information from previous
inputs for a certain amount of time. This so-called memory is
tuned by the hyper-parameters of the reservoir and leads to a
short or long-term memory. Typically, the neurons inside the
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Fig. 1: Outline of the ESN-based proposed model from [_2]]: The mono input signal s[k] with the sample index k was divided

into overlapping frames, from which normalized feature vectors

u[n] were extracted and fed into the reservoir using the input

weight matrix W". The reservoir consists of unordered and, via the reservoir matrix W', sparsely connected neurons. The
one-dimensional output y[n] is a linear combination of the reservoir states r[n] and the output weight matrix W°U*, which was
trained using linear regression. The output served as the ODF, in which onsets were extracted using a peak picking algorithm.

reservoir have non-linear activation functions, such as sigmoidal
activations. Because the number of reservoir neurons is usually
much higher than the number of input features, the reservoir
transforms the low-dimensional input space non-linearly into a
high-dimensional feature space, which facilitates the separation
of the input space with hyper-planes. The desired output is thus
a multi-linear function of the transformed features. The main
outline of the proposed ESN-based model for onset detection
is depicted in Fig. [}

A. Framing

The mono input signal s[k] with the sample index k and a
sampling frequency of 44.1 kHz was divided into overlapping
frames with a frame rate of 100 Hz and the frame index n.
Each frame was windowed using a Hann window. In [3[]-[5],
feature were extracted using several window lengths of 1024,
2048 and 4096 without elaborating the motivation in details.
In this paper, we explored the impact of different window
sizes more in detail. Therefore, we extracted features in the
following settings:

o We used window sizes of 1024, 2048 and 4096 samples
individually to extract features. This allowed us to inves-
tigate, whether and how different window sizes can help
detecting different types of onsets more robustly.

o Next, we concatenated the extracted feature vectors from
different window sizes to obtain a much larger feature
vector.

B. Feature extraction

As in [2f], we computed the short-term Fourier transform of
each windowed frame and applied a triangular filterbank with
a logarithmic frequency spacing to every short-term spectrum
to reduce the dimension of the feature vectors. In preliminary
experiments we compared, how different numbers of filters per
octave from 1 to 24 influence the performance of the ESN in
terms of F'-Measure. It turned out that a number of 7 filters per
octave was the most suitable one. Finally, we applied the logy
to the magnitude plus 1 to avoid negative features. The range
of the magnitude was thus bounded between O and around 2.

Onsets are strongly correlated with energy changes in fre-
quency bands. In energy-based approaches for onset detection,

such as [[8]], the “spectral flux” — the half-wave rectified first
order difference along time — was used as a feature to obtain
an ODF. We adapted this, and used a first order difference filter
kernel with a size of 3 to compute the differences based on
one feature vector before and after the current frame. Negative
differences were set to zero, and this half-wave rectified vector
appended to the features described above.

In phoneme recognition [9]], the second derivative is often
used as an additional feature, because it can capture dynamic
information. In this work, we investigated whether the second
derivative provides additional useful information to the ESN.
The second derivative can be particularly useful to detect very
soft onsets, as they are followed by a long attack phase. Thus
we applied the same filter kernel again on the first derivatives
computed before, and set negative values to zero. We also
appended this half-wave rectified vector to the feature described
before.

Before feeding the feature vectors in the ESN, we compared
different standardization methods:

o No standardization at all

e 2z-SCOre over time

e 2z-score over time and features

e Subtract about half the maximum value from all features
and thus convert them from unipolar to bipolar values.

C. Echo State Network (ESN)

The main outline of an ESN is depicted in the center of
Fig. [1} It basically consists of three weight matrices. The input
weights W™ pass the input features to the reservoir, which is an
unordered group of N'®° neurons. The reservoir weights WS
connect the neurons inside the reservoir to each other. The
output weights W°" connect the neurons inside the reservoir
with the output nodes.

Both, W and W', are initialized from random distribu-
tions. The reservoir weights W*** needs to fulfill the Echo State
Property (ESP), which says that, for a finite input sequence, the
reservoir states need to decay in a finite time [[7]. This is done
by normalizing W' to its maximum absolute eigenvalue.

The key difference between ESNs and typical RNN architec-
tures is that both, W™ and W™ are initialized, fixed and no



more optimized during the training. Only the output weights
Weut are trained using linear regression.

With r[n] representing the reservoir state, Equations (T]) and
(2) are used to describe ESNs.

r[n] =(1 — Arfn — 1]+

Moee(Wnuln] + Wl — 1)+ w)

y[n] = W°r[n] )

Equation (T) is a leaky integration of the reservoir states
r[n] with A € (0, 1] being the leakage, and fies(-) is the non-
linear reservoir activation. We used the tanh-function, because
its lower and upper boundaries of 1 ensure stable reservoir
states, and it is two times steeper than the sigmoid activation.
Every neuron in the reservoir has a constant bias input from
the bias weight vector wPl which is initialized and fixed from
a uniform distribution between +1. Equation shows that
the one-dimensional output y[n] is a linear combination of a
given reservoir state r{n].

For training, all reservoir states are collected in the reservoir
state collection matrix R. To add the intercept term for linear
regression, every reservoir state r[n| is expanded by a constant
of 1. The desired outputs d[n], which are 0 for non-onsets,
1 for onsets and 0.5 for frames around onsets, are collected
into the desired output collection vector D. Afterwards, W°ut
is obtained using regularized linear regression (3)), i.e. ridge
regression to prevent overfitting to the training data. The
regularization parameter e = 0.01 penalizes large values in
Weutand T is the identity matrix. The size of the output
weight matrix N°" x (N 4+ 1) determines the total number
of free parameters to be trained in ESNs. The output y[n]
corresponds to the onset detection function ODF.

3)

An ESN has several control parameters, which need to be
tuned for onset detection: «,, p, and ay; control the absolute
importance of the input feature vector, old reservoir state and
the constant bias inputs, respectively. They are global scaling
factors of the weight matrices W', W™ and wP'. The leakage
A is a control parameter for the leaky integration and adapts
the input dynamics to the output dynamics.

The initialization of an ESN for onset detection has been
studied more detailed in [2].

The basic ESN described so far, can be extended in several
directions. Here, we focus on bidirectional reservoirs and
propose a novel kind of stacked reservoirs.

1) Bidirectional reservoirs: In the case of bidirectional
reservoirs, the input is first fed through the ESN and the
reservoir states are collected as described before. Afterwards,
the input is in reversed time and again fed through the ESN.
These new reservoir states are again reversed in time and
collected as described before. Finally, the reservoir states of
both directions are concatenated and the output was computed

Wt = (RRT + 1) ' (DR")

using the concatenated reservoir states. This doubled the
number of free parameters in W°". For example, the number
of parameters for a reservoir with 500 reservoir neurons in
the bidirectional case is 500 in the forward and 500 in the
backward path. The final training and computation of the output
remained the same as before.

2) Stacked reservoirs: In the case of stacked reservoirs, the
layers are trained sequentially using the same desired outputs
in every layer. Typically, after fixing the hyper-parameters for
one layer, its output can serve as the input for the next layer. By
stacking reservoirs, the temporal modeling capacity of a single
layer model is extended. This can be done for unidirectional
as well as for bidirectional reservoirs.

In [9], [10]], it was shown that this improved the results
for phoneme or image recognition. However, those tasks are
considerably different from onset detection, especially in the
number of outputs. In those classification tasks, the second
reservoir that received the output of the first reservoir, could
determine a relationship between the different classes.

Thus, in this paper, we present a novel way of stacking
reservoirs: In onset detection, we have a one-dimensional
output, e.g. the ODF. Feeding the second reservoir just with
one input provides only a narrow window of opportunities to
improve the ODF. To overcome this problem, in this work, we
fed the original feature vectors into the second reservoir, and
used the ODF output of the first reservoir as a time-varying
bias for the nodes of the second reservoir. Thus, each neuron
in the second reservoir is still only connected to a limited
number of K™ inputs and K¢ other neurons in the reservoir.
Additionally, every node inside the second reservoir receives
the ODF computed before, because the bias term is fully
connected.

D. Peak picking

In [2], we have discussed that the output of an ESN after
linear regression indicated an onset or non-onset, and would
be zero for a non-onset and one for an onset, ideally. We used
exactly the same peak picking algorithm as in our previous
study. The algorithm itself was originally proposed in [3]. It is
a simple threshold-based peak picking algorithm. At first, the
ODF was smoothed using a Hamming window with 5 samples.
Next, local maxima greater than a tunable threshold § were
detected. The locations of the resulting peaks were considered
to be onsets.

III. EXPERIMENTAL SETUP
A. Dataset

For training and evaluation of the ESN models, we used the
dataset introduced by Bock in [|6]. It consists of around 102 min
of audio files sampled at 44.1 kHz and 27 700 annotated onsets.
The database is already split into eight folds for an 8-fold cross
validation. We used six folds to train the ESN and one subset
as a validation set to tune the hyper-parameters. Afterwards, we
rotated the folds and repeated the optimization for another set
of training and validation folds. This procedure was repeated
eight times until every subset has been used for validation



exactly one time. The hyper-parameters for the final evaluation
were obtained by determining the lowest mean loss across all
eight validation losses.

After fixing the hyper-parameters, the final model was trained
using seven folds and tested on the last unseen fold. Again,
this was repeated for eight times until each fold has been used
for testing exactly one time. The results we report later are the
mean values across the eight repetitions.

The dataset consists of all important types of onsets and
various musical genres. Because the dataset was already used
for several evaluations of algorithms for onset detection, we
could directly compare the results of our cross-validation with
state-of-the-art algorithms.

B. Measurements

As in [2], we compared our results with the state-of-the-art
algorithms and report different measures using the madmom-
library [11]] with the same settings as used in [5]]. The detected
onset times were compared to the reference onset times. If
an onset was detected in a time-window of +25ms around
a reference, it was considered as a true positive (TP). If no
onset was detected in the window around a reference, it was
considered as a false negative (FN). If any onset was detected
outside the window, it was a false positive (FP). With these
notations, the measurements precision P (Eq. @), recall R
(Eq. (B)), F-Measure F' (Eq. (6)) are defined. For a detailed
description of the measurements, we refer to [2].

TP

P=T517p @
TP

B=Tp 1PN )
P-R

F=2. 6
PtR ©)

In this work, F' served as the objective function to determine
the peak picking threshold 9.

C. Implementation and optimization strategy

The algorithm was developed in Python 3 and will be
available within a jupyter notebook in our Github repositor
soon. Table [[| shows the hyper-parameters to be optimized. The
optimization process was conducted using a sequence of grid
and line searches. The optimization workflow to fix the ESNs
hyper-parameters consisted of three steps:

1) We started with a grid search across «a, and p to
determine a trade-off between forward and recurrent
connections. Therefore, the other hyper-parameters were
neutralized, i.e. no bias (ap; = 0.0) and no leaky
integration (A = 1.0).

2) Next, ap,; was optimized without leaky integration (A =
1.0).

Uhttps://github.com/TUD-STKS/PyRCN

TABLE I: List over all hyper-parameters to be tuned. The
values show the search range and the step size. We optimized
the hyper-parameters in a sequence of grid searches.

Hyper-parameter ~ Range Step
Input scaling o, [0.1,1.5] 0.1
Spectral radius p [0, 1.0] 0.1
Bias scaling a,; [0, 10] 0.1
Leakage A (0.0,1.0] 0.1
Threshold & [0.2,0.6] 0.02

3) Finally, A was optimized.

For every parameter combination during this optimization
workflow, the cosine distance between the target and the
computed output was reported on the validation set. This was
done separately for each of the eight folds.

After collecting the cosine distances from all eight folds, the
mean cosine distance over all folds was computed. After each
optimization step, the hyper-parameters leading to the lowest
mean cosine distance were fixed and used for the optimization
of the next parameter.

The reservoir size was fixed to 500 during this optimization
process, and we used a unidirectional reservoir. It has been
shown that the reservoir size tends to be independent from all
other hyper-parameters [10], [12]]. For the later evaluation, it
was increased up to 28 000 neurons, and bidirectional reservoirs
were used.

Considering the stacked ESN, the hyper-parameters were
optimized layerwise. At first, the hyper-parameters for the first
layer were fixed. Since the input features of the second layer
were exactly the same as for the first, we just needed to tune
ap; and A in the second layer.

After fixing all hyper-parameters, the peak picking threshold
0 was determined by maximizing the F'-measure using the
training set of each fold.

IV. RESULTS

In this sections, we present our results. We discuss the impact
of feature engineering and different reservoir architectures on
the onset detection performance.

A. Different standardization methods

To compare different standardization methods, we optimized
single layer models with a window size of 2048 samples,
because many algorithms for onset detection work with this
size. Fig. [2 shows that the models trained without any standard-
ization achieved reasonable results for different reservoir sizes.
Computing the z-score either over time (which is the standard
way to go in many publications) or over both time and feature
achieved worse results. Without any standardization, the feature
vectors were always non-negative and the maximum value was
around 2. By subtracting 1 from the feature vectors, they were
transformed into bipolar values between 1, which is exactly
the linear range of the tanh non-linearities inside the reservoir.
From Fig.[2]it can be seen that using this standardization worked
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almost equivalently well as no standardization at all. Of course,
when doing further pre-processing, such as decorrelation, the
z-score might be the best choice.
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Fig. 2: Different ways of standardization: No standardization
or subtracting 1.0 achieved nearly equal results. Any kind of
statistical normalization removed important information from
the features.

B. Different window sizes

To compare different window sizes, we optimized single
layer models with the window sizes 1024, 2048 and 4096
samples. The current state of the art utilized a combination
of those three window lengths. As can be seen in Fig. 3
the smallest window always leads to the lowest F'-Measure.
Furthermore, there is no real improvement when increasing
the reservoir size Nyes. A reason is that only relatively high fj
values can be considered using the small window. However, in
music, the fy can reach quite low frequency bands. Thus, larger
windows led to significant improvements for every reservoir
size.
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Fig. 3: Detection results using different window sizes: A size of
1024 samples alone is not suitable for general onset detection.
At least for larger reservoirs, window sizes of 2048 and 4096
performed equally. Combining several window sizes performed
much better.

Especially when increasing N, there is almost no dif-
ference between the window lengths 2048 and 4096. Our

investigation on tuning the model based on the kind of onset
(hard and soft) showed that shorter windows are suitable for
processing percussive instruments, while a model trained with
a window length of 2048 was able to deal with a wide range
of tonal instruments. Very soft onsets, as they occur e.g. for
singing voice or bowed string instruments, were recognized best
by the model trained with a window length of 4096 samples.
If we concatenate the features extracted with the different
window length, we obtain a larger feature vector that contains
enough information to process different kinds of onset types.
Thus, we can see in Fig. [3| that the models using this extended
feature vector achieved the best results. The state of the art
also used the same combination of different window lengths.
It is important to notice that, in contrast to typical RNN
models, the number of free parameters to train ESNs does not
increase with larger numbers of features. Instead, the number
of trainable parameters just depends on the reservoir size and
the number of output nodes. This makes it rather efficient to
develop advanced features with ESNs, because a larger feature
vector does not require a larger amount of training data.

C. Additional second derivative

The second derivative as an additional feature is useful in
case of rather small reservoirs. As can be seen in Fig. [d] the F'-
Measures with and without the second derivative get similar if
the reservoir size is increased and bidirectional. Our conclusion
is that a useful variant of the second derivative can be learned
by the reservoir itself and does not provide much additional
information.
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Fig. 4: For small reservoirs, the second derivative as additional
feature gives the reservoir more information to be processed.
However, in case of larger reservoirs, a more useful variant of
the second derivative can be learned by the reservoir. Using
a bidirectional instead of a unidirectional reservoir always
increased the F'-Measure clearly.

D. Unidirectional vs. bidirectional reservoirs

The state of the art utilized bidirectional LSTM networks
or CNNs, which both incorporate future information. We
compared the impact of supplying additional future information
to a unidirectional model for combined window lengths of
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Fig. 5: Spectrogram and the ODFs for different N™*° and stacked reservoirs. It can be observed that increasing the reservoir

size and stacking reservoirs both improves the ODF.

1024, 2048 and 4096 samples. As can be seen in Fig. [}
this always increased the F'-Measure clearly. We analyzed,
which onset type benefited most from incorporating future
information. It turned out that, once again, soft onsets were
detected better with bidirectional architectures. Because the
attack phase of soft onsets is much longer, we need to provide
the ESN with additional temporal information. While this
failed with the additional second derivative, passing the input
sequence backwards through the ESN, we can provide the ESN
model with a lot of additional information.

E. Stacked reservoirs

So far, the features were optimized, and we have shown that
bidirectional reservoirs, who capture future information, are
performing better than unidirectional reservoirs. From Fig. []
we noticed that a reservoir size of 24 000 neurons did not yet
lead to overfitting. Thus, we further increased the reservoir
size to 28 000 neurons and added a second reservoir with 5000
neurons, which receives the original feature vectors and the
ODF computed by the first reservoir as bias. We have compared
the performance of different reservoir sizes in the second layer,
and 5000 turned out to be the best performing reservoir size.

From Table [[I, we can see a strong impact of the second
reservoir: While the best F'-Measure with a single reservoir
has quite an imbalanced ratio of P and R, the second reservoir
is especially able to increase the Recall. Thus, many missed
onsets, which are likely caused by too small peaks in the ODF,
are recognized now. Those small peaks are strongly emphasized
by the second reservoir, in which every neuron receives the
previous ODF as a bias.

F. State of the art

Comparing our approach with the state of the art, we can
see in Table [[I] that the model consisting of a stacked reservoir

TABLE II: P, R and F for large reservoirs evaluated using the
8-fold cross validation. The reference models were evaluated
on the same dataset by the authors. Our best model (2L-28000b-
5000b) has outperformed the bidirectional LSTM network
and fell short to the CNN [5].

Architecture ‘ P R F Parameters
1L-24000b 0.881 0.804 0.840 48001
2L.-28000b-5000b 0.920 0.855 0.886 66 002
ESN 0.854 0.774 0.812 16 001
Bidirectional LSTM 0.892 0.855 0.873 20225
CNN 0.917 0.889 0.903 289 406

outperformed the bidirectional LSTM network proposed in
by ~ 0.013, but fell short by ~ 0.017 to the CNN proposed in
[5]. Comparing the number of trainable parameters, much more
data is required to train the CNN. Because of the layer-wise
optimization for ESNs, just the weights for one layer need
to be trained jointly. Furthermore, the number of trainable
parameter does not depend on the size of the feature vectors,
which allowed it to simply concatenate features extracted
from different window sizes. Thus, the ESN models proposed
here have more free parameters than the bidirectional LSTM
network, but much less than the CNN.

The training time for the best performing model was around
600 min, measured on a single 2.5 GHz core with around
10 GB RAM.

G. Reservoir analysis

We have seen that the F'-Measure strongly depends on the
reservoir size. To analyze the behavior of different reservoirs
to some extent, an excerpt of the example song “ff123_ATrain”



from the test set is visualized in Fig. [5] The upper plot (Fig.

[Ba) shows the concatenated feature vectors obtained from the
different window lengths 1024, 2048 and 4096 samples. The
bottom third was extracted with a window length of 4096, the
middle third with a window length of 2048, and the top third
with a window length of 1024 samples. The vertical white lines
mark the reference onset positions. We can clearly observe
that different onsets can be captured better with different
window lengths. This supports the advantage of concatenating
the feature vectors from different window lengths.

Fig. [5b] shows the corresponding ODFs, computed using
a unidirectional reservoir with 500 neurons (1L-500u), a
bidirectional reservoir with 5000 neurons (1L-5000b), and
with a layered architecture of two bidirectional reservoirs with
28000 neurons in the first and 5000 neurons in the second
layer (2L-28000b-5000b).

Comparing the ODFs computed by the 1L-500u and the
1L-5000b architectures, we observed that many weak peaks,
such as around the sample 500, get more prominent in case of
the larger bidirectional architecture (1L-5000b). However, the
peak around the sample 530 was not improved, but became
less prominent instead.

A very strong improvement can be noticed by stacking
reservoirs. As we noticed in the orange line plot of Fig. [5b] that
refers to the architecture (2L-28000b-5000b), the ODF is very

clear now, for example around the samples 270, 500 and 570.

Only a few spurious peaks occurred at non-onset positions. One
negative example is the peak around the sample 550, which is
higher than before. As this peak has already appeared in the
ODFs of the one-layer architectures, the two-layer architectures
has emphasized it strongly.

Overall, a second reservoir that receives the feature vectors
together with a useful ODF clearly improves the results from
a single layer architectures.

V. CONCLUSIONS AND OUTLOOK

We showed in detail, how we can develop useful features for
onset detection using ESNs, as we have compared several ways
of feature normalization and the impact of different window
sizes. The z-score, which is often used and recommended as
a pre-processing step, is useful if all features do carry useful
information for the specific task. However, when working with
spectrograms or filterbank outputs, we cannot ensure that all
features contain task-specific information. In that case, the
z-score might over-emphasize exactly those features that do
not carry task-specific information.

We have shown how different window sizes are useful for
different kinds of onsets. Short windows are useful in case of
hard onsets with a quick attack phase, whereas long windows
are more useful to analyze soft onsets with a rather long
attack phase. We showed and elaborated the significant impact
of extracting and concatenating features using three different
window sizes of 1024, 2048 and 4096. One take-away from
the extended feature vectors is that the number of trainable
parameters for ESNs is independent of the feature size. This
is different to typical RNN architectures, in which the number

of free parameter strongly depends on the size of the feature
vector.

We have investigated the second derivative as an additional
feature that could potentially be able to detect soft onsets with a
relatively long attack phase. This only improved the results for
very small reservoirs. We conclude that large reservoirs already
learn a useful variant of the second derivative by themselves.

Furthermore, we have introduced a new kind of stacked
reservoirs by using the ODF computed in one reservoir as the
bias term for the next one, which receives the original feature
vectors as input. This makes it possible for the second reservoir
to improve the ODF a lot, and offers a lot of room for further
investigations: In speech and digit recognition with ESNs [10],
[13]], more than two reservoirs were stacked, which always
improved the results and made it possible to use less neurons
per layer. We will investigate, whether the onset detection also
benefits from additional layers. The original ESN by Herbert
Jaeger includes an additional feedback term with connections
from the output node back to the reservoir neurons. This
is related to the bias term in the second reservoir. We will
incorporate feedback and investigate the impact of feedback
connections. If the feedback it works as the bias in the second
reservoir, we expect improvements in onset detection together
with a reduced number of trainable parameters and significantly
less training and test time. Currently, the training time for the
best performing model on a single 2.5 GHz core with around
10 GB RAM takes around 600 min. If this amount of training
time and the number of free parameters can be reduced, it
would be an important step to include ESNs in real-world
applications.

It is, basically, also possible to combine different classifiers.
We can, for example, use the output of a CNN as a bias for
an ESN in the second layer.

As a future work, one can also combine the systems for onset
detection and multipitch tracking [14]], which is an important
step towards a system for Automatic Music Transcription.
Given that related high-level-tasks, such as beat tracking
or tempo estimation are working with similar peaky target
functions, it would be interesting to investigate, whether the
presented approach can be adapted to such tasks.
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