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Abstract: Predicting actual energy harvesting of a photovoltaic (PV) installation as per site-specific
conditions is essential, from the customer’s point of view, to choose suitable PV technologies as well as
orientations, since most PVs usually have been designed and evaluated under standard illumination.
Hence, the tendency lives in the PV community to evaluate the performance on the energy yield and
not purely on the efficiency. The major drawback is that weather conditions play an important role,
and recording solar spectra in different orientations is an expensive and time-consuming business.
We, therefore, present a model to calculate the daily, monthly and annual energy yield of Si-based PV
installations included in commercial panels as well as tandem solar cells. This methodology will
be used to evaluate the benefit of potential new technologies for domestic and building integrated
applications. The first advantage of such a numerical model is that the orientation of solar panels and
their properties can be easily varied without extra experiments. The second advantage is that this
method can be transferred to other locations since it is based on a minimum of input parameters.
In this paper, the energy yield of PV installations for different regions in Belgium and Vietnam will
be calculated.

Keywords: PV energy yield; tandem solar cells; PV installation; solar irradiation

1. Introduction

Si-wafer based photovoltaic technologies, which accounted for about 95% of the total production
in 2017, have been always dominant in the market share of the photovoltaic (PV) industry [1] because
of the significant improvement in efficiency and reduction in fabrication cost. Moreover, silicon is an
earth-abundant element and has demonstrated its reliability and lifespans that meet the requirement of
most PV applications. Currently, efforts are still ongoing to improve Si cell efficiency by optimizing the
cell surfaces to minimize the losses due to front contacts and recombination, exploring new technologies
and high-quality, low-cost materials used in fabrication [2–4]. Subsequently, the most recent record
reported is of 26.7% under AM1.5G [3], approaching towards its theoretical limiting efficiency of
29.4% [5].

To achieve significantly higher efficiencies, the most practical approach is the tandem cells,
which provide the best-known example of such high-efficiency techniques. In the tandem architecture,
the efficiency can be increased merely by adding more cells of different bandgap to a stack [6].
In that aspect, III-V materials tandem on silicon, the efficiencies of 38.8% of which have been achieved
under one sun illumination using five junctions of III–V semiconductors represents a promising
pathway to overcome the efficiency limit of a single c-Si solar cell [7]. Theoretically, a three-junction
(AlGaAs/GaAs-InGaAs) mechanically stacked tandem solar cell efficiency is limited to 46.4% when
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a 4-terminal configuration is used to separately contact the bottom InGaAs cell. Four-junction
mechanically stacked solar cells incorporating a 4-terminal AlGaAs/GaAs-Si-InGaAs structure have
also shown an overall efficiency of 49% under 1-Sun illumination [8].

However, the performance of PV modules installed outdoors is greatly influenced by various
ambient environmental factors such as incident irradiance, spectral content, module temperature and
angle of incidence. The actual outdoor spectra, which always vary hour to hour, day by day during the
year and strongly depends on regional weather conditions, have a major impact on the performance of
a PV device. This effect also depends on the technology as well as material which decides the sensitivity
of the PV devices [9]. The variations in incident irradiation and solar spectral content have a higher
effect on multi-junction and high-bandgap devices compared with single-junction and low-bandgap
devices [10–12]. Theoretical and experimental studies have illustrated that the actual harvesting
efficiency, which is usually lower than the efficiency under standard test conditions, varies during the
year and the drop in harvesting efficiency can be attributed to irradiance and temperature as major
loss channels [12,13]. Other studies have addressed that angle of incidence is intimately related to
the irradiance on a solar panel surface and an increase in electricity production of a PV system can be
adapted by optimizing the panel orientation [14–17].

Due to the reasons mentioned above, there is a growing tendency in the PV community to
analyze and predict the performance of PV systems under real operating conditions which includes
various technologies, climate regions and orientations [12,17,18], while other studies focused on
the harvesting energy of tandem solar cells [13,19]. The major disadvantage of those experimental
studies is that they are usually set up under fixed orientations and the operation needs to take place
over a long time, followed by a massive quantity of measurements. Furthermore, predicting the
outdoor energy yield of PVs is usually based on historical local solar irradiation and temperature
onsite, which is time-consuming and expensive to record in different orientations. To overcome
these problems, numerical modeling can be a promising alternative, which provides the flexibility in
changing operating parameters of a PV system such as PV properties, the orientation of installation,
and weather conditions [20–22].

In this study, a model that is able to calculate the daily, monthly and annual energy yield of solar
cell under varying spectra and easy to transfer from one location to others, is developed. Therefore,
four specific regions in Vietnam and Belgium with different climate regions will to be taken into
account. The model is first drawn up for actual PV installations in Flanders, Belgium, where the actual
data of PV energy production and weather conditions can be gained effortlessly. The weather data,
which include global horizontal irradiation and sunshine hour, were investigated online for simulating
daily solar spectra on the solar panel, while the experiment data measured onsite were used to validate
the accuracy of the results. Afterwards, the model was tested under Vietnam conditions where the
climate is absolutely different from Belgium and possesses a high potential for solar development.
In the estimation of the energy yield of Si-based commercial PV, the results were subsequently
compared to that of actual installation systems and other models. After ensuring that it was working
correctly, the model was applied for Si-based tandem solar cells using their reference external quantum
efficiency (EQE).

2. Study Objectives

The objective of this research is to create a new accurate methodology for calculating the energy
yield of a PV installation system under local weather conditions. We then combine this methodology
with the results provided by [7] to estimate the potential yield of the cutting-edge tandem solar cells.
In this research, the objectives are to:

• Develop a model to calculate the total daily, monthly and annual energy yield of arbitrarily
oriented PV system based on minimum input parameters of the local weather conditions.

• The model can be transferred easily from one location to another.
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• Combine the results of this research with previous studies to analyze the potential application of
tandem solar cells in a specific location.

To calculate the energy yield of PV system, a detailed energy yield model is developed to convert
measured solar irradiation components, including global horizontal irradiation (GHI) and average
sunshine duration as well as ambient temperature (Ta), into hourly, monthly and annual electricity
production for each combination of the panel’s tilt and azimuth angles.

Aimed to minimize the number of input parameters, only the global horizontal irradiation,
average sunshine duration and temperature from the database have been taken into account in our
research. Moreover, to make sure that the model can be transferred smoothly from one location to
another, the use of solar irradiation and weather conditions databases that are available online for
different locations were chosen, while annual average local temperatures were applied instead of
nominal operating cell temperature which is more complicated to determine.

3. Methodology

The calculation methodology used in this study consists of the three following steps:

• Collection of solar irradiance and weather data for study regions;
• Calculation of the solar irradiation incident on the earth and tilt surface;
• Calculation of electric energy yield of Si-based PV panel and tandem solar cells.

3.1. Input Data

3.1.1. Database

The experimental database of four specific regions in Belgium and Vietnam (Table 1) were used
to find out empirical coefficients of the model. The weather database of Flanders was collected
from the Royal Meteorological Institute (RMI) [23], while that of Vietnam’s locations are selected
from the Photovoltaic Geographical Information System (PVGIS) that belongs to a project of the
European Commission [24]. Initially, a pilot model was established based on local weather conditions
in the Flanders region (Belgium) where the model’s performance was then compared to an actual
PV installation system and other online models of PVGIS such as CMSAF, SARAH, ERA5 and
COSMO [25,26]. Once the accuracy of the pilot model was proven, it was applied to Vietnam’s
regions, where the measurement data provided by Energy Sector Management Assistance program
(ESMAP) [27] were used to evaluate its calculated performance again.

Table 1. Database resources for studied regions.

Location
Latitude Longitude

Average Temperature Years (Database)
(deg) (deg)

Flanders, Belgium 51 003 15 ◦C 1984–2013 (RMI)
Tri An, Vietnam 11 107 28 ◦C 2005–2016 (PVGIS), 2018 (ESMAP)

Da Nang, Vietnam 16 108 26 ◦C 2005–2016 (PVGIS), 2018 (ESMAP)
Ha Noi, Vietnam 21 106 25 ◦C 2005–2016 (PVGIS), 2018 (ESMAP)

3.1.2. Solar Angles Equations

The solar declination angle δ which varies between +23.5◦ and −23.5◦ is defined as the angle
between the Equator and the center of the sun [28]:

δ = 23.45sin
(
360◦

284 + n
365

)
◦ (1)
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where n is the number day (n = 1 for 1st January). At any time of day, the altitude angle αs and azimuth
angle γs of the sun can be used to determine its position as shown in Figure 1.

sinαs = sinδsinϕ+ cosδcosϕcosωs = cosθz (2)

cosγs =
sinαssinϕ− sinδ

cosαscosϕ
(3)

where ϕ is the local latitude angle and ωs is the hour angle. The hour angle of the sun is positive
toward East and negative toward West, so the hour angle of sun rise is:

cosωs = −
sinδsinϕ
cosδcosϕ

= −tgϕtgδ (4)

and the hour angle of sun set:

cos(−ω′s) = −
sinδsinϕ
cosδcosϕ

= −tgϕtgδ (5)Energies 2020, 13, x FOR PEER REVIEW 4 of 17 
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Figure 1. Daily path of the sun from sunrise to sunset.

The solar azimuth angle, γs, is the angle between the normal projection to a horizontal plan and
the local meridian. The azimuth angle for the morning hours is −π+

∣∣∣γs
∣∣∣ and for the afternoon hours

is −π− γs, the solar azimuth is 0◦ at noon.
As shown in Figure 2a, the angle of incidence θ, the angle between the direct radiation from the

sun and the solar panel surface normal, is computed by equation:

cos(θ) = sin(αs)cos(β) + cos(αs)sin(β)cos(γs − γ) (6)

where β is the angle between the horizontal plane of the earth and the plane of the solar panel, and this
angle varies between 0◦ and 180◦, where β > 90◦ means the solar panel facing the ground, γ is the panel
azimuth angle.
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Figure 2. Angles of direct and diffuse light falling on solar panel. (a) The angles of direct incidence;
(b) The angles of diffuse incidence.

3.1.3. Calculate Solar Radiation on Horizontal and Tilted Surface

For a flat Earth’s surface and a uniform atmosphere whose thickness is d, it is assumed that the
GHI comprises two major components called direct and diffuse horizontal irradiation [29]. If the
sunlight incident is under an angle z, the intensity of the sunlight or direct horizontal irradiation
(DNI) becomes:

DNI = Q0exp(−αdsec(z)) (7)

where z is called the zenith distance, α is the absorption coefficient and Q0 = 1356 W/m2 corresponds
to the intensity above the atmosphere (d = 0), while diffuse horizontal irradiation (DHI) is calculated by:

DHI = Q0[1− exp(−αdsec(z))] (8)

As shown in Figure 2a, whenever the normal of a solar panel makes an angle θ with the solar
rays, a direct intensity falls in its surface is given by:

Ib = IDNIcos(θ) (9)

and diffused intensity (Figure 2b):

Id = IDHI

s
Ω cos(ϑ)dω

s
2π cos(ϑ)dω

(10)

where ϑ is the angle of incidence of the diffuse light and Ω is the solid angle in which the panel sees
the heaven’s dome.

Therefore, the total irradiation received by solar panel is a combination of two components: direct
beam irradiation, Ib, and diffuse irradiation, Id. The total irradiation received by solar cell module is
computed by:

Itotal = Ib + Id (11)

3.2. Calculate Solar Energy Yield for Si-Based Tandem Cell and Commercial Panel

In this work, the classical current–voltage characteristic of a solar cell is assumed for both
commercial and tandem items:

I(V) = I0

[
exp

(
qV
nkT
− 1

)]
− Isc (12)

where q is the elementary charge, n is ideality factor, k is Boltzmann constant, T is absolute temperature,
I0 is the recombination current and Isc is the short-circuit current. In terms of the commercial panel,
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the characteristic parameters such as Isc, Voc, Imp and Vmp are already provided by the producers,
therefore, I0 can be calculated easily by using Equation (12). However, such parameters are not
available for tandem solar cells, the properties and performance of which strongly depend on the
configuration of their sub-cells. For this reason, the bandgap and EQE were applied to calculate I0 and
Isc for each corresponding sub-cell and consequently the characteristic of the tandem solar cell could
be figured out. The recombination current I0 of a sub-cell is given by:

I0 = qρ
2π

c2h3

∫
∞

Eg

E(λ)2

exp(E(λ)/kT) − 1
dE(λ) (13)

Where h is Plank’s constant, ρ is correction factor, c is the speed of light, Eg is the bandgap of the
material. The short-circuit current Isc of a sub-cell is:

Isc = q
∫ 4000 nm

300 nm
φ(λ)·EQE(λ)dλ (14)

where φ(λ) is incident photon spectrum which is calculated from estimated radiation.
In a grid-connected PV system which consists of PV arrays, an inverter is used to convert the

produced DC to AC power. Conventionally, the maximum DC power extraction is expected, so the
DC/AC converter needs to impose on the PV panels the appropriate voltage. It can be accepted
that the PV panel always operates at its maximum power point for any given solar irradiance and
cell temperature [30,31]. Knowing that in this study, the instantaneous values of the dc power were
calculated every 4 min during 24 h a day when solar energy is available at the site. Therefore, the unit
values of dc power can be determined by imposing:

.
pINV_DC

( .
t
)
=

PINVDC(t)
PnINV_DC

(15)

where
.
pINV_DC and

.
t = 4 min/24 h stand for respective per-unit values of power and time; PnINV_DC is

the nominal DC power of the inverter at time t; PINVDC is inverter DC power and calculated by:

PINVDC(t) = Intensity(t)
Ppanel_Intensity(t)

Ppanel_STC
(16)

The efficiency of a PV inverter is:

η(
.
pINV_DC) = A + B

.
pINVDC

(t) +
C

.
pINVDC

(t)
(17)

where η(
.
pINV_DC) is the efficiency of the inverter as a percentage,

.
pINV_DC(t) > 0 is the per-unit value

of the DC power that the inverter can convert in AC; while A, B and C depend on the type of inverter
and need to be determined. In this study, the values of A, B and C are 100.83, −4.517 and −1.27,
respectively [31].

We also concentrated on the difference between the energy yield of 2-terminal and 4-terminal
Si-based tandem cell which all use silicon as a bottom cell, while for the top cells, GaInP and GaAs
whose bandgap are 1.81 eV and 1.42 eV respectively were selected. All EQEs of these materials were
gathered from the reference [7].

The modeling procedure assumed that the top and bottom cells, which normally cannot be
measured directly, are similar in shape to the single-junction cell curves. For each prevailing spectrum
condition, the corresponding Isc values calculated from the Equation (14) serve to align an I-V curve
for each top and bottom cell separately. In the case of 2-terminal tandem cell, the minimum value of
top and bottom cells was selected as the entire short-circuit value of the tandem cell. Subsequently,
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the entire I-V characteristic for 2T series connection was achieved by adding the voltage of two sub-cells
calculated at the same current value. The obtained curve of 2T tandem cell was then used to calculate
the yield of PV under 2T connection. The total electricity output under 4-terminal connection was
obtained by summing the individual power from top and bottom cells, when each sub-cell operates at
its unconstrained maximum power point.

The estimation of solar spectra, which include both direct and diffuse intensity, have been
demonstrated in previous studies [10,32,33]. In this study, the clear-sky spectral irradiance on a tilted
surface (tilt angle α), E′α(λ), was calculated by:

E′α(λ) =
IbαEb(λ)∫ 4000nm

300nm Eb(λ)dλ
+

IdαEd(λ)∫ 4000nm
300nm Ed(λ)dλ

(18)

where Eb(λ) and Ed(λ) are clear-sky direct normal irradiance and diffuse irradiance respectively,
these parameters can be calculated directly by using Equations (7) and (8) based on reference
extraterrestrial spectra defined in ASTMGE173-03 and IEC 60904-3 [34,35]; Ibα and Idα which are
calculated from the measurements applied Equations (9) and (10), respectively, are direct and diffuse
irradiance on the tilted surface. The spectral photon flux density at a specific value of wavelength λ,
φ(λ), can be determined by:

φ(λ) =
E′α(λ)

hc
λ

(19)

The efficiency, ηcell, of these tandem cells was calculated by:

ηcell(t) =
Pmpp(t)

PIntensity(t)
(20)

where Pmpp and PIntensity is the instantaneous maximum power of the cell and incoming power of solar
light respectively. The daily power harvesting of the tandem solar cells then could be computed by:

Pyield =

∫
PIntensity(t)ηcell(t)dt =

∫
Pmpp(t)dt (21)

3.3. Estimating Daily Solar Irradiation from Databases

Once the monthly average measurements of solar radiation were derived from databases, the DHI
and GHI for each day during the year could be found using curve fitting methods [36]. The average
DHI for each day during the year was estimated using Gaussian fitting method which is defined as:

DHIest = DHIavg +
a

b
√
π
2

exp
(
−2

(ne− c
b

)2
)

(22)

where DHIest is the estimated daily DHI; DHIavg is the annual average daily DHI; ne is the order
number of day in the year ranging from 1 on 1 January to 365 on 31 December; a, b and c are empirical
coefficients and need to be found.

The average daily GHI was predicted using sine fitting function:

GHIest = GHIavg + dcos
(
2π

(ne + e)
f

)
(23)

or polynomial fitting function:

GHIest = a0 + a1ne + a2ne2 + a3ne3 + a4ne4 (24)
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where GHIest is the estimated daily GHI; GHIavg is the annual average daily GHI; d, e, f and an are
empirical coefficients.

4. Result and Discussion

4.1. Daily, Monthly and Annual GHI on the Flat and Tilted Surface

The monthly average daily GHI and monthly average daily sunshine duration can be obtained
easily from the available databases. Subsequently, it is possible to draw up a graph in which the
average monthly daily GHI is displayed in the function of the monthly average daily sunshine duration.
A linear trend-line for each month can be drawn to determine the relationship between number of
sunshine hours and solar radiation intensity, assuming that the diffuse solar radiation is the intensity
of sunlight which is received on the Earth’s surface in a day when the sunshine duration for that day is
zero. As shown in Figure 3, the ordinate of the intersection of the trend-line with the y-axis which is
shown on the graph as the point where the number of sunshine hours per day equals zero, therefore,
the monthly average daily DHI.
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In this study, a course of DHI over a full year is necessary so that the diffuse intensity of solar
radiation is known for every day of the year. As illustrated in Figure 4, the monthly average daily DHI
for twelve months of the year extracted from the RMI were plotted, and these values are valid for the
DHI of the middle day of the corresponding month. Furthermore, these twelve values make it possible
to draw up a graph in which the daily DHI is plotted as a function of the day of the year. This function
can be approached with a Gaussian curve fitting (Equation (22)) and corresponds well to the twelve
calculated values with DHIavg = 0.13454

(
MJ/m2/day

)
, a = 1519.3609, b = 148.82243, c = 174.51362.

The curve fitting method was also applied for the daily GHI estimation, however, the twelve-month
average daily GHI values were taken directly from the database without any computation. Following
this, a graph, which includes those values, was plotted to demonstrate the GHI over a full year and
its approximate function was then able to be obtained using the Sine fitting method (Equation (23)).
The function then was applied to simulate the total intensity of solar radiation on a flat surface for a
certain day of the year. Figure 4 shows how well the cosine function in the model implemented and
fitted with the twelve values of GHI from RMI database with GHIavg = 9.9444

(
MJ/m2/day

)
, d = −8,

e = 13, f = 365.
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Figure 4. A comparison between the twelve values from the Royal Meteorological Institute (RMI)
database and fitted function of daily GHI and DHI calculated for Flanders.

For daily calculation, the total energy yield per day was the sum of output power per time unit,
which was calculated every 4 min, from the sunrise to sunset. Therefore, the solar spectra, which are
needed for calculating the output power of both commercial solar panel and new technology solar
cell, corresponds to each unit time needing to be computed. Figure 5a,b show the solar irradiance per
time unit and some snapshots of solar spectrum on the day 182 in Flanders, Belgium, respectively.
Then, the Equations (8)–(10) were applied respectively to find out Ib, Id and ITotal on the corresponding
tilted surface. Aiming to know how to gain the maximum irradiation on the slope, the annual average
intensity was computed for different orientations of the collector, with the azimuth angle varying from
0◦ to 359◦ and the step of tilt angle is 10◦ (the center is 0◦ and the outermost circle is 90◦), by summing
twelve monthly average values (Figure 5c). According to the result, the annual maximum irradiation
is gained when the panel azimuth angle between south-facing ±20◦ and its tilt angle between 30◦ and
50◦, with an average intensity around 135 W/m2. This amount of irradiation decreases to a minimum,
approximately 15 W/m2, when the panel surface faces north and its tilt angle is 90◦.
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4.2. Energy Yield Calculation for Silicon Solar Panel with Arbitrary Tilt and Orientation in Flanders, Belgium

The methodology was first applied to the Flanders region in Belgium, where data from actual PV
systems can be found online from Frank Deboosere [37] and T_36_Brugge [38]. The characteristics of
these systems are illustrated in Table 2.
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Table 2. Characteristics of two actual installation photovoltaic (PV) systems in Flanders, Belgium.

Installation
Latitude Temperature θ γ Power

(deg) (deg) (deg) (deg) (panels ×Wp = kWp)

Frank
Deboosere 51 15 45 292.5 (SSE) 25 × 175 = 4.35

T_36_Brugge 51 15 45 225 (SW) 22 × 240 = 5.280

The electricity harvesting at the converter outlet and DC power produced by PV panel was
computed using Equations (15) and (16), respectively. Figure 6 shows a comparison between the output
production of above actual installations and the results of this study as well as other PVGIS models.
For the monthly production, there are some quite significant differences between the results of this
study and actual systems due to the variation in the duration of sunny and cloudy days.
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PV-systems in Flanders, Belgium as well as Photovoltaic Geographical Information System (PVGIS)
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T_36_Brugge installation.

The total annual energy yield, however, has proven that the model works well and achieves a
significant accuracy which is only 3.67% and 3.54% different from the data from Frank Deboosere
and T_36_Brugge respectively and better than most of the PVGIS models (Table 3). As mentioned
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previously, to make the model as simple as possible to be able to transfer easily from one location
to other regions, the regional ambient temperature was considered as a constant during the year
by using annual average temperature. Additionally, the operating temperature of the solar panel
also remained constant and equaled to the ambient temperature, which differed absolutely from the
panel’s operating temperature. Consequently, during the time when the difference between the actual
temperature and model’s temperature increases, the deviation is higher. As we can see in Figure 6,
the deviation will be higher in the summer and winter when the difference in temperature is the
largest. Furthermore, the simulated solar spectrum in this model was calculated without taking into
account the temperature effect and remained equal between the morning and the afternoon. As a
result, the estimated energy yield was well suited to the data from Frank Deboosere, which was
mainly morning sunlight. In contrast, the estimation for T_36_Brugge, which was mainly sunlight
in the afternoon when the ambient temperature is usually higher than in the morning, did not show
the lowest deviation. To overcome this problem, the influence of temperature on the operation of
the PV cells and the relevance between ambient temperature and solar irradiation need to be taken
into account.

Table 3. Annual yield of actual installation PV systems compared to the results of this work and
other models.

System Frank Deboosere T_36_Brugge

Yield (kWh) Deviation (%) Yield (kWh) Deviation (%)

Actual Installation 4123 4869
This work 3972 3.67 5042 3.54

PVGIS-CMSAF 4323 4.85 5846 3.51
PVGIS-SARAH 4415 7.08 5858 5.24

PVGIS-ERA5 4678 13.46 6587 15.53
PVGIS-COSMO 4512 9.43 5619 1.27

Figure 7 shows the total of seasonal and annual energy yields of 1 kWp Si-based commercial
panel in Flanders at various tilt angles and facing south. Due to more sunshine and longer daily
time, the energy harvested in the summer is the highest compared to other seasons, while that of
the corresponding time in winter is the lowest. During the summer months (June, July and August),
the energy yield is at maximum with tilt angle around 20◦ and decreases gradually when the tilt angle
increases due to the high solar latitude. In contrast, because of the low latitude of the sun during the
winter time, the harvesting energy increases proportionally to the tilt angle and reaches a peak when
the slope is around 60◦. To maximize the annual harvesting, the angle of the slope should be between
35◦ and 45◦. Adjusting the tilt angle in this way can increase the annual yield up to 26% compared to
the harvesting of horizontal panel, with 1035.6 kWh per kWp and 851.4 kWh per kWp, respectively.

Furthermore, the amount of hourly harvesting power can be affected by adjusting the azimuth and
slope angle of the collector [14]. Figure 8a illustrates how the azimuth angle affects the performance of
the PV panel during day 15 in Flanders region. If the azimuth angle was increased, the PV would gain
more energy in the morning and quite lower in the afternoon, while adjusting to a suitable tilt angle
could increase the yield all the time during the day (Figure 8b). Consequently, this phenomenon can
be supportive in the case of building-integrated PV system in cold climates and high longitude regions,
such as Flanders, where buildings consume much energy in the morning for heating inside and most
of them do not have an electricity storage system.
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Figure 8. Average power (kWh) generated by 1 kWp panel from 5:00 am to 19:00 pm at different
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operates at various tilt angles and facing-south.

4.3. Transferring the Model to Vietnam Conditions

This model was afterward transferred to three other specific regions in Vietnam, which is located
in South East Asia and extends between latitudes 9◦ N and 23◦ N with a long coastline on the east and
high mountain on the west. These natural geography conditions lead to three different climate regions
in Vietnam and these zones, therefore, also have different behavior of solar radiation, which varies
from 3.0 kWh/m2 to 5.0 kWh/m2 per day [39].

The same procedure was applied for three cities: Ha Noi, Da Nang and Tri An, which symbolize
the three major climatic zones in Vietnam [27], using the online database from PVGIS. Because of the
different climate, the curve fitting method applied for each region to estimate GHI was also dissimilar.
The sine fitting function was used for Ha Noi and Da Dang while for Tri An, where the climate is
tropical west and dry, the polynomial fitting function was applied. The estimated GHI was presented
together with twelve average monthly daily GHI from database, including data from PVGIS and onsite
measurements in 2018 from ESMAP, in Figure 9a showing that the fitted function worked smoothly
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and reliably. Subsequently, there was an insignificant difference between the calculated annual GHIs,
which almost satisfies prior research about solar irradiation in Vietnam [27,40], and the measurements
in 2018 as well as PVGIS data (Figure 9b). Furthermore, the annual average intensity distribution
acting as a function of tilt and azimuth angles was illustrated in Figure 10 to give an overview about
the energy potential of each location. Table 4 shows a comparison between the monthly and annual
yield for 1 kWp Silicon commercial panel placed horizontally calculated by this study and other online
models, PVIGS and PVWATTS [41].
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Table 4. Electricity energy yield of 1 kWp horizontal Si-based commercial PV installation for different
regions in Vietnam.

Unit: kWh/kWp

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Tri An
This work 149 154 174 162 156 141 138 135 132 141 139 140 1760

PVGIS-SARAH 140 145 160 149 146 134 138 144 126 133 131 134 1680
PVWATTS 147 143 165 166 128 115 113 118 114 134 139 141 1622

Da Nang
This work 88 97 132 152 173 172 169 150 120 100 81 79 1513

PVGIS-SARAH 83 108 134 148 162 151 148 145 126 107 86 67 1466
PVWATTS 86 82 102 120 135 125 133 129 117 107 94 80 1308

Ha Noi
This work 70 70 93 109 131 138 146 138 118 103 81 72 1269

PVGIS-SARAH 75 82 111 125 153 152 157 152 135 120 98 85 1445
PVWATTS 62 52 72 104 142 139 143 132 135 118 102 88 1288

4.4. Estimation Using EQE of State-of-the Art Solar Cells

To calculate the energy harvesting of tandem solar cell, the solar spectral irradiance on cell
surface, which were computed using Equation (18), and reference EQE of sub-cells obtained from [7]
were applied. The predicted annual energy yields of those Si-based tandem solar cells, the tilt and
azimuth angles of which were 0◦, for specific regions in Belgium and Vietnam, are presented in Table 5.
Compared to the Si heterojunction, both 2-T and 4-T GaInP/Si tandem cells provided a significantly
larger annual energy production with an average over 60% higher than that of Si solar cell. However,
GaAs/Si performed in absolutely different ways, while the energy yield of 4-T tandem cell is higher
than that of Si cell and nearly equals the yield of 2-T GaInP/Si tandem cells. The 2-T tandem cell,
in contrast, the production decreased approximately a half compared to Si cell for each location.
This indicated that a series connection is not suitable for GaAs/Si tandem cell in these regions, while it
seems not to be a big issue for GaInP/Si tandem cell. However, to satisfy both efficiency and cost,
higher bandgap GaInP is required to apply for the two-terminal tandems while lower bandgap GaAs
is suitable for four-terminal tandem cells [42].

Table 5. Annual yield of Si-based tandem solar cells (kWh/m2) for different regions.

Unit: kWh/m2

Tri An Da Nang Ha Noi Flanders

Si 304.3 260.3 260.1 219.6
2-T-GaInP/Si 506.7 430.1 429.9 346.2
4-T-GaInP/Si 551.7 476.8 476.1 372.2
2-T-GaAs/Si 187.6 155.4 115.3 155.7
4-T-GaAs/Si 507.3 435.1 358.9 355.7

Figure 11 illustrated the annual harvesting of tandem PV cells under three different combinations
of azimuth and tilt angle of the collector. The first two combinations were chosen arbitrarily while the
latter approximated to the optimal orientation. It again clarified that the energy yield of tandem solar
cells was also able to enhance by improving the tilt and azimuth angle of the PV panel. This is very
useful in the case of predicting the harvesting energy for a building-integrated PV system which is
usually installed on a fixed existed slope or azimuth angle. On the other hand, the annual harvesting
energy of tandem solar cells in Tri An and Da Nang is significantly greater than that of Si solar cell,
while the difference between them is inconsiderable for Ha Noi and Flanders regions.
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5. Conclusions

This paper showed that with a minimum input parameter of the weather conditions and product
properties, the solar energy yield of a commercial Si-based solar panel can be calculated precisely.
In practical operating conditions, the variation of solar spectrum and the incident angle of light have
a strong effect on the performance of solar cell. Therefore, predictability of energy yield under real
conditions can provide a better solution for setting up a solar energy system which performs under
various available orientations and locations. Furthermore, this method can be used to calculate the
energy production of the state-of-the art tandem solar cells which are strongly affected by the variation
of the solar spectrum.

This study took into account the effects of the solar spectrum, the time of day and panel orientation,
which are the major mechanisms affecting the harvesting of an actual PV installation. Operating
temperature has remained constant, aiming to keep it sufficient, simply to be able to transfer smoothly
to other locations. The future work could focus on the effect of onsite temperature to the solar spectrum
and performance of the solar cells to optimize the accuracy of this methodology. In addition, the actual
harvesting energy calculating for other cutting-edge tandem solar cells could be taken into account.
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