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ABSTRACT

In this letter, we investigate the impact of environment on integrated and spatially-resolved stel-

lar kinematics of a sample of massive, quiescent galaxies at intermediate redshift (0.6 < z < 1.0).

For this analysis, we combine photometric and spectroscopic parameters from the UltraVISTA and

Large Early Galaxy Astrophysics Census (LEGA-C) surveys in the COSMOS field and environmental

measurements. We analyze the trends with overdensity (1+δ) on the rotational support of quiescent

galaxies and find no universal trends at either fixed mass or fixed stellar velocity dispersion. This is

consistent with previous studies of the local Universe; rotational support of massive galaxies depends

primarily on stellar mass. We highlight two populations of massive galaxies (log M?/M� ≥ 11) that de-

viate from the average mass relation. First, the most massive galaxies in the most under-dense regions

((1+δ) ≤ 1) exhibit elevated rotational support. Similarly, at the highest masses (log M?/M� ≥ 11.25)

the range in rotational support is significant in all but the densest regions. This corresponds to an

increasing slow-rotator fraction such that only galaxies in the densest environments ((1 + δ) ≥ 3.5)

are primarily (90±10%) slow-rotators.This effect is not seen at fixed velocity dispersion, suggesting

minor merging as the driving mechanism: only in the densest regions have the most massive galaxies

experienced significant minor merging, building stellar mass and diminishing rotation without signif-

icantly affecting the central stellar velocity dispersion. In the local Universe, most massive galaxies

are slow-rotators, regardless of environment, suggesting minor merging occurs at later cosmic times

(z . 0.6) in all but the most dense environments.

Keywords: galaxies: kinematics and dynamics - galaxies: evolution

1. INTRODUCTION

Growing evidence from observations of quiescent,

early-type galaxies through cosmic time (e.g., Bezan-

son et al. 2009; van Dokkum et al. 2010; Hilz et al.

2012; Newman et al. 2012; Hilz et al. 2013; Newman

et al. 2013) and from hydrodynamic simulations in a

cosmological setting (e.g., Naab et al. 2009; Wellons

et al. 2015, 2016; Penoyre et al. 2017) suggests the im-

portance of hierarchical assembly via gas-poor, minor

merging in building today’s elliptical galaxies. Cosmo-

logical simulations predict that the growth of elliptical

galaxies through minor merging should extend their ra-
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dial profiles (e.g., Lagos et al. 2017; Lagos 2018) and

decrease their rotational support (e.g., Frigo et al. 2019).

Additionally, as ellipticals continue to grow in mass and

size, their rotational support decreases (e.g., van der

Wel et al. 2008, 2014; Bezanson et al. 2018b), with

the tendency for galaxies to transition from rotation-

supported systems to pressure-supported systems (e.g.,

Cappellari et al. 2011b; van de Sande et al. 2013; Naab

et al. 2014).

In this model, the ordered motions of stellar orbits

are averaged out by a series of mergers through cosmic

time, creating a direct connection between merging and

rotational or dispersion support. Given this, one would

expect to find environmental trends in the rotational

support of elliptical galaxies driven by their differing

merger histories (Cappellari et al. 2011b). However, al-

though rotational support has been shown to correlate

strongly with stellar mass (e.g., Cappellari et al. 2011a;

van de Sande et al. 2013, 2017, 2019; Veale et al. 2017;

Bezanson et al. 2018a; Greene et al. 2018), ellipticals in

the nearby Universe do not appear to have additional

environmental dependencies (Veale et al. 2017; Greene

et al. 2018). This suggests that the processes respon-

sible for diminishing rotational support in massive, el-

liptical galaxies do so independently of environment or

that those trends have been eroded over time.

If the destruction of rotational support is gradual in

elliptical galaxies, observations of galaxies at a much

earlier epoch could probe an informative period of this

process, providing stronger tests of the extended nature

of this evolution. However, these observations are chal-

lenging, requiring sufficient depths to measure the re-

solved stellar kinematics and large enough samples to

search for environmental trends that have been previ-

ously out of reach. Early studies of the shapes and rota-

tional support of quiescent galaxies much closer to their

quenching episodes point towards a picture of kinematic

evolution post-quenching, although there may be some

tension between kinematic and morphological studies.

Holden et al. (2009) found no evolution in the projected

shapes of early-type galaxies, from z ∼ 1 to z ∼ 0, im-

plying the lack of rotational support evolution between

these epochs. Studies of the field population have shown

at most mild evolution in the shape distribution below

z . 0.7 (Holden et al. 2012; Chang et al. 2013), while at

z ≥ 1, there is a clear and accelerated evolution of field

galaxy projected shapes (van der Wel et al. 2011; Chang

et al. 2013). At z ∼ 2, several strongly-lensed, massive

galaxies (Newman et al. 2018; Toft et al. 2017), show

significant rotation and the spatially integrated stellar

kinematics of 80 quiescent galaxies (Belli et al. 2017) also

suggest increased rotational support. Bezanson et al.

(2018a) demonstrated that a sample of ∼ 100 quiescent

galaxies from an early release of the Large Early Galaxy

Astrophysics Census (LEGA-C) have ∼ 94% more rota-

tional support than local elliptical galaxies.

In this letter, we extend the analysis presented by

Bezanson et al. (2018a) to determine whether the ro-

tational support of quiescent galaxies in LEGA-C ex-

hibits a dependence on environment, in addition to stel-

lar mass. In §2, we describe the LEGA-C sample and

auxillary data sets used in our analysis. We analyze

the trends in environment and stellar properties on ro-

tational support in §3. In §4, we summarize our findings

and discuss conclusions. We assume a standard concor-

dance cosmology throughout this analysis (H0 = 70 km

s−1, ΩM = 0.3, ΩΛ = 0.7).

2. DATA AND SAMPLE

2.1. The LEGA-C Spectroscopic Dataset of Massive

Galaxies at z ∼ 0.8

The sample of galaxies used in this paper is based

on LEGA-C data release 2 (DR2) (Straatman et al.

2018) (PI: van der Wel). LEGA-C includes ultra-deep

spectroscopy of approximately 3500 massive galaxies at

z ∼ 0.8 in the COSMOS field using VIMOS on the

VLT as a part of an ESO Large Spectroscopic Pro-

gram. A more detailed description of the survey, data

reduction, and quality can be found in van der Wel

et al. (2016) and Straatman et al. (2018). Observa-

tions were taken using the HRred grating, which pro-

duces R ∼ 2500 spectra between ∼ 6300 and 8800 Å.

The LEGA-C survey targets massive galaxies with a

redshift-dependent K-magnitude limit (KAB = 20.7 - 7.5

log( 1+z
1.8 )) that yields a representative sample of galax-

ies above logM?/M� ≥ 10.4. Spectroscopic targets are

selected from the Muzzin et al. (2013) v4.1 UltraVISTA

catalog, which includes 30 photometric band measure-

ments from 150 Å to 24000 Å from the GALEX, Subaru,

Canada-France-Hawaii, VISTA, and Spitzer telescopes.

Stellar population properties are estimated for the full

sample using FAST (Kriek et al. 2009) assuming de-

layed exponentially declining star formation histories,

a Chabrier (2003) Initial Mass Function, Calzetti et al.

(2000) dust law and fixing to the spectroscopic redshifts.

HST/ACS F814W imaging of each galaxy (Koekemoer

et al. 2007; Massey et al. 2010) is fit with a Sérsic profile

using Galfit (Peng et al. 2002, 2010). We note that all

VIMOS slits are North-South aligned in the LEGA-C

survey, therefore we restrict our analysis in this work to

galaxies for which the photometric major axis is within

30 degrees of the slit.

The spatially resolved stellar kinematics measured

from the LEGA-C spectra are vital for this analysis. Full
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Figure 1. A 2-dimensional projection of the UltraVISTA galaxies (left panel) used in the environmental analysis (Darvish et al.
2015) and the spectroscopic targets from the LEGA-C survey (right panel) in the COSMOS field for 0.7 < z < 0.75. Galaxies
are colored based on their projected overdensities, from lowest (yellow) to highest (blue). Well-aligned quiescent galaxies used
in this analysis are marked as outlined diamonds. LEGA-C targeting sufficiently samples the full range of overdensities in
COSMOS.
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Figure 2. The mass-Faber-Jackson (mFJ) relationship in
LEGA-C, colored by overdensity quartiles. We also include
the cumulative distribution functions for both stellar mass
(top) and σ′?,int (right). The average error for stellar mass
and velocity dispersion are shown in the upper left corner of
the main panel. Galaxies with higher masses tend to reside
in the highest overdensities. Although the trends in σ?,int
are more subtle, galaxies residing in the highest overdensities
tend to have slightly higher σ′?,int.

details of the kinematic modelling of the spectra are de-

scribed in Bezanson et al. (2018a,b) and we summarize

briefly here. Each 2D and 1D optimally-extracted spec-

trum is fit using pPXF (Cappellari & Emsellem 2004;

Cappellari 2017) with a non-negative linear combination

of theoretical single stellar population templates and

Gaussian emission lines and broadened to fit the spec-

trum. This yields stellar and ionized gas rotation curves
and dispersion profiles along the slit for all galaxies in

the survey. We draw specific attention to two quantities

used in our analysis. σ′∗,int is the stellar velocity disper-

sion measured from the spatially integrated, optimally

extracted spectrum (see Bezanson et al. 2018b). We de-

fine rotational support by the ratio between the stellar

rotational velocity measured at 5 kpc and the stellar

velocity dispersion in the central pixel. To minimize

the impact of projection effects, we divide this ratio by√
ε/(1− ε) where ε = 1− b/a (Bezanson et al. 2018a):

(v5/σ0)∗ =
|v5|/σ0√
ε/(1− ε)

(1)

Systematic differences between this observed quantity

and the intrinsic rotational support are very likely func-

tions of mass and σ?,int. For our study, we focus on a

sample of 217 quiescent galaxies, selected by U-V and

V-J colors according to Muzzin et al. (2013), most of

which are visually early-type. We do not expect any

uncertainty in rotational support to be a function of en-

vironment.

2.2. LEGA-C and Sampling the COSMOS Field

In addition to the LEGA-C dataset, we include in-

formation about galaxy environments in the COSMOS

field, focusing on projected overdensities (1+δ) from

Darvish et al. (2017). This group catalog uses the

COSMOS2015 photometric redshift catalog from Laigle

et al. (2016) in the UltraVISTA-DR2 region (McCracken

et al. 2012; Ilbert et al. 2013). Adaptive weighted ker-

nel smoothing is used to determine projected number

densities and subsequent overdensities. The projected

densities are determined using a 2-dimensional Gaussian

kernel which changes depending on the local density of

galaxies within each redshift slice. For a more com-

plete description, see Darvish et al. (2015). There is an

additional component of randomness added in the mea-

surements of overdensity, which we expect to smear out

any trends related to environment. We match LEGA-C

galaxies to the group catalog within 1”.

Although LEGA-C is a targeted sample, it traces

the full range of overdensities. In Figure 1, we show

a 2-dimensional projection of the photometric UltraV-

ISTA galaxies (left) used in the environmental analysis

(Darvish et al. 2015) and a sub-sample of the spectro-

scopic targets from the LEGA-C survey (right) in COS-

MOS for a small redshift slice (0.7 ≤ z ≤ 0.75). Galax-

ies are colored by their projected overdensity (1+δ) and

we have marked the well-aligned quiescent galaxies used

in this analysis with outlined diamonds. The range in

log (1+δ) for the UltraVISTA photometric catalog is

0.01 ≤ (1 + δ) ≤ 35.36 and the range sampled by the

LEGA-C survey is 0.3 ≤ (1 + δ) ≤ 21.81, which effec-

tively spans the full dynamic range of overdensities in

the COSMOS field.

2.3. Nearby quiescent galaxies from the MASSIVE and

ATLAS 3D surveys

Finally, we include a comparison sample of massive,

quiescent galaxies in the local Universe from the MAS-

SIVE and ATLAS3D surveys. The MASSIVE survey is a

volume-limited sample of 115 galaxies in which all galax-

ies with a K-band magnitude brighter than Mk ≤ −23.5

are targeted (Carrick et al. 2015) and observed using an

integral field (IFU) spectrograph giving 2-dimensional

stellar kinematic information about each galaxy (Veale

et al. 2017). ATLAS3D is also an IFU survey, observ-

ing all 260 galaxies above Mk ≤ −21.5 and within a 42
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Figure 3. The observed rotational support at 5 kpc, (v5/σ0)∗, of galaxies versus stellar mass (top row) and σ′?,int (bottom row),
binned and colored according to overdensity as in Figure 2. Black and colored lines show the average rotational support for the
entire sample and for each overdensity range, respectively, in mass bins of 0.2 dex with jackknife error estimation. In the two
right-most panels, we show the running average rotational support with colored, outlined circles representing the errors in each
mass bin, with slight horizontal offsets for clarity. While there is not a clear universal trend, the most massive galaxies in each
overdensity quartile exhibit different distributions of rotational support. The most massive galaxies (11 ≤ log M?/M� ≤ 11.25)
in the least dense environments (yellow, (1 + δ) ≤ 1) have elevated average (v5/σ0)∗. In more dense environments, where
the most massive galaxies are larger (11.25 ≤ log M?/M�), the average (v5/σ0)∗ is significant in all but the densest regions
((1 + δ) > 3.5).

Mpc radius. For a complete description of the ATLAS3D

survey, see Cappellari et al. (2011a). For the purpose

of this paper, we use the stellar kinematic parameter

λε (Emsellem et al. 2011; Veale et al. 2017) to quan-

tify rotational support and classify galaxies in the local
Universe as fast-/slow-rotators. Using a linear MK-to-

stellar mass ratio (Cappellari et al. 2013a), we convert

the K-band magnitudes of galaxies in the MASSIVE and

ATLAS3D surveys and compare them to galaxies in the

LEGA-C survey with the highest masses. There is ∼ 0.3

dex uncertainty in stellar masses which comes from un-

certainties in the K-band magnitudes and the M?−MK

relation (Cappellari et al. 2013a). λε is measured by

binning the spatial pixels in each galaxy until a signal-

to-noise threshold of 20 is reached, and averaging the

bins out to the effective radius of the galaxy. To specify

the environment of MASSIVE and ATLAS3D, we adopt

luminosity-weighted overdensities (1 + δg), taken from

Carrick et al. (2015) and Lavaux & Hudson (2011), re-

spectively. ATLAS 3D and MASSIVE have volumes of

∼ 105 Mpc3 and ∼ 106 Mpc3, respectively, and LEGA-C

has a volume of ∼ 3× 105 Mpc3.

3. DEPENDENCE OF ROTATIONAL SUPPORT
ON ENVIRONMENT AT Z ∼ 0.8

In this section, we investigate whether stellar kine-

matics in quiescent galaxies at z ∼ 0.8 depend on envi-

ronment. In the primary panel of Figure 2, we show the

distribution of observed stellar velocity dispersion versus

stellar mass, or the mass Faber-Jackson relation (mFJ,

Faber & Jackson 1976) for all the galaxies in the LEGA-

C sample, colored by overdensity, with each bin contain-

ing ∼ 50 galaxies. We continue this color scheme in later

figures. Cumulative distribution functions (CDFs) are

shown for both stellar mass and σ′?,int. Stellar mass

tends to increase with overdensity, with the most mas-

sive galaxies accumulating in the densest environments.

However, the trend is more subtle in the CDFs for σ′?,int:

at most overdensities, galaxies tend to have similar σ′?,int
except in the highest overdensities, where galaxies tend

to have the highest σ′?,int.
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Figure 4. (Top row:) The normalized probability distribution functions (PDFs) for λε (left, ATLAS 3D and MASSIVE) and
(v5/σ0)∗ (right, LEGA-C) for the most massive galaxies in both samples (log M?/M� ≥ 10.75). The dashed horizontal line
shows the slow-rotator threshold (rotational support ≤ 0.2). (Bottom row:) The slow-rotator fractions for ATLAS 3D and
MASSIVE (left) and LEGA-C (right). PDFs and points are colored by overdensity. Both LEGA-C and the nearby sample show
similar slow-rotator fractions at the lowest masses. However, for galaxies with log M?/M� ≥ 11.25, there is a clear separation
in the slow-rotator fractions for LEGA-C galaxies while those for the nearby Universe only exhibit a trend with mass.

Additionally, we investigate trends in rotational sup-

port with environment. In Figure 3, we show the rota-

tional support of galaxies (v5/σ0)∗ versus stellar mass in

the top row and versus σ′?,int in the bottom row, colored

by overdensity. Black lines and colored lines show the

average rotational support for the entire sample and for
each overdensity bin, respectively, with jackknife error

estimation. In the two right-most panels, we show the

running average rotational support for each overdensity

bin, with a slight offset from the center of the bin for

clarity. As shown in Bezanson et al. (2018b), the aver-

age range in rotational support tends to decrease with

increasing stellar mass, which is consistent with stud-

ies of massive, quiescent galaxies in the local Universe

(Veale et al. 2017; Greene et al. 2018). We do not see

a strong environmental trend at all masses, but we note

two statistically significant trends at the massive end of

the sample. First, while galaxies in the least dense en-

vironments (yellow symbols) are not represented at the

highest masses (log M?/M� ≥ 11.25), the most massive

of these (11 ≤ log M?/M� ≤ 11.25) exhibit more ro-

tational support than other similar mass galaxies. In

denser environments ((1 + δ) > 1), massive galaxies fol-

low the average relation except at the highest masses

(log M?/M� ≥ 11.25), where only galaxies in the most

overdense regions have minimal (v5/σ0)∗. Unlike com-

parisons at fixed mass, trends in (v5/σ0)∗ at fixed σ′?,int
are much more subtle.

We focus the remainder of the letter on the most mas-

sive galaxies in the sample (logM?/M� ≥ 11.25). In the

local Universe this corresponds to the mass at which

galaxies are primarily slow-rotators, or core ellipticals

(e.g., Cappellari et al. 2013a,b). In the top row of Figure

4 we show the Gaussian-kernel smoothed, normalized

probability distribution functions (Waskom et al. 2016)

for λε (left, ATLAS 3D and MASSIVE) and (v5/σ0)∗

(right, LEGA-C) for galaxies with log M?/M� ≥ 10.75,

in bins of 0.25 dex. We note that the different distribu-

tions identified in Figure 3 likely correspond to a differ-

ence in populations of so-called fast- and slow- rotators

in the local Universe. The dashed horizontal line indi-

cates the separation between fast- and slow-rotators. In

the bottom row, we indicate the fraction of galaxies in

each mass and density bin that lie below the slow-rotator
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Figure 5. The slow-rotator fractions versus redshift, or lookback time, for massive quiescent galaxies (11.25 ≤ log M?/M� ≤
11.5) at z ∼ 0.8, colored by overdensity. From left to right we assume galaxies grow by 0, 0.10, 0.20, and 0.25 dex in the 6 Gyr
span between the surveys. Unlike the trend in high-mass quiescent galaxies in LEGA-C, there is no significant dependence on
environment in any possible population of nearby galaxies. This implies that the most massive galaxies in the most overdense
regions were kinematically evolved by z ∼ 0.8, but that those residing in lower density regions must undergo significant
subsequent evolution, likely driven by minor merging, to resemble any slow-rotating early-type galaxies today.

threshold. We adopt a threshold of λε = 0.2 to discrim-

inate between the two populations following Veale et al.

(2017); however, using a threshold of λε = 0.2
√
ε does

not significantly affect the identification of slow-rotators

in this sample of massive galaxies. While (v5/σ0)∗ is an

empirical quantity and does not have an agreed upon

threshold to separate galaxies with significant rotation

and those without, we adopt a threshold of 0.2 based on

the distribution of galaxies (e.g., in Figure 3). We have

tested additional values for this threshold between 0.1

and 0.3, which do not change the results of this analy-

sis; the distributions of galaxies in the distant and local

Universe are fundamentally different.

In the local Universe, the fraction of slow rotators at

fixed mass does not depend on environment. In the dis-

tant Universe, in the low-density regions ((1 + δ) ≤ 1)
only ∼ 20% of the most massive (10.75 ≤ log M?/M� ≤
11.25) galaxies exhibit minimal rotation. Although

under-dense regions tend to be populated by galaxies

with higher average rotational support, as shown in Fig-

ure 4, this does not correspond to a statistically signif-

icant difference in the fraction of slow-rotators. This

is not true for the distributions of galaxies in denser

regions, which tend to decrease in (v5/σ0)∗ with in-

creasing mass. We note that although λε, (v5/σ0)∗ and

stellar masses are measured very differently in the local

and LEGA-C samples, they correspond to qualitatively

similar properties. In the local samples, the majority

of galaxies with logM?/M� ≥ 11.25 are slow-rotators.

However, for galaxies in LEGA-C, the slow-rotator frac-

tion of the most massive galaxies depends strongly on

environment; specifically, in the most overdense regions,

nearly all ultra-massive (log M?/M� ≥ 11.25) galaxies

are slow-rotators, while galaxies in less dense environ-

ments are progressively more likely to retain significant

stellar rotational support.

Finally, we compare the slow-rotator fractions in pos-

sible progenitor and descendant quiescent galaxy pop-

ulations. In Figure 5, we show the slow-rotator frac-

tion versus redshift for local and distant galaxies, col-

ored by overdensity. Each panel compares the most

massive LEGA-C progenitors to local descendant pop-

ulations, showing the z ∼ 0 slow-rotator fractions for

mass ranges of 11.25 ≤ logM?/M� < 11.50, 11.35 ≤
logM?/M� < 11.60, 11.45 ≤ logM?/M� < 11.70, and

11.50 ≤ logM?/M� < 11.75, (allowing for an increase in

mass of 0.0, 0.10, 0.20, and 0.25 dex) from left to right re-

spectively. Empirically motivated work (e.g., Leja et al.

2013; Patel et al. 2013; van Dokkum et al. 2013) and

theoretical studies (Behroozi et al. 2013; Torrey et al.

2015, 2017) have estimated mass growth rates of 0.15

dex for massive LEGA-C-like galaxies since z ∼ 1, al-

though this value is particularly uncertain at the massive

end. At these masses, all potential descendant popula-

tions are dominated by slow-rotators, independent of

environment. However, the highest mass galaxies in the

distant universe display a clear trend with environment:

specifically, those in the densest regions tend to mainly

be slow-rotators, with the fraction of slow-rotators de-

creasing with decreasing overdensity.

4. DISCUSSION AND CONCLUSIONS

In this letter we investigate the environmental effects

on the stellar kinematics of massive, quiescent galax-

ies at intermediate redshift. We use two quantities for
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representing stellar kinematics: (1) σ′?,int, the spatially

integrated, optimally extracted stellar velocity disper-

sion and (2) (v5/σ0)∗, the projection-corrected ratio be-

tween stellar velocity measured at 5 kpc and stellar ve-

locity dispersion in the central pixel. We also compare

the slow-rotator fractions of our sample at intermediate

look-back time to the slow-rotator fractions for a sample

of galaxies in the local Universe.

Similar to the trends found in the local Universe, our

sample of ETGs demonstrates a strong mass and stellar

velocity dispersion dependence, and no universal envi-

ronmental dependence, in rotational support. Although

overdense regions tend to host more massive galaxies,

the trends with overdensity in σ′?,int are much more sub-

tle. Specifically, only at the highest σ′?,int is there at sub-

tle separation in the CDFs; σ′?,int increases with increas-

ing overdensity. However, unlike galaxies at z ∼ 0, at

z ∼ 0.8, the most massive population of quiescent galax-

ies is only dominated by slow-rotators in the most over-

dense environments. Specifically, in highly populated re-

gions, elliptical galaxies tend to be slow-rotators at both

redshifts, however in less dense regions, the fractions of

slow-rotators increase dramatically between z ∼ 0.8 and

z ∼ 0. In contrast, the vast majority of likely descen-

dants in the local Universe of such massive galaxies (e.g.

as probed by the ATLAS3D and MASSIVE surveys) are

slow-rotators. We do not find any significant environ-

mental dependence in rotational support of the high-

est σ′?,int galaxies which is consistent with van Dokkum

et al. (2010). In this framework, the continued evolu-

tion of galaxies must not significantly change the stellar

velocity dispersions of massive galaxies in higher den-

sity regions. When taken together, we infer that minor

merging is the driving mechanism in building the pop-

ulation of slow-rotating, ultra-massive galaxies in over-

dense regions of the COSMOS field because it can in-

crease mass and black diminish rotational support with-

out significantly influencing central stellar velocity dis-

persions (e.g., Bezanson et al. 2009; van Dokkum et al.

2010; Newman et al. 2012, 2013).

A quantitative analysis of the evolution of the ro-

tational support of quiescent galaxies through cosmic

time would require self-consistent analysis of both low-

and high-redshift samples. We have limited our com-

parison to fast and slow-rotator fractions, but directly

comparing the rotational support within the two sam-

ples would need to take into account differences in ob-

servations (e.g., seeing, aperture effects, IFU versus slit

spectroscopy) and consistent modeling of the kinematics

(e.g., Jeans modeling, van Houdt, et al., in prep). Such

analysis may reveal additional environmental trends in

the kinematics of massive, quiescent galaxies.

The strongest test of this evolution as a function of

time would ideally probe to even earlier cosmic epochs

to observe the formation of these massive galaxies. The

James Webb Space Telescope will be equipped with the

NIRSpec IFU, which will be able to spatially resolve

the light from much more distant progenitors of massive

slow rotating galaxies. However, the continuum spec-

troscopy necessary to probe stellar kinematics will be

challenging even for spatially integrated measurements.

For individual targets, continuum spectroscopy will be

possible, but statistical samples will be out of reach for

JWST (Newman et al. 2019). Thirty meter class tele-

scopes with larger apertures and adaptive optics that en-

able near diffraction-limited seeing will be able to push

spectroscopic observations of massive galaxies to higher

redshifts, allowing spatially-resolved spectra to be ob-

tained for higher redshifts than is currently possible and

probing new epochs of galaxy formation.

This research made us of Astropy (Astropy Collabora-

tion et al. 2013). Based on observations collected at the
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