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Samenvatting
Voor ik vergeet en later alles anders heet

Voor ik vergeet en ik de feiten en de cijfers
en de namen van de schrijvers niet meer weet

Spinvis

In 1838 merkte de filosoof Auguste Comte in zijn Cours de philosophie positive
op dat “elke poging om wiskundige methoden te gebruiken bij de studie van che-
mische vraagstukken als diep irrationeel en in strijd met de geest van de chemie
moet worden beschouwd”. Dertig jaar later leek dit sentiment compleet afwe-
zig toen Dmitri Mendelejev de gekende chemische elementen aan de hand
van hun eigenschappen in een tabel ordende. Overtuigd van het periodiek ka-
rakter van de elementen loste Mendelejev hiaten in deze tabel op door onder
andere het bestaan van scandium, gallium, technetium, germanium en protac-
tinium correct te voorspellen. Ondanks het succes van het periodiek systeem
bleef het nog wachten op het ontstaan van de kwantummechanica in het be-
gin van de vorige eeuw voor een verklaring van dit gestructureerde gedrag van
de atomen. Kwantummechanica zorgde er samen met het ontstaan van de
computer voor dat chemische systemen niet enkel meer in de proefbuis bestu-
deerd worden. De afwezigheid van wiskunde in de chemie lijkt tegenwoordig
ondenkbaar.

Wie geïnteresseerd is in het gedrag van moleculen en dit via computatio-
nele techniekenwil simuleren, dient een reeks benadering in te voeren om het
systeem behapbaar te maken. Enkel heel eenvoudige systemen zoals het wa-
terstofatoom zijn immers exact oplosbaar. Zo abstraheert men vaak de atoom-
kernen van de molecule tot vaste puntladingen (een gevolg van de Born-Op-
penheimer approximatie) zodat enkel de beweging van de elektronen uitgere-
kend hoeft te worden. Relativistische effecten worden ook vaak verwaarloosd
door aan te nemen dat de elektronen veel trager bewegen dan de lichtsnel-
heid. Het beperken van de bewegingsruimte van de elektronen is een derde,
vaak noodzakelijke, benadering. De bewegingsvrijheid van elk elektron wordt
beperkt tot een aantal orbitalen in plaats van de complete driedimensionale
ruimte. Deze orbitalen worden vaak gekozen zodat ze reeds de karakteristieke
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eigenschappen van de elektronenbeweging rond een atoom vertonen. Op deze
manier kunnen we het aantal nodige orbitalen voor een accurate beschrijving
van de molecule beperkt houden. Bij elk van deze benaderingen moeten we
stilstaan bij hun geldigheid. De opgenoemde benaderingen zijn niet univer-
seel geldig, zo is het verwaarlozen van relativistische effecten bijvoorbeeld niet
verantwoord voor de studie van moleculen met zware atomen. In deze thesis
zullen we echter steeds gebruik maken van de voorgenoemde benaderingen
en enkel moleculen bestuderen waar deze geldig zijn.

Elektronen zijn fundamentele deeltjes met halve spin. Concreet betekent
dit dat een elektron een intrinsieke eigenschap bezit die de waarde op, neer, of
een superpositie van op en neer kan zijn. Deze toestanden worden wiskundig
als volgt weergegeven:

|↑⟩ (op)
|↓⟩ (neer)

𝑐↑|↑⟩ + 𝑐↓|↓⟩ (superpositie)

waar 𝑐↑ en 𝑐↓ complexe getallen zijn. De superpositie van op en neer betekent
dat een meting van deze spin op of neer als resultaat zal geven met een respec-
tievelijke kans van |𝑐↑|2 en |𝑐↓|2. Het bestaan van superposities is een cruciale
eigenschap van de kwantummechanica, en maakt metingen op fysische syste-
men intrinsiek probabilistisch.

Elektronen zijn fermionen en worden gekarakteriseerd door hun orbitaal
en hun spintoestand. Elektronen volgen, net als alle fermionen, het uitslui-
tingsprincipe van Pauli; twee elektronen kunnen niet tegelijk in eenzelfde toe-
stand verkeren. Er kunnen dus geen twee elektronen zowel dezelfde ruimte-
lijke orbitaal bezetten als dezelfde spin hebben.

↑ ↓
↑

⇅

⇅

⇅
⇅
↑
↓ ⇅

↓ ↓
↓

↓

↓ ↓↑

⇅

↓

↓
↑↓ ↓
⇅↓
⇅↓

1)
2)
3)
4)

1)
2)
3)
4)

6)
7)
8)
9)

5)

Figuur 1: (links) de mogelijke configuraties voor twee elektronen (een met spin op, een met
spin neer) in een systeem met twee ruimtelijke orbitalen. (rechts) de mogelijke configuraties
voor drie elektronen (een met spin op, twee met spin neer) in een systeemmet drie ruimtelijke
orbitalen. De orbitalen worden met horizontale strepen weergegeven. Elke orbitaal kan leeg,
enkelvoudig (↑ of ↓), of dubbel (⇅) bezet zijn.

Laten we nu de oplossingsruimte voor zulke kwantummechanische syste-
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men onder de loep houden, rekening houdend met bovenstaande bemerkin-
gen. In figuur 1 worden de vier mogelijke configuraties voor twee elektronen
(één ↑, één ↓) in twee orbitalen en de negen mogelijke configuraties voor drie
elektronen (één ↑, twee ↓) gegeven. Het toevoegen van een elektron en een
orbitaal heeft het aantal mogelijke configuraties van ons systeem meer dan
verdubbeld. Bij het toevoegen van nog een extra ↑ elektron en een ruimtelijke
orbitaal zwellen de configuraties aan tot 36. Deze sterke groei van het aan-
tal configuraties in functie van de systeemgrootte is de typerende exponentiële
muur van de kwantummechanica. Het neemt danige proporties aan dat het
bestuderen van tien ↑ en tien ↓ elektronen in twintig orbitalen reedsmiljarden
configuraties vraagt en dit systeem verdubbelen qua grootte verandert de 109
mogelijke configuraties in 1022 configuraties. De onhoudbaarheid van deze
situatie is vrij duidelijk, zeker aangezien het systeem in een superpositie van
al deze configuraties tegelijk kan verkeren. Voor het kwantummechanisch be-
studeren van moleculen hebben we dus nood aan verdere benaderingen. En-
kel voor de allerkleinste moleculen is het zoeken naar de grondtoestand (de
energetisch meest gunstige toestand) in de exponentieel groeiende oplossings-
ruimte mogelijk; voor ietwat grotere systemen wordt het al snel zoeken naar
een speld in een hooiberg.

Figuur 2: Een grafische voorstelling van een ‘driebenige boomvormige tensornetwerktoestand’
(T3NS). De cirkels representeren tensoren die verbonden zijn met elkaar in een netwerk. De
blauwe cirkels zijn tensoren geassocieerd met orbitalen van het systeem, terwijl groene cirkels
tensoren zijn die louter dienen voor het verstrengelen van verschillende orbitalen; ze verbin-
den de verschillende takken van het boomvormige netwerk. Dit netwerk wordt boomvormig
genoemd omdat het vertakkingen maar geen lussen vertoont.

Er bestaan veel mogelijke manieren om de exponentieel groeiende oplos-
singsruimte verder te benaderen, maar niet elke benadering is even accuraat
of even wijd toepasbaar. In deze thesis bestuderen we de zogenaamde ‘driebe-
nige boomvormige tensornetwerktoestanden’ (de three-legged tree tensor net-
work state of T3NS). Een grafische voorstelling van een T3NS wordt gegeven
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in figuur 2. Het is een methode uit de overkoepelende klasse van de tensor-
netwerktoestanden. Bij deze toestanden worden zogenaamde tensoren (een
veralgemening van matrices naar hogere dimensie) toegewezen aan de ver-
schillende orbitalen. Door deze tensoren te verbinden met elkaar komen de
orbitalenmet elkaar in kwantumverstrengeling, dit zijn kwantummechanische
correlaties die ontstaan door een superpositie van toestanden. Tensornetwer-
ken zijn voornamelijk efficiënt voor het bestuderen van systemenmet een lage
kwantumverstrengeling. Ze maken het numeriek oplossen van grote molecu-
len mogelijk door niet de hele oplossingsruimte af te zoeken voor de grondtoe-
stand, maar zich te beperken tot enkel toestanden met een lage kwantumver-
strengeling. Gelukkig lijken de meeste systemen in de natuur inderdaad een
lage verstrengeling te vertonen. In hoofdstuk 2 geven we een overzicht van
tensornetwerken die gebruikt worden in de kwantumchemie en introduceren
we de T3NS. We bespreken ook hoe deze netwerken kunnen gebruikt worden
voor het vinden van moleculaire grondtoestanden en tonen enkele initiële be-
rekeningen.

H H
O

𝜎𝑣(𝑦𝑧)

𝜎𝑣(𝑥𝑧)

𝑧

Figuur 3: Schematische voorstelling van een watermolecule. Deze molecule is invariant onder
rotaties van 180° rond de 𝑧-as en is ook invariant voor reflecties langs het 𝑥𝑧- en 𝑦𝑧-vlak.

Een andere manier om het probleem te vereenvoudigen is door rekening
te houden met de symmetrieën van het systeem. Moleculaire systemen verto-
nen verscheidene symmetrieën. Als we bijvoorbeeld naar een watermolecule
in figuur 3 kijken, merkenwe al snel dat deze niet verandert onder rotaties van
180° rond de 𝑧-as of wanneer we reflecteren langs het 𝑥𝑧- of 𝑦𝑧-vlak. Sommige
symmetrieën zijn minder voor de hand liggend. Zo staat het feit dat er geen
elektronen gecreëerd of vernietigd worden in de molecule ook in verband met
een symmetrie. Herinnert u zich ook nog de spintoestand van het elektron
dat zowel op als neer kan zijn. Het begrip ‘op’ en ‘neer’ is echter afhankelijk
van de gekozen meetrichting van de spin en er is natuurlijk geen enkele reden
waarom een specifieke meetrichting de voorkeur zou genieten. Elke andere
richting is een even geldige keuze voor het meten van de elektronspin. Deze
keuzevrijheid zorgt voor nog een symmetrie aanwezig in moleculen. Door
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deze symmetrieën kunnen enkele voorwaarden voor de grondtoestand van de
molecule geformuleerd worden, wat de zoektocht ernaar vereenvoudigt. Het
gebruik van de symmetrieën van de molecule voor het formuleren van een
efficiënter T3NS algoritme is het onderwerp van hoofdstuk 3.

De technieken die ontwikkeldworden in hoofdstuk 3 kunnen ophun beurt
verder gebruikt worden om extra voorwaarden aan de grondtoestand op te leg-
gen. Hoewel de exacte grondtoestandniet noodzakelijkerwijs voldoet aan deze
voorwaarden, kan het ons toch verder helpen indien de best benaderende toe-
stand die wel voldoet accuraat genoeg is. In figuur 1 toonden we orbitalen be-
zet door geen, één, of een paar elektronen. In demolecule is er geen symmetrie
aanwezig die ons meer leert over het aantal enkelbezette orbitalen. Toch kan
het beperken van het aantal ongepaarde elektronen accurate resultaten ople-
veren. De studie van het vinden van de grondtoestandmet slechts een beperkt
aantal enkelbezette orbitalen is het onderwerp van hoofdstuk 4.

In de T3NS worden de verschillende orbitalen verstrengeld door hun ten-
soren met elkaar te verbinden in een netwerk zoals grafisch weergegeven in
figuur 2. Een groep orbitalen die in hoge mate verstrengeld zijn met elkaar
worden best dicht bij elkaar gezet in het netwerk. Het beïnvloedt de efficiën-
tie van het algoritme op een gunstige manier. Welke orbitalen sterk verstren-
geld zijn met elkaar in de grondtoestand is echter niet op voorhand geweten.
In hoofdstuk 5 bespreken we methoden voor het bepalen van een initiële or-
dening van de orbitalen en het verder optimaliseren van de ordening op het
netwerk tijdens de uitvoering van het T3NS algoritme.
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1
Introduction

You will have to concede, Herr Pauli,
by partially waiving your exclusion principle

you might free us from many worries of daily life,
for instance from the traffic problem in our streets.

P. Ehrenfest [1]

This introduction sets the stage for our study of tensor networks in quantumchem-
istry. In Section 1.1, we give a brief introduction to entanglement. This counterin-
tuitive quantummechanical correlation lies at the source of the recent success of
tensor networkmethods; a proper understanding of this phenomenon is welcome
and will be addressed.
In Section 1.2, we discuss the quantum chemical Hamiltonian. The study of the
electronic structure in molecules is central in this dissertation; as such we need to
understand the approximations made and which useful properties this Hamilto-
nian exhibits.
In Section 1.3, a very brief overview of some well-established electronic structure
methods are given. We also discuss strong and weak correlations, the two ma-
jor types of electronic correlations distinguished by chemists. Most methods are
only successful in retrieving one type of correlation, whilemethods that are potent
enough to retrieve both are often computationally very expensive.
We conclude the chapter with an overview of the remainder of this dissertation.

1
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2 1. Introduction

The nineteenth-century philosopher Auguste Comte remarked in his Cours
de Philosophie Positive that “every attempt to employ mathematical methods in
the study of chemical questions must be considered profoundly irrational and
contrary to the spirit of chemistry” [2]. In contrast, scientists now relymore and
more on computational insight for the understanding of physical and chemical
phenomena in molecules. The advent of quantum mechanics in the first half
of the twentieth century is, without any doubt, themajor factor for this sudden
shift. It gave physicists and chemists a theoretical framework for the study of
systems on the atomic scale; their behavior is governed by the Schrödinger
equation1 [3], which is probably one of the most famous equations in physics
and rightly so. It is given by

𝑖ℏ 𝑑𝑑𝑡 |Ψ(𝑡)⟩ = �̂�|Ψ(𝑡)⟩ (1.1)

or for time-independent systems
�̂�|Ψ⟩ = 𝐸|Ψ⟩ . (1.2)

The Hamiltonian of the system is represented by �̂�. It is an operator contain-
ing information on the kinetic energy of the particles and the interactions be-
tween them. |Ψ⟩ represents the state of the system; it reflects the inherent
probabilistic nature of quantum mechanics as multiple states can occur in su-
perposition. To further exemplify this, let us assume we perform a quantum
mechanical coin toss. The result of the coin toss can be either heads or tails;
let us represent these outcomes by the states |↑⟩ and |↓⟩ respectively. Before
the outcome of the coin toss is measured we could represent the state of the
coin in a superposition of heads and tails, i.e.

|Ψ⟩ = 𝐶↑|↑⟩ + 𝐶↓|↓⟩ . (1.3)

The exact outcome of the measurement is a priori unknown; we only know
the probabilities of measuring heads and tails to be |𝐶↑|2 and |𝐶↓|2 respectively.
According to the Copenhagen interpretation of quantummechanics, the wave
function of our coin will collapse to either |↑⟩ or |↓⟩ after measurement; we are
now completely certain about the state of our coin.

Let us now continue to the toss of two distinctive coins. Instead of two
outcomes we have four possible outcomes which we will again represent by
|↑↑⟩, |↓↑⟩, |↑↓⟩ and |↓↓⟩. Thewave function (or state) of the system is now given
by

|Ψ⟩ = 𝐶↑↑|↑↑⟩ + 𝐶↓↑|↓↑⟩ + 𝐶↑↓|↑↓⟩ + 𝐶↓↓|↓↓⟩ . (1.4)

1At least, in the non-relativistic case.
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The probabilities of the different outcomes are again given by the squared
value of their amplitudes 𝐶. Measuring even one coin will result into an ap-
propriate collapse of the total wave function of our system. For example, when
measuring the outcome to be heads for our first coin thewave functionwill col-
lapse to |Ψ′⟩ = 𝐶↑↑|↑↑⟩ + 𝐶↑↓|↑↓⟩ up to normalization.

Adding one extra coin doubles the number of possible outcomes and the
number of needed amplitudes. This trend will continue with each added coin;
the toss of𝑁 coins will need 2𝑁 different amplitudes for 2𝑁 different outcomes.
This exponential growth of the Hilbert space for increasing system sizes is the
biggest hurdle for anyone practicing many-body quantum physics.

1.1. Entanglement
As many analogies, the coin toss is not airtight. One could easily raise the
objection that the coin toss is not inherently probabilistic; it is still possible to
predict the outcome of the toss before the measurement, if only the conditions
of our problem were known up to arbitrary accuracies. It is through a lack of
knowledge that we perceive the coin toss as probabilistic. Couldn’t we raise
the same objection about quantum mechanics?

Albert Einstein believed exactly this. As an advocate of the hidden variable
theory, he believed that quantum mechanics provided an incomplete descrip-
tion of reality; there are undiscovered variables that govern the exact outcome
of quantum measurements. In 1935 he published together with Boris Podol-
sky and Nathan Rosen the famous EPR-paradox [4]. While this paradox was
originally formulated as ameasurement of position andmomentumof two par-
ticles, Bohm later reformulated it for another set of non-commuting operators.
We will reiterate Bohm’s more practical realization of the EPR-paradox [5].
Imagine two spin-half particles 𝐴 and 𝐵 which couple to a singlet. The quan-
tum mechanical wave function of this system is given by

|Ψ⟩ = 1
√2
[|↑⟩𝐴|↓⟩𝐵 − |↓⟩𝐴|↑⟩𝐵] (1.5)

wherewe have neglected all degrees of freedombut the spin. The states |↑⟩ and
|↓⟩ refer to the spin projection in a certain direction; let’s say the 𝑧-direction.
As a next step, let us imagine these particles are sent far away in opposite direc-
tions; although they still form a singlet we assume they are too far to directly
interact with each other. When performing a spin measurement on particle
𝐴 along the 𝑧-axis, we will, with full certainty, obtain the opposite result for
measurements along the same axis for particle 𝐵; the measurement on parti-
cle 𝐴 has made the 𝑆𝑧 property of particle 𝐵 definite due to the wave function
collapse. On the other hand, measurements of the spin along the 𝑥-axis of 𝐵
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will still be probabilistic, there is fifty-fifty chance for either spin up or spin
down. As quantummechanics is probabilistic, this poses a problem according
to the EPR-paradox. While the spin of 𝐵 is inherently indefinite in all direc-
tions before measurements on 𝐴, it becomes suddenly definite in the same
direction of the measurement on 𝐴, but only in this direction. If we assume
that the inherent probabilistic nature of quantum theory is correct, there has to
be some instantaneous interaction between 𝐴 and 𝐵2 that communicates the
measuring direction on 𝐴. EPR concluded that the quantum theory cannot be
complete as they excluded the existence of any ‘spooky action at a distance’ [6].
A more complete hidden variable theory had to be waiting around the corner.

David Bohm successfully formulated a hidden variable theory in corre-
spondence with quantum mechanics by extending the pilot wave theory of
Louis de Broglie [7–9]. However, Bohmian mechanics also has its controver-
sies. Although deterministic, it is manifestly nonlocal when entangled3 parti-
cles are studied. It enticed John Stewart Bell to consider if any local hidden
variable theory that corresponds with the quantum theory is at all possible.
His pondering resulted into Bell’s theorem [10]; it provides an inequality re-
spected by any local hidden variable theory but violated by quantummechan-
ics. Multiple experimental measurements suggest that nature indeed violates
this inequality; local hidden variable theories cannot adequately represent our
reality [11–15].

Whether nature’s spooky interaction at a distance is due to nonlocalities
as in Bohmian mechanics, through wave function collapse as in the Copen-
hagen interpretation or through any of the numerous other interpretations of
quantum mechanics, is out of scope for this dissertation. Only the fact that
entanglement exists is of importance for the further understanding of this dis-
sertation. We will conclude this discussion by quoting one of the greats of the
past century:
The interpretation of quantummechanics has been dealt with by many authors,

and I do not want to discuss it here. I want to deal with more fundamental
things.

P.A.M. Dirac

1.1.1. The Schmidt decomposition
Let us unveil the spookiness a bit by mathematically defining entanglement.
First, we need to clarify the existence of two types of states in quantum me-
chanics, i.e. the pure states and mixed states. Pure states are any state of a
2Or between the measuring device on𝐴 and the particle 𝐵.
3The modern term for the spooky action at a distance.
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system that can be represented by a ket |Ψ⟩, i.e. a single vector in the Hilbert
space𝐻. The densitymatrix of a pure state is given by 𝜌 = |Ψ⟩⟨Ψ|. Mixed states,
on the other hand, cannot be represented by a single wave function; they can
only be represented by their density matrix 𝜌which is a positive semi-definite
operator with trace one. By using the spectral decomposition of 𝜌, given by

𝜌 =
dim(𝐻)
∑
𝑖=1

𝜂𝑖|Ψ𝑖⟩⟨Ψ𝑖| , (1.6)

we can realize that mixed states are convex combinations of pure states; the
density matrix represents a statistical ensemble of pure states. Mixed states
are useful when the system studied is not completely isolated from its environ-
ment.

Entanglement represents the quantum mechanical correlations between
two subsystems of the complete isolated system. For example the wave func-
tion discussed in Bohm’s variation on the EPR-paradox in Eq. (1.5) assumes
a partitioning of the two-particle Hilbert space into the single-particle Hilbert
spaces of 𝐴 and 𝐵. In quantum chemistry for example, the partitioning will
often be defined as the Fock spaces spanned by a subset of the orbitals in the
system. Once we have made up our mind on how to partition the system the
Schmidt decomposition proves to be an indispensable tool [16]. The Schmidt
decomposition states the following:

Theorem 1.1 (Schmidt decomposition) Let us assume the pure wave func-
tion |Ψ⟩ ∈ 𝐻 where 𝐻 is the total Hilbert space of the system. For any subspaces
𝐻𝐴 and𝐻𝐵 for which𝐻 = 𝐻𝐴⊗𝐻𝐵, there exists orthonormal sets {|𝜙1⟩, … , |𝜙𝑀⟩}
in𝐻𝐴 and {|𝜒1⟩, … , |𝜒𝑀⟩} in𝐻𝐵 where𝑀 = min(dim(𝐻𝐴), dim(𝐻𝐵)) such that

|Ψ⟩ =
𝑀
∑
𝑖=1
𝑠𝑖|𝜙𝑖⟩|𝜒𝑖⟩ (1.7)

where 𝑠𝑖 are real, non-negative numbers uniquely defined for |Ψ⟩.
The Schmidt decomposition is actually a reformulation of the singular value
decomposition (SVD) for vectors with respect to their Hilbert space. It pro-
vides the minimal amount of orthonormal states needed for an exact represen-
tation (when disregarding states connected to Schmidt values of zero) and the
best approximation of the total wave function by smaller sets of orthonormal
states is given by a truncated Schmidt decomposition. For more information
we refer the reader to Appendix A.

One can easily see that subsystems𝐴 and 𝐵withHilbert spaces𝐻𝐴 and𝐻𝐵
are more entangled (i.e. are more correlated) if there are a lot of large Schmidt
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values in Eq. (1.7); when doing subsequent measurements on subsystems 𝐴
and 𝐵, the result on 𝐵 will be correlated with the outcome of themeasurement
on 𝐴. On the other hand, when there is only one non-zero Schmidt value
we have a separable state; any measurement on 𝐴 will not influence measure-
ments on 𝐵. In the EPR-paradox the state in Eq. (1.5) is maximally entangled
as a maximum amount of Schmidt states are needed and all Schmidt values
are of equal magnitude, i.e. 1/√𝑀 for a normalized pure state.

The Schmidt values give us a means to express the entanglement of a wave
function between two subsystems. However, instead of a vector of singular
values it would be nice to express entanglement also as a single scalar. Von
Neumann introduced an entropy based on the classical Shannon entropy. It
is suitably called the von Neumann entropy [17] and is given by the Shannon
entropy of the spectrum of 𝜌, i.e. the density matrix of the mixed state. The
von Neumann entropy is given by

S(𝜌) = − tr(𝜌 ln 𝜌) = −
dim(𝐻)
∑
𝑖=1

𝜂𝑖 ln 𝜂𝑖 (1.8)

where 𝜂𝑖 are the eigenvalues of 𝜌. For any pure state we immediately notice
that the von Neumann entropy is zero as 𝜌 = |Ψ⟩⟨Ψ| and thus 𝜂 = (1, 0, … , 0).

To calculate the entropy of subsystem 𝐴 of the pure state in Eq. (1.7), the
reduced density matrix of the state limited to subsystem 𝐴 has to be obtained.
This is done by a partial trace of the full density matrix over subsystem 𝐵, i.e.

𝜌𝐴 = tr𝐵(𝜌) = tr𝐵(
𝑀
∑
𝑖=1
𝑠𝑖|𝜙𝑖⟩|𝜒𝑖⟩

𝑀
∑
𝑗=1

𝑠𝑗⟨𝜙𝑗|⟨𝜒𝑗|) =
𝑀
∑
𝑖=1
𝑠2𝑖 |𝜙𝑖⟩⟨𝜙𝑖| . (1.9)

We immediately obtain a spectral decomposition of 𝜌𝐴; the eigenvalues are
given by the square of the Schmidt values while the eigenstates are given by
the Schmidt orthonormal states. By taking the partial trace of the pure state
over subsystem𝐵, we have obtained a reduced densitymatrix corresponding to
a mixed state for subsystem 𝐴. Now, the von Neumann entropy of subsystem
𝐴 is given by

S(𝜌𝐴) = −
𝑀
∑
𝑖=1
𝑠2𝑖 ln 𝑠2𝑖 . (1.10)

It is easy to check that a separable state for a given partition results into a von
Neumann entropy of zero while a maximally entangled state results into the
maximal possible von Neumann entropy S(𝜌𝐴) = ln𝑀. The same analysis
holds for subsystem 𝐵, i.e. S(𝜌𝐴) = S(𝜌𝐵) and the eigenvalues and eigenstates
of 𝜌𝐵 are given by the square of the Schmidt values and the Schmidt states |𝜒𝑖⟩.
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The von Neumann entropy is not the only possible entanglement entropy
measure. Another option is the Rényi entropy [18, 19] given by

S𝛼(𝜌) =
1

1 − 𝛼 ln (tr 𝜌
𝛼) = 1

1 − 𝛼 ln(
𝑀
∑
𝑖=1
𝜂𝛼𝑖 ) (1.11)

for 0 ≤ 𝛼 < 1. For the limit 𝛼 → 1 the von Neumann entropy is obtained.
Just as for the von Neumann entropy, any separable state has a zero entropy
for the Rényi entropy while the maximal value of S𝛼 = ln𝑀 is obtained for
any maximally entangled state.

When measuring the entanglement entropy, small 𝛼-values of the Rényi
entropy will give more weight to the smallest Schmidt values; slowly decaying
tails in the Schmidt values will be penalized heavier.

1.1.2. Entanglement in physical systems
Let us briefly discuss how entanglement behaves in physical systems. We will
start by investigating the low-lying eigenstates of theHeisenberg Hamiltonian;
we consider a one-dimensional chain of twenty 𝑆 = 1/2 spins and impose peri-
odic boundary conditions. The Hamiltonian of the system is given by

�̂� = 𝐽∑
⟨𝑖𝑗⟩

̂𝑆𝑖 ⋅ ̂𝑆𝑗 , (1.12)

where ⟨𝑖𝑗⟩ denotes the neighboring spins; it is a system with only local interac-
tions.

The local Hilbert space of each spin is given by ℂ2; each spin can either
be spin-up, spin-down or any linear combination. The total Hilbert space is a
direct product of the local Hilbert spaces; it is given by (ℂ2)⊗𝑁 with𝑁 the num-
ber of spins. We can easily sample this space by normalizing vectors whose el-
ements are drawn as independent and identically normal distributed random
variables4. For these random wave functions we can easily calculate the von
Neumann entropy for segments of different sizes𝐴. In Fig. 1.1 the average von
Neumann entropy for different segment sizes 𝐴 are given for 100 000 samples.
The variances are also shown as error bars, albeit barely visible. As could be ex-
pected, the vonNeumann entropy increases linearly with𝐴. When comparing
the random states with the lowest lying eigenstates of the Heisenberg Hamil-
tonian, it is quite apparent that these behave very differently. Again looking

4Indeed, the probability density for a given vector �⃗� = (𝑥1, … 𝑥𝑛) is given by 𝑝(𝑥1, … , 𝑥𝑛) =
∏𝑛𝒩(0, 1)𝑑𝑥𝑖 ∝ 𝑒

− 1
2 ‖�⃗�‖

2𝑑𝑥1 …𝑑𝑥𝑛. The probability of drawing a vector is only dependent
on its magnitude and not its direction; every vector in the Hilbert space has equal probability
after normalization.
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Figure 1.1: Illustration of the area law on a one-dimensional Heisenberg spin chain of twenty
𝑆 = 1/2 spins. Periodic boundary conditions are imposed. The average von Neumann entropy
for 100 000 random wave functions is compared with the average von Neumann entropy of the
lowest lying eigenstates. Variances are also shown as error bars.

at Fig. 1.1, these eigenstates seem to express an entropy that saturates with
subsystem size.

Although this example is quite anecdotal, it is a trend persisting in other
systems and system sizes as well; it is known as the area law of entanglement.
Rather than scaling with the volume 𝐴, the entanglement scales with the area
of the boundary of subsystem 𝜕𝐴 for ground states in a lot of physical systems.
It is as if only the boundary of the subsystem contributes to the quantum me-
chanical correlations with its environment, which seems a plausible assump-
tion for local interactions. For ground states of gapped local Hamiltonians in
one dimension the area law is proven [20]; for general systems in higher dimen-
sions it remains a conjecture [21–23] and for gaplessHamiltonians logarithmic
corrections on the area law are needed [22, 24].

In contrast to classical entropy, the vonNeumann entropy does not seem to
behave extensively. It gives an explanation to the non-intuitive and (initially)
controversial character of entanglement as its direct effects on themacroscopic
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level are normally minimal. Many systems in nature seem to exhibit ground
state wave functions with a low entanglement; only a small corner of the com-
plete Hilbert space is relevant. Tensor network states, the main subject of this
dissertation, exploit exactly this tendency for low entanglement by providing
an efficient parametrization of the relevant corner of the Hilbert space for sys-
tems respecting area laws. This type of ansatz will be introduced in the next
chapter.

A much more thorough discussion of entanglement and its implications
can be found in Quantum computation and quantum information by Nielsen
and Chuang [25].

1.2. The chemical Hamiltonian
In this dissertation we will occupy ourselves with the ab initio study of chem-
ical systems. More particularly we will restrict ourselves to the time-indepen-
dent non-relativistic Schrödinger equation Eq. (1.2). As we are mainly inter-
ested in ground states of static systems time-dependency is not needed. Neg-
ligence of relativistic effects in studying chemical systems is generally not a
problem when restricting ourselves to light atoms. It allows us to work with a
fixed particle number; no electrons are created or annihilated as in quantum
field theory. Effects arising from the relativistic Dirac equation [26, 27] like
velocity-dependent masses, the spin-orbit coupling and the Darwin term are
neglected although some relativistic effects can still be taken into account in
non-relativistic algorithms by various approximate methods [28–33].

We need to solve the Schrödinger equation in Eq. (1.2) where the exact
non-relativistic Hamiltonian is given by

�̂� = −∑
𝑖

1
2∇

2
𝑖−∑

𝐴

1
2𝑀𝐴

∇2𝐴

+12 ∑𝐴≠𝐵
𝑍𝐴𝑍𝐵

‖�⃗�𝐴 − �⃗�𝐵‖
−∑
𝑖,𝐴

𝑍𝐴
‖�⃗�𝐴 − ⃗𝑟𝑖‖

+ 12 ∑𝑖≠𝑗
1

‖ ⃗𝑟𝑖 − ⃗𝑟𝑗‖
,

(1.13)

where 𝑖 and 𝑗 indicate electrons and 𝐴 and 𝐵 indicate nucleons with a nuclear
charge 𝑍𝐴 and 𝑍𝐵. The first line consists of the kinetic terms for the nuclei
and electrons while the second line sums the different Coulomb interactions.
These are repulsive for electrons 𝑖 and 𝑗 or nuclei 𝐴 and 𝐵 and attractive be-
tween electrons and nuclei. Atomic units were used for this Hamiltonian [34];
we choose the electronic charge 𝑒 and mass 𝑚𝑒, the reduced Planck constant
ℏ and the inverse Coulomb constant 4𝜋𝜖0 equal to 1.

Next, we will consider the Born-Oppenheimer approximation [35] as the
Hamiltonian in Eq. (1.13) is still quite unruly. In this approximation, the mo-
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tion of the nuclei and electrons are treated separately. The Born-Oppenheimer
approximation is widely used in quantum chemistry and is valid when the po-
tential energy surfaces (PESs) of the different energy levels are well separated.
As we are interested in the electronic structure of molecules, we fix the nu-
clear positions �⃗�𝐴 and treat them as classical point charges. The simplified
Hamiltonian dictating the electronic structure is now given by

�̂�(R⃗) = 𝐸0(R⃗) −∑
𝑖

1
2∇

2
𝑖 −∑

𝑖
𝑉 (R⃗, ⃗𝑟𝑖) +

1
2 ∑𝑖≠𝑗

1
‖ ⃗𝑟𝑖 − ⃗𝑟𝑗‖

. (1.14)

The nuclear positions are collectively denoted by R⃗. By treating the nuclei as
classical point charges their Coulomb interactions result in a constant term
𝐸0(R⃗) and an electrostatic potential for the electrons 𝑉 (R⃗, ⃗𝑟𝑖).

1.2.1. Finite basis sets and orbitals
The chemical Hamiltonian established in Eq. (1.14) is, although much sim-
plified, still quite unwieldy. At this stage, the Schrödinger equation for the
electronic wave function is given by

�̂�(R⃗)||Ψ𝑒( ⃗𝑟 | R⃗)⟩ = 𝐸(R⃗)||Ψ𝑒( ⃗𝑟 | R⃗)⟩ . (1.15)

In general, the partial differential equations (PDEs) one obtains by solving this
Schrödinger equation are not exactly soluble. Only themost simple atoms and
molecules can be exactly solved; for example, for the hydrogen-like atoms a
closed solution exists [3] and the Hylleraas expansion provides a solution for
helium-like atoms up to arbitrary precision [36–39]. For general molecular
systems further approximations have to be considered.

Traditional methods for numerical solving PDEs, such as finite element
methods [40, 41] and finite difference methods [42–46], have been used in
quantum chemistry, although they are in the minority. Instead of discretizing,
it is much more common to approximate the full three-dimensional single-
particle space by an expansion of orbital-like basis functions centered around
the different atoms of the system. When expressing the different interactions
in any basis set – discretized, Gaussian-type orbitals (GTO) [47–49], Slater-
type orbitals (STO) [50], or any other – we need to evaluate the one- and two-
electron integrals given by

𝑇𝑖𝑗 = ∫𝑑3 ⃗𝑟1 𝜙∗𝑖 ( ⃗𝑟1) [
1
2∇

2 −∑
𝐴

𝑍𝐴
‖�⃗�𝐴 − ⃗𝑟1‖

] 𝜙𝑗( ⃗𝑟1) (1.16)

𝑉𝑖𝑗𝑘𝑙 =∬𝑑3 ⃗𝑟1𝑑3 ⃗𝑟2 𝜙∗𝑖 ( ⃗𝑟1)𝜙∗𝑗 ( ⃗𝑟2)
1

‖ ⃗𝑟1 − ⃗𝑟2‖
𝜙𝑘( ⃗𝑟1)𝜙𝑙( ⃗𝑟2) , (1.17)
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where 𝜙𝑖( ⃗𝑟) are the different spatial basis functions. While these integrals are
rather sparse for discretized space, they become dense for the non-local GTO
and STO basis sets. However, GTOs and STOs are generally preferred as much
less basis functions are needed for an accurate description of the electronic
structure. While STOs already include a correct radial dependency of exp(−𝜁𝑟)
for the orbitals, GTOs do not; especially the cusp observed at the nuclei is badly
represented by the exp(−𝛼𝑟2) dependency of the GTOs. One would thus as-
sume STOs are the golden standard for any quantum chemist. Unfortunately,
calculating the integrals for STOs becomes very cumbersome when multiple
nuclei are involved, while there exist analytic expressions for the calculation
of the integrals for GTOs [47]. As such, GTOs are much more widely used.

In this dissertation, we will restrict ourselves to approximating the three-
dimensional single-particle space in a set of orthonormal orbitals. Orbitals
occupied by electrons with a different spin-projection are orthogonal irrespec-
tive of their spatial form. One could choose different sets of spatial orbitals
for the up and down electrons. However, we will choose one set of spatial or-
thogonal orbitals for both electrons as this facilitates the usage of the total spin
symmetry. Whether the used spatial orbitals are linear combinations of GTOs,
STOs or any other set of basis functions andwhether these orbitals were gener-
ated by a Hartree-Fock calculation [34, 51–53], a localization method [54–56]
or any other orthogonalization procedure does not really matter for the formu-
lation of the algorithm presented in this dissertation. It is of course of great
importance for the accuracy and speed of the calculations as tensor network
methods are not orbital invariant.

We briefly reiterate the used approximations for studying a staticmolecule:

• Relativistic effects are neglected; as such we need to solve the Schrödin-
ger equation instead of the Dirac equation.

• Using the Born-Oppenheimer approximation, we model the nuclei as
fixed point charges. We are only concerned with the movement of the
electrons.

• The infinite three-dimensional space is approximated by using a finite
set of basis functions, usually Gaussian-type orbitals.

1.2.2. Second quantization
As a last step, we will write the chemical Hamiltonian of Eq. (1.14) projected
onto the orthonormal set of orbitals in its second quantized form [57, 58]:

𝐻 = 𝐸0 +∑
𝑖𝑗
𝑇𝑖𝑗∑

𝜎
𝑐†𝑖𝜎𝑐𝑗𝜎 +

1
2 ∑𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙∑
𝜎𝜏
𝑐†𝑖𝜎𝑐†𝑗𝜏𝑐𝑙𝜏𝑐𝑘𝜎 . (1.18)
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The introduced operators 𝑐†𝑖𝜎 and 𝑐𝑖𝜎 are the fermionic creation and annihi-
lation operators, respectively. They create (and annihilate) electrons in the
corresponding spin-orbital. The indexes 𝑖, 𝑗, 𝑘 and 𝑙 denote the spatial orbital,
while 𝜎 and 𝜏 are the spin-projections of the electron (𝜎, 𝜏 ∈ {↑, ↓}). States can
be created by applying a string of second quantized creation operators onto the
vacuum. For example, a state of a single up-electron in orbital 𝑖 is represented
by

|𝜙𝑖↑⟩ = 𝑐†𝑖↑|−⟩, (1.19)
while a general many-body state in 𝐿 orbitals is given by a linear combination
of strings of creation operators, i.e.

|Ψ⟩ = ∑
{𝑛𝑖𝜎}

𝐶{𝑛𝑖𝜎}|𝑛1↑𝑛1↓ …𝑛𝐿↑𝑛𝐿↓⟩

= ∑
{𝑛𝑖𝜎}

𝐶{𝑛𝑖𝜎} (𝑐
†
1↑)

𝑛1↑ (𝑐†1↓)
𝑛1↓ … (𝑐†𝐿↑)

𝑛𝐿↑ (𝑐†𝐿↓)
𝑛𝐿↓ |−⟩ ,

(1.20)

where each 𝑛𝑖𝜎 ∈ {0, 1}. On the other hand, acting upon the vacuum with any
annihilation operator destroys the state completely, i.e.

𝑐𝑖𝜎|−⟩ = 0 (1.21)

Interactions are seen as the subsequent annihilation and creation of elec-
trons. For example, the scattering of two electrons through the Coulomb in-
teraction given by 𝑉𝑖𝑗𝑘𝑙 𝑐†𝑖𝜎𝑐†𝑗𝜏𝑐𝑙𝜏𝑐𝑘𝜎 is viewed as the annihilation of the two
electrons in their initial orbitals 𝜙𝑘𝜎 and 𝜙𝑙𝜏 followed by the creation of two
electrons in the final orbitals 𝜙𝑖𝜎 and 𝜙𝑗𝜏.

Fermionic creation and annihilation operators obey the anticommutation
rules, i.e.

{𝑐𝑖𝜎, 𝑐†𝑗𝜏} = 𝑐𝑖𝜎𝑐†𝑗𝜏 + 𝑐†𝑗𝜏𝑐𝑖𝜎 = 𝛿𝑖,𝑗𝛿𝜎,𝜏 (1.22)
and

{𝑐†𝑖𝜎, 𝑐†𝑗𝜏} = {𝑐𝑖𝜎, 𝑐𝑗𝜏} = 0 . (1.23)

These anticommutation rules provide the properties needed for fermions by
construction. First, we notice the Pauli exclusion principle [59, 60] as two
fermions cannot occupy the same spin-orbital due to

{𝑐†𝑖𝜎, 𝑐†𝑖𝜎} = 2𝑐†𝑖𝜎𝑐†𝑖𝜎 = 0 . (1.24)

Furthermore, the anti-symmetry under exchange of two fermions is fulfilled:

|𝜙𝑖𝜎𝜙𝑗𝜏⟩ = 𝑐†𝑖𝜎𝑐†𝑗𝜏|−⟩ = −𝑐†𝑗𝜏𝑐†𝑖𝜎|−⟩ = −|𝜙𝑗𝜏𝜙𝑖𝜎⟩ . (1.25)
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As a result the construction of any Slater determinant [61] is straightforwardly
obtained by using a product of creation operators, i.e.

|𝑛1↑𝑛1↓ …𝑛𝐿↑𝑛𝐿↓⟩ = (𝑐†1↑)
𝑛1↑ (𝑐†1↓)

𝑛1↓ … (𝑐†𝐿↑)
𝑛𝐿↑ (𝑐†𝐿↓)

𝑛𝐿↓ |−⟩ . (1.26)

Second quantization is not unique to fermions; bosonic states can also be
represented by a succession of creation operators. For bosons, the creation and
annihilation operators 𝑏†𝛼 and 𝑏𝛼 respect the commutation rules instead, i.e.

[𝑏𝛼, 𝑏†𝛽] = 𝑏𝛼𝑏
†
𝛽 − 𝑏

†
𝛽𝑏𝛼 = 𝛿𝛼,𝛽 (1.27)

and
[𝑏†𝛼, 𝑏†𝛽] = [𝑏𝛼, 𝑏𝛽] = 0 . (1.28)

Although the majority of this dissertation treats electrons which are fermi-
ons, we will encounter bosonic states in Chapter 4 where electron pairs are
studied as composite bosons with zero spin. For more information on the sec-
ond quantization, we refer the reader to Ref. [62].

1.2.3. Symmetries
The chemicalHamiltonian in Eq. (1.18) exhibits several symmetries. First, one
can easily check that theHamiltonian is U(1)-symmetric, i.e. theHamiltonian
is invariant under these transformations

𝑐† → 𝑒𝑖𝜙𝑐† (1.29)
𝑐 → 𝑒−𝑖𝜙𝑐 , (1.30)

where𝜙 is a global phase equal for all creation and annihilation operators. This
symmetry is due to the pairwise occurrence of creation and annihilation oper-
ators; it gives rise to a conservation of the number of electrons.

Second, the Hamiltonian is also SU(2)-symmetric. The Hamiltonian is in-
variant when transforming the local spin basis of the electrons as follows

𝑐′𝜎 = ∑
𝜎′∈{↑,↓}

𝑈𝜎𝜎′𝑐𝜎′ (1.31)

𝑐′†𝜎 = ∑
𝜎′∈{↑,↓}

𝑈∗𝜎𝜎′𝑐
†
𝜎′ (1.32)

where 𝑈 ∈ SU(2), i.e.

𝑈𝑈† = 𝑈†𝑈 = 𝟙 (1.33)
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and
det(𝑈) = 1 . (1.34)

The shrewd reader will notice that restricting to det(𝑈) = 1 is rather super-
fluous; any 𝑈 ∈ U(2) would suffice. However, the U(2)-symmetry emerges
from the U(1) ⊗ SU(2)-symmetry of the Hamiltonian and the simultaneous
particle and total spin conservation give rise to the U(2)-symmetry. One can
easily check that it is not U(2) but SU(2) that governs spin-symmetries by con-
sidering particle-breaking but spin-conserving terms such as 𝑐†𝑖↑𝑐†𝑖↓ + 𝑐𝑖↓𝑐𝑖↑.

H H 𝑧𝑖 H H
O

𝜎𝑣(𝑦𝑧)

𝜎𝑣(𝑥𝑧)

𝑧(a) (b)

Figure 1.2: The geometry of theH2 andH2Omolecules. (a) the hydrogen dimer has an inversion
center 𝑖 and rotation-axis 𝑧. (b) a water molecule has a rotation axis 𝑧 for rotations over 180°
and two reflection planes 𝜎𝑣(𝑥𝑧) and 𝜎𝑣(𝑦𝑧).

The last symmetry is less obvious when looking at Eq. (1.18) but quite ap-
parent when looking at the system at hand. Molecules can be invariant under
rotations, reflections and inversions and the given Hamiltonian built from ki-
netic terms and Coulomb interactions is invariant under the same set of oper-
ations. The exact operations under which the geometry is invariant give rise
to the point group symmetry 𝑃. For example, H2 given in Fig. 1.2 is clearly
invariant under any rotation along the z-axis and has an inversion center 𝑖; its
point group symmetry is 𝐷∞ℎ. Another example is H2O which has a 𝐶2𝑣 sym-
metry; it is invariant for rotations over 180° along the 𝑧-axis and for reflections
along the 𝑥𝑧 and 𝑦𝑧 plane. It is obvious that not all molecules have nontrivial
point group symmetries, but when they do the eigenstates of the Hamiltonian
will transform according to the irreducible representations (irreps) of the point
group 𝑃.

The most straightforward way to express the point group symmetry in the
Hamiltonian is when the spatial orbitals themselves transform according to
its irreps. The orbitals involved in the non-zero terms of 𝑉𝑖𝑗𝑘𝑙𝑐†𝑖𝜎𝑐†𝑗𝜏𝑐𝑙𝜏𝑐𝑘𝜎 need
to transform according to the irreps 𝐼𝑖, 𝐼𝑗, 𝐼𝑘 and 𝐼𝑙 such that 𝐼𝑖 ⊗ 𝐼𝑗 = 𝐼𝑘 ⊗ 𝐼𝑙.
This ensures a trivial transformation of the two-electron interactions in the
Hamiltonian. One could indeed check that the integrals in Eq. (1.17) are zero



1.3. Approximate methods

1

15

when this is not the case. Similarly, the one-electron integrals 𝑇𝑖𝑗 will evaluate
to zero if 𝐼𝑖 ≠ 𝐼𝑗.

Using symmetries of the system for a better understanding is a much used
technique in both quantum physics and chemistry [63–67]. In Chapter 3 we
will discuss how the U(1)⊗SU(2)⊗𝑃 symmetry of the chemical Hamiltonian
can be used to push the limits of tensor network methods. Concerning the
point group symmetries, we will restrict ourselves to only the simplest ones,
i.e. the real abelian point group symmetries 𝐶1, 𝐶𝑖, 𝐶2, 𝐶𝑠, 𝐷2, 𝐶2𝑣, 𝐶2ℎ and
𝐷2ℎ.

1.3. Approximate methods
In the previous section we discussed the chemical Hamiltonian and its appro-
priate approximations. With the Hamiltonian in Eq. (1.18) one could solve the
stationary Schrödinger equation given in Eq. (1.2). However, due to the previ-
ously discussed exponential growth of the total Hilbert space, exactly solving
the Schrödinger equation becomes intractable when the number of electrons
𝑁 = 𝑁↑+𝑁↓ or the number of (spatial) orbitals 𝐿 become too large. Taking into
account only the particle conservation of the spin-up and spin-down electrons,
the dimension of the total Hilbert space scales as

dim(𝐻) = ( 𝐿𝑁↑
)( 𝐿𝑁↓

) . (1.35)

It is quite clear that further approximations need to be made. In this section,
we will give a very brief overview of some much used methods in quantum
chemistry.

We can discern between two large classes of methods: the wave function
methods and methods relying on the density functional theory (DFT) [68, 69].
While the first method attempts to find the complete wave function of a given
chemical system, DFT only considers the electron density. In theory DFT pro-
vides an exact study of quantummechanical systems at a mean-field cost. Un-
fortunately, a lack of knowledge of the exact exchange-correlation functional,
which is needed for the evaluation of the energy, waters DFT down to an ap-
proximate method. Many approximations for the exact functional exist, each
with their own strengths andweaknesses. Amajor drawback ofDFT is that the
needed functional is not systematically improvable to the exact functional [70];
this in in stark contrast with wave function methods.

When discussing the class of wave functionmethods, one cannot avoid the
Hartree-Fock (HF) method [34, 51–53, 71, 72]. This method searches the vari-
ationally most optimal Slater determinant within the given basis set. In this



1

16 1. Introduction

mean-field theory, electrons do not interact instantaneous, instead each elec-
tron is only subjected to a mean-field Coulomb interaction with the other elec-
trons. The HF method returns a set of orthonormal occupied and virtual or-
bitals spanning the complete basis set. Depending on the restrictions imposed
the orbitals can be spatially identical for up and down electrons (restricted
Hartree-Fock) or different (unrestricted Hartree-Fock) [73].

Since the HF wave function is given by a single Slater determinant, it only
takes correlations due to the Pauli repulsion into account. The discrepancy
between the HF energy and the exact energy in the given basis set is called
the correlation energy [74]. Quite often, we further distinguish between strong
(static and nondynamical) and weak (dynamical) correlations [75–78]. Both
correlations are, of course, electronic by nature, however their origin is quite
different. Strong correlations arise through near-degeneracies of several Slater
determinants; the single HF Slater determinant fails to qualitatively describe
the exact wave function as there are multiple dominant Slater determinants
needed. Dynamic correlations are due to the instantaneous Coulomb repul-
sion between electrons. Typically, the basis set has to be chosen large enough
to capture dynamical correlations such that the electrons can relax adequately.
Dynamic correlations are expressed as a vast amount of Slater determinants
with small amplitudes in the exact solution.

When a system is dominated by dynamical correlations, we can resort to
single-reference methods. These post-HF methods start from the HF wave
function which is assumed qualitatively correct for the system. Popular tech-
niques for the incorporation of the dynamical correlations are for example the
Møller-Plesset perturbation theory (MP) [79], the configuration interaction
(CI) method [61, 80] and the coupled cluster (CC) theory [76, 81–83]. The first
method includes dynamical correlations through perturbation up to a given or-
derwhile the other two techniques consider excitations upon theHartree-Fock
solution. Quite commonly, only single and double excitations are considered
resulting in CISD and CCSD, but these methods can be extended to the exact
solution by increasing the number of excitations5. As such, exactly solving the
Schrödinger equation within a given basis set is called the full configuration
interaction (FCI) method in quantum chemistry.

These methods are ill-suited to study the correct correlations if the refer-
ence function on which to perturb or excite is qualitatively incorrect. Using
the previously mentioned methods with the HF wave function as reference
will provide poor results when strong correlations are present in the system; in-
stead, one could resort to multireference (MR) methods. One of the most well-

5At an exponential increasing cost, of course.
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known multireference method is the so-called complete active space (CAS)
self-consistent field (SCF) method [84–86]. In this method, a subset of rele-
vant orbitals is chosen as active space while the other orbitals are assumed to
be either completely occupied (occupied space) or completely empty (virtual
space). One optimizes the wave function exactly for the degrees of freedom
provided by the active space; this is the CAS part of the algorithm. Once the
optimized wave function is obtained, the selected active space is mixed with
the occupied and virtual space through orbital rotations, further improving
the result. This is the SCF part of the algorithm. These two steps can be iter-
atively repeated up to convergence. Another multireference method worth to
mention is the density matrix renormalization group (DMRG) [87, 88]. This
tensor network method solves the system for a chosen active space, albeit ap-
proximately. DMRG will be introduced in the next chapter.

The single-reference methods discussed for capturing dynamical correla-
tions can be built on top of a multireference method. Examples are CASPT2
(CAS with perturbation theory up to second order) [89, 90], DMRG-CASPT2
[91, 92], DMRG-NEVPT2 (DMRG with second-order N-electron valence state
perturbation theory) [93], p-DMRG [94], MRCC (multireference coupled clus-
ter) [95–97] and DMRG-tailored coupled cluster [98–100]. These methods are
well suited for capturing both strong andweak correlations, unfortunately they
are numerically quite intensive.

A much more thorough introduction to wave function methods can be
found in Refs. [101–103].

1.4. A brief overview of this dissertation
This dissertation will discuss the approximate treatment of the Schrödinger
equation through the three legged tree tensor network state (T3NS) [104, 105],
an ab initio variational wave function method. Just as all tensor network state
methods, it can provide an efficient representation of wave functions with low
entanglement and it is particularly suited for molecular systems with strong
correlations. The T3NS will be introduced in Chapter 2 together with a brief
overview of other tensor network techniques. The chapter is concluded by a
first cautious numerical comparison between the T3NS and the densitymatrix
renormalization group (DMRG), the first andmostwidely used tensor network
method [87, 88].

As discussed in Section 1.2.3, the chemical Hamiltonian exhibits multiple
symmetries. In Chapter 3 we will discuss how one can exploit the symmetries
present. The techniques discussed and developed are further used in Chap-
ter 4 for the study of molecules where only a restricted number of broken elec-
tron pairs is allowed. The seniority (the number of unpaired electron) is not
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a conserved quantity for the chemical Hamiltonian; however, by making the
different tensors in the T3NS invariant for the seniority we can easily target
Hilbert subspaces corresponding to a restricted seniority number.

The geometry of the tensor network state and the exact mapping of the or-
bitals has a profound influence on the exact entanglement structures that can
be represented. As such, the influence of having a good ordering and geome-
try cannot be understated for the accuracy and convergence speed of the given
tensor network state. In Chapter 5 we will briefly discuss existing methods for
ordering orbitals onto a tensor network state and we will present a method for
locally permuting the orbitals in the network.

We conclude this dissertation with Chapter 6. A discussion of the conclu-
sions and a general outlook for future research into tensor network states and
quantum chemistry is provided.



2
Tensor network states

I might have thought that the new ideas were correct
if they had not been so ugly.

P.A.M. Dirac

We provide a pedagogical introduction to tensor network states. The theory and
applications of tensor networks are vast and versatile; as such, wewill focus specif-
ically on ground state calculations for quantum chemistry, while being forced to
merely touch upon (or even completely leave out) a multitude of other techniques
established in the field of tensor networks.
We will start by providing a short historical overview of how the most widely used
tensor network, the density matrix renormalization group, came into existence.
Thereafter, we study the DMRGalgorithm by viewing it as a variational optimiza-
tion within the matrix product state (MPS) manifold.
Next, the main subject of this dissertation is introduced: the three-legged tree ten-
sor network state (T3NS). The T3NS is more versatile than DMRG for encoding
entanglement while still being computationally tractable for quantum chemistry.
We end with a first numeric comparison of DMRG and T3NS.

Parts of this chapter have been published in Journal of Chemical Theory and Computation 14,
2026-2033 (2018) [104].
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2.1. A concise history
It may seem an odd choice to introduce the main subject of my dissertation
with the epigraph by Paul A.M. Dirac given on the previous page; however,
all historical overviews need a starting point and I have chosen this as mine.
It was reportedly Dirac’s response when Freeman Dyson inquired about his
opinion on renormalization in quantum electrodynamics (QED). The fester-
ing problem of divergencies withinQEDwas finally solved by Tomonaga [106],
Schwinger [107, 108], Feynman [109–111] and Dyson [112, 113], and the lat-
ter probably hoped on some congratulatory words from his former supervisor.
Alas, renormalization may have made QED one of the most accurate theories
in physics so far1, but Dirac loathed the ad hoc fashion in which divergences
canceled out.

It took until the 1970s when Kenneth Wilson removed the ad hoc-ness of
renormalization and formulated the renormalization group [116–119], a frame-
work for the study of physical systems on different scales. Wilson concen-
trated on problems which have a huge amount of degrees of freedom within
regions the size of the correlation length of said problem. The binding of large
molecules, the Kondo problem (the scattering of conducting electrons due to
a magnetic impurity in a metal), critical phenomena and QED are all such
problems. He compared the idea of the renormalization group with hydrody-
namics [120]; while the fluid is microscopically characterized by an enormous
amount of degrees of freedom, fluid mechanics only needs a few macroscopic
variables such as the density 𝜌(𝑥). The hydrodynamic equations in their turn
only depend on these macroscopic variables. To understand the dynamics of
the fluid only a coarse resolution of variables such as 𝜌(𝑥) are needed; luckily,
we do not need to known the exact position and orientation of every molecule
in the fluid. This is similar in idea to the renormalization group; the original
degrees of freedomof the problem should be reduced to a smaller set of effective
degrees of freedom subject to effective interactions.

Let us clarify the renormalization group somemore by sketching howWil-
son used it to solve the Kondo problem [119]. First, the interaction between
the magnetic impurity and the conduction band was approximated as a one-
dimensional half-infinite lattice. Wilson tackled this lattice by solving a small
sublattice and identifying the relevant effective degrees of freedom of this sub-
lattice. In a next step the Hamiltonian of the sublattice is projected onto these
effective degrees of freedom and the sublattice is extended. By repeating this
procedure and systematically extending the lattice, Wilson could study the
complete half-infinite lattice while only keeping track of a small set of effec-

1Current predictions of the electron magnetic moment 𝑔 correspond with experiment up to an
astonishing ten significant numbers [114, 115].



2.1. A concise history

2

21

tive degrees of freedom. As the selection procedure for the relevant effective
degrees of freedom he opted for the lowest-lying eigenstates of the sublattice.
This procedure is schematically represented in Fig. 2.1.

0 1 2 3 4 5 6

𝑖
renormalized

system
at step 𝑖

renormalized
system

at step 𝑖 + 1

first sub-lattice

impurity

keep lowest-lying
eigenstates

second sub-lattice

Figure 2.1: Schematic representation ofWilson’s renormalization group for theKondo problem.

Wilson’s success in treating the Kondo problem caused quite a stir in the
physics community and people hopefully applied the same renormalization
group on quantum lattice problems, but to no avail. White and Noack identi-
fied that for such problems the low-lying eigenstates of small sublattices aren’t
important degrees of freedom for the larger whole [121]. It was not the renor-
malization group but the way effective degrees of freedom were selected for
these problems that fell short.

Later on, Steve White successfully identified the right degrees of freedom
for these problems as the dominant eigenstates of the reduced density matrix
of the ground state [87, 88]; the densitymatrix renormalization group (DMRG)
was born. One can indeed realize that these are the useful degrees of freedom
(or renormalized states) by assuming we have the exact ground state of the
lattice available and we split the system into two parts. If we now want to re-
construct the ground state with two sets of effective degrees of freedom (one
set living on each part) then the most efficient sets are given by the Schmidt
decomposition, as seen in Section 1.1.1; this also corresponds with the eigen-
states of the corresponding reduced density matrix.

The density matrix renormalization group method proved its usefulness
in the simulation of strongly correlated quantum systems, both in condensed
matter physics and theoretical chemistry. While initially applied on systems
with local Hamiltonians, it didn’t take long before it was applied successfully
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on systems with long-range interactions, like in momentum space representa-
tion (k-DMRG) [122] and quantum chemistry (QC-DMRG) [123].

2.2. Modern DMRG
A while after the first formulation of DMRG by White, it became apparent
that it corresponds with a variational optimization within the matrix prod-
uct state (MPS) manifold [124–126]. The better understanding into the ma-
chinery of the DMRG algorithm provided a fertile soil for novel algorithms
such as the variational unitary matrix product state (VUMPS) [127] and the
time-dependent variational principle (TDVP) [128]. It also paved the way for
advancements based on extensions of the MPS, the so-called tensor network
states. More information on these extensions is provided in Section 2.4.

Although DMRG already proved its power from the start, a true under-
standing of its success camewhenHastings formulated the area law for ground
states of local gappedHamiltonians in one dimension [20]. The area law states
that the entanglement between sub-system and environment of such ground
states scales with the area of the boundary between the two, and not with
the overall volume of the sub-system. When picking a segment out of a one-
dimensional system, the entanglementwith the rest of the systemwill not scale
with the length of the chosen segment. Specifically for DMRG, this means that
the needed number of renormalized states for such systems does not scalewith
the system size.

In the next sections, we will formally introduce the DMRG algorithm to
the reader in the modern MPS language as it is more potent and flexible than
White’s original formulation.

2.2.1. The matrix product state
Although the focus in this thesis is on the application of tensor network states
in a quantum chemical setting, we will introduce the matrix product state
(MPS) by using a one-dimensional spin-1/2 chain. The parallel between the
MPS and system structure is a welcome plus for a first introduction.

Let us first specify the spin chain at hand; 𝑛 spin degrees of freedom are
placed on a line, and each has a total spin 𝑆 = 1/2. In the 𝑆𝑧-basis, the local
Hilbert space of each spin is spanned by the states {|↑⟩, |↓⟩}. The exact wave
function can now be written as

|Ψ⟩ = ∑
{𝑠𝑖}
𝐶𝑠1𝑠2𝑠3…𝑠𝑛 |𝑠1𝑠2𝑠3 … 𝑠𝑛⟩ , (2.1)

where 𝑠𝑖 is one of the local states for spin 𝑖, i.e. 𝑠𝑖 ∈ {↑, ↓} and the completewave
function is given by a linear combination of all possible spin configurations.
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This wave function is clearly plagued by the exponential wall of quantum me-
chanics; the total Hilbert space and configuration interaction (CI) tensor 𝐶
both grow exponentially with system size. Instead of taming the beast that
lies within Eq. (2.1), let us instead try to split it up in digestible chunks. For
this, the singular value decomposition can be used; reshaping the CI tensor to
a matrix, we can write

|Ψ⟩ = ∑
{𝑠𝑖}
𝐶𝑠1;𝑠2𝑠3…𝑠𝑛 |𝑠1𝑠2𝑠3 … 𝑠𝑛⟩ (2.2)

= ∑
{𝑠𝑖}
∑
𝛼1
𝐴1𝑠1;𝛼1𝜎𝛼1𝐵𝛼1;𝑠2𝑠3…𝑠𝑛 |𝑠1𝑠2𝑠3 … 𝑠𝑛⟩ (2.3)

= ∑
{𝑠𝑖}
∑
𝛼1
𝐴1𝑠1𝛼1𝐶′𝛼1𝑠2𝑠3…𝑠𝑛 |𝑠1𝑠2𝑠3 … 𝑠𝑛⟩ , (2.4)

In the last line, we absorbed the singular values into the matrix 𝐵 forming 𝐶′.
We can split of the next spin from the newly obtained tensor 𝐶′ by reiterat-
ing this procedure; in fact, by repeating the singular value decomposition, we
eventually obtain

|Ψ⟩ = ∑
{𝑠𝑖}
∑
{𝛼𝑖}
𝐴1𝑠1𝛼1𝐴2𝛼1𝑠2𝛼2𝐴3𝛼2𝑠3𝛼3 …𝐴𝑛𝛼𝑛−1𝑠𝑛 |𝑠1𝑠2𝑠3 … 𝑠𝑛⟩ . (2.5)

Each local degree of freedom (spin) of the system has an associated tensor and
each state of this local degree of freedomhas an associatedmatrix. For example
the matrix 𝐴2𝛼1↑𝛼2 is associated with the second spin in an up state. To obtain
the coefficient correspondingwith a certain spin configurationwe can take the
product of the appropriate matrices; we have obtained the matrix product state
ansatz.

Decomposing the CI tensor into this MPS has introduced the set {𝛼𝑖} as
new indices. These indices are called the virtual bonds or virtual degrees of
freedom as opposed to the physical degrees of freedom {𝑠𝑖}. They take care
of the interconnection between the different spins; without them, a simple
product state would have been obtained without any correlations between the
spins.

We can graphically depict the MPS in Eq. (2.5) as follows:
𝑠1

𝛼1

𝑠2

𝛼2

𝑠3

𝛼3 𝛼𝑛−1

𝑠𝑛

𝐴1 𝐴2 𝐴3 𝐴𝑛 (2.6)

Under the MPS, we included a representation of the Heisenberg system we
are studying; it further accentuates the correspondence between the structure
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of the MPS and of the system. Every MPS tensor is represented by a circle
while the indices of the tensors are represented by edges. The virtual bonds
interconnect the different tensors while the physical degrees of freedom (or
bonds) stay lose. Bonds which connect two tensors represent a contraction of
the tensors over said index. We will heavily rely on graphical representations
of tensor networks and contractions as it improves a lot on the readability of
the needed algebraic equations.

Although the beast is divided in chunks, we did not yet tame it. When
closely examining the dimensionality of the newly introduced virtual bond in-
dices, its exponential growth towards the middle of the tensor train2 is appar-
ent; we did not avoid the exponential wall, we merely moved it. A way out of
this predicament does present itself; we have to truncate the SVD. By keeping
the largest singular values at each SVD step, a controlled approximation of the
wave function can be made. The dimension of virtual bonds kept after trun-
cation is called, quite unsurprisingly, the virtual bond dimension. In Eq. (2.5),
the virtual bond dimension is given by the dimensionality of the indices 𝛼𝑖; it
is a central concept in tensor network methods as it is the primary parameter
influencing the accuracy of the method.

The gauge freedom
Starting from the exact wave function given in Eq. (2.1), we have derived the
MPS in Eq. (2.5). However, the MPS for a given wave function is not unique.
We can easily change the individual tensors without changing the complete
wave function itself as follows:

𝐴 𝐵 = 𝐴 𝐵𝑋 𝑋−1 = 𝐴′ 𝐵′ (2.7)

where 𝑋 is any invertible matrix. This gauge freedom living on the virtual
bonds can be used to bring the MPS in the so-called canonical form.

The canonical form
By construction through the SVD, all tensors except the last tensor 𝐴𝑛 satisfy

∑
𝑠𝑖𝛼𝑖−1

𝐴𝑖𝛼𝑖−1𝑠𝑖𝛼𝑖 ̄𝐴𝑖𝛼𝑖−1𝑠𝑖𝛼′𝑖 = 𝛿𝛼𝑖𝛼′𝑖 . (2.8)

The MPS in Eq. (2.5) is not just any MPS, it is one written in the so-called
canonical form. We call an MPS canonical if there is one tensor defined as
orthogonality center, while all the other tensors are orthogonal with respect to
contraction over all indices except the virtual degree of freedom leading to the

2It may come as no surprise that this is another name for the MPS [129].
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orthogonality center. Formulating it in another way: if 𝑐 is chosen as orthogo-
nality center, the other tensors should fulfill

̄𝐴𝑖

𝐴𝑖

𝛼′𝑖

𝛼𝑖

𝑠𝑖𝛼𝑖−1 =
𝛼′𝑖

𝛼𝑖

∀𝑖 < 𝑐 (2.9)

̄𝐴𝑖

𝐴𝑖

𝛼′𝑖−1

𝛼𝑖−1

𝑠𝑖 𝛼𝑖 =
𝛼′𝑖−1

𝛼𝑖−1

∀𝑖 > 𝑐 (2.10)

where the Kronecker delta of Eq. (2.8) is represented as a continuous line.
The tensor assigned as orthogonality center can be changed by exploiting

the gauge freedom of the MPS. We can QR-decompose the current orthogo-
nality center and absorb the resulting triangular R-matrix into a neighboring
tensor, making this tensor the new orthogonality center, i.e.

𝑠𝑖 𝑠𝑖+1

𝐴𝑖 𝐴𝑖+1
𝛼𝑖 𝛼𝑖+1𝛼𝑖−1

=
𝑠𝑖 𝑠𝑖+1

𝐴′𝑖 𝐴𝑖+1
𝛼′𝑖 𝛼𝑖+1𝛼𝑖−1 𝑅 𝛼𝑖

=
𝑠𝑖 𝑠𝑖+1

𝐴′𝑖 𝐴′𝑖+1𝛼′𝑖 𝛼𝑖+1𝛼𝑖−1
.

(2.11)

We colored the current orthogonality center at each step, while the uncolored
tensors are suitably orthogonalized.

The canonical form provides some notable advantages, as is often the case
for canonical forms in physics andmathematics. First, it increases the numeri-
cal stability of the optimization and evaluation of properties. As an illustration,
let us evaluate the expectation value of 𝑆𝑧𝑛 for the MPS:

⟨Ψ | 𝑆𝑧𝑛 | Ψ⟩ = ∑
{𝑠𝑖}{𝛼𝑖}{𝛼′𝑖 }𝑠′𝑛

𝐴1𝑠1𝛼1 ̄𝐴1𝑠1𝛼′1𝐴
2
𝛼1𝑠2𝛼2

̄𝐴2𝛼′1𝑠2𝛼′2𝐴
3
𝛼2𝑠3𝛼3

̄𝐴3𝛼′2𝑠3𝛼′3 …

𝛿𝑠𝑛,𝑠′𝑛(−1)
𝛿𝑠𝑛,↓𝐴𝑛𝛼𝑛−1𝑠𝑛 ̄𝐴𝑛𝛼′𝑛−1𝑠′𝑛 , (2.12)

as all tensors 𝐴𝑖 but the last are orthogonal with respect to contraction over 𝑠𝑖
and 𝛼𝑖−1, we have

= ∑
𝑠𝑛𝑠′𝑛𝛼𝑛−1

𝛿𝑠𝑛,𝑠′𝑛(−1)
𝛿𝑠𝑛,↓𝐴𝑛𝛼𝑛−1𝑠𝑛 ̄𝐴𝑛𝛼𝑛−1𝑠′𝑛 . (2.13)
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Graphically this is depicted as

⟨Ψ | 𝑆𝑧𝑛 | Ψ⟩ = 𝑠1

𝛼1

𝑠2

𝛼2

𝑠3

𝛼3 𝛼𝑛−1

𝑠𝑛
𝐴1 𝐴2 𝐴3 𝐴𝑛

𝑆𝑧𝑛

𝛼′1 𝛼′2 𝛼′3 𝛼′𝑛−1
𝑠′𝑛

̄𝐴1 ̄𝐴2 ̄𝐴3 ̄𝐴𝑛

=

𝛼𝑛−1

𝑠𝑛
𝐴𝑛

𝑆𝑧𝑛
𝑠′𝑛
̄𝐴𝑛

, (2.14)

where we introduced the 𝑆𝑧𝑛 operator graphically. The simplification and addi-
tional numerical stability due to the canonical form is quite apparent; instead
of numerous consecutive tensor contractions over the different𝐴𝑖 and their ad-
joints, only the last tensors are involved in the evaluation. We just studied the
special case where an operator only acts upon the local Hilbert space of one
tensor which wemade the current orthogonality center, but similar, albeit less
pronounced, simplifications also occur for the evaluation of other few-body op-
erators.

Another advantage of the canonical form is the readiness for the extraction
of Schmidt values. As discussed in Section 1.1.1, these provide ameasurement
of the entanglement between a part of the system and its environment. Now,
let us assume the orthogonality center is at spin 𝑐. An appropriate singular
value decomposition

𝐴𝑐𝛼𝑐−1𝑠𝑐𝛼𝑐 = 𝐴′𝑐𝛼𝑐−1𝑠𝑐𝛼′𝑐𝜎𝛼′𝑐𝑉𝛼′𝑐𝛼𝑐 (2.15)

followed by a contraction of 𝑉𝛼′𝑐𝛼𝑐 with𝐴𝑐+1 results in the following wave func-
tion:

𝜎𝐴1 𝐴2 𝐴𝑐 𝐴𝑐+1 𝐴𝑛𝛼1 𝛼2 𝛼𝑐−1 𝛼𝑐 𝛼𝑐 𝛼𝑐+1 𝛼𝑛−1

𝑠1 𝑠2 𝑠𝑐 𝑠𝑐+1 𝑠𝑛
(2.16)

where 𝜎 is a diagonal matrix with the singular values as elements and

̄𝐴𝑖

𝐴𝑖

𝛼′𝑖

𝛼𝑖

𝑠𝑖𝛼𝑖−1 =
𝛼′𝑖

𝛼𝑖

∀𝑖 ≤ 𝑐 (2.17)

̄𝐴𝑖

𝐴𝑖

𝛼′𝑖−1

𝛼𝑖−1

𝑠𝑖 𝛼𝑖 =
𝛼′𝑖−1

𝛼𝑖−1

∀𝑖 > 𝑐 (2.18)

i.e. all the tensors are properly orthogonalized. Investigating thewave function
in Eq. (2.16), the Schmidt decomposition between the first 𝑐 spins and the last
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spins is retrieved; it is given by

|Ψ⟩ = ∑
𝛼𝑐
𝜎𝛼𝑐 |𝜑𝛼𝑐⟩|𝜒𝛼𝑐⟩ (2.19)

with

|𝜑𝛼𝑐⟩ = ∑
{𝑠𝑖}

𝐴1 𝐴2 𝐴𝑐𝛼1 𝛼2 𝛼𝑐−1 𝛼𝑐

𝑠1 𝑠2 𝑠𝑐
|𝑠1𝑠2 … 𝑠𝑐⟩ (2.20)

|𝜒𝛼𝑐⟩ = ∑
{𝑠𝑖}

𝐴𝑐+1 𝐴𝑛
𝛼𝑐 𝛼𝑐+1 𝛼𝑛−1

𝑠𝑐+1 𝑠𝑛𝑠𝑛−1

𝐴𝑛−1

𝛼𝑛−2
|𝑠𝑐+1 … 𝑠𝑛−1𝑠𝑛⟩ . (2.21)

Due to the orthogonality of the different tensors, it is easy to check that both
{|𝜑𝛼𝑐⟩} and {|𝜒𝛼𝑐⟩} are orthogonal sets. As mentioned in Section 1.1.1, the
Schmidt states |𝜑𝛼𝑐⟩ and |𝜒𝛼𝑐⟩ correspond with eigenstates of the appropriate
reduced density matrix while the Schmidt values are the square root of the cor-
responding eigenvalues; these Schmidt states are thus the renormalized states
of the original DMRG formulation. With some liberty of words, we will talk
in the future about the renormalized states ‘living’ in the virtual bonds.

The Schmidt decomposition of other Hilbert space partitions is obtained
with ease as long as the partitioning is natural to theMPS, i.e. when looking at
the linear MPS in Eq. (2.6) the partition of the Hilbert space corresponds with
snapping the MPS in two pieces. If the partitioning does not correspond with
this ‘snapping’, Schmidt values can still be obtained, albeit not as straightfor-
ward.

The maximal entanglement that can be encoded by the MPS clearly de-
pends on the virtual bond dimensions. Looking back at one-dimensional sys-
tems following the area law, we do not expect a scaling of the needed bond
dimensions with increasing system size for such systems. For a given accu-
racy, we have essentially a polynomial scaling algorithm as long as the needed
bond dimensions do not scale exponentially with system size.

2.2.2. Matrix product operators
Let us now consider how the evaluation of ⟨Ψ | �̂� | Ψ⟩ for any given operator �̂�
can happen naturally when the bra and ket are written as anMPS. In the spirit
of the MPS, we could attempt to write the operator itself as a tensor network.
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Making the idea more concrete, our aim is to obtain something like this:

⟨Ψ | �̂� | Ψ⟩ = 𝑂

̄𝐴

𝐴

̄𝐴̄𝐴̄𝐴̄𝐴̄𝐴

𝑂 𝑂 𝑂 𝑂 𝑂

𝐴 𝐴 𝐴 𝐴 𝐴

𝑠′𝑖

𝑠𝑖
𝛼𝑖−1 𝛼𝑖

𝛼′𝑖−1 𝛼′𝑖

𝛽𝑖−1 𝛽𝑖 . (2.22)

Here, the upper and lower layer of tensors represent the bra and ket wave func-
tion in MPS form respectively. The middle layer is a so-called matrix product
operator (MPO) representation of �̂�; it represents the operator as a linear net-
work of individual tensors. In this equation, we have left out most of the index
labels as to not clutter the equation. Besides the two physical indexes to con-
nect to the bra and ket MPS wave function, the MPO tensors also have virtual
MPO indices (𝛽) to interconnect the differentMPO tensors. By contracting the
tensor network in Eq. (2.22) we can evaluate the expectation value.

Just as theMPS is particularly suited for wave functions respecting the one-
dimensional area law, some operators are easier and more efficiently written
in an MPO than others. As an example we will discuss the one-dimensional
Heisenberg Hamiltonian:

�̂� = 𝐽
𝑛−1
∑
𝑖=1

̂𝑆𝑖 ⋅ ̂𝑆𝑖+1 =
𝑛−1
∑
𝑖=1

𝐽
2
̂𝑆+𝑖 ̂𝑆−𝑖+1 +

𝐽
2
̂𝑆−𝑖 ̂𝑆+𝑖+1 + 𝐽 ̂𝑆𝑧𝑖 ̂𝑆𝑧𝑖+1 . (2.23)

Its short range and its linear geometry make it particularly suited for trans-
forming it into an MPO. Each term in this Hamiltonian is essentially an MPO
with a virtual bond of one, e.g.

̂𝟙 ⊗ ̂𝟙 ⊗⋯⊗ ̂𝟙⊗⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑖 − 1 times

𝐽
2
̂𝑆+𝑖 ⊗ ̂𝑆−𝑖+1 ⊗ ̂𝟙 ⊗⋯⊗ ̂𝟙 ⊗ ̂𝟙⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑛 − 𝑖 − 1 times
.

A summation of all these terms would not provide a compact MPO represen-
tation of the complete Hamiltonian in Eq. (2.23); we need to tackle this prob-
lemmore creatively. Construction of the neededMPO through finite-state ma-
chines [130–132] results in the most compact formulation of the Hamiltonian
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possible; namely all bulk MPOs are given by

�̂�𝑖𝛽𝑖−1𝛽𝑖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̂𝟙 ̂𝑆+𝑖 ̂𝑆−𝑖 ̂𝑆𝑧𝑖 0
0 0 0 0 𝐽

2
̂𝑆−𝑖

0 0 0 0 𝐽
2
̂𝑆+𝑖

0 0 0 0 𝐽 ̂𝑆𝑧𝑖
0 0 0 0 ̂𝟙

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the first and last MPO are given by

�̂�1𝛽1 = [ ̂𝟙 ̂𝑆+1 ̂𝑆−1 ̂𝑆𝑧1 0] �̂�𝑛𝛽𝑛−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
𝐽
2
̂𝑆−𝑛

𝐽
2
̂𝑆+𝑛

𝐽 ̂𝑆𝑧𝑛
̂𝟙

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The virtual bond indexes 𝛽𝑖 can be seen as indexes for the different states of
the finite state machines, i.e. 𝛽𝑖 ∈ {𝟙, +, −, 𝑧, 𝐻}. The state 𝟙means only ̂𝟙 oper-
ators have been acting on spins to the left of this bond, the state 𝐻 collects all
completed Hamiltonian terms and the states {+, −, 𝑧} represent how the corre-
sponding ̂𝑆 operator acted on the previous spin. The physical bond indices are
not explicitly shown in the aboveMPOs; they are part of the operators compos-
ing theMPOs. It is easy to check that contracting the givenMPOs results in the
full Hamiltonian in Eq. (2.23). Although this MPO construction looks quite
straightforward, it is worth pointing out that it is not always the case; other,
more complicated operators such as the quantum chemical Hamiltonian can
also be efficiently written as an MPO, albeit with more elaborate techniques
[133–135].

The representation of the Hamiltonian is far from the only usage of the
MPO; in fact the MPO was first introduced as a means for calculating finite-
temperature density matrices [136]. For the reader who wants to discover the
many faces of the MPO, we refer to Ref. [137].

2.2.3. The DMRG algorithm
During the DMRG optimization, the tensors of the MPS are usually optimized
one or two at a time. We will start with the discussion of the two-site optimiza-
tion as the one-site optimization is quite similar.
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The MPS can be optimized by minimizing the following Lagrangian:

ℒ = ⟨ΨMPS | �̂� | ΨMPS⟩ − 𝜆⟨ΨMPS | ΨMPS⟩ , (2.24)

This Lagrangian can also be graphically depicted as

ℒ = − 𝜆 (2.25)

where we have dropped the labels of the bonds and the tensors. The upper and
lower circular layer represent the bra and ket MPS respectively. The square
layer represents again the MPO.

Now, imagine we want to minimize this Lagrangian with respect to tensor
𝑖 and 𝑖 + 1. Let us first contract the tensors 𝐴𝑖 and 𝐴𝑖+1 to a new, larger, tensor
𝐵 and instead minimize the Lagrangian with respect to the elements of this
tensor. The Lagrangian to optimize is now given by

ℒ =
̄𝐵

𝐵
− 𝜆

̄𝐵
𝐵

(2.26)

=
̄𝐵

𝐵
− 𝜆

̄𝐵
𝐵

(2.27)

where we assumed that 𝐵 is the current orthogonality center and the other ten-
sors are suitably orthogonalized.3 Further, we introduced a new tensor repre-
senting a partial contraction of the bra and ket MPS with the MPO, i.e.

⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑖 − 1 left orthogonal MPSs

= ,
⏟⎵⎵⎵⏟⎵⎵⎵⏟

𝑛 − 𝑖 − 1 right orthogonal MPSs

= . (2.28)

Minimization of this Lagrangian with respect to ̄𝐵 is now given by

𝜕ℒ
𝜕 ̄𝐵 = 𝐵

− 𝜆 𝐵 = 0 . (2.29)

Due to the canonical form of the MPS, an ordinary eigenvalue problem is ob-
tained, i.e.

𝐵
= 𝜆 𝐵 (2.30)

3We can always use the gauge freedom to make 𝐵 the orthogonality center.
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Or algebraically
𝐻eff ⃗𝐵 = 𝜆 ⃗𝐵 , (2.31)

where

𝐻eff = . (2.32)

In Eq. (2.31), we flattened (or vectorized) the tensor elements 𝐵. In Eq. (2.32)
The effective Hamiltonian is constructed by the tensors given in Eq. (2.28) and
the MPOs belonging to the physical degrees of freedom of 𝐵; it is a partial con-
traction of the bra and ket MPS with the MPO while excluding the 𝐵 and ̄𝐵
tensors. Solving the resulting ordinary eigenvalue problem results in an opti-
mal two-site tensor 𝐵′.

However, we do not need the optimal two-site tensor but the optimal ten-
sors𝐴𝑖 and𝐴𝑖+1. The dimension of the virtual bond connecting the two tensors
is generally smaller than themaximal allowed one; generally speaking, 𝐵′ can-
not be exactly decomposed in 𝐴𝑖 and 𝐴𝑖+1 with the imposed maximal bond di-
mension. However, through a truncated singular value decomposition where
we discard the smallest singular values we can decompose 𝐵′ with a minimal
error, see also Appendix A. The truncation immediately provides us with a
measure of the approximations made. This procedure of approximating 𝐵′
corresponds exactly with the original formulation of DMRG, i.e. only the most
important eigenstates of the reduced density matrix are kept.

Renormalizing the obtained singular values and, for example, contracting
them in 𝐴𝑖+1 leaves the MPS in the canonical form with the orthogonality cen-
ter at𝐴𝑖+1. The same optimization can be repeated for𝐴𝑖+1 and𝐴𝑖+2 and so on.
Once the rightmost tensor is reached our right sweep is finished and we can
start the left sweep. This sweeping procedure is repeated until a predefined
convergence criterion is reached.

When creating the effective Hamiltonian, it is good to note that the par-
tial contractions in Eq. (2.28) should not be calculated from scratch every step.
One partial contraction can by recycled from an old sweep while the other one
is easily updated with the new optimized tensor as follows:

𝛼′𝑖

𝛽𝑖

𝛼𝑖

̄𝐴𝑖

𝐴𝑖

𝑂𝑖 ⟶

𝛼′𝑖

𝛽𝑖

𝛼𝑖

. (2.33)

The one-site optimization forDMRG is completely equivalentwith the sole
exception that the optimal one-site tensor 𝐴𝑖 is directly searched instead of an
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intermediate two-site tensor. Once obtained, thewave function can be brought
in the next suitable canonical form by either a QR decomposition or an LQ de-
composition. A subtle difference between the two types of optimization exists;
while the one-site optimization finds at each optimization step the most opti-
mal tensor, the two-site optimization finds the two tensors which are closest
to the most optimal two-site tensor. This is not necessarily the same result.4

One-site optimization is, per sweep, faster than the two-site optimization.
However, the latter does have its merit. It is less prone to get stuck in local
minima, although there exist modifications of the one-site optimization that
also tend to avoid local minima [138–140]. Also, when exploiting symmetries
of the system during the DMRG optimization, it allows an automatic realloca-
tion of the renormalized states to the most important irreps of the symmetry.
See Chapter 3 and more specifically Section 3.4.5 for more information.

2.3. DMRG in quantum chemistry
The chemical Hamiltonian, with its long range Coulomb interaction and the
three-dimensionality of most molecules, does not seem to be an ideal system
for the MPS ansatz. Regardless, DMRG has solidified its name in the quan-
tum chemical community having reaped success as a highly accurate solver
for systems with substantial static correlations, such as transition metal com-
plexes [91, 141–153]. Having introduced the MPS and DMRG in the previous
sections, it is now time to study the quantum chemical variant of the DMRG
algorithm.

When defining the MPS, the total Hilbert space needs to be rewritten as a
product of local Hilbert spaces. For the one-dimensional Heisenberg system
in Section 2.2.1 the partitioning in local physical degrees of freedom was evi-
dent; for the quantum chemical Hamiltonian it already provides a first hurdle.
As discussed in Section 1.2.1, quantum chemical calculations are normally not
performed in a Hilbert space built from completely local basis functions such
as a three-dimensional grid; instead orbitallike basis sets are used. Whenwork-
ing in these basis sets we lose the notion of locality of the physical degrees of
freedom partially or completely. This loss of locality has two major implica-
tions.

First, the two-body Coulomb interactions are effectively four-point interac-
tions in a non-local basis. In contrast with the previously studied Heisenberg
Hamiltonian in Eq. (2.23) where the number of terms scaled linearly with the
number of spins, the chemical Hamiltonian scales quarticwith the number of
used orbitals. The utmost care has to be taken into efficiently evaluating this

4See Appendix A for an example where the obtained wave functions are vastly different.
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Hamiltonian during optimization, failing to do so can horribly influence the
complexity of the algorithm. We will study this more closely in Section 2.3.1.

Second, there is a lot of freedom in which orbitals to use and how to order
them on the MPS. A good choice and order can widely influence the conver-
gence speed and accuracy of theDMRGalgorithm. Doweworkwith canonical
orbitals, localized orbitals or something else? How do we order these orbitals
onto a linear MPS? We will briefly touch on this in Section 2.6 and further in-
vestigate it in Chapter 5. One decision will be made here however. We will
assign to each MPS tensor a spatial orbital; its local Hilbert space is spanned
by 𝑛𝑖 ∈ {−, ↑, ↓, ↑↓}, i.e. each orbital can be empty, singly occupied with an up-
or down-electron or doubly occupied. A partitioning of the total Hilbert space
on the level of the spin orbitals is also valid, i.e. every orbital is either empty or
singly occupied by an electron with appropriate spin. However, we will solely
resort to the spatial orbital partitioning in this dissertation as it eases the usage
of the SU(2)-symmetry in Chapter 3. In this case, the MPS is given by:

𝑛1

𝛼1

𝑛2

𝛼2

𝑛3

𝛼3

𝑛𝐿−2

𝛼𝐿−2

𝑛𝐿−1

𝛼𝐿−1

𝑛𝐿

𝛼𝐿−3
(2.34)

where 𝑛𝑖 are the occupations of the 𝐿 different orbitals.

2.3.1. Renormalized operators
Using MPOs for representing operators when the wave function itself is repre-
sented by anMPS looks quite natural, but the connection between DMRG and
the MPS was not known from day one. Even now a lot of DMRG implementa-
tions, especially in quantum chemistry, don’t use MPOs but resort to so-called
renormalized operators. This way of handling the Hamiltonian efficiently was
pioneered in the early years of DMRG [122, 123] and arises organically when
formulating DMRG in the original language of renormalized states. In this
section, we will start with introducing the concept of renormalized operators
for quantum chemistry. Once introduced, we will explain its connection with
the MPO formalism and why it still has its merit to this day. Although the
MPO formalism is well known and there exists MPO forms of the chemical
Hamiltonian, there are still new projects resorting to the old concept of renor-
malized operators [154, 155]. In fact, the T3NS implementation developed for
this dissertation also uses renormalized operators [156].

Wewill disregard the fermionic signs completely in the discussion to come;
this is merely a sketch of the renormalized operator formalism. In Section 2.7,
we will discuss how to incorporate the fermionic sign. We will also only focus
on the four-point terms.
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As discussed in Section 2.2.3, the DMRG algorithm optimizes one or two
tensors at a time and only needs the effectiveHamiltonianwith respect to these
tensors; we need to project the Hamiltonian on the Hilbert space spanned by
the local physical degrees of freedom of the optimized tensors and the renor-
malized states living in their virtual bonds. In the MPO framework the com-
plete Hamiltonian was projected onto this subspace through Eq. (2.32). Let
us now instead project each term of the Hamiltonian separately. We first de-
fine the subspace to project on, this subspace is composed of the left and right
renormalized states |𝛼𝑖−1⟩ and |𝛼𝑖+1⟩ and the physical degrees of freedom of
the two sites we are currently optimizing |𝑛𝑖𝑛𝑖+1⟩:

𝑛1

𝛼1

𝑛2

𝛼2

𝑛𝑖−1

𝛼𝑖−1⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
left renormalized states

local physical states

⏞⎴⎴⏞⎴⎴⏞𝑛𝑖+1𝑛𝑖

𝛼𝑖

𝑛𝑖+2

𝛼𝐿−2

𝑛𝐿−1

𝛼𝐿−1

𝑛𝐿

𝛼𝑖+2𝛼𝑖+1⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
right renormalized states

(2.35)

Looking back at the chemicalHamiltonian in Eq. (1.18)we note that up to four-
point terms occur. For the terms in the chemicalHamiltonian it is possible that
either zero, one, two, three or four creation or annihilation operators act on the
left renormalized states, and similarly for the right renormalized states and the
local physical states. For example, let us examine the term 𝑉12𝑖𝐿𝑐†1𝜎𝑐†2𝜏𝑐𝐿𝜏𝑐𝑖𝜎
and project it on the subspace |𝛼𝑖−1⟩ ⊗ |𝑛𝑖𝑛𝑖+1⟩ ⊗ |𝛼𝑖+1⟩; we have to calculate

⟨�̃�𝑖−1 | 𝑐†1𝜎𝑐†2𝜏 | 𝛼𝑖−1⟩ =
𝑛1
𝛼1

𝑛2
𝛼2

𝑛𝑖−1

𝛼𝑖−1

𝑐†1𝜎 𝑐†2𝜏
̃𝑛1

�̃�1
̃𝑛2

�̃�2 �̃�𝑖−1

=

𝛼𝑖−1

�̃�𝑖−1

𝑐†1𝜎𝑐†2𝜏 , (2.36)

and

⟨�̃�𝑖+1 | 𝑐𝐿𝜏 | 𝛼𝑖+1⟩ = 𝑛𝐿
𝛼𝐿

𝑛𝐿−1

𝛼𝐿−1

𝑛𝑖+2

𝛼𝑖+1

𝑐𝐿𝜏
̃𝑛𝐿

�̃�1�̃�2�̃�𝑖+1

=

𝛼𝑖+1

𝑐𝐿𝜏

�̃�𝑖+1

. (2.37)

Once again, we have neglected the fermionic nature of the wave function and
the operators; we delay its discussion to Section 2.7. These terms are called
the renormalized operators as they are projections of the operators onto the
renormalized states. They suffice for the construction of the projection of
𝑉12𝑖𝐿𝑐†1𝜎𝑐†2𝜏𝑐𝐿𝜏𝑐𝑖𝜎 on the subspace |𝛼𝑖−1⟩ ⊗ |𝑛𝑖𝑛𝑖+1⟩ ⊗ |𝛼𝑖+1⟩.
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Complementary renormalized operators
Naively it seems that we need to calculate 𝒪(𝑖4) left renormalized operators,
𝒪((𝐿 − 𝑖)4) right renormalized operators and 𝒪(𝐿4) different combinations
of renormalized operators to form the effective Hamiltonian. Of course we
can do better. To do so we need complementary renormalized operators. For
starters, we can group all completedHamiltonian terms into one renormalized
operator, i.e.

𝛼𝑖−1

𝐻

�̃�𝑖−1

= ∑
𝑎,𝑏,𝑐,𝑑<𝑖
𝜎,𝜏

𝑉𝑎𝑏𝑐𝑑

𝛼𝑖−1

𝑐†𝑎𝜎𝑐†𝑏𝜏𝑐𝑑𝜏𝑐𝑐𝜎

�̃�𝑖−1

(2.38)

𝛼𝑖+1

𝐻

�̃�𝑖+1

= ∑
𝑎,𝑏,𝑐,𝑑>𝑖+1

𝜎,𝜏

𝑉𝑎𝑏𝑐𝑑

𝛼𝑖+1

𝑐†𝑎𝜎𝑐†𝑏𝜏𝑐𝑑𝜏𝑐𝑐𝜎

�̃�𝑖+1

(2.39)

Similarly we can also group the terms where two or three operators acted on
the left or right renormalized states, for example:

𝛼𝑖−1

�̃�𝑖−1

𝑄𝑑↑ = ∑
𝑎,𝑏,𝑐<𝑖

[𝑉𝑎𝑏𝑑𝑐 − 𝑉𝑎𝑏𝑐𝑑]

𝛼𝑖−1

�̃�𝑖−1

𝑐†𝑎↑𝑐†𝑏↑𝑐𝑐↑

+ [𝑉𝑎𝑏𝑑𝑐 + 𝑉𝑏𝑎𝑐𝑑]

𝛼𝑖−1

�̃�𝑖−1

𝑐†𝑎↑𝑐†𝑏↓𝑐𝑐↓

(2.40)

𝛼𝑖+1

�̃�𝑖+1

𝑃𝑑↑𝑐↑ = ∑
𝑎,𝑏>𝑖+1

[𝑉𝑎𝑏𝑐𝑑 − 𝑉𝑎𝑏𝑑𝑐]

𝛼𝑖+1

�̃�𝑖+1

𝑐†𝑎↑𝑐†𝑏↑ (2.41)

The notation of the complimentary renormalized operator in Eq. (2.40) de-
notes that this operator should be combined with the operator 𝑐𝑑↑, with 𝑑 an
orbital not contained in the left renormalized states. Similarly for Eq. (2.41),
the operator should be combined with 𝑐𝑑↑𝑐𝑐↑. We need to construct compli-
mentary renormalized operators such as in Eq. (2.40) for both the left as the
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right renormalized bases. Complimentary renormalized operators which are
sums over termswith two operators as in Eq. (2.41) only have to be constructed
on one set of renormalized states. Normally it is the longest side of the MPS
chain that is chosen as to get as much speedup as possible.

By using these complimentary renormalized operators, the complexity of
constructing the effective Hamiltonian scales quadratically with the number
of orbitals. The number of needed renormalized operators also scales quadrat-
ically; we only need to store the single and double operators and the compli-
mentary operators.

Updating renormalized operators
Updating preexisting renormalized operators is imperative for an efficient al-
gorithm. Just as for MPOs (see Eq. (2.33)), it is quite straightforward to do so,
e.g.:

𝛼𝑖−1

𝑐†𝑎↑

�̃�𝑖−1

𝛼𝑖

�̃�𝑖̄𝐴𝑖

𝐴𝑖
= 𝑐†𝑎↑

𝛼𝑖

�̃�𝑖

(2.42)

For updating the complementary renormalized operators we also have to take
into account the new contributions, e.g.

𝛼𝑖−1

�̃�𝑖−1

𝑐𝑖↑

̄𝐴𝑖

𝐴𝑖

𝑄𝑖↑

�̃�𝑖

𝛼𝑖

→

𝛼𝑖

𝐻

�̃�𝑖

. (2.43)

The result of contracting 𝑄𝑖↑ and 𝑐𝑖↑ should be added to the complementary
operator collecting the completed Hamiltonian terms.

MPOs versus renormalized operators
The attentive reader may have noticed there are quite some parallels between
MPOs and renormalized operators although they stem from different view-
points of DMRG. In fact, when only an effective Hamiltonian is needed, the
complete Hamiltonian inMPO form is never needed; instead a partial contrac-
tion of the MPO with the bra and ket MPS suffices, as given in Eq. (2.28).

One could imagine that the MPO virtual bond indices of these contracted
MPOs actually label the different renormalized operators. Appending new
MPOs to these contracted MPOs then encodes the instructions for updating
the renormalized operators and forming the effective Hamiltonian.
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So why is there still merit in renormalized operators, although it can be
seen as a concealed MPO formulation5? When combining quantum chemical
DMRG with the MPO formalism, the sparsity of the MPOs has to be explicitly
exploited; failing to do so can result in a suboptimal computational complex-
ity. When only the partial traces of the MPOs are needed and not the MPOs
explicitly – as is the case for a ground state optimization – it is easier to im-
mediately work with renormalized operators to get the correct scaling. When
writing the quantum chemical Hamiltonian in MPO format the MPO bond di-
mension scales quadratic with 𝐿 [133, 134]; not surprisingly the same scaling
as the number of renormalized operators. Attempting to work with this MPO
as a dense tensor will result in a cost of𝒪(𝐿4) to construct the effective Hamil-
tonian given in Eq. (2.32); also updating the partial contracted MPOs will cost
𝒪(𝐿4) per update. This is far from the lowest cost possible, as we will see in
Section 2.3.2. Only by carefully taking the sparsity of the MPOs into account
is the optimal scaling obtained [133, 134].

For a thorough discussion of the parallels and differences between MPOs
and renormalized operators, we refer the reader to Ref. [134].

2.3.2. Resource costs of the algorithm
Using renormalized operators for the QC-DMRG algorithm, we can make an
assessment of the resource costs of the algorithm. The number of orbitals (and
sites) is denoted by 𝐿 while 𝐷 is the virtual bond dimension of the MPS.

Updating the renormalized operators
As previously discussed, we need different types of manipulations for updat-
ing the renormalized operators. First, all renormalized operators have to be
updated as in Eq. (2.42); this process scales as𝒪(𝐿2𝐷3). On the other hand, we
need to take into account new contributions in the complimentary operators
as was exemplified in Eq. (2.43). For this step, the most intensive part occurs
when updating or constructing complementary operators of two operators. As
this type of complementary operators are only needed for the longest side of
the MPS chain we can choose to construct them from scratch as in Eq. (2.41)
when reaching the middle of the MPS chain. On the other hand, we can also
start by constructing them from the beginning and update them while pro-
gressing. Both methods scale as 𝒪(𝐿4𝐷2) per sweep.

Updating the renormalized operators scales in total as𝒪(𝐿3𝐷3+𝐿4𝐷2) per
sweep.

5In practice I often find it easier to think about renormalized operators as partially tracedMPOs.
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The two site optimization
During the optimization of a two-site (or one-site) tensor we solve Eq. (2.31)
with an iterative eigensolver like, for example, theDavidsonmethod [157]. For
this, the action of the effective Hamiltonian has to be calculated iteratively.
Thanks to the complementary renormalized operators, the action of the effec-
tive Hamiltonian upon the two-site tensor scales as 𝒪(𝐿2𝐷3); the most inten-
sive part is the recombination of the renormalized operators of two second-
quantized operators with their respective complementary renormalized oper-
ators. Finally, when the optimized tensor is obtained it still has to be decom-
posed into two separate one-site tensors through the singular value decompo-
sition. This procedure has a complexity of 𝒪(𝐷3).

In total, the two-site optimization and the subsequent decomposition has
a scaling of 𝒪(𝐿3𝐷3) per sweep.

Memory and disk usage
Of course, the DMRG algorithm has to keep track of all the different opti-
mized tensors. Besides this, we need to store the renormalized operators. As
we want to recycle previously calculated renormalized operators during the
sweeps, one set of these operators has to be kept in memory per virtual bond.
The neededmemory for this is thus𝒪(𝐿3𝐷2). Not all of these renormalized op-
erators have to be kept in RAM however. A lot of these sets can be written to
disk as the calculated renormalized operators at each bond are not used until
the sweep passes by said bond.

2.4. Other tensor networks
The success of the MPS for simulating one-dimensional local gapped Hamil-
tonians is due to its layout as a tensor network; its linear form allows a very
efficient encoding for entangled states respecting the one-dimensional area
law. However, one can still attempt to tackle two-dimensional systems with
the linear MPS. In fact, the MPS has been extensively used on systems such
as the square Heisenberg and the square Hubbard model [158–161]. To study
these, the MPS can be mapped to the square lattice in a snake-like fashion.
This is represented in Fig. 2.2. Comparing the geometry of the MPS and the
square lattice, it is clear that the entanglement between neighboring spins in
vertical direction can be adequately captured while the MPS will have much
more trouble with horizontal neighbors. Since these neighboring spins are ar-
tificially distanced in the MPS, their entanglement will be much more costly
to take into account. The MPS is not a natural wave function for the study of
such two-dimensional systems; the right correlations can only be captured by
using a sufficiently large bond dimension and by choosing the square lattice
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Figure 2.2: (left) Example of an MPS and a PEPS mapped to a square grid. Only the virtual
bonds of the network are represented; each tensor has an additional physical bond which is
not represented as to not clutter the graphic. (right) Example of a MERA. The isometries are
colored blue while the disentanglers are colored green.

on a narrow strip or a cylinder.
To solve this problem the projected entangled pair states (PEPS) [162] was

developed as an extension of the MPS in higher dimensions. A graphical de-
piction of PEPS is given in Fig. 2.2. As the PEPS mimics the geometry of the
square lattice, it is much more suited to capture the correlations of that sys-
tem. The better connectivity of the PEPS tensor network does come at a cost
though. As the PEPS tensors in Fig. 2.2 have up to four virtual bonds, much
lower bond dimensions have to be used to keep the optimization feasible. The
PEPS ansatz also has loops in its network, making it harder to define a canon-
ical form; however, it is still possible [163–165]. Furthermore, some needed
tensor contractions for optimization are not exactly feasible anymore and need
to be approximated.

For 𝑑-dimensional critical systems, the tensor network does not need to
mimic the physical geometry of the lattice; it shouldmimic the so-called (𝑑+1)-
dimensional holographic geometry where the scale parameter 𝑧 is added as ex-
tra dimension. These types of tensor networks are called themulti-scale entan-
glement renormalization ansatz (MERA) [166, 167]. The (1 + 1)-dimensional
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case is represented in Fig. 2.2.
Other tensor networks states than the MPS have also been used in quan-

tum chemical studies. Notable examples are the tree tensor network states
(TTNS) [168–170], complete-graph tensor network states (CGTNS) [171] and
self-adaptive tensor network states (SATNS) [172]. Although it is debatable
if the SATNS and CGTNS should be considered tensor networks; they can be
written as tensor networks, but their approximation stems from imposed cor-
relations of the tensor elements instead of a truncated bond dimension. Al-
though its one-dimensional nature is far from ideal save for linear molecules,
the MPS is still the preferred tensor network for chemical systems. DMRG
is characterized by a high efficiency and stability of the algorithm and a rela-
tive ease of implementing SU(2)-symmetry. This allows us to largely make up
for the suboptimal entanglement representation by increasing the used virtual
bond dimension.

It is also worth pointing out continuous versions were formulated for both
the MPS and the MERA and are used for quantum fields. They are, quite
fittingly, called the continuous MPS (cMPS) [173, 174] and the continuous
MERA (cMERA) [175].

2.4.1. Tree Tensor Networks
The tree tensor network state is a natural extension of the MPS ansatz. While
the MPS wave function can be depicted as a linear chain of tensors, the TTNS
ansatz allows branching of the network. It is the most general tensor network
state without any loops. By using this ansatz, a better representation of the
entanglement topology of the system is expected as compared to theMPS, since
component tensors can have an arbitrary order. An example of the TTNS is
shown in Fig. 2.3a.

An advantage of the TTNS is that at a finite bond dimension it is able to cap-
ture algebraically decaying correlation functions. This in contrast to DMRG
which is only able to represent exponentially decaying correlations [168, 170,
176]. Let us clarify this a bit; imagine we start from one central tensor and we
radially expand the TTNS with a fixed coordination number 𝑧 (i.e. the maxi-
mum number of virtual bonds of a tensor in the TTNS). The number of sites 𝐿
in function of the number of layers 𝑌 is

𝐿 = 1 + 𝑧
𝑌
∑
𝑘=1
(𝑧 − 1)𝑘−1 , (2.44)
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(a) (b)

Figure 2.3: (a) A general TTNSwithmaximum 𝑧 = 3 and 44 orbitals. The tensor optimized dur-
ing one or two-site optimization is shownby dashed lines, and hasmaximally 3 or 4 virtual bond
indices, respectively. (b) An example of a T3NS with 44 orbitals. The tensor optimized during
one, two-, three-, or four-site optimization is shown by the dashed contours, and hasmaximally
3 virtual bond indices for all cases. Filled circles represent physical tensors and have thus an
extra physical index that is not drawn here for simplicity. Empty circles represent branching
tensors.

or

𝐿 = 𝑧(𝑧 − 1)𝑌 − 2
𝑧 − 2 𝑧 ≥ 3 (TTNS) (2.45)

𝐿 = 1 + 2𝑌 . 𝑧 = 2 (MPS) (2.46)

The maximal distance between two sites is given by 2𝑌 . From Eq. (2.45) and
Eq. (2.46) follows a logarithmic scaling of the maximal distance with system
size 𝐿 for trees and a linear one forMPSs. Correlation functions in TTNSs with
finite bond dimension decay exponentially in function of maximal distance.
Hence, in function of system size an algebraic decay is obtained for 𝑧 ≥ 3 in
contrast to the exponential decay for the MPS (𝑧 = 2) [176–178].

In quantum chemistry, the tree tensor network ansatz was first developed
for the study of dynamics. Independently discovered from general tensor net-
work methods, it is known as the multilayer multiconfiguration time-depen-
dentHartree theory (ML-MCTDH) [179–181]. For the study of electronic struc-
ture theory, the QC-TTNSwas first used byMurg et al. [168, 170] for trees with
arbitrary coordination number. The complexity of the algorithm as a function
of the virtual dimension𝐷 is given by𝒪(𝐷𝑥+1), where 𝑥 is given by the coordi-
nation number of the tensor optimized at each stage. Due to this scaling, Murg
et al. restricted themselves to a maximum coordination number of 3 in the net-
work and to a one-site optimization scheme; this results in an optimization
of 𝒪(𝐷4). Using a two-site optimization in the same tree with coordination
number of 3 would involve the optimization of two-site tensors with 4 virtual
bonds (as seen in Fig. 2.3a); such optimization results in an expensive 𝒪(𝐷5).
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In DMRG, the usage of a two-site optimization scheme has proved to be ad-
vantageous. The two-site scheme is less prone to be stuck in local minima and
an automatic redistribution of the virtual dimensions over different symmetry
sectors is easily obtained through SVD [182]. In TTNS it would be opportune
to also use two-site optimization. In contrast to DMRG though, two-site op-
timization for an arbitrary TTNS is accompanied with a heavier polynomial
cost than one-site optimization as previously stated. In the work of Nakatani
et al. [169] this problem is circumvented by introducing half-renormalization.
In the half-renormalization step the TTNS is exactly mapped to an MPS. In
this MPS, the iterative optimization step is executed at a DMRG-like cost. The
mapping of the TTNS to an MPS is still expensive, though.

In the next section, we will propose the three-legged tree tensor network
state (T3NS) ansatz which has considerable advantages compared to a general
TTNS. I will show that it enables two-site optimizationwith only a prefactorial
penalty in the polynomial scaling and without the need of the half-renormal-
ization scheme.

The TTNS is not unique to quantum chemistry. Just as for the MPS, it was
first studied in condensedmatter physics [177, 183]. Even inmachine learning
the TTNS enjoys some interest [184].

2.5. The T3NS ansatz
Just as in previous works on QC-TTNS [168–170], we restrict ourselves to a
maximum coordination number 𝑧 = 3, to keep calculations feasible. A second
restriction we impose, is that only tensors with 𝑧 ≤ 2 have physical indices.
We call this type of tensors physical tensors. Tensors with 𝑧 = 3 are called
branching tensors and have exclusively virtual bond indices. We do not allow
branching tensors to be adjacent to each other. An example of a T3NS is given
in Fig. 2.3b.

The proposed ansatz enables us to go beyond one-site optimization and use
two-site, three-site or even four-site optimization with the same polynomial
scaling (see Fig. 2.3b). Another substantial advantage of T3NS is that every
tensor has at most three different indices (one physical and two virtual for a
physical tensor and three virtual for a branching tensor). This will be rather
useful for the implementation of a SU(2)-adapted version, which is the main
subject of Chapter 3.

There are some similarities between the T3NS and the half-renormaliza-
tion scheme of Nakatani and Chan [169]. The mapping of the TTNS to the
MPS used for half-renormalization correspondswith a branching tensor in our
T3NS formulation. In the half-renormalization scheme the branching tensor
is never directly optimized; consequently, more sweeps are needed for conver-
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gence. A one-site optimization using half-renormalization is equivalent with
a one-site optimization for T3NSwhere the branching tensors are skipped dur-
ing optimization. For a two-site optimization using half-renormalization the
equivalence is less apparent; swapping of tensors in the network during the
T3NS optimizationwould be needed for a sound comparison. Although rather
trivial, it is also worth pointing out that the MPS ansatzes are a subset of the
T3NS; the MPS corresponds with a T3NS devoid of branching tensors.

Our T3NS implementation is able to do two-site, three-site and four-site
optimization, but in this dissertation only two-site optimization is used except
if mentioned otherwise. Three- and four-site calculations have been executed
but the small increase in energy accuracy did not outweigh the extra compu-
tational time needed (larger prefactor). However, the ability to do three- and
four-site optimization can be useful for orbital optimizations.

2.5.1. The T3NS algorithm
Optimization for the T3NS wave function is quite equivalent with DMRG as
discussed in Section 2.2.3. In a sweepingmotion, one tensor or a few neighbor-
ing tensors are picked and optimized. During the sweep, the environment of
the picked tensors can be chosen trivial by choosing the appropriate gauge; the
absence of loops in the T3NS allows us to define a canonical form completely
equivalent as the one discussed in Section 2.2.1 for the MPS.

While a sweep through the linear MPS did not leave much room for imagi-
nation, this is now different. Many ways of stepping through the network can
be chosen. In this dissertation we will always use a sweep resembling a depth-
first search in a tree graph; it is probably the most obvious sweep and treats
all branches and tensors on equal footing. One could also opt to skip com-
plete branches during a sweep when these are deemed converged or weakly
correlated with the rest of the system. However, we did not use any sweeping
schemes like this.

Just as QC-DMRG can use an MPO formulation of the quantum chemical
Hamiltonian, one could opt for a tensor network operator (TNO) formulation
and represent said Hamiltonian by a tree tensor network. Just as for the MPO,
a first condition for an efficient TNO is a scaling of 𝒪(𝐿2) for the virtual bond
dimension. Again utmost care in handling the sparsity of the TNOs is needed
to obtain similar costs as with renormalized operators; failing to do so is even
more catastrophic for QC-TTNS than for QC-DMRG. The methods proposed
in refs. [133, 134] are not readily translatable to QC-TTNS or do not produce
the same scaling as with renormalized operators. For this reason we opted
for renormalized operators, just as in previous work on QC-TTNS [168–170].
As the usage of renormalized operators for the T3NS only differs minimally
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with the DMRG case, we refer the reader to Section 2.3.1 for a more thorough
discussion.

2.5.2. Resource costs of the algorithm
Let us now compare both the CPU time and the memory usage for the QC-
T3NS algorithmwith the QC-DMRG algorithm. Thementioned scaling in this
sections is valid up to the four-site optimization.

The most time consuming part of the algorithm is the iterative execution
of the action of the effective Hamiltonian on the combined tensor. Due to the
usage of complementary renormalized operators, the effective Hamiltonian is
constructed out of 𝒪(𝐿2) different terms for both DMRG and T3NS. However,
the cost of constructing each term scales as 𝒪(𝐷4) for T3NS instead of 𝒪(𝐷3)
for DMRG.

The other leading term for the computational complexity is due to updat-
ing the renormalized operators. The most intensive type of update for the
renormalized operators is one unique to the T3NS algorithm and occurs when
two sets of renormalized operators have to be recombined in a new set by using
a branching tensor. The most intensive type of recombination occurs when a
single operator in both sets has to be updated to a complimentary double op-
erator, e.g.

𝑐†𝑖↑

𝑐†𝑗↑ = 𝑐†𝑖↑𝑐†𝑗↑ →∑
𝑖𝑗
[𝑉𝑖𝑗𝑐𝑑 − 𝑉𝑖𝑗𝑑𝑐] 𝑐†𝑖↑𝑐†𝑗↑ → 𝑃𝑑↑𝑐↑ . (2.47)

First, the single operators are combined to a double operatorwith the aid of the
branching tensor; an operation with complexity 𝒪(𝐿2𝐷4). In the second stage,
the newly formed double operators are summed together with their potential
terms into the different double complementary operators; for the worst case
scenario this scales as𝒪(𝐿4𝐷2). As there are𝒪(𝐿) occasions per sweep for this,
a conservative total scaling of𝒪(𝐿5𝐷2+𝐿3𝐷4) could be assumed; it is the scaling
reported in Ref. [104]. However, only the most central branching tensors will
result in the worst case scaling of 𝒪(𝐿4𝐷2); an exponentially small portion of
the total amount of branching tensors. A more careful analysis results in an
upper bound of𝒪(𝐿4𝐷2+𝐿3𝐷4) for the updating of the renormalized operators.
This was corrected in the appendix of Ref. [105]. A summary of the scaling of
both QC-DMRG and QC-T3NS is given in Table 2.1.

At a fixed system size 𝑘 and bond dimension𝐷, the speed of a sweep is still
dependent of the particular shape of the tree. While one can only make one
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QC-DMRG QC-T3NS
CPU time: 𝒪(𝐿4𝐷2 + 𝐿3𝐷3) 𝒪(𝐿4𝐷2 + 𝐿3𝐷4)
Memory: 𝒪(𝐿3𝐷2) 𝒪(𝐿3𝐷2 + 𝐿𝐷3)

Table 2.1: Resource requirements of DMRG and T3NSwith renormalized operators. The under-
lined terms correspond with the action of the effective Hamiltonian; it is the iterative portion
of the sparse eigensolver.

shape of MPS-chain for a fixed system size, this is not true for trees. We will
now briefly touch upon this.

2.6. Shape of the tree, choice and ordering of the or-
bitals

The different shapes for the tree at fixed 𝐿 introduce additional freedom that
is not present in DMRG. It is clear that the particular shape will influence the
speed and the accuracy of the calculations as it determines the correlations cap-
tured by the network. The orbital ordering in the network is also of importance
for the accuracy of the calculations. This freedom is also present inDMRGand
multiplemethods for ordering the orbitals exist (e.g. through use of themutual
information [170] or the exchange integral [169] have been studied). Similar
methods can be used to optimize the shape of the tree. Finally, the orbital
choice and orbital optimization is also of importance for TTNS and DMRG
calculations. Quite some research has been done for this in DMRG [149, 185–
189]. In TTNS, orbital optimization by canonical transformations has been
studied and used [168].

Optimization of the shape of the network and the orbital order will be the
primary subject of Chapter 5.

2.7. Fermionic Networks
Aquantumchemical calculation involves fermions. This introduces extra com-
plexity in the algorithm through the sign change of the wave function when
interchanging two fermions. Historically, the most common way to tackle
fermionic systems for the MPS is by mapping the fermionic creation and an-
nihilation operators onto spin operators, known as the Jordan-Wigner trans-
formation [190]. However, we opted for the fermionic network formalism in
this work as developed by Bultinck et al. [191]. It provides a clear and simple
way for the introduction of the fermionic signs without the need of too much
bookkeeping. In this formalism, an example of an arbitrary fermionic tensor
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is given by

A = ∑
𝛼𝛽𝛾𝛿…

𝐴𝛼𝛽𝛾𝛿…|𝛼)|𝛽)(𝛾|(𝛿| … . (2.48)

This is equivalentwith the definition for bosonic tensors, butwhere |𝛼), |𝛽), (𝛾|,
(𝛿|, … are instead elements of the so-called super vector space𝑉 . The fermionic
signs are introduced by the following canonical isomorphism

ℱ ∶𝑉 ⊗𝔤𝑊 → 𝑊 ⊗𝔤 𝑉
|𝑖〉 ⊗𝔤 |𝑗〉 → (−1)|𝑖||𝑗||𝑗〉 ⊗𝔤 |𝑖〉,

(2.49)

where𝑉 and𝑊 are super vector spaces and⊗𝔤 denotes the graded tensor prod-
uct. |𝑖〉 and |𝑗〉 represent homogeneous basis states. A homogeneous state is
characterized by a definite parity of the state, i.e. |𝑖|, |𝑗| ∈ {0, 1}. For the con-
traction of fermionic tensors, a second mapping is introduced:

𝒞 ∶ 𝑉∗ ⊗𝔤 𝑉 → ℂ ∶ 〈𝜓| ⊗𝔤 |𝜙〉 → 〈𝜓|𝜙〉, (2.50)

where 𝑉 and 𝑉∗ are the super vector space and its dual space, respectively.
When contracting two fermionic tensors, the states of the tensors should

first be ordered appropriately through successive usage of Eq. (2.49) before
using Eq. (2.50). For further details we refer the reader to Ref. [191].

2.8. Numerical results
At this point, we have all the tools for aworking T3NS implementation. wewill
proceed by an initial comparison of the T3NS ansatz with theMPS. The results
were previously published in Ref. [104] and were generated with a first test-
implementation of the T3NS ansatz exploiting only the particle conservation
of the chemical Hamiltonian. This is not the same implementation as the one
available on github [156]; the presented timings are not representative for the
latter implementation. However, general conclusions remain valid.

Having obtained a solid grasp on the workings of both the MPS and the
T3NS ansatz, we will now compare them in a quantum chemical setting. We
compare for several systems the energy errors and CPU times in function of
the bond dimension. We study LiF and N2 at their equilibrium bond length
(𝑟 = 3.05 a.u. and 𝑟 = 2.118 a.u., respectively). For LiF we also perform cal-
culations at longer bond lengths. LiF and N2 are two systems that don’t par-
ticularly call for a tree-shaped topology representation. However, as we will
show, a similar accuracy is already obtained with the T3NS at considerable
lower bond dimension as compared with DMRG for both systems. This fact
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gives us hope that the more complex entanglement topology will prove even
more its merits in larger molecules, since the orbitals can be easier arranged
in groups of highly entangled orbitals [192].

LiF and N2 are studied for different bond dimensions by T3NS with U(1)-
symmetry and DMRG with U(1)-symmetry. LiF is also studied with DMRG
with SU(2)-symmetry. For both T3NS-U(1) and DMRG-U(1) we use our own
implementation of the T3NS ansatz. For DMRG-SU(2) we use the CheMPS2
software program developed by S. Wouters [92, 144, 176, 193]. Both systems
are popular benchmarks for methods and their ability to take strong electron
correlations into account, and both systems have been studied in previous pa-
pers about QC-TTNS [169, 170].

To test the T3NS ansatz in larger systems, we perform calculations on the
bis(𝜇-oxo) and the 𝜇 − 𝜂2 ∶ 𝜂2 peroxo [Cu2O2]2– isomers. We compare the
energy gaps between the two isomers obtained by T3NS with previously pub-
lished values [142, 149–152, 194–197]. We also compare the obtained complete
active space (CAS) ground-state energies with other calculations executed in
the same active space; as to keep comparisons fair.

For now, wewill group orbitals belonging to the same spatial irrep asmuch
as possible and connect the irreps in the center of the tree. As a rudimentary
rule, one could assume that orbitals belonging to the same irrep are strongly
correlated as only these are connected to each other through the kinetic terms
of the chemical Hamiltonian. Within one irrep, the orbitals are ordered such
that the orbitals closest to the Fermi level (for LiF and N2) or the orbitals with
highest single-orbital entropy (for [Cu2O2]2– ) are closest to the center of the
tree. After experimenting with a few different orderings of the orbitals, this
proved to be the most successful one. Another degree of freedom is the choice
of the orbitals. In this paper, we only use Hartree-Fock orbitals. No orbital
optimization is done at this point. We refer the interested reader to the sup-
plementary material of Ref. [104] for the used T3NS geometries and orbital
orderings used in these calculations.

2.8.1. Lithium fluoride
The first system studied with the new T3NS ansatz is LiF. We perform calcu-
lations at equilibrium bond length (𝑟 = 3.05 a.u.), at 𝑟 = 12 a.u. where an
avoided crossing occurs, and at large bond length (𝑟 = 13.7 a.u.). Calcula-
tions are performed in a CAS of size (6e, 25o). The atomic orbital basis from
Bauschlicher and Langhoff [198] and a frozen core of 1𝜎, 2𝜎 and 3𝜎 orbitals
was used. The same basis set and active space is used in Ref. [170]. Ground
state energies were calculated by using T3NS-U(1), DMRG-U(1) and DMRG-
SU(2)with varying bond dimensions. In the case of DMRG-SU(2), the quoted
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bond dimension is the reduced one, where the additional SU(2)-symmetry
is taken into account [176]. FCI energies were easily recovered through the
T3NS. Accuracies in the order of 10−8 Eh were obtained for all bond lengths at
𝐷 = 400. The accuracy of DMRG and T3NS in relation to the bond dimension
is given in Fig. 2.4 for LiF in equilibrium. As expected, a lower bond dimen-
sion is needed for T3NS for a similar accuracy as in DMRG. In Fig. 2.5, the
accuracy of DMRG and T3NS is given for different bond lengths at a low bond
dimension (𝐷 = 100).
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Figure 2.4: Energy difference of DMRG and T3NS calculations with respect to the FCI energy
for LiF at equilibrium bond length 𝑟 = 3.05 a.u. FCI energies are obtained from Ref. [170]. The
calculations are done at different (reduced) bond dimensions.

CPU time last sweep total CPU time
T3NS[100] 96 sec 428 sec
T3NS[400] 1000 sec 2240 sec
DMRG[100] 48 sec 600 sec
DMRG[600] 640 sec 1884 sec

Table 2.2: Some timings for T3NS and DMRG calculations of LiF at equilibrium bond length.
Used bond dimensions are given in square brackets. Both T3NS and DMRG are executed with
our own implementation to keep comparison fair.

Lastly, some wall times for the T3NS and DMRG calculations are given
in Table 2.2 for 𝑟 = 3.05. At 𝐷 = 100, a sweep is twice as slow in T3NS as
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Figure 2.5: Energy difference of DMRG-U(1) and T3NS-U(1) calculations with respect to the
FCI energy for LiF at bond length 𝑟 = 3.05, 12 and 13.7 a.u. FCI energies are obtained from
Ref. [170]. The calculations are done at𝐷 = 100 for both DMRG and T3NS.

in DMRG, as can be expected. However, less sweeps are needed until con-
vergence which ultimately results in a faster calculation with higher accuracy.
The need for fewer sweeps in T3NS is something we noticed quite consistently.
For DMRG at𝐷 = 600 and T3NS at𝐷 = 400 both accuracy and total wall time
are comparable. We would like to note that these remarks on timing are by no
means conclusive since the speed and accuracy of both T3NS and DMRG are
heavily dependent on orbital ordering and initial guess. In these calculations,
a random initial guess and a rather intuitive orbital ordering was used. These
remarks are merely to illustrate the competitiveness of our T3NS ansatz with
DMRG.

2.8.2. The nitrogen dimer
The second benchmark system for our T3NS ansatz is the nitrogen dimer at
equilibrium (bond length: 2.118 a.u.). This is a popular molecule for bench-
marking methods in their ability to describe strong electron correlation accu-
rately. Because of this it has also been discussed by Nakatani et al. in their
TTNS paper [169]. They studied the nitrogen dimer in a cc-pVDZ basis set in
a frozen core active space (10e, 26o), keeping the 1s electrons of nitrogen fixed.
DMRG [199] and FCI [200] calculations have also been previously executed
for this active space. In this paper we execute all-electron calculations (14e,
28) for the nitrogen dimer in a cc-pVDZ basis set and compare them with the
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most accurate results obtained in Ref. [199] through coupled cluster on the
SDTQPH level.

Several calculations have been executed at different bond dimensions for
T3NS andDMRGwithU(1)×U(1)-symmetry. The obtained energy differences
with respect to CCSDTQPH [199] are given in Fig. 2.6 for bond dimensions up
to 1000 for DMRG and up to 700 for T3NS. Comparable energies are obtained
for T3NS at half the bond dimension needed for DMRG. This is consistent with
the conclusion from the frozen core TTNS calculations in Ref. [169].

CPU time last sweep total CPU time
T3NS[100] 560 sec 1440 sec
T3NS[300] 4 h 17 h
T3NS[500] 16 h 96 h
T3NS[700] 66 h 237 h
DMRG[100] 160 sec 3800 sec
DMRG[500] 2050 sec 9 h
DMRG[1000] 2 h 27 h

Table 2.3: Some CPU times for T3NS and DMRG calculations of N2 at equilibrium bond length.
Both T3NS and DMRG are executed with our own implementation to keep comparison fair.

CPU times are given in Table 2.3 for T3NS-U(1) and DMRG-U(1) calcu-
lations. Similar conclusions can be made in comparison with LiF. For 𝐷 =
100, T3NS-sweeps take longer than DMRG-sweeps, but the number of sweeps
needed for convergence from a random initial guess is considerably lower.
This ultimately results in a lower wall time. At 𝐷 = 1000 for DMRG and
𝐷 = 500 for T3NS, obtained accuracies are comparable. Wall times for T3NS
are higher though than for DMRG, but still in the same order.

2.8.3. The bisoxo and peroxo isomer of [Cu2O2]2–
As a last benchmark system, we study the bisoxo(𝜇-oxo) and peroxo isomers
of [Cu2O2]2– , and in particular their energy gap. These transition metal clus-
ters have been studied with a wide range of ab initio methods like CASSCF,
CASPT2 (complete active space self consistent field theory with perturbation
theory up to second order) [194] and RASPT2 (restricted active space self con-
sistent field theory with perturbation theory up to second order) [195]. How-
ever, the small active spaces used for CASPT2 and RASPT2 showed to be in-
sufficient. Later on, the usage of DMRG-based methods allowed to take a con-
siderably larger active space into account, yielding improved results [142, 149–
152, 196, 197].

We will use the T3NS algorithm to treat the two isomers in a (26e, 44) ac-
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Figure 2.6: Energy difference of DMRG and T3NS calculations for the nitrogen dimer with
respect to CCSDTQPH energy (−109.282 172Eh) [199]. The calculations are done at different
bond dimensions.

tive space. The same active space and basis set is used as in Ref. [152] and
[149]; the basis set is given by the Stuttgart pseudopotential and associated ba-
sis functions (ECP10MDF) [201] for Cu and the atomic natural orbital (ANO)
basis set of Pierloot et al. for O [202]. Results are given in Table 2.4. Energies
of the isomers in the used active spaces are very comparable to the ones in
Ref. [149]. Furthermore, the energy gap between the two isomers are in the
same region as previously executed DMRG calculations.

These results are especially promising since no advanced methods were
used to augment the T3NS calculations in contrast to the previous research
with DMRG for this system. At this moment our algorithm starts from a ran-
dom initial guess, no effortwasmade in avoiding localminima and an intuitive
orbital ordering was used. In contrast, previous DMRG research included the
configuration interaction based dynamically extended active space (CI-DEAS)
procedure [149] or perturbative noise was added to the tensors [142] to avoid
local minima. More advanced orderings were also used in this previous re-
search; orbitals were ordered byminimizing quantum entanglement using the
Fiedler vector [142, 149], or a genetic algorithm [142]. Other methods used
to augment the results were DMRG-SCF (self consistent field) [150], DMRG-
SCF with canonical transformation theory (DMRG-SCF/CT) [150] or DMRG-
CASPT2 to take dynamical correlation into account. In Ref. [149] dynamic
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Ref. Method 𝐸bisoxo[Eh] 𝐸peroxo[Eh] Δ𝐸 [kcal/mol]
[194] CASSCF(16,14) 0.2
[194] CASPT2(16,14) 1.4
[195] RASPT2(24,28) 28.7

Some previously published DMRG energies
[151] DMRG(32,62)[2400] 35.6
[150] DMRG(28,32)[2048]-SCF/CT 27.0
[197] DMRG(32,28)[4000] 21.8
[142] DMRG(24,24)[1500]-SCF∗ 35.1
[142] DMRG(24,24)[1500]-CASPT2∗ 23.2
[152] DMRG(26,44)[800] −541.467 79 −541.497 31 18.5
[196] DMRG(26,44)[128] −541.473 08 −541.514 70 26.1
[149] DMRG(26,44)[256/1024/10−5]† −541.538 53 −541.581 14 26.7

T3NS calculations
T3NS(26,44)[50] −541.487 73 −541.569 99 51.6
T3NS(26,44)[100] −541.523 52 −541.571 66 30.2
T3NS(26,44)[200] −541.532 84 −541.577 17 27.8
T3NS(26,44)[300] −541.535 56 −541.579 66 27.7
T3NS(26,44)[500] −541.538 20 −541.580 94 26.8
∗: Bond dimensions given for these calculations are reduced bond dimensions.
†: This calculation uses the DBSS method and CI-DEAS as initialization procedure. The square brackets state that a minimum of 𝐷 = 256
is used at every bond, the CI-DEAS procedure starts with𝐷 = 1024 and a maximum discarded weight of 10−5 is aimed for. Maximum bond
dimensions around 2000 were reported for both clusters during these calculations [149].

Table 2.4: Energy gaps between the bis(𝜇-oxo) and 𝜇 − 𝜂2 ∶ 𝜂2 peroxo [Cu2O2]2– isomers from T3NS calculations of this paper and previous
calculations. The energy gaps are given in kcal/mol. Ground state energies are given for the T3NS calculations and DMRG calculations from
previous research using the same active space and are given in Hartree. Bond dimensions are given in square brackets.
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block state selection (DBSS) was used to tune the bond dimension. Instead
of a fixed bond dimension, a maximum discarded weight is used. In this way,
the bond dimension at every bond is tailored to stay below this maximum dis-
carded weight. DBSS is easily implementable once two-site optimization is
used, like in our T3NS algorithm. Since we noted that the discarded weight
was dominant in very few bonds while it was orders lower in other bonds, we
think that DBSS can also yield a substantial improvement in the T3NS algo-
rithm.

To check if we got stuck in local minima, the ground state wave function
of the bisoxo isomer obtained through T3NS[500] was compressed to a lower
bond dimension. The compressed wave function was then reoptimized at this
lower bond dimension and we found a ground state energy of −541.505 27,
−541.523 87 and −541.533 27Hartree for 𝐷 = 50, 100 and 200, respectively.
Comparison with the results obtained through random initialization in Ta-
ble 2.4 makes the problem of local minima quite clear and shows us that pre-
venting local minima can improve our results significantly, especially at low
bond dimension.

2.9. A short recap
As the three-legged tree tensor network state (T3NS) is a direct extension of the
density matrix renormalization group (DMRG), we first thoroughly explained
this algorithm for the calculation of ground state wave functions in quantum
chemistry; thereafter, the T3NS algorithm can be introduced with only minor
changes and extensions.

Although the T3NS is computationally more expensive than DMRG, our
hope is that the increased flexibility of the tensor network allows a more accu-
rate entanglement representation at a lower number of renormalized states.
As a first cautious assessment, some numerical results are given in which
DMRG and T3NS are compared for a selection of chemical systems; they in-
dicate that T3NS is at least competitive with DMRG for the given systems and
does indeed give improved results at lower bond dimensions.

We started the chapter by a brief overview of the origin of DMRG and ten-
sor networks in its whole. One can only guess if P.A.M. Dirac would still main-
tain his viewwhen seeing the plethora of developments sprung from renormal-
ization. At least, we do hope the reader does not share his opinion after reading
this chapter.
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Symmetries

…out of love of symmetry,
just as people put two vases above a fireplace.

Guy de Maupassant

In the previous chapter, the ansatz for the T3NS was formulated. Although the
exponential wall is circumvented by using insights into entanglement, we can still
do better by looking at the symmetries in the problem at hand.
Chemical systems have several symmetries. Symmetries due to particle conser-
vation and abelian point group symmetries are easily exploitable; others, such
as non-abelian point group symmetries and the total electron spin conservation,
need more involved techniques. By using the Wigner-Eckart theorem we will dis-
cuss how SU(2)-symmetries can be exploited. Although briefly explained in the
previous section, we will also go deeper into tackling fermionic systems.

Parts of this chapter have been published in Journal of Chemical Theory and Computation 15,
2996-3007 (2019) [105].
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Symmetries are a keystone for efficient quantum chemical calculations as they
naturally restrict the search space of the algorithm to the relevant corner of the
Hilbert space. Already the earliest QC-DMRG formulations leveraged the par-
ticle number and spin projection conservation of the chemical Hamiltonian to
its advantage [123, 203, 204]. It did not take long before any real abelian point
group symmetries of themolecule could also be exploited [185, 199]. Although
of limited use for general molecules, they can provide substantial speedups
when relevant.

While the abelian symmetries of the chemical Hamiltonian were quite
straightforward to tackle for DMRG, it was not the case for non-abelian sym-
metries. Themost important non-abelian symmetry for quantum chemistry is
given by the total spin conservation of the electrons which is an SU(2)-symme-
try. Sierra and Nishino first included SU(2)-symmetries in DMRG through
the interaction round a face Hamiltonian [205]. Later on, McCulloch and
Gulácsi introduced another simpler technique [206–208]. Translated to the
MPS, their work assumed that each three-legged tensor in the MPS is given by
a irreducible tensor operator; using the Wigner-Eckart theorem [209], these
tensors can be decomposed in a reduced part and the relevant Clebsch Gordan
coefficients. Being the bread-and-butter of tensor networks with non-abelian
symmetries, let us formally define the Wigner-Eckart theorem for SU(2):

Theorem 3.1 (Wigner-Eckart) When expressed in an eigenbasis of the angu-
lar momentum each tensor operator 𝑇 (𝐽)𝑀 which transforms similarly as a |𝐽𝑀⟩
angular momentum eigenstate under rotations is called an irreducible tensor.
Such tensors can be decomposed as follows

⟨𝑗′𝑚′|𝑇 (𝐽)𝑀 |𝑗𝑚⟩ = ⟨𝑗′‖T(𝐽)‖𝑗⟩ 𝐶𝑗𝐽𝑗
′

𝑚𝑀𝑚′ (3.1)

where T(𝐽) is the reduced tensor independent of the angular momentum projec-
tions and 𝐶𝑗𝐽𝑗

′

𝑚𝑀𝑚′ are the Clebsch-Gordan coefficients.

Usage of the Wigner-Eckart theorem was soon common practice for SU(2)-
adapted DMRG, either in condensed matter or quantum chemistry [148, 176,
210–213]. Also for other tensor networksmethods theWigner-Eckart theorem
proved to be useful although it can bemore involved [214–216]. The technique
introduced byMcCulloch andGulácsi is easily extensible to other ‘multiplicity-
free’ non-abelian symmetries, such as demonstrated by Sharma for the 𝐷∞ℎ
point group symmetry of the C2 dimer [217].

Weichselbaum showed that non-multiplicity-free non-abelian symmetries
such as SU(3) can also be exploited by tensor networks [218]. A symmetry is
called non-multiplicity-free if either the same 𝑚𝑧 label occurs multiple times
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within one irrep or when the product of two irreps results into multiple occur-
rences of the same irrep for the direct sum decomposition. Luckily enough,
the symmetries that are commonly exploited in quantum chemistry are multi-
plicity-free. As such, we will only focus on these types of symmetries.

3.1. A symmetry adapted three-legged tensor
The usage of symmetries in the T3NS is facilitated by restricting to a maxi-
mum of three legs for every tensor in the wave function ansatz. It allows for a
straightforward application of theWigner-Eckart theorem for the different ten-
sors. It also makes the treatment of both abelian and non-abelian global sym-
metries very analogous to theMPS, where this is already well understood [148,
176, 208, 210, 213, 219, 220].

If we want to leverage the Wigner-Eckart theorem to our benefit, we need
to first express the different three-legged tensors in a basis of angular momen-
tum eigenstates. When writing the tensors in such basis we can preserve the
symmetries of the system at each tensor explicitly. Even more, the tensors are
now given by irreducible tensor operators; we can then split each tensor into
a so-called reduced tensor and a Clebsch-Gordan coefficient.

Let us first investigate how to write the tensors in a basis of angular mo-
mentum eigenstates.

3.1.1. Labeling the basis states
In the T3NS the index of a virtual (or physical) leg specifies the different vir-
tual (or physical) basis states traveling through this leg. When leveraging the
Wigner-Eckart theorem, these basis states of the tensors need to be transform
as rows of the irreducible representations of the symmetry group [176, 208,
210, 219, 220]. Each basis state |𝛼⟩ (or index of a leg) can thus be labeled
with the irrep and the row of the irrep according to which it transforms, i.e.
|𝛼⟩ = |Irreps and rows, 𝛼′⟩.

The label 𝛼′ is needed to discern the different basis states belonging to the
same list of irreps and rows of irreps. For a physical bond in non-relativistic
quantum chemistry for example we need the local basis states at every orbital.
We get

|−⟩ = |𝜋 = 0,𝑁↑ = 0,𝑁↓ = 0⟩ (3.2)
|↑⟩ = |𝜋 = 1,𝑁↑ = 1,𝑁↓ = 0⟩ (3.3)
|↓⟩ = |𝜋 = 1,𝑁↑ = 0,𝑁↓ = 1⟩ (3.4)
|↑↓⟩ = |𝜋 = 0,𝑁↑ = 1,𝑁↓ = 1⟩ (3.5)
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for the parity ℤ2 (𝜋), and two U(1)-symmetries for both the spin up and down
(𝑁↑, 𝑁↓), or

|−⟩ = |𝜋 = 0, 𝐼 = 𝐼0, 𝑁 = 0, 𝑗 = 0,𝑚 = 0⟩ (3.6)
|↑⟩ = |𝜋 = 1, 𝐼 = 𝐼𝑘, 𝑁 = 1, 𝑗 = 1/2, 𝑚 = 1/2⟩ (3.7)
|↓⟩ = |𝜋 = 1, 𝐼 = 𝐼𝑘, 𝑁 = 1, 𝑗 = 1/2, 𝑚 = −1/2⟩ (3.8)
|↑↓⟩ = |𝜋 = 0, 𝐼 = 𝐼0, 𝑁 = 2, 𝑗 = 0,𝑚 = 0⟩ (3.9)

for ℤ2 (𝜋), U(1) (𝑁), SU(2) (𝑗,𝑚) and the real abelian point group symmetries
(𝐼). The labels 𝜋,𝑁↑, 𝑁↓, 𝑁, 𝑗 and 𝐼 represent irreps of the different symmetries,
while 𝑚 labels the row of irrep 𝑗. 𝐼𝑘 is the point group irrep of the orbital. A
double occupation results in the trivial point group irrep 𝐼0 since 𝐼𝑘 ⊗ 𝐼𝑘 = 𝐼0
for real abelian point group symmetries. In this example, SU(2) is the only
symmetry that needs an extra label for the row since the other symmetries
have one-dimensional representations.

We omitted the label 𝛼′, since the irreps and rows already uniquely label
the local physical basis states. However for the labeling of the virtual basis
states the label 𝛼′ is still needed.

For calculations with fermions we utilize fermionic tensor networks. For
every performed permutation or contraction the fermionic signs are calculated
by looking at the parities of the different basis states [104, 191]. One could
note that labeling the parity 𝜋 is redundant since is it already fixed by the total
number of particles in the state. However, we chose to keep explicitly track
of the parity of the states. In this way, we can separate the fermionic sign
handling completely from the particle numbers in the basis states. This allows
amoremodular implementation of the different symmetries and the fermionic
signs.

3.1.2. Reduced tensors
Using the labeling discussed in the previous section, we can write every three-
legged tensor in the wave function ansatz as shown in Eq. (3.11). Due to the
Wigner-Eckart theorem, the irreducible tensor𝐴 can be rewritten as a reduced
tensor ̃𝐴𝑟multipliedwith the Clebsch-Gordan coefficients of the different sym-
metries. This is shown in Eq. (3.12). These coefficients are Kronecker deltas
for the real abelian symmetries and are the well-known Clebsch-Gordan coef-
ficients for the recoupling of spins for SU(2).

We can relate theClebsch-Gordan coefficientswith theWigner 3𝑗-symbols
by using their relation:

⟨𝑗1𝑚1𝑗2𝑚2 | 𝑗3𝑚3⟩ = √2𝑗3 + 1(−1)𝑗1−𝑗2+𝑚3 ( 𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

) . (3.10)



3.1.A
sym

m
etry

adapted
three-legged

tensor

3

59

A = ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝐴x1𝛼1;x2𝛼2;x3𝛼3 |x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3| (3.11)

= ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝛿𝐼1⊗𝐼2,𝐼3𝛿𝜋1+𝜋2 mod 2,𝜋3𝛿𝑁1+𝑁2,𝑁3⟨𝑗1𝑚1𝑗2𝑚2 | 𝑗3𝑚3⟩ ̃𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 |x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3| (3.12)

= ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝛿𝐼𝛿𝜋𝛿𝑁 (
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

) (−1)𝑗3−𝑚3𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 |x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3| (3.13)

= ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝐴𝑠x1;x2;x3𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 |x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3| (3.14)

= ∑
x1𝛼1;x2𝛼2;x3𝛼3

x2𝛼2
x1𝛼1 x3𝛼3𝐴⏟⎵⎵⎵⏟⎵⎵⎵⏟
irreducible tensor 𝐴

|x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3| = ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝑥2𝛼2
𝑥1𝛼1 𝑥3𝛼3𝐴𝑟

⏟⎵⎵⎵⏟⎵⎵⎵⏟
reduced tensor 𝐴𝑟

x2
x3x1⏟⎵⏟⎵⏟

symmetry tensor 𝐴𝑠

|x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3|

(3.15)

where

x𝑖 = 𝜋𝑖𝐼𝑖𝑁𝑖𝑗𝑖𝑚𝑖 𝑥𝑖 = 𝜋𝑖𝐼𝑖𝑁𝑖𝑗𝑖
𝛿𝐼 = 𝛿𝐼1⊗𝐼2,𝐼3 𝛿𝑁 = 𝛿𝑁1+𝑁2,𝑁3
𝛿𝜋 = 𝛿𝜋1+𝜋2 mod 2,𝜋3 [𝑗𝑖] = √2𝑗𝑖 + 1

x2
x3x1
= 𝛿𝐼1⊗𝐼2,𝐼3𝛿𝜋1+𝜋2 mod 2,𝜋3𝛿𝑁1+𝑁2,𝑁3 (

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

) (−1)𝑗3−𝑚3
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In Eq. (3.13), the Clebsch-Gordan coefficients are replaced by said symbols.
The 3𝑗-symbols are, although rather equivalent to the Clebsch-Gordan coeffi-
cients, preferred as they are more symmetric. They are, for example, up to a
phase invariant under permutations of the columns.

Several shorthand notations are introduced. x𝑖 is shorthand notation for
the full labeling of irreps and rows of irreps, while 𝑥𝑖 is the labeling of only
the irreps and not the rows (𝑚) of the basis state. Eq. (3.13) expresses the
tensor A in terms of a reduced tensor 𝐴𝑟 independent of the labels of the rows
of irreps in x𝑖 and a symmetry tensor 𝐴𝑠. This symmetry tensor consists of the
remaining terms in Eq. (3.13). It contains the complete dependency of 𝐴 on
the rows of irreps and is completely independent of the labels 𝛼𝑖. Shorthand
notations are also introduced for the Kronecker deltas and for the square root
of the multiplicity of 𝑗𝑖 ([𝑗𝑖] = √2𝑗𝑖 + 1).

A phase is absorbed in 𝐴𝑟 (hence the transition from ̃𝐴𝑟 to 𝐴𝑟). The ab-
sorbed phase is real, which ensures that the elements of the reduced tensors
can also be kept real for typical quantum chemical problems. Here, we also
opted to absorb the [𝑗𝑖] term into the reduced tensor.

Graphical depiction
In Eq. (3.15) we introduce a graphical depiction of Eq. (3.13). Its introduction
will facilitate further arithmetic with the symmetry adapted tensors. Let us
elaborate on the graphical depiction.

On the left hand side a representation of the irreducible tensor 𝐴 is given.
The incoming and outgoing edges represent respectively the ket and bra states
in Eq. (3.11). The circle itself represents the rank-three tensor with its different
tensor elements.

On the right hand side of the equation, we introduce the SU(2)-adapted
graphical representation of the same tensor A. The hexagon represents the
reduced tensor 𝐴𝑟. As discussed previously, it is independent of the labeling of
the rows of irreps (𝑚). The symmetry tensor 𝐴𝑠 is represented by a vertex with
three edges. The symmetry tensor is constituted by theWigner 3𝑗-symbol, the
different Kronecker deltas and an extra phase; it encodes the dependencies of
the different elements in a tensor due to our imposed global symmetries.

The direction of the edges fixes the sign of𝑚𝑖 in theWigner sign. An incom-
ing edge corresponds with𝑚𝑖, while an outgoing edge is −𝑚𝑖. There is also a
phase (−1)𝑗𝑖−𝑚𝑖 associated with every outgoing edge of a vertex. The directed
edges are also needed for a correct treatment of the fermionic signs [104, 191];
outgoing and incoming edges correspond with bra and ket states, respectively.

There is also an arrow present in the symmetry tensor arcing over the dif-
ferent edges. This is needed to fix the order of the bra and kets in Eq. (3.13); it
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runs from the first state to the last state. Due to its fermionic nature, the tensor
is not invariant under permutation of these bras and kets; the fixing of the or-
der in our graphical depiction is needed. The arrow also represents the cyclic
invariance of the 3𝑗-symbol. Concerning the SU(2)-symmetry, a phase has to
be included when changing the direction of the arrow but not when rotating
the arrow, i.e.

x2
x3x1 =

x2
x3x1 =

x2
x3x1 = (−1)𝑗1+𝑗2+𝑗3

x2
x3x1 . (3.16)

This symmetry of the 3𝑗-symbol is independent of the direction of the edges.
The reader should also keep in mind that we only concentrated on the SU(2)-
symmetry in Eq. (3.16); the (possible) fermionic character of the tensor was
disregarded. More properties of the Wigner symbols are given in Appendix B,
both algebraically and graphically. Wewill extensively refer to properties men-
tioned in this appendix when needed in the following derivations.

Differences with source code
This convention differs with the one mentioned in Ref. [105] and used in the
source code [156]. In these works, we opted to not absorb the [𝑗𝑖] terms into
the reduced tensor and the phase (−1)𝑗𝑖−𝑚𝑖 were not necessarily associated
with the outgoing edges of vertices. Instead we explicitly kept track of these
factors by introducing additional marks in the graphical representations of the
tensors.

When refraining to absorb [𝑗𝑖], a straightforward connection is found be-
tween the reduced and irreducible tensors. The notion of a QR decomposition,
singular value decomposition and orthogonal tensors are nicely equivalent for
both types of tensors without the need of rescaling the tensor elements. This
merit motivated us initially to keep explicitly track of the [𝑗𝑖] factors.

However, in the following sections we will absorb this factor and we will
need to rescale the tensor elements appropriately from time to time. Working
with absorbed [𝑗𝑖] factors is less error-prone and it is easier to formulate gen-
eral rules-of-thumb for the contraction and manipulations of tensors. A sim-
pler convention with less degrees of freedom is quite often just easier to work
with. Because of this, we believe now that absorbing the factor is the better
choice, certainly when a lot of different kind of contractions are needed.

Keeping explicitly track of the phase (−1)𝑗𝑖−𝑚𝑖 allowed removing a few
extra phases for intermediate results; we consider it now to be a quite a bit of
a folly to keep track of yet another extra term for the removal of a few phases.

Bear in mind that although the idea is quite the same as in Ref. [105], the
mentioned prefactors for tensor contractions are not the same; people wanting
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to work directly with the source code in [156] are referred to [105] for the used
conventions and the needed prefactors. People who are aiming to implement
their own T3NS code are encouraged to consider the convention used in this
dissertation.

Sparsity and compression of the tensors
The symmetry tensor encodes a lot of sparsity since it consists out of several
Kronecker deltas and aWigner 3𝑗-symbol that respects the triangle inequality
|𝑗1−𝑗2| ≤ 𝑗3 ≤ 𝑗1+𝑗2. It is easy to see which elements of the reduced tensor𝐴𝑟
do not contribute to the full tensor A. Such index combinations can be set to
zero without repercussions; in the next parts these tensor elements will always
be assumed zero.

Next to sparsity, the symmetry tensor also compresses the data. Different
indices belonging to the same multiplet in A are only represented by a single
index in 𝐴𝑟 as it is independent of the rows of the irreps 𝑚. The interrelation
between these different indices of the same multiplet is completely captured
by the symmetry tensor instead.

3.2. Building the wave function
Only with the right tools, one can successfully build; irrespective of how fine
the bricks are. Hence, let’s start with clarifying tensor contractions for symme-
try adapted tensors followed by proposing a canonical form. Afterwards, we
can move on to actually building the T3NS wave function from the building
blocks given on page 59.

3.2.1. A tensor contraction
Although tensor contractions becomemore efficient when exploiting the right
symmetries, it is also a more elaborate endeavor than with plain tensors. Let
us investigate an exemplary contraction of three tensors A, B and C to D =
𝒞(ABC). Let say that these tensors are for example given by

A =
x1𝛼1

x𝑎𝛼𝑎 x2𝛼2𝐴 |x𝑎𝛼𝑎⟩|x1𝛼1⟩⟨x2𝛼2| (3.17)

=
𝑥1𝛼1

𝑥𝑎𝛼𝑎 𝑥2𝛼2𝐴𝑟
x1

x𝑎 x2
(3.18)

B =
x𝑏𝛼𝑏

x1𝛼1 x3𝛼3𝐵 ⟨x1𝛼1||x𝑏𝛼𝑏⟩⟨x3𝛼3| (3.19)

=
𝑥𝑏𝛼𝑏

𝑥1𝛼1 𝑥3𝛼3𝐵𝑟
x𝑏

x1 x3
(3.20)
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C =
x3𝛼3

x2𝛼2 x𝑐𝛼𝑐𝐶 |x2𝛼2⟩|x3𝛼3⟩⟨x𝑐𝛼𝑐| (3.21)

=
𝑥3𝛼3

𝑥2𝛼2 𝑥𝑐𝛼𝑐𝐶𝑟
x3

x2 x𝑐
(3.22)

Note we have left out the different summations over the loose edges and the
bra and ket states for each reduced-symmetry tensor decomposition as to not
clutter the graphical notations. The order of bra and ket states, which is of
major importance for the fermionic sign, is fixed by the arching arrow in the
symmetry tensor.

For the irreducible tensors, contracting is rather straightforward; even the
order of contracting the tensors can be easily optimized1. The contraction is
given by

x𝑏𝛼𝑏
x𝑎𝛼𝑎 x𝑐𝛼𝑐𝐷 |x𝑎𝛼𝑎⟩|x𝑏𝛼𝑏⟩⟨x𝑐𝛼𝑐| = x1𝛼1

x𝑎𝛼𝑎 x2𝛼2𝐴

𝐵

𝐶 x𝑐𝛼𝑐

x3𝛼3

x𝑏𝛼𝑏

|x𝑎𝛼𝑎⟩|x1𝛼1⟩⟨x2𝛼2|⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
States of A

⟨x1𝛼1||x𝑏𝛼𝑏⟩⟨x3𝛼3|⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
States of B

|x2𝛼2⟩|x3𝛼3⟩⟨x𝑐𝛼𝑐|⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
States of C

(3.23)

or

x𝑏𝛼𝑏
x𝑎𝛼𝑎 x𝑐𝛼𝑐𝐷 = (−1)𝜋1⏟⎵⏟⎵⏟

fermionic sign
x1𝛼1
x𝑎𝛼𝑎 x2𝛼2𝐴

𝐵

𝐶 x𝑐𝛼𝑐

x3𝛼3

x𝑏𝛼𝑏

(3.24)

where the fermionic nature of the tensors is taken into account as explained
in Section 2.7 and connected edges represent summations over said indices.
It is useful to note that each tensor on its whole has a trivial parity, i.e. the
total parity of all the edges of a tensor is 𝜋tot = 0; by construction, each tensor
transforms trivially under the parity symmetry. As a result, it does not matter
in which order the states of the different tensors are concatenated in Eq. (3.23).

Instead of using the irreducible tensors directly, we can also use their sym-
metry-adapted decomposition into an irreducible tensor and a symmetry ten-
sor. Now, the contraction boils down to two separate contractions; one for

1At least, this is feasible for contractions consisting of a small set of tensors; this problem is, at
its root, NP-hard.
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each type of tensor, i.e.
x𝑏𝛼𝑏

x𝑎𝛼𝑎 x𝑐𝛼𝑐𝐷 = (−1)𝜋1

× 𝑥1𝛼1
𝑥𝑎𝛼𝑎 𝑥2𝛼2𝐴𝑟

𝐵𝑟

𝐶𝑟
𝑥𝑐𝛼𝑐

𝑥3𝛼3

𝑥𝑏𝛼𝑏

x1
x𝑎 x2 x𝑐

x3

x𝑏
(3.25)

These contractions are not independent. They are intertwined by the shared
labels for the irreps (𝑥𝑖). However, only the reduced tensors are dependent of
𝛼𝑖 and only the symmetry tensors are dependent of the labels for the rows of the
irreps 𝑚𝑖. This offers us an opportunity for simplification as the summation
over𝑚𝑖 and𝛼𝑖 can be isolated to the symmetry tensors and the reduced tensors,
respectively.

At this point an expression for a possible reduced tensor 𝐷𝑟 and symmetry
tensor 𝐷𝑠 is obtained, i.e.

𝐷𝑟 = (−1)𝜋1 𝑥1𝛼1
𝑥𝑎𝛼𝑎 𝑥2𝛼2𝐴𝑟

𝐵𝑟

𝐶𝑟
𝑥𝑐𝛼𝑐

𝑥3𝛼3

𝑥𝑏𝛼𝑏

(3.26)

𝐷𝑠 = x1
x𝑎 x2 x𝑐

x3

x𝑏

. (3.27)

Although we can calculate the reduced tensor through a straightforward con-
traction over the connected edges 𝑥1𝛼1, 𝑥2𝛼2 and 𝑥3𝛼3, the expression for the
symmetry tensor looks a bit unwieldy. Luckily enough, using the arithmetic
properties of the Wigner symbols, of which the used ones are listed in Ap-
pendix B, the given symmetry tensor in Eq. (3.27) can be further simplified.
As it is our first encounter which such operations we will do it quite verbosely
this time:

𝐷𝑠 = x1
x𝑎 x2 x𝑐

x3

x𝑏
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Through usage of the reflection property:

= (−1)𝑗1+𝑗𝑎+𝑗2 x1
x𝑎 x2 x𝑐

x3

x𝑏

Through usage of the 6j-swap of x𝑎 and x3:

= ∑
𝑗2′
[𝑗2′]2(−1)2𝑗2+𝑗1+𝑗2′−𝑗3 {

𝑗𝑎 𝑗𝑐 𝑗2′
𝑗3 𝑗1 𝑗2

}

x1 x𝑎

x2′
x𝑐

x3

x𝑏

Through usage of the reflection and reversal property:

= ∑
𝑗2′
[𝑗2′]2(−1)2𝑗2+𝑗1+𝑗3−𝑗𝑏 {

𝑗𝑎 𝑗𝑐 𝑗2′
𝑗3 𝑗1 𝑗2

}

x1 x𝑎

x2′
x𝑐

x3

x𝑏

Through usage of the orthogonality property:

= ∑
𝑗2′
𝛿x2′x𝑏(−1)

2𝑗2+𝑗2′−𝑗𝑏 {𝑗𝑎 𝑗𝑐 𝑗2′
𝑗3 𝑗1 𝑗2

}
x𝑎

x𝑐x𝑏

= (−1)2𝑗2 {𝑗𝑎 𝑗𝑐 𝑗𝑏
𝑗3 𝑗1 𝑗2

}
x𝑎

x𝑐x𝑏

Through usage of the reflection property:

= (−1)2𝑗2+𝑗𝑎+𝑗𝑏+𝑗𝑐 {𝑗𝑎 𝑗𝑐 𝑗𝑏
𝑗3 𝑗1 𝑗2

}
x𝑏

x𝑎 x𝑐
.

We have obtained a more compact and manageable symmetry tensor for D
with an additional prefactor; this prefactor can easily be absorbed in the re-
duced tensor. We finally obtain

x𝑏𝛼𝑏
x𝑎𝛼𝑎 x𝑐𝛼𝑐𝐷 =

𝑥𝑏𝛼𝑏
𝑥𝑎𝛼𝑎 𝑥𝑐𝛼𝑐𝐷𝑟

x𝑏
x𝑎 x𝑐

(3.28)



3

66 3. Symmetries

with

𝑥𝑏𝛼𝑏
𝑥𝑎𝛼𝑎 𝑥𝑐𝛼𝑐𝐷𝑟 = ∑

𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3
𝑥1𝛼1
𝑥𝑎𝛼𝑎 𝑥2𝛼2𝐴𝑟

𝐵𝑟

𝐶𝑟
𝑥𝑐𝛼𝑐

𝑥3𝛼3

𝑥𝑏𝛼𝑏

(3.29)

× (−1)𝜋1⏟⎵⏟⎵⏟
fermionic origin

(−1)2𝑗2+𝑗𝑎+𝑗𝑏+𝑗𝑐 {𝑗𝑎 𝑗𝑐 𝑗𝑏
𝑗3 𝑗1 𝑗2

}
⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

SU(2) origin

The summation over the contracted indices is explicitly given here to clarify
that the fermionic and spin prefactors are also included in this summation.
We notice that the 𝑚𝑖 indices are left out of the final summation; they were
used for the simplification of the symmetry tensor in Eq. (3.27).

Let us briefly recap how we have performed a tensor contraction for sym-
metry adapted tensors. First the fermionic sign can be calculated by swapping
and contracting the different states up to the desired result. The order of said
states is dictated by the arching arrows around the vertices in the symmetry
tensors. Secondly, the reduced tensors and symmetry tensors form a separate
network that can be contracted. The symmetry tensors can be simplified by
contracting over the 𝑚𝑖 indices and once the desired form is obtained, the re-
duced tensors can be contracted while taking into account the correct prefac-
tors that arise from deforming the symmetry tensors.

This example does not only serves an elucidating purpose. We hope the
reader also recognizes the clarity of a graphical representation opposed to the
long-winded stream of indices that would have been needed in the algebraic
equations, certainly sincewe avoided the explicit formof the symmetry tensors
as in Eq. (3.13).

3.2.2. The canonical form
As discussed in Section 2.2.1.2, it is not only possible but also advantageous
to define a canonical form for our wave function ansatz. In this canonical
form one tensor in the network is chosen as orthogonality center; the currently
optimized tensor is generally the most suitable candidate. Other tensors are
orthogonal with respect to contraction over all bonds but the one leading to
the orthogonality center. Calculating the overlap of the tensor network with
itself now simplifies to a complete contraction of the orthogonality center as
we have made the environment trivial.

In this section, a canonical form is proposed for the symmetry adapted
fermionic tensors. Although it is quite straightforward to define these orthog-
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onal tensors there is a small caveat concerning the fermionic character of the
tensors. Due to this, we will discuss all the different cases of orthogonality and
also the orthogonality center. It is also a good opportunity to further familiar-
ize us with the graphical notations.

Orthogonal for contracting over x1 and x2
Let us propose a reduced tensor and a symmetry tensor for A which is orthog-
onal to a contraction over index 1 and 2. Wewill also propose a reduced tensor
and a symmetry tensor for the adjoint A+, i.e. the corresponding tensor for
the bra wave function.

A = 𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2 x2
x3x1

(3.30)

A+ = (−1)𝑗1+𝑗2−𝑗3 ̄𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2

x1 x3
x2 (3.31)

Let us determine the conditions for orthogonality where ̄𝐴𝑟 is the complex con-
jugate of 𝐴𝑟:

𝒞(AA+) = (−1)𝑗1+𝑗2−𝑗3
𝐴𝑟

𝑥1𝛼1

𝑥3𝛼3

𝑥2𝛼2
̄𝐴𝑟
𝑥3′𝛼3′

x1

x3

x2

x3′

(3.32)

= [𝑗3]−2𝛿x3,x3′
𝐴𝑟

𝑥1𝛼1

𝑥3𝛼3

𝑥2𝛼2
̄𝐴𝑟
𝑥3′𝛼3′

x3 . (3.33)

It is clear that the reduced tensors need to fulfill

𝐴𝑟

𝑥1𝛼1

𝑥3𝛼3

𝑥2𝛼2
̄𝐴𝑟
𝑥3𝛼3′

= 𝛿𝛼3,𝛼3′ [𝑗3]
2 𝑥3𝛼3 . (3.34)

Pay close attention to the labels of the loose edges in the left hand side of the
equation. The label for the irreps𝑥3 are the same but the labels for the different
states 𝛼3 and 𝛼3′ are different. This adjusted orthogonality condition for the
reduced tensors is, together with the orthogonality property of the symmetry
tensors, enough to impose orthogonality of A; indeed, we obtain

𝒞(AA+) = 𝑥3𝛼3 x3 = ∑
x3𝛼3

|x3𝛼3⟩⟨x3𝛼3| . (3.35)
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You should also notice that the tensor A+ is given by the hermitian conju-
gate of A:

A+ = A† = ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝛿𝐼𝛿𝜋𝛿𝑁 (
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

) (−1)𝑗3−𝑚3

̄𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 |x3𝛼3⟩⟨x2𝛼2|⟨x1𝛼1|
(3.36)

= ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝛿𝐼𝛿𝜋𝛿𝑁 (
𝑗3 𝑗2 𝑗1
𝑚3 −𝑚2 −𝑚1

) (−1)𝑗3−𝑚3

̄𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 |x3𝛼3⟩⟨x2𝛼2|⟨x1𝛼1|
(3.37)

= ∑
x1𝛼1;x2𝛼2;x3𝛼3

𝛿𝐼𝛿𝜋𝛿𝑁 (
𝑗3 𝑗2 𝑗1
𝑚3 −𝑚2 −𝑚1

) (−1)𝑗1−𝑚1(−1)𝑗2−𝑚2

(−1)𝑗1+𝑗2−𝑗3 ̄𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 |x3𝛼3⟩⟨x2𝛼2|⟨x1𝛼1|
(3.38)

where we have made use of the properties of the Wigner 3𝑗-symbol with re-
spect to permutation of the columns and sign flip of the 𝑚𝑖 values. We also
used the fact that𝑚1 +𝑚2 −𝑚3 = 0.

There is a first difference between the current convention of absorbing [𝑗𝑖]
terms explicitly with the previously published convention of keeping track of
these terms; the condition for the orthogonality given in Eq. (3.34) differs up
to a scaling factor [𝑗3]2 with the one given in Ref. [105].

Orthogonal for contracting over x2 and x3
Let us again propose a reduced tensor and a symmetry tensor for A and A+,
but this time the full tensor is orthogonal with respect to a contraction over
index 2 and 3:

A = 𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2 x2
x3x1

(3.39)

A+ = (−1)𝜋2(−1)𝑗1+𝑗2−𝑗3 ̄𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2

x1 x3
x2 (3.40)

Here, we impose again that the reduced tensor is orthogonal up to multiplicity
and ̄𝐴𝑟 is its complex conjugate, i.e.

𝐴𝑟
𝑥1𝛼1

𝑥3𝛼3𝑥2𝛼2
̄𝐴𝑟

𝑥1𝛼1′

= 𝑥1𝛼1 [𝑗1]2 (3.41)



3.2. Building the wave function

3

69

When comparing Eq. (3.40) with Eq. (3.31) we notice the introduction of an
extra phase (−1)𝜋2 for the former adjoint; this is needed for imposing orthogo-
nality due to the fermionic nature of the tensors. The adjoint tensorA+ is now
equal to the hermitian conjugate of A up to the phase (−1)𝜋2 ; this does not
pose a problem as long the contraction over all adjoint tensors of the network
results in the expected bra wave function; I refer the reader to Section 3.2.3
for the proof. By first contracting over the indexes 𝑚2 and 𝑚3, and using the
orthogonality property of the symmetry tensors and the orthogonality of the
reduced tensors in Eq. (3.41) we obtain

𝒞(AA+) = (−1)𝜋2(−1)𝑗1+𝑗2−𝑗3
𝐴𝑟

𝑥1𝛼1

𝑥3𝛼3𝑥2𝛼2
̄𝐴𝑟

𝑥1′𝛼1′

x1

x3x2

x1′

|x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3||x3𝛼3⟩⟨x2𝛼2|⟨x1𝛼1|

(3.42)

= 𝑥1𝛼1 x1 |x1𝛼1⟩⟨x1𝛼1| (3.43)

= ∑
x1𝛼1

|x1𝛼1⟩⟨x1𝛼1| . (3.44)

We have written out the states explicitly as to show why the factor (−1)𝜋2 is
needed.

Orthogonal for contracting over x1 and x3
Let us also propose a form for the reduced and symmetry tensor when the A
is orthogonal with respect to contractions over index 1 and 3. Just as for the
previous cases, the reduced tensor is again suitably orthogonalized on its own.
The reduced tensor of the adjoint is again given by the hermitian conjugate
with an extra phase due to its fermionic character. The proposed forms are

A = 𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2 x2
x3x1

(3.45)

A+ = (−1)𝜋1(−1)𝑗1+𝑗2−𝑗3 ̄𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2

x1 x3
x2 (3.46)

By again using the orthogonality property of the symmetry tensors, we obtain
the desired result for the given propositions, i.e.

𝒞(AA+) = ∑
x2𝛼2

|x2𝛼2⟩⟨x2𝛼2| . (3.47)
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The orthogonality center
At this point, we only have to define the final building block for the canoni-
cal form, the orthogonality center. This special tensor is not in an orthogonal
form and dictates how the other tensors in the network will be orthogonal-
ized; every tensor is orthogonalized with respect to a full contraction except
over the edge leading to the orthogonality center in the network. Again, we
propose a reduced tensor and symmetry tensor for the orthogonality center
and its adjoint:

A = 𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2 x2
x3x1

(3.48)

A+ = (−1)𝜋3(−1)𝑗1+𝑗2−𝑗3 ̄𝐴𝑟
𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2

x1 x3
x2 (3.49)

An extra phase has to be introduced once again due to the fermionic nature of
the tensors. Evaluating the norm of this tensor network now boils down to a
complete contraction of the orthogonality center with its adjoint; the environ-
ment is trivial through orthogonalization. We obtain

𝒞(AA+) = (−1)𝜋3(−1)𝑗1+𝑗2−𝑗3
𝐴𝑟

𝑥1𝛼1 𝑥3𝛼3

𝑥2𝛼2
̄𝐴𝑟

x1 x3
x2

|x3𝛼3⟩⟨x2𝛼2|⟨x1𝛼1||x1𝛼1⟩|x2𝛼2⟩⟨x3𝛼3|

(3.50)

= ∑
𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3

||𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 ||
2 = ‖ ⃗𝐴‖2 = ⟨Ψ |Ψ⟩ , (3.51)

where ⃗𝐴 are the elements of the reduced tensor flattened into a vector. Bear
again in mind that reduced tensor elements that do not contribute to the full
tensor are assumed to be zero. Such tensor elements are elements of which
the indices 𝑥1, 𝑥2 and 𝑥3 do not respect the triangle inequality of the SU(2)-
symmetry or the addition rules for the abelian symmetries.

3.2.3. The complete ansatz
To construct the wave function, the tensors in the network should be con-
tracted. Let us give an example where a T3NS is formed by contracting four
branching tensors (white) and nine physical ones (gray); the network of irre-
ducible tensors decomposes into an equivalent network of reduced tensors and
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symmetry tensors, i.e.

=

x𝑝
x𝑝 x𝑝

x𝑝x𝑝

x𝑝

x𝑝

x𝑝
x𝑝

xvac

xvac

xvac

xvac

xvac

xlast

(3.52)

We can bring the given tensor network in its canonical form by orthogonaliz-
ing the reduced tensors through QR decompositions2 towards the dedicated
orthogonality center.

For clarity, all the physical bonds are labeled with x𝑝 in the symmetry ten-
sor network. Looking closer at the network, we note that the physical tensors
at the border of the network have one dangling uncontracted virtual bond; this
is needed since we impose that all physical tensors have two virtual bonds; it
allows us to work with symmetry-invariant tensors. Most of the extra edges
merely introduce the trivial vacuum state |xvac⟩; for one edge it corresponds
with an outgoing state |xlast⟩. Changing the allowed quantum numbers for
this state, lets us manage the quantum numbers of the targeted ground state.
This is equivalent with the singlet-embedding strategy introduced by Sharma
and Chan for spin-adapted DMRG [148]. Normally, this last edge will have a
reduced bond dimension of one; this does not have to be the case, for example
when targeting multiple states at once or a state that is not an eigenstate of the
used symmetries, see Chapter 4.

Completely contracting this wave function results in an approximation of
the needed exact wave function, i.e.

𝒞(T3NS) = |−⟩|−⟩ … |−⟩ ∑
𝑖𝑗𝑘𝑙…

𝐶𝑖𝑗𝑘𝑙…|𝑖𝑗𝑘𝑙 …⟩⟨xlast| (3.53)

= |−⟩|−⟩ … |−⟩⏟⎵⎵⏟⎵⎵⏟
vacuum states

|Ψ⟩⟨xlast| , (3.54)

where 𝐶𝑖𝑗𝑘𝑙… is the approximate FCI tensor; it is obtained by completely con-
tracting the reduced and symmetry tensors. As a next step, the bra wave func-
tion is built from the adjoint tensors as defined in Section 3.2.2. Now, when
taking the extra fermionic phases into account for the defined adjoints, we ob-

2See Section C.1 for SU(2)-adapted QR decomposition.
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tain

𝒞(T3NS+) = |xlast⟩ ∑
𝑖𝑗𝑘𝑙…

(−1)𝜋last𝐶∗𝑖𝑗𝑘𝑙…⟨𝑖𝑗𝑘𝑙 …|⟨−|⟨−| … ⟨−| (3.55)

= |xlast⟩⟨Ψ|⟨−|⟨−| … ⟨−|(−1)𝜋last (3.56)

where 𝜋last is the parity of the complete wave function |Ψ⟩ and |xlast⟩. This
results into

𝒞(T3NS ⋅ T3NS+) = ⟨Ψ |Ψ⟩ . (3.57)

When contracting the complete tensor network and when contracting its ad-
joint, we get the ket and the bra of the wave function with their CI coefficients
complex conjugates, as should be. The contraction of the adjoint gives rise to
an extra phase due to the fermionic nature. Without it, the complete contrac-
tion of the tensor network and its adjoint would result in the square of the
norm up to a phase.

The power of using symmetry adapted tensors is that the original network
of irreducible tensors factorizes into two networks with the same shape. One
network consists of reduced tensors; it covers the complete dependency of the
labels 𝛼𝑖 and is also dependent of the labeling of irreps. The other network is
built from symmetry tensors; the dependency of thewave function on the rows
of irreps (𝑚) is completely captured by this network and it is independent of
𝛼𝑖.

3.3. Building the chemical Hamiltonian
As a next step, let us discuss how to write the Hamiltonian of our system into
a suitable form. The non-relativistic quantum chemical Hamiltonian is given
by

𝐻 = 𝐸0 +∑
𝑖𝑗
𝑇𝑖𝑗∑

𝜎
𝑐†𝑖𝜎𝑐𝑗𝜎 +

1
2 ∑𝑖𝑗𝑘𝑙

𝑉𝑖𝑗𝑘𝑙∑
𝜎𝜏
𝑐†𝑖𝜎𝑐†𝑗𝜏𝑐𝑙𝜏𝑐𝑘𝜎 , (3.58)

where 𝑖, 𝑗, 𝑘 and 𝑙 are indices for the different spatial orbitals and 𝜎, 𝜏 represent
the spin degree of freedom (↑ or ↓). For the four-point interactions this
separates into the following cases:

𝑖 = 𝑗, 𝑘 = 𝑙 ∶ 𝑉𝑖𝑖𝑘𝑘𝑐†𝑖↑𝑐†𝑖↓𝑐𝑘↓𝑐𝑘↑ (3.59)
𝑖 = 𝑗, 𝑘 < 𝑙 ∶ 𝑉𝑖𝑖𝑘𝑙(𝑐†𝑖↑𝑐†𝑖↓𝑐𝑙↓𝑐𝑘↑ + 𝑐†𝑖↑𝑐†𝑖↓𝑐𝑘↓𝑐𝑙↑), (3.60)
𝑖 < 𝑗, 𝑘 = 𝑙 ∶ 𝑉𝑖𝑗𝑘𝑘(𝑐†𝑖↑𝑐†𝑗↓𝑐𝑘↓𝑐𝑘↑ + 𝑐†𝑗↑𝑐†𝑖↓𝑐𝑘↓𝑐𝑘↑), (3.61)
𝑖 < 𝑗, 𝑘 < 𝑙 ∶ 𝑉𝑖𝑗𝑘𝑙(𝑐†𝑖↑𝑐†𝑗↑𝑐𝑙↑𝑐𝑘↑ + 𝑐†𝑖↑𝑐†𝑗↓𝑐𝑙↓𝑐𝑘↑ + 𝑐†𝑖↓𝑐†𝑗↑𝑐𝑙↑𝑐𝑘↓ + 𝑐†𝑖↓𝑐†𝑗↓𝑐𝑙↓𝑐𝑘↓)

+ (𝑘 ↔ 𝑙) , (3.62)
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where we only used 𝑉𝑖𝑗𝑘𝑙 = 𝑉𝑗𝑖𝑙𝑘, which is due to the electrons being identical
particles. The complete Hamiltonian can be constructed by summing these
terms for all possible (𝑖, 𝑗, 𝑘, 𝑙)-combinations.

The creation and annihilation operators 𝑐†𝑘𝜎 and 𝑐𝑘𝜎 do not yet transform
according to the rows of the SU(2)-irreps. As is well known, an additional
phase has to be introduced [176]. One possible transformation is given by

̃𝑐†𝑘𝜎 = 𝑐
†
𝑘𝜎 (3.63)

̃𝑐𝑘𝜎 = (−1)
1
2+𝜎𝑐𝑘−𝜎. (3.64)

In this way, we can again split off the Clebsch-Gordan coefficients into a sym-
metry tensor. As an example, this results for an annihilation operator on or-
bital 𝑘 in

{𝜎 =
−1/2 ∶ 𝑐𝑘↑

𝜎 = 1/2 ∶ 𝑐𝑘↓
} =

𝑥𝑘′

𝑥𝑘
𝑥𝑘𝑘′

̃𝑐𝑘
x𝑘′

x𝑘
x𝑘𝑘′ . (3.65)

Here, x𝑘 and x𝑘′ are the local physical states for orbital 𝑘. The third edge
x𝑘𝑘′ = (𝜋 = 1, 𝐼 = 𝐼𝑘, 𝑛 = −1, 𝑗 = 1/2, 𝑗𝑧 = 𝜎) serves the purpose of correctly
coupling different operators; its usage will be clarified later on. The bonds do
not need an extra 𝛼 label; the local physical states are already uniquely labeled
by x𝑘. The creation operators and other one-orbital operators have completely
equivalent decompositions into a reduced tensor and a symmetry tensor. The
elements of the reduced tensors can be easily calculated by hand.

Having obtained a symmetry adapted description of the creation and anni-
hilation operators, let us try towrite the terms inEq. (3.62) in an SU(2)-adapted
way, i.e.

𝑥𝑗′

𝑥𝑗
𝑥𝑗𝑗′

𝑥𝑖′

𝑥𝑖

𝑥𝑖𝑖′
𝑥𝑖𝑗

𝑥𝑙′

𝑥𝑙𝑥𝑙𝑙′
𝑥𝑘′

𝑥𝑘
𝑥𝑘𝑘′

𝑥𝑘𝑙
̃𝑐†𝑗

̃𝑐†𝑖

𝐹𝐽
̃𝑐𝑘

̃𝑐𝑙
[𝐽][𝐽]

x𝑗′
x𝑗

(0, 𝐼0, 0, 0, 0)

x𝑗𝑗′

x𝑖′
x𝑖

x𝑖𝑖′
x𝑖𝑗

x𝑙′
x𝑙

x𝑙𝑙′
x𝑘′

x𝑘
x𝑘𝑘′

x𝑘𝑙

(3.66)
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where

x𝑖𝑖′ = (1, 𝐼𝑖, 1, 1/2, 𝜎𝑖) x𝑗𝑗′ = (1, 𝐼𝑗, 1, 1/2, 𝜎𝑗)
x𝑘𝑘′ = (1, 𝐼𝑘, −1, 1/2, 𝜎𝑘) x𝑙𝑙′ = (1, 𝐼𝑙, −1, 1/2, 𝜎𝑙)
x𝑖𝑗 = (0, 𝐼𝑖 ⊗ 𝐼𝑗, 2, 𝐽, −𝑀) x𝑘𝑙 = (0, 𝐼𝑘 ⊗ 𝐼𝑙, −2, 𝐽,𝑀) .

Here we have first fused the creation and annihilation operators separately
together; thereafter, the two groups are fused to the trivial irrep as the term in
Eq. (3.62) transforms trivially under said symmetries.

Fusing the creation operators and the annihilation operators results into

(𝑐†𝑖 𝑐†𝑗 )𝐽𝑀 =

𝑥𝑗′

𝑥𝑗
𝑥𝑗𝑗′

𝑥𝑖′

𝑥𝑖

𝑥𝑖𝑖′
𝑥𝑖𝑗

̃𝑐†𝑗

̃𝑐†𝑖

[𝐽]

x𝑗′
x𝑗 x𝑗𝑗′

x𝑖′
x𝑖

x𝑖𝑖′
x𝑖𝑗 (3.67)

(𝑐𝑘𝑐𝑙)𝐽𝑀 =

𝑥𝑙′

𝑥𝑙𝑥𝑙𝑙′
𝑥𝑘′

𝑥𝑘
𝑥𝑘𝑘′

𝑥𝑘𝑙
̃𝑐𝑘

̃𝑐𝑙
[𝐽]

x𝑙′
x𝑙

x𝑙𝑙′
x𝑘′

x𝑘
x𝑘𝑘′

x𝑘𝑙 (3.68)

where 𝐽 can be 0 or 1; two fermionic spin-half operators can fuse together to a
singlet or a triplet. One can work out that these fused operators are given by

(𝑐†𝑖 𝑐†𝑗 )0𝑀 = { 1
√2

(𝑐†𝑖↑𝑐†𝑗↓ − 𝑐†𝑖↓𝑐†𝑗↑)} (3.69)

(𝑐†𝑖 𝑐†𝑗 )1𝑀 = {−𝑐†𝑖↑𝑐†𝑗↑, −
1
√2

(𝑐†𝑖↑𝑐†𝑗↓ + 𝑐†𝑖↓𝑐†𝑗↑) , −𝑐†𝑖↓𝑐†𝑗↓} (3.70)

(𝑐𝑘𝑐𝑙)0𝑀 = {− 1
√2

(𝑐𝑘↓𝑐𝑙↑ − 𝑐𝑘↑𝑐𝑙↓)} (3.71)

(𝑐𝑘𝑐𝑙)1𝑀 = {−𝑐𝑘↓𝑐𝑙↓,
1
√2

(𝑐𝑘↓𝑐𝑙↑ + 𝑐𝑘↑𝑐𝑙↓) , −𝑐𝑘↑𝑐𝑙↑} , (3.72)

Wenow fuse these creation and annihilation operators as depicted inEq. (3.66);
the eventually goal is to obtain Eq. (3.62) and determining the value of the re-
duced tensor 𝐹𝐽 . Fusing the singlet operators results into

− 12 (𝑐
†
𝑖↑𝑐†𝑗↓𝑐𝑘↓𝑐𝑙↑ + 𝑐†𝑖↑𝑐†𝑗↓𝑐𝑙↓𝑐𝑘↑ + 𝑐†𝑖↓𝑐†𝑗↑𝑐𝑙↑𝑐𝑘↓ + 𝑐†𝑖↓𝑐†𝑗↑𝑐𝑘↑𝑐𝑙↓) , (3.73)
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while for the triplet operators we obtain

− 1
√3
𝑐†𝑖↑𝑐†𝑗↑𝑐𝑙↑𝑐𝑘↑ −

1
√3
𝑐†𝑖↓𝑐†𝑗↓𝑐𝑙↓𝑐𝑘↓

+ 1
2√3

(𝑐†𝑖↑𝑐†𝑗↓𝑐𝑘↓𝑐𝑙↑ − 𝑐†𝑖↑𝑐†𝑗↓𝑐𝑙↓𝑐𝑘↑ − 𝑐†𝑖↓𝑐†𝑗↑𝑐𝑙↑𝑐𝑘↓ + 𝑐†𝑖↓𝑐†𝑗↑𝑐𝑘↑𝑐𝑙↓) .
(3.74)

By choosing

𝐹𝐽 = −[𝐽] (𝑉𝑖𝑗𝑘𝑙 + (−1)𝐽𝑉𝑖𝑗𝑙𝑘) (3.75)

the contraction results in Eq. (3.62).
While we have obtained a SU(2)-invariant formulation of theHamiltonian,

this is not yet sufficient for evaluating the energy efficiently; the underlying
tensor network structure of the Hamiltonian term in Eq. (3.66) should also re-
flect the structure of the T3NS wave function. Obtaining an arbitrary T3NS
structure out of this is possible through manipulation of the network. First,
the order of the operators (e.g. switching 𝑐†𝑖 and 𝑐𝑘) can be changed by using
the reflection and 9j-swap property of the Wigner symbols and taking an ap-
propriate fermionic sign into account. For example, we can swap ̃𝑐†𝑗 and ̃𝑐𝑘 as
follows:

𝑥𝑘′

𝑥𝑘
𝑥𝑘𝑘′

𝑥𝑖′

𝑥𝑖

𝑥𝑖𝑖′
𝑥𝑖𝑘

𝑥𝑙′

𝑥𝑙𝑥𝑙𝑙′
𝑥𝑗′

𝑥𝑗
𝑥𝑘𝑘′

𝑥𝑗𝑙
̃𝑐𝑘

̃𝑐†𝑖

̃𝐹𝐽
̃𝑐†𝑗

̃𝑐𝑙
[ ̃𝐽][ ̃𝐽]

x𝑘′
x𝑘

(0, 𝐼0, 0, 0, 0)

x𝑘𝑘′

x𝑖′
x𝑖

x𝑖𝑖′
x𝑖𝑘

x𝑙′
x𝑙

x𝑙𝑙′
x𝑗′

x𝑗
x𝑗𝑗′

x𝑗𝑙

(3.76)

Note that the structure is still the same but we have swapped the order of 𝑘 and
𝑗. For this to be the same value as Eq. (3.66) we have to change 𝐹𝐽 to ̃𝐹 ̃𝐽 . Let
us calculate this new value ̃𝐹 ̃𝐽 ; due to the 9j-swap property and the inclusion



3

76 3. Symmetries

of the fermionic phase we have

𝑥𝑘′

𝑥𝑘
𝑥𝑘𝑘′

𝑥𝑖′

𝑥𝑖

𝑥𝑖𝑖′
𝑥𝑖𝑘

𝑥𝑙′

𝑥𝑙𝑥𝑙𝑙′
𝑥𝑗′

𝑥𝑗
𝑥𝑘𝑘′

𝑥𝑗𝑙
̃𝑐𝑘

̃𝑐†𝑖

̃𝐹𝐽
̃𝑐†𝑗

̃𝑐𝑙
[ ̃𝐽][ ̃𝐽] = ∑

𝐽
−[ ̃𝐽]4 {

𝑖 𝑗 𝐽
𝑘 𝑙 𝐽
̃𝐽 ̃𝐽 0

}

𝑥𝑗′

𝑥𝑗
𝑥𝑗𝑗′

𝑥𝑖′

𝑥𝑖

𝑥𝑖𝑖′
𝑥𝑖𝑗

𝑥𝑙′

𝑥𝑙𝑥𝑙𝑙′
𝑥𝑘′

𝑥𝑘
𝑥𝑘𝑘′

𝑥𝑘𝑙
̃𝑐†𝑗

̃𝑐†𝑖

𝐹𝐽
̃𝑐𝑘

̃𝑐𝑙
[𝐽][𝐽]

(3.77)

where 𝐽 is the angular momentum of states x𝑖𝑗 and x𝑘𝑙 and ̃𝐽 is the angular
momentum of states x𝑖𝑘 and x𝑗𝑙. With this, we can derive ̃𝐹 ̃𝐽 :

[ ̃𝐽]2 ̃𝐹 ̃𝐽 = ∑
𝐽=0,1

−[𝐽]2[ ̃𝐽]4 {
1/2 1/2 𝐽
1/2 1/2 𝐽
̃𝐽 ̃𝐽 0

} 𝐹𝐽 (3.78)

̃𝐹 ̃𝐽 = ∑
𝐽
−[𝐽][ ̃𝐽](−1)1+𝐽+𝐽′ {

1/2 1/2 𝐽
1/2 1/2 𝐽′} 𝐹𝐽 (3.79)

This finally gives us

̃𝐹 ̃𝐽 = [ ̃𝐽](𝛿 ̃𝐽,02𝑉𝑖𝑗𝑘𝑙 + (−1)𝛿 ̃𝐽,0𝑉𝑖𝑗𝑙𝑘) , (3.80)

where we have used the following property of the 9𝑗-symbol [62]

{
𝑗1 𝑗2 𝑗
𝑗3 𝑗4 𝑗
𝑗′ 𝑗′ 0

} = (−1)𝑗2+𝑗3+𝑗+𝑗′

[𝑗][𝑗′] {𝑗1 𝑗2 𝑗
𝑗4 𝑗3 𝑗′

} . (3.81)

One can also insert identities3 into the network of Eq. (3.66). These trans-
formations suffice to change the network to an arbitrary T3NS network. A

3See Section C.2
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possible example of this could be

𝐹𝐽 ×

̃𝑐𝑘

̃𝑐𝑙

̃𝑐†𝑖

̃𝑐†𝑗

𝟙

𝟙

𝟙

𝟙

𝟙 𝟙
𝟙𝟙

[𝐽]

[𝐽]

𝟙
𝟙𝟙
𝟙

𝟙 𝟙
𝟙

𝟙
, (3.82)

here we have deformed the networks in Eq. (3.66) to mimic the networks of
the T3NS wave function given in Eq. (3.52). The blue tensors are the needed
operators working in on both the bra and ket T3NS. The tensors denoted with
𝟙 are identities. The exact value of the their reduced tensors depend on the
coupling-order; for more info see Section C.2.

The takeaway is that both the wave function ansatz and the terms of the
Hamiltonian can be represented by the same tensor network shape and both
are factorized into a reduced tensor network and a symmetry tensor network.

3.4. Optimizing the wave function
In Section 3.2.2 we obtained the tools to build an SU(2)-symmetric wave func-
tion in canonical form. In Section 3.3 we learned how the chemical Hamil-
tonian can be written in a SU(2)-symmetric form and can be transformed to
mimic the T3NS geometry; this allows us to efficiently evaluate ⟨Ψ | �̂� | Ψ⟩. As
discussed in Section 2.5.1, the optimization of a T3NS occurs in a similar way
as for DMRG, i.e. we sweep through the network and optimize only a few ten-
sors at a time. During this local optimization of the network, the effect of the
Hamiltonian on the other tensors (the environment) can be efficiently cap-
tured by renormalized operators [123, 151, 176, 204].

In the following sections, the optimization of the SU(2)-adapted T3NS will
be discussed by considering a T3NS as given in Fig. 3.1. Both wave function
and Hamiltonian have been molded into a SU(2)-friendly form and have the
same network geometry (as discussed in previous sections). As to not over-
whelm the reader with too much diagrams, we will only highlight a few of the
possible needed contractions in the main body of this dissertation. The exe-
cution of the effective Hamiltonian on a branching and neighboring physical



3

78 3. Symmetries

Env. 3

Env. 1

Env. 2

A B

Figure 3.1: Graphical depiction of a tensor network with nine physical tensors (gray) and three
branching tensors (white). An exemplary current state for the optimization is indicated. The
tensors A and B are optimized; the three relevant environments for these tensors are also indi-
cated. We also indicate the ‘flow’ imposed by the symmetry tensors. The physical edges of the
physical tensors are left out.

site (a T3NS-like optimization) and appending a site-operator to a preexisting
renormalized operator are shown in the parts to come. For some other types
of updates of the renormalized operators and for the execution of the effective
Hamiltonian on two physical tensors (a DMRG-like optimization), we redirect
the reader to Section C.3 in Appendix C; although we imagine these extra dia-
grams will only give extra insight to people aiming for their own implementa-
tion.

Without further ado, let us discuss the two-site optimization of the T3NS
shown in Fig. 3.1.

3.4.1. The two-site tensor
When performing the given two-site optimization, a good initial guess for the
optimal two-site tensor is given by the contraction of the two current one-site
tensors; i.e. in Fig. 3.1, the branching tensorA and the physical tensorB should
be contracted. We work with a suitably canonicalized tensor network; either
A or B is the orthogonality center and the other is appropriately orthogonal.
Contracting the two tensors results in

M = 𝒞(AB) =
𝑥1𝛼1

𝑥2𝛼2

𝑥12𝛼12 𝑥3𝛼3

𝑥𝑝
𝐴𝑟 𝐵𝑟

x1

x2
x12 x3

x𝑝
(3.83)

=
𝑥1𝛼1

𝑥2𝛼2
𝑥3𝛼3

𝑥𝑝
𝑀𝑟

𝑥12
x1

x2
x12 x3

x𝑝
. (3.84)
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While we could simplify the symmetry tensor further in the example in Sec-
tion 3.2.1, this is not the case in this example. We also notice that the tensor is
not only dependent of the indices of the loose edges but also 𝑥12. We will call
𝑥12 an internal index or edge of the tensorM. This internal edge is needed to
label how the two outer edges x1 and x2 couple; due to the non-abelian SU(2)
symmetry, the coupling can have several result for a given x1 and x2.

We have conveniently labeled the loose edges of the two-site tensor in
Eq. (3.84). The local physical edge is given by x𝑝 and edges 1, 2 and 3 cou-
ple to the respective environments in Fig. 3.1. Let us further the discussion by
investigating the renormalized operators for said environments.

3.4.2. The SU(2)-adapted renormalized operators
Renormalized operators are needed for efficiently treating the effect of the
Hamiltonian on the environment. For the T3NS we discern two types of renor-
malized operators with each two flavors.

The environment of a renormalized operator can be either ‘upstream’ or
‘downstream’ to the current optimized tensors. In Fig. 3.1 for example, the
renormalized operators of environment 1 and 2 are upstream while the one
for environment 3 is downstream. These are the two possible flavors of the
renormalized operators.

For each environment, we could contract the corresponding parts of the
Hamiltonian as given in Eq. (3.82) and the bra and ket wave function as given
in Eq. (3.52). In Fig. 3.1 this would mean we precontract the evaluation of
⟨Ψ | �̂� | Ψ⟩ up to the black curve for each environment. Let us call these renor-
malized operators minimal. For environment 3, we could decide to also ap-
pend an operator acting upon the physical basis of tensor B. Let us call this
second type extended.

For the two types and flavors of the renormalized operators we propose a
symmetry tensor structure and reduced tensor as given in Table 3.1. Just as in
Section 3.4.1, we notice the need of internal edges for the extended renormal-
ized operators; two internal edges are needed to uniquely label the couplings.
Only the states labeled by x1𝛼1, x1′𝛼1′ , x3𝛼3 and x3′𝛼3′ need the extra 𝛼 label;
these are the virtual states of the T3NS. The others are either local physical
states x𝑝 and x𝑝′ which do not need the extra label or auxiliary virtual ‘MPO’-
like states x𝐻 . These govern the correct coupling of the renormalized operators
to form a Hamiltonian which transforms trivially under the symmetries.

The extended renormalized operator is not strictly needed for the algo-
rithm; one could refrain from appending the site-operator to the renormalized
operator; instead the action of the effective Hamiltonian upon the two-site ten-
sorM could be calculated by first contracting the site operatorwithM followed
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upstream downstream

minimal
𝑥1𝛼1

𝑥1′𝛼1′ 𝑥𝐻𝑅𝑟
x1
x1′ x𝐻

𝑥3𝛼3

𝑥3′𝛼3′𝑥𝐻 𝑅𝑟
x3
x3′x𝐻

extended

𝑥1𝛼1

𝑥1′𝛼1′

𝑥𝐻

𝑥𝑝′

𝑥𝑝𝑅𝑟 𝑥
1𝑝
𝑥 1

′ 𝑝
′

x1𝛼1

x1′𝛼1′

x𝐻

x𝑝′

x𝑝
x1𝑝

x1′𝑝′

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑝′

𝑥𝑝

𝑅
𝑟𝑥
3𝑝 𝑥

3 ′𝑝 ′

x3

x3′

x𝐻
x𝑝′

x𝑝
x3𝑝
x3′𝑝′

Table 3.1: Proposed forms of the symmetry tensors and reduced tensors of the different types
and flavors of the renormalized operators.

by a contraction of the minimal renormalized operator. We have opted how-
ever to explicitly append the site-operators to the renormalized operators as
it allows a straightforward extension of the algorithm to three- and four-site
optimizations. No new deformations of the symmetry tensors have to be im-
plemented for the action of the effective Hamiltonian. As an extra advantage,
fewer high Wigner symbols are needed during the iterative action of the ef-
fective Hamiltonian; for a DMRG-like optimization there is even a complete
absence of Wigner symbols (see Section C.3.3). In short, we move some of the
deformations of the tensors that normally happen in the iterative execution of
the effective Hamiltonian to a preprocessing step.

Appending a site operator to the renormalized operator
In Eq. (3.82) an example of a Hamiltonian term deformed to mimic the T3NS
wave function was shown. Now, assume we already have the minimal renor-
malized operator R for environment 3 stored in memory and an appropriate
update of this renormalized operator is for example to append site-operator 𝑐𝑝;
this is an operator acting upon the physical basis of B, as given in Eq. (3.82).
After appending this site-operator, we can deform the renormalized operator
to the proposed extended form in Table 3.1, i.e.

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻 𝑥𝐻′

𝑥𝑝𝑝′
𝑥𝑝′ 𝑥𝑝

𝑅𝑟𝟙
̃𝑐𝑝

x3

x3′
x𝐻 x𝐻′

x𝑝𝑝′
x𝑝′ x𝑝

=

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑝′

𝑥𝑝

𝑅
𝑟𝑥
3𝑝 𝑥

3 ′𝑝 ′

x3

x3′

x𝐻
x𝑝′

x𝑝
x3𝑝
x3′𝑝′

(3.85)
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We can transform the symmetry tensor as follows:

x3

x3′
x𝐻 x𝐻′

x𝑝𝑝′
x𝑝′ x𝑝

= x3

x3′

x𝐻

x𝐻′x𝑝𝑝′
x𝑝′
x𝑝

(3.86)

by using the reversal property we obtain

= (−1)2𝑗𝐻′ x3

x3′

x𝐻

x𝐻′x𝑝𝑝′
x𝑝′
x𝑝

(3.87)

followed by the 9j-swap property

= (−1)2𝑗𝐻′ [𝑗1𝑝]2[𝑗1′𝑝′]2 {
𝑗𝑝 𝑗𝑝′ 𝑗𝑝𝑝′
𝑗3 𝑗3′ 𝑗𝐻′

𝑗3𝑝 𝑗3′𝑝′ 𝑗𝐻
}

x3

x3′

x𝐻

x3𝑝x3′𝑝′
x𝑝′

x𝑝
(3.88)

= (−1)2𝑗𝐻′ [𝑗1𝑝]2[𝑗1′𝑝′]2 {
𝑗𝑝 𝑗𝑝′ 𝑗𝑝𝑝′
𝑗3 𝑗3′ 𝑗𝐻′

𝑗3𝑝 𝑗3′𝑝′ 𝑗𝐻
}

x3

x3′

x𝐻
x𝑝′

x𝑝
x3𝑝
x3′𝑝′

(3.89)

and by using reflection and reversal we finally obtain

= (−1)2𝑗𝐻′+𝑗3+𝑗𝑝+𝑗3′𝑝′+2𝑗3′𝑝′ [𝑗1𝑝]2[𝑗1′𝑝′]2

{
𝑗𝑝 𝑗𝑝′ 𝑗𝑝𝑝′
𝑗3 𝑗3′ 𝑗𝐻′

𝑗3𝑝 𝑗3′𝑝′ 𝑗𝐻
}

x3

x3′

x𝐻
x𝑝′

x𝑝
x3𝑝
x3′𝑝′

(3.90)

The fermionic phase is easily determined by writing out the states explicitly in
the order imposed by the arching arrows around the vertices:

⟨x𝑝|⟨x𝑝𝑝′ ||x𝑝′⟩|x𝐻⟩|x𝑝𝑝′⟩⟨x𝐻′ ||x3⟩|x𝐻′⟩⟨x3′ | =
(−1)𝜋𝑝𝑝′𝜋𝐻+𝜋𝑝′𝜋𝐻′ |x3⟩⟨x𝑝|⟨x3𝑝||x3𝑝⟩|x𝐻⟩⟨x3′𝑝′ ||x3′𝑝′⟩|x𝑝′⟩⟨x3′ |

(3.91)
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To be concise, we have dropped the labels 𝛼𝑖. The results for the SU(2)-sym-
metry and the fermionic sign result together in

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑝′

𝑥𝑝

𝑅
𝑟𝑥
3𝑝 𝑥

3 ′𝑝 ′

= ∑
𝑗𝑝𝑝′𝑗𝐻′

(−1)𝜋𝑝𝑝′𝜋𝐻+𝜋𝑝′𝜋𝐻′ (−1)2𝑗𝐻′+𝑗3+𝑗𝑝+𝑗3′𝑝′+2𝑗3′𝑝′

[𝑗1𝑝]2[𝑗1′𝑝′]2 {
𝑗𝑝 𝑗𝑝′ 𝑗𝑝𝑝′
𝑗3 𝑗3′ 𝑗𝐻′

𝑗3𝑝 𝑗3′𝑝′ 𝑗𝐻
}

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻 𝑥𝐻′

𝑥𝑝𝑝′
𝑥𝑝′ 𝑥𝑝

𝑅𝑟𝟙
̃𝑐𝑝

(3.92)

3.4.3. The effective Hamiltonian: the T3NS case
Let us move on to the optimization of the two-site optimization of M given
in Eq. (3.84) where a branching and a physical tensor were contracted. One
of the original three-legged tensors was the orthogonality center of the wave
function while the other one was appropriately orthogonalized; as such, the
environment of the two-site tensor is trivial. The multi-site tensor has three
loose virtual legs; three sets of renormalized operators are needed for the for-
mation of the effective Hamiltonian, i.e.

H = ∑
{RST}

𝒞(RSMT) . (3.93)

In the above equation we need to sum over all different valid combinations of
renormalized operators, i.e. {RST} where R and S are minimal renormalized
operators and T is an extended renormalized operator. Let’s investigate the
action of one such set of renormalized operators on the multi-site tensorM:

Hpart = 𝒞(RSMT) (3.94)

=

𝑥2′𝛼2′
𝑆𝑟

𝑥3′𝛼3′𝑥𝑝′

𝑇
𝑟𝑥3𝑝 𝑥

3 ′𝑝 ′

𝑥2𝛼2
𝑥3𝛼3

𝑥𝑝
𝑀𝑟

𝑥12𝑥1𝛼1

𝑥1′𝛼1′
𝑅𝑟

𝐶 𝑥𝑇
𝑥𝑅

𝑥𝑆
x2′

x3′x𝑝′

x2
x𝑝

x1

x1′
x𝑇

x𝑅

x𝑆

x3
x3𝑝

x3′𝑝′

x12

(3.95)

When actingwith the effectiveHamiltonianuponM it is the goal to deform
the symmetry tensors in such way that the resulting tensorHpart has the same
symmetry tensor structure as the original one. The contraction ends in the
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same convention as it begins; it allows a straightforward comparison of the
reduced tensors. For deforming the symmetry tensors we can do

x2′
x3′x𝑝′

x2
x𝑝

x1

x1′
x𝑇

x𝑅

x𝑆

x3
x3𝑝

x3′𝑝′

x12

by using the orthogonality and reversal property

= (−1)−𝑗𝑝+𝑗3−𝑗12[𝑗12]−2𝛿𝑥12𝑥3𝑝

x2′
x3′x𝑝′

x2
x1

x1′
x𝑇

x𝑅

x𝑆 x3′𝑝′

x12

by using the reversal property twice

= (−1)−𝑗𝑝+𝑗3+𝑗12+2𝑗𝑇 [𝑗12]−2𝛿𝑥12𝑥3𝑝

x2′
x3′x𝑝′

x2
x1

x1′
x𝑇

x𝑅

x𝑆 x3′𝑝′

x12

And by finally using the 9j-merge property we obtain

= (−1)−𝑗𝑝+𝑗3+𝑗12+2𝑗𝑇 [𝑗12]−2𝛿𝑥12𝑥3𝑝 {
𝑗𝑅 𝑗𝑆 𝑗𝑇
𝑗1 𝑗2 𝑗12
𝑗1′ 𝑗2′ 𝑗3′𝑝′

}
x1′

x2′

x3′𝑝′ x3′

x𝑝′
.

The fermionic sign can be again calculated as in the previous section bywriting
out the states explicitly. Combining the fermionic sign and the SU(2)-prefactor
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we have:

Hpart =
𝑥1′𝛼1′

𝑥2′𝛼2′

𝑥3′𝛼3′

𝑥𝑝′
𝐻𝑟
𝑥3′𝑝′

x1′

x2′

x3′𝑝′ x3′

x𝑝′
(3.96)

= (−1)𝜋𝑝+𝜋𝑅𝜋2(−1)−𝑗𝑝+𝑗3+𝑗12+2𝑗𝑇 [𝑗12]−2𝛿𝑥12𝑥3𝑝 {
𝑗𝑅 𝑗𝑆 𝑗𝑇
𝑗1 𝑗2 𝑗12
𝑗1′ 𝑗2′ 𝑗3′𝑝′

}

𝑥2′𝛼2′
𝑆𝑟

𝑥3′𝛼3′𝑥𝑝′

𝑇
𝑟𝑥3𝑝 𝑥

3 ′𝑝 ′

𝑥2𝛼2
𝑥3𝛼3

𝑥𝑝
𝑀𝑟

𝑥12𝑥1𝛼1

𝑥1′𝛼1′
𝑅𝑟

𝐶 𝑥𝑇
𝑥𝑅

𝑥𝑆

x1′

x2′

x3′𝑝′ x3′

x𝑝′
(3.97)

The different contributions of the renormalized operators in Eq. (3.93) can be
straightforwardly summed.

3.4.4. The eigenvalue problem
Although already discussed in the previous chapter, let us briefly revisit the
eigenvalue problem for the optimization of a two-site tensor as there are some
intricacies involved when using SU(2)-adapted tensors.

In Section 3.2.2 we obtained the tools to build an SU(2)-symmetric wave
function in canonical form. In Section 3.3we learned how the chemicalHamil-
tonian can be written in a SU(2)-symmetric form and can be transformed to
mimic the T3NS geometry; it allows an efficient evaluation of ⟨Ψ |𝐻 |Ψ⟩which
in turn provides an efficient minimization of the given Lagrangian

ℒ = ⟨Ψ |𝐻 |Ψ⟩ − 𝜆⟨Ψ |Ψ⟩ . (3.98)

Let us revisit the optimization of the two-site tensorM given in Eq. (3.84).
When evaluating ⟨Ψ |Ψ⟩, we obtain

⟨Ψ |Ψ⟩ = 𝒞(MM+) (3.99)

= (−1)𝜋3(−1)𝑗1+𝑗2+𝑗𝑝−𝑗3
𝑥1𝛼1

𝑥2𝛼2
𝑥3𝛼3

𝑥𝑝
𝑀𝑟

𝑥12

�̄�𝑟
𝑥1′2′

x1 x12

x3x𝑝x2

x1′2′

(3.100)

= ∑
𝑥1𝛼1;𝑥2𝛼2;𝑥12;𝑥𝑝;𝑥3𝛼3

[𝑗12]−2||𝑀𝑟
𝑥1𝛼1;𝑥2𝛼2;𝑥12;𝑥𝑝;𝑥3𝛼3

||
2

(3.101)
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asM is the current orthogonality center of the wave function. Note the extra
phase (−1)𝜋3(−1)𝑗1+𝑗2+𝑗𝑝−𝑗3 needed for the adjointM+. Just as the one-site
orthogonality center in Eq. (3.49) this sets the adjointM+ equal to the hermi-
tian conjugate ofM up to an extra (−1)𝜋3 phase due to the fermionic nature.
While no rescalingwas neededwhen calculating the norm of a one-site orthog-
onality center in Eq. (3.51), for a two-site tensor we need to rescale to take into
account the internal edge.

For the evaluation of ⟨Ψ |𝐻 |Ψ⟩, we need to contract the tensor M with
different sets of three renormalized operators as discussed in the previous sec-
tion; H is the result of the action of this effective Hamiltonian on M. The
result is given in Eq. (3.97). Note that the structures of the symmetry tensor of
M in Eq. (3.84) andH are the same; it allows a one-to-one comparison of the
reduced elements and with minimal effort one can show
⟨Ψ |𝐻 |Ψ⟩ = 𝒞(HM+) = ∑

𝑥1𝛼1;𝑥2𝛼2;𝑥12;𝑥𝑝;𝑥3𝛼3
[𝑗12]−2�̄�𝑟

𝑥1𝛼1;𝑥2𝛼2;𝑥12;𝑥𝑝;𝑥3𝛼3𝐻𝑟
𝑥1𝛼1;𝑥2𝛼2;𝑥12;𝑥𝑝;𝑥3𝛼3

(3.102)
The results in Eq. (3.101) and Eq. (3.102) can be used to minimize the La-
grangian with respect to the tensorM; it reduces the problem to solving an or-
dinary eigenvalue problem. However, one should take into account the scale-
factor [𝑗12]−1 before feeding it to a sparse eigensolver; i.e. for any two-site
tensor A

𝐴𝑟 to solver−−−−−→ [𝑗12]−1𝐴𝑟 (3.103)

𝐴𝑟 from solver−−−−−−−→ [𝑗12]𝐴𝑟 (3.104)
where we need to scale either up or down for results we extract from or feed to
the eigensolver. This is inherent to absorbing the [𝑗𝑖] as discussed on page 61.
When explicitly keeping track of these factors, a rescaling of the tensors is not
needed. One cannot completely forget about the [𝑗𝑖] terms either way.

3.4.5. Singular value decomposition with SU(2)-symmetry
In the previous sections and in Section C.3 of Appendix C an almost complete
toolbox has been described for the implementation of an SU(2)-symmetric
T3NS algorithm. The only missing piece is a reformulation of the singular
value decomposition such that we can split the optimizedmulti-site tensor in a
controlled way; it allows a dynamic selection of important renormalized states
on an entanglement based approach in symmetry-adapted networks. To illus-
trate SVD in this SU(2)-adapted approach, we will again look at the multi-site
tensorM given in Eq. (3.84). A decomposition

M = 𝒞(UΣV) (3.105)
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is obtained where U and V are suitable orthogonalized tensors and Σ are the
singular values. First, we assign the outer indices ofM to eitherU or V, speci-
fying the decomposition. The decomposition becomes particularly straightfor-
ward when the SVD partitioning corresponds with cutting one internal edge
of the symmetry tensors ofM. If this is not the case, we can make it so by first
deforming the symmetry tensors using their properties; hence, we will only
discuss the former case.

Cutting along the internal degree of freedom 𝑥12 ofM, We can easily split
the symmetry tensors into a part forU andV and a part for the singular values,
i.e.

x1

x2
x12 x3

x𝑝
→

x1

x2
x12

⏟⎵⏟⎵⏟
U

x12⏟
Σ

x12 x3

x𝑝

⏟⎵⏟⎵⏟
V

. (3.106)

Now the values of the reduced tensors can be calculated through an ordinary
SVD; remember that 𝑈𝑟 and 𝑉 𝑟 should be orthogonal up to multiplicities as
seen in Section 3.2.2; we get

𝑀𝑟
𝑥1𝛼1;𝑥2𝛼2;𝑥12;𝑥𝑝;𝑥3𝛼3 =

∑
𝛼𝑚
[𝑗12]𝑈′𝑥1𝛼1;𝑥2𝛼2;𝑥12𝛼12[𝑗12]−2Σ′𝑥12𝛼12[𝑗12]𝑉 ′𝑥12𝛼12;𝑥𝑝;𝑥3𝛼3 . (3.107)

Or thus
𝑈𝑟
𝑥1𝛼1;𝑥2𝛼2;𝑥12𝛼12 = [𝑗12]𝑈′𝑥1𝛼1;𝑥2𝛼2;𝑥12𝛼12 (3.108)

Σ𝑟𝑥12𝛼12 = [𝑗12]−2Σ′𝑥12𝛼12 (3.109)
𝑉 𝑟
𝑥12𝛼12;𝑥𝑝;𝑥3𝛼3 = [𝑗12]𝑉 ′𝑥12𝛼12;𝑥𝑝;𝑥3𝛼3 . (3.110)

The presented decomposition of the symmetry tensors in Eq. (3.106) and the
above defined reduced tensors provide a valid singular value decomposition;
the thorough reader can easily check that Eq. (3.105) is fulfilled and both U
and V are suitably canonicalized (orthogonal) tensors.

Last, it is worth pointing out one important caveat. The singular values in
Σ𝑟𝑥12𝛼12 correspond with the singular values of the irreducible tensorM; how-
ever each value of Σ𝑟𝑥12𝛼12 has an implied multiplicity of (2𝑗12+1). When trun-
cating the two-site tensor up to a certain number of reduced states one should
take this multiplicity into account; some small singular values can have larger
contributions to the two-site tensor due to their higher multiplicity than other.

3.5. Numerical results
In this section, we present several calculations with T3NS. All tensors are ran-
domly initialized. The used implementation for the calculations can be found
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on github [156]. This implementation is able to exploit ℤ2, U(1), SU(2) and
the real abelian point group symmetries. The symmetries can be included in a
modular way. This enables us to compare calculations with andwithout SU(2)
and point group symmetries for the same implementation. The presented cal-
culations were previously published in Ref. [105].

After the optimization of two sites, this two-site tensor has to be split into
two separate sites again. This is done by SVD. The truncation of the virtual
bond dimension during this step is done in two different ways.

First, a fixed maximal bond dimension can be imposed. The algorithm
will take as many singular values into consideration as possible. It will first
select the largest singular values until no non-zero singular values are left or
the maximal bond dimension is reached. The remaining singular values and
their corresponding basis states are discarded.

Second, the dynamic block state selection (DBSS) can be used [149, 192].
With this method, the algorithm keeps the largest singular values until a cer-
tain threshold for a cost function is reached. The cost function used in our
implementation is given by

𝑤disc = ∑
𝑖disc
𝑠2𝑖disc (3.111)

i.e. the sum of the squares of all discarded singular values. This corresponds
with ⟨Ψdisc | Ψdisc⟩, with |Ψdisc⟩ the discarded part of the wave function during
truncation. Other cost functions can be easily implemented. Next to a tar-
geted threshold, a minimal and maximal bond dimension should be specified.
Throwing away too many basis states at a certain stage can impede the opti-
mization at later stages, even though the truncation error is only minimal at
that point. Specifying a minimal bond dimension ensures a certain flexibility
at all time. Themaximal bond dimension is needed to prevent a large increase
in both run time and memory usage when the imposed threshold can not be
reached.

As noted in Section 3.1.2.3, the usage of symmetries with irreps that are
more than one-dimensional, such as SU(2), introduces a compression of the
wave function. Different basis states belonging to the same multiplet can be
represented by a singular reduced basis state. Analogous to the bond dimen-
sion being the number of basis states kept in the bond, the reduced bond dimen-
sion is defined as the number of reduced basis states kept. When using SU(2)
the reduced bond dimension of the bonds, and not the bond dimension, will
reflect the computational complexity.

Just as with DMRG for quantum chemistry, keeping track of the renormal-
ized operators is the most taxing part on memory for T3NS. The amount of
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renormalized operators needed to be stored for T3NS are of the same order as
for DMRG. However, T3NS calculations can be performed on a considerably
lower bond dimension for a similar accuracy. Consequently, this lowers the
storage requirements for the renormalized operators and allows us to keep all
tensors on memory at all time. No checkpoint files need to be written to disk
or read from disk during the algorithm for the present system sizes and bond
dimensions.

3.5.1. The Bisoxo and Peroxo Isomer of [Cu2O2]2–
We revisit the bis(𝜇-oxo) and the𝜇 = 𝜂2 ∶ 𝜂2 peroxo [Cu2O2]2– isomers as a test
case for T3NS with SU(2) and abelian point group symmetries. These transi-
tion metal complexes have been previously studied by other ab initio methods
such as the complete active space self-consistent field theory (CASSCF), the
complete active space self-consistent field theory with second order perturba-
tion theory (CASPT2) [194], the restricted active space self-consistent field the-
ory with second order perturbation theory (RASPT2) [195], DMRG [142, 149]
and DMRG+CT [150] (DMRG with canonical transformation theory). It was
the largest system studied in the initial T3NS paper using only U(1) ⊗ U(1)
symmetry [104] (i.e. conservation of both particle number and spin projec-
tion).

We perform calculations for both isomers in an (26e, 44o) active space. The
basis set is given by the Stuttgart pseudopotential and associated basis func-
tions (ECP10MDF) [201] for Cu and the atomic natural orbital (ANO) basis
set of Pierloot et al. for O [202]. The same active space is used as in Refs. [104,
149]. Both isomers have a 𝐷2ℎ point group symmetry and their ground state
is a singlet state in the 𝐴𝑔 irrep of 𝐷2ℎ [149]. When using the SU(2) and/or
point group symmetry adapted version of T3NS, states corresponding to these
irreps will be targeted. The same T3NS shape and orbital ordering is used as
in Ref. [104]. We also perform calculations of the lowest lying triplet state in
the 𝐴𝑔 irrep of 𝐷2ℎ for both isomers.

The Bisoxo isomer with and without spin symmetry
In order to compare the present spin adapted version of T3NS with its non-
adapted predecessor [104], we perform several calculations for the bisoxo iso-
mer at different bond dimensions and with different symmetries included.

In Fig. 3.2a, timings for the last sweep are shown for several fixed bond
dimensions. Calculations were performed with U(1) ⊗ U(1) symmetry and
with SU(2) ⊗ U(1) symmetry. For both, calculations with and without the
𝐷2ℎ point group symmetry are done. For the spin-adapted versions, the bond
dimensions shown are the reduced bond dimensions.
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Figure 3.2: Results for the bisoxo isomer obtained on an 18-core Intel Xeon Gold 6140 (Skylake
at 2.3 GHz). Calculations with a fixed maximal bond dimension of 𝐷 = 100, 200, 300, 400
and 500 were performed. Results for U(1) ⊗ U(1) combined with or without 𝐷2ℎ are given
by crosses. Results for U(1) ⊗ SU(2) combined with or without 𝐷2ℎ are given by triangles.
The bond dimensions are in this case the reduced bond dimensions, except for (b) where also
unreduced bond dimensions are shown. (a) shows the wall time of the last sweep for different
bond dimensions and different symmetries. (b) shows the ground state energy for different
bond dimensions. For the spin-adapted calculations, both the maximal reduced as unreduced
bond dimensions are given. (c) showswall time of last sweep in function of ground state energy.

As expected, the usage of the point group symmetry introduces a lot of
sparsity in the tensors which speeds up calculations considerably. Calculation
time improved by a factor of 6 and 13 at 𝐷 = 500 for U(1)⊗U(1) and SU(2)⊗
U(1) respectively when including 𝐷2ℎ. For both calculations with or without
spin symmetry, the inclusion of 𝐷2ℎ yields practically the same energies and
maximal truncation errors as when performing the calculation without the
point group symmetry.

For tensors of the same size, calculations including spin symmetry are
computationally more intensive than without spin symmetry as can be seen
in Fig. 3.2a. This is expected since the reduced tensors are more dense than
the irreducible tensors. However, the compressed nature of the reduced ten-
sors (see section 3.1.2.3) makes spin-adapted calculations at a certain reduced
bond dimensionmore accurate than calculations without spin symmetry at an
equal bond dimension. This can be seen in Fig. 3.2b. The maximal unreduced
bond dimension during SU(2) calculations is also given in this figure. For
the present calculations, the maximal unreduced bond dimension is approxi-
mately twice as large as the imposedmaximal reduced bond dimension. When
comparing wall time with achieved accuracy, the calculations with SU(2) are
considerably faster, as is shown in Fig. 3.2c.
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The bisoxo and peroxo isomers with spin symmetry
Several calculations are performed for both isomers. Both SU(2) and 𝐷2ℎ sym-
metry are used. The inclusion of spin and point group symmetry considerably
improves our calculations and allows us to go tomuch larger bond dimensions.
Both a constant maximal bond dimension and DBSS are used. Some obtained
results are shown in Table 3.2 alongside previously published results. Calcu-
lations at a fixed reduced bond dimension of 300 already surpassed the most
accurate DMRG calculations of Ref. [149] and the most accurate T3NS calcu-
lations of Ref. [104]. For the most accurate calculation the maximal reduced
bond dimensions neededwere 1626 and 1329 for the bisoxo and peroxo isomer
respectively.

Method 𝐸bisoxo[Eh] 𝐸peroxo[Eh] Δ𝐸 [kcal/mol]
DMRG[149] −541.538 53 −541.581 14 26.7
T3NS with U(1) ⊗U(1)[104]
500 −541.538 20 −541.580 94 26.8
T3NS with U(1) ⊗ SU(2) ⊗ 𝐷2ℎ
300 −541.538 69 −541.581 19 26.7
500 −541.539 54 −541.581 71 26.5
500, 5 × 10−6 −541.539 86 −541.581 83 26.3
1000 −541.539 93 −541.581 97 26.4
1000, 5 × 10−6 −541.539 97 −541.581 98 26.4
Extrapolated −541.540 12 −541.582 10 26.3

Table 3.2: Energy gaps and ground state energies between the bisoxo and peroxo isomers. The
energy gaps are given in kcal/mol. Ground state energies are given in Hartree. For T3NS calcu-
lations with fixed bond dimension, the bond dimension is given in the first column. For T3NS
calculations using DBSS, the minimal bond dimension and the truncation error is given. For
T3NSwith SU(2) the given bond dimensions are the reduced ones. Maximumbond dimensions
around 2000 were reported for both clusters for the DMRG calculations of Ref. [149].

A linear extrapolation [182, 204] between the truncation error and the en-
ergy is performed. The extrapolation is based on results with a fixed maximal
reduced bond dimension of 𝐷 = 600, 700, 800, 900 and 1000. This extrapola-
tion is shown in Fig. 3.3. The results for the DBSS calculations in Table 3.2
are also given in the figure. For both systems, two DBSS calculations are per-
formed, both targeting a truncation error of 5 × 10−6. They use however an-
other minimal bond dimension. Although the same truncation error is tar-
geted for both DBSS calculations, the accuracy of the two calculations is quite
different due to their differentminimal bond dimensions. Because of this, only
the calculations with fixed bond dimension are used for the extrapolation. A
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linear extrapolation seems justified for these calculations. The extrapolated
values are given in Table 3.2.
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Figure 3.3: Extrapolation of the energy for both the bisoxo and peroxo isomer. Extrapolation
is done by using the results for 𝐷 = 600, 700, 800, 900 and 1000. The DBSS calculations of
Table 3.2 targeting a truncation error of 5 × 10−6 are also shown in the figure. They are however
not used for the extrapolation.

The lowest lying triplet states in the 𝐴𝑔 irrep are also calculated for both
isomers. These states are easily targeted by changing the allowed quantum
numbers in the outgoing target state of the T3NS (as discussed in Section 3.2.3)
and are similar in computation time as for the singlet states. We obtained an
energy of 𝐸 = −541.461 94Eh and 𝐸 = −541.401 84Eh for the bisoxo and
peroxo isomer respectively when a maximal reduced bond dimension of 1000
was chosen.

3.6. A short recap
In this chapter, we studied how the SU(2)-symmetry of the chemical Hamil-
tonian can be exploited in the T3NS through the Wigner-Eckart theorem. By
expressing all renormalized and physical states as angular momentum eigen-
states the tensors can be decomposed into a reduced tensor and a symmetry
tensor. As the latter is dictated by the Clebsch-Gordan coefficients of the sym-
metries the optimization is restricted to the reduced tensor elements which are
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independent of the exact spin projection of the renormalized states. Not only
the number of parameters diminishes by exploiting the SU(2)-symmetry but
contractions can also be done more efficiently by leveraging useful properties
of the Clebsch-Gordan coefficients. While the numerical benefits are already
substantial, exploiting spin symmetries also enable the targeting of specific
spin states. The lowest lying eigenstate for each total spin is obtained through
a straightforward ground state calculation.

Not only the SU(2)-symmetry can be exploited, but we also make usage of
any real abelian point group symmetries present in the molecule. While the
implementation of these symmetries is much simpler, their usage can result in
vast speedups when present. The chapter was concluded by some numerical
illustrations.

As a final remark, we would like to reiterate that the used convention for
the implementation of the SU(2)-symmetry in this chapter defers to the one
used in the source code [156]. The exact differences and the motivation for
this change of convention are explained on page 61. In short, the convention
used in this dissertation has fewer terms to explicitly keep track of, resulting
in it being less error-prone and more generalizable to work with.



4
Seniority

Two left-handed gloves don’t make a pair.
Two half-truths don’t make a truth.

Multatuli

In the previous chapter we studied how symmetries of the Hamiltonian can be
leveraged for a faster andmore accurate T3NS algorithm. In this chapter we will
apply the same techniques to the seniority of the wave function. Defined as the
number of unpaired electrons, the seniority is not a symmetry of the chemical
Hamiltonian. However, by writing the different tensors in the tensor network
invariant for the seniority we get a natural way of restricting the ground state
optimization to seniority subspaces. It allows a polynomial scaling method for
the study of molecular systems while imposing a restriction on the seniority of
their wave function.
Tensor networks also provide an efficient way of finding the ground state within
the doubly occupied configuration interaction (DOCI) subspace. This is particu-
larly useful as it has been shown that most of the strong correlations present in a
molecule are already present in this subspace.

This chapter is based on a paper published as a preprint on arXiv [221].
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The concept of seniority – originally studied in nuclear and condensed matter
physics [222, 223] – has proven to be quite useful for capturing strong correla-
tions in quantumchemical systems. The seniority of awave function is defined
as the number of unpaired electrons; we call two electrons paired when occu-
pying the same spatial orbital. E.g., the following wave function in a space of
two spatial orbitals has a seniority 𝜈 = 0:

|Ψ⟩ = |↑↓, −⟩ = 𝑐†1↑𝑐†1↓|−⟩ . (4.1)

It is an example of a doubly occupied configuration interaction (DOCI) wave
function as the spatial orbitals are either doubly occupied or completely empty.
For molecular systems, it was shown that a DOCI wave function often suffices
to capture most of the strong correlation present [224–230]. Although this
tremendously reduces the dimension of the Hilbert space, finding the exact
DOCIwave function is still exponentially scaling as assigning𝑁/2 electron pairs
to 𝐿 spatial orbitals is a combinatorial problem. Furthermore, the seniority of
a wave function depends on the choice of orbitals; seniority subspaces are not
invariant under orbital rotations as illustrated by the following rotation for
Eq. (4.1):

𝑐†1𝜎 =
1
√2
( ̃𝑐†1𝜎 + ̃𝑐†2𝜎) , 𝑐†2𝜎 =

1
√2
(− ̃𝑐†1𝜎 + ̃𝑐†2𝜎) . (4.2)

This results into

|Ψ⟩ = 𝑐†1↑𝑐†1↓|−⟩ =
1
2[ ̃𝑐

†
1↑ ̃𝑐†1↓ + ̃𝑐†1↑ ̃𝑐†2↓ + ̃𝑐†2↑ ̃𝑐†1↓ + ̃𝑐†2↑ ̃𝑐†2↓]|−⟩ (4.3)

= 1
2[|↑↓, −⟩ + |↑, ↓⟩ − |↓, ↑⟩ + |−, ↑↓⟩] (4.4)

which is a mixture of Slater determinants with seniority 𝜈 = 0 and 𝜈 = 2.
At first glance, DOCI seems only marginally more manageable than ex-

actly solving the Schrödinger equation asDOCI is both exponential scaling and
orbital dependent. The antisymmetric product of one-reference orbital gemi-
nals (AP1roG) [228, 231–233] – also known as pair coupled cluster doubles
(pCCD) [234–236] – provides a reliable approximation to the DOCI ground
state solution for a wide range of molecular systems while staying computa-
tionally tractable. Soon after, the first orbital optimization schemes [232, 233]
in accompanimentwithAP1roGwere formulated; an indispensable tool for op-
timizing the orbital dependent seniority-zero subspace. However, even with
the flexibility of orbital optimization, solutions living within the seniority-zero
subspace lack some nondynamical strong correlations (as can be seen in the
underestimated binding energy of the nitrogen dimer) and dynamical weak
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correlations. Although several extensions to AP1roG exist trying to recover
the missing weak correlations, they miss the same reliability as AP1roG has
for the strong correlation [237].

Not only the seniority-zero subspace, but also higher seniority subspaces
have been studied in a molecular setting, albeit only in small systems [226,
229, 234, 238, 239]. The seniority number was also used for the definition of
a renormalization flow within the energy renormalization group [240]. How-
ever, these methods are exponentially scaling if there is no truncation in the
Slater determinants considered.

In this chapter we will use the T3NS to study the behavior of chemical sys-
tems in a seniority-restricted subspace. The T3NS considers the full basis of
Slater determinants during its optimization, instead it truncates the amount
of entanglement captured. This efficient many-body technique will enable us
to optimize wave functions for large systems in seniority-restricted subspaces
and is not plagued by the exponential wall as previous seniority-restricted stud-
ies [226, 229, 234, 238–240]. In the next section we will discuss how to lever-
age the techniques discussed in the previous chapters to perform seniority-
restricted calculations.

In Section 4.2.1 we study the dissociation of the nitrogen dimer. While de-
cently described in DOCI, we argue and show why at least seniority-four has
to be used for a quantitative correct dissociation. In previous research, orbital
optimized DOCI has introduced an artificial point group symmetry breaking
for the benzene molecule; in Section 4.2.2 we study at which seniority sector
this artifact is resolved. In Section 4.2.3 we discuss the neon dimer, a dimer
merely binding due to weak dispersion forces. As DOCI is not fit for dynam-
ical correlations, we study which seniority subspaces need to be included for
the retrieval of the right dissociation character. We conclude this chapter by
showing some large-scale DOCI-T3NS calculations in Section 4.2.4. Due to the
increased simplicity of the DOCI-restricted Hamiltonian, we can push these
types of calculations to much larger molecules than possible for general quan-
tum chemical TNS calculations.

4.1. Seniority and tensor networks
In Chapter 3 we investigated how T3NS can exploit the symmetries showcased
by the chemical Hamiltonian. In this chapter, we will apply the same tech-
niques to allow seniority-restricted calculations. We write each tensor in the
network in an invariant form for the seniority which behaves the same as the
particle conservation, i.e. it is an U(1)-symmetry.

As a refresher, let us reiterate how the invariant form can be obtained for a
three-legged tensor. We will solely concentrate on the seniority in the discus-
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sion to follow; bear in mind that we can easily use seniority in junction with
symmetries of the Hamiltonian such as spin conservation. We need to impose
the following restriction on the tensor elements:

𝐴𝑎
𝑏
𝑐 = 0, if 𝜈𝑎 + 𝜈𝑏 ≠ 𝜈𝑐 , (4.5)

where 𝜈𝑎, 𝜈𝑏 and 𝜈𝑐 are the seniority numbers of their respective (physical or
virtual) degrees of freedom. The seniority number of the first two degrees of
freedom 𝑎 and 𝑏 have to sum up to the seniority number of 𝑐. This restriction
implies a kind of flow for the seniority number in the network as indicated
in Eq. (4.5). This is of course the same flow as encountered in the previous
chapter. An example of an MPS built from three of these invariant tensors
with the flow indicated is given by:

𝐴vac

𝑎
𝐵𝛼
𝑏
𝛽 𝐶

𝑐
target . (4.6)

Here the physical edges are denoted with 𝑎, 𝑏 and 𝑐 which have a seniority of
𝜈 ∈ {0, 1} as each orbital can be either empty (𝜈 = 0), singly occupied (𝜈 = 1)
or double occupied (𝜈 = 0). The vacuum state entering on the leftmost side of
the network is characterized by a seniority 𝜈vac = 0. Up to now, there is no dif-
ference in how onewould implement a real U(1)-symmetry of the system such
as a particle conservation or conservation of the spin projection. However, the
seniority is not a conserved quantum number. Eigenstates of the Hamiltonian
are not necessarily eigenstates of the seniority operator and the target state
will generally be a linear combination of Slater determinants with different
seniority numbers. To target such a state, the final renormalized states in the
rightmost bond should be a set of eigenstates of the seniority operator which
combine to the targeted state. The set of possible seniority numbers for the
wave function is

Ω = {𝑛 ∈ ℕ ∶ 𝑛 mod 2 = 𝑁tot mod 2
||𝑁↑ − 𝑁↓|| ≤ 𝑛 ≤ min (𝑁tot, 2𝐿 − 𝑁tot)

} , (4.7)

with 𝐿 the number of spatial orbitals, 𝑁↑ (𝑁↓) the number of electrons with
spin up (down) and𝑁tot the total number of electrons. For every renormalized
state in the last bond, we have 𝜈target ∈ Ω. By restricting 𝜈target to a subset 𝑆 ⊆ Ω,
ground states in seniority-restricted subspaces can be targeted.

In a similar fashion, one could also use other non-conserved quantum
numbers than the seniority number. For example, we could use the excita-
tion number with respect to the Hartree-Fock wave function; by only allowing
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Slater determinants with a certain amount of excitations, tensor networks can
be used as an approximate configuration interaction (CI) solver with arbitrary
allowed excitation levels.

4.1.1. Suboptimal decomposition
When using a wave function ansatz as shown in Eq. (4.6), we impose a restric-
tion on the left renormalized states at each splitting of the network. Due to
the fact that a vacuum state enters in the leftmost bond and all used tensors
are invariant under the seniority operator, the left renormalized states need to
have a well defined seniority number. This restriction results in the need for a
possibly larger bond dimension than when discarding seniority. We illustrate
this using a wave function with three electrons and three spatial orbitals:

|Ψ⟩ = 1
√2

[| ↑, ↓⟩ ⊗ | ↑⟩ + |−, ↑↓⟩ ⊗ | ↑⟩] (4.8)

= 1
√2

[| ↑, ↓⟩ + |−, ↑↓⟩] ⊗ | ↑⟩ . (4.9)

In Eq. (4.9), the Schmidt decomposition for a partitioning between the first two
and the last orbital is given. At this partitioning only a virtual bond dimension
of one is needed to represent the state. However, when we impose that the
left states, i.e. the states in the first two orbitals, of the decomposition should
also be eigenstates of the seniority operator, the needed bond dimension at this
partitioning increases to two, cf. Eq. (4.8).

In the previous example, the sink (i.e. the outgoing virtual bond of the
tensor network) is positioned at the rightmost bond of the tensor network cf.
Eq. (4.6). One could also opt to position the sink at another point in the tensor
network. Graphically this can be done by using the following kind of T3NS:

𝐴vac

𝑎
𝐸𝛼 𝛾 𝐶

𝑐
vac

target

𝐵
𝑏
𝛽 𝛿 𝐷

𝑑 . (4.10)

Here, twoMPS-chains are connected through a branching tensor 𝐸 in themid-
dle. The sink is now positioned at this branching tensor.

We numerically illustrate the effect of using seniority-restricted tensors on
the von Neumann entropy – which can be seen as a measure for the needed
bond dimension – by solving the LiF molecule. The same basis set is used as
in Section 2.8 and all calculations can be considered exact. In Fig. 4.1, results
for DMRG calculations with seniority-invariant and non-invariant tensors are
shown. The effect on the entropy of the position of the sink is also illustrated
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Figure 4.1: The von Neumann entropy for LiF along each virtual bond in an MPS calculations
is compared with and without seniority-invariant tensors. The same basis set is used as in
Section 2.8. The bonds are given in order of the MPS, i.e. bond 𝑖 is the 𝑖’th bond starting from
the left of the MPS. All MPS calculations use the same orbital ordering.

by comparing calculations with the sink at the end (cf. Eq. (4.6)) and with the
sink in the middle of the tensor network (cf. Eq. (4.10)). As expected the von
Neumann entropy is larger when imposing seniority-invariance; furthermore,
when the sink is positioned at the end of the chainwe notice theworst accumu-
lation of entanglement due to the artificial separation of renormalized states
with different seniority. The entanglement at the sink is a fixed value irrespec-
tive of the location in the network and is given by 𝑆 = ∑𝜈−|𝑐𝜈|2 log|𝑐𝜈|2 where
|𝑐𝜈|2 are the weights of the different seniority subspaces in the wave function.

4.1.2. DOCI and tensor networks
Restricting the calculation to configurations with 𝜈 = 0 is easily done with the
aforementioned method. However, it is more efficient to directly implement
the quantum chemical Hamiltonian projected on the DOCI-subspace where
only paired electrons are allowed. The DOCI-Hamiltonian is given by

𝐻DOCI = 2∑
𝑖
𝑇𝑖𝑖𝑛𝑖 +∑

𝑖𝑗
[2𝑉𝑖𝑗𝑖𝑗 − 𝑉𝑖𝑗𝑗𝑖] 𝑛𝑖𝑛𝑗 +∑

𝑖≠𝑗
𝑉𝑖𝑖𝑗𝑗𝑏†𝑖 𝑏𝑗 , (4.11)
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where 𝑏†𝑖 and 𝑏𝑖 are the bosonic pair creation and annihilation operators and
𝑛𝑖 is the pair number operator at orbital 𝑖. They are given by

𝑏†𝑖 = 𝑐†𝑖↑𝑐†𝑖↓, 𝑏𝑖 = 𝑐𝑖↓𝑐𝑖↑ (4.12)

and
𝑛𝑖 = 𝑏†𝑖 𝑏𝑖 . (4.13)

This Hamiltonian only scales quadratic with the number of orbitals in con-
trast with the quartic scaling of the full Hamiltonian; as such, TNS calculations
in the DOCI subspace can be performed with a lower polynomial scaling. The
scaling is given in Table 4.1 for both DMRG and T3NS.

CPU time Memory

QC-DMRG: 𝒪(𝐿4𝐷2 + 𝐿3𝐷3) 𝒪(𝐿3𝐷2)
DOCI-DMRG: 𝒪(𝐿2𝐷3) 𝒪(𝐿2𝐷2)

QC-T3NS: 𝒪(𝐿4𝐷2 + 𝐿3𝐷4) 𝒪(𝐿3𝐷2 + 𝐿𝐷3)
DOCI-T3NS: 𝒪(𝐿2𝐷4) 𝒪(𝐿2𝐷2 + 𝐿𝐷3)

Table 4.1: Resource requirements for DMRG and T3NS with renormalized operators for the
full quantum chemical Hamiltonian in Eq. (1.18) or the DOCI Hamiltonian in Eq. (4.11) for 𝐿
spatial orbitals. The maximal virtual bond dimension is denoted by𝐷.

We find that DOCI ground state wave functions have in general lower en-
tanglement than their correspondingFCI ground statewave function; accurate
results for DOCI can be obtained with a lower bond dimension. The synergy
between the lower polynomial scaling and the lower required bond dimension
makes DOCI-TNS very fast. It makes DOCI-TNS a good option for initializ-
ing tensor network calculations in the FCI space; the DOCI-TNS optimization
takes only a fewminutes for systems considered large for QC-TNS. As an exam-
ple, we will show someDOCI-T3NS calculations on a rubidium phenanthrene
coordination complex in Section 4.2.4 in a minimal basis set. This system will
provide a decent challenge for DOCI-TNS as it involves the optimization of
162 electron pairs in 261 spatial orbitals.

4.2. Applications
In this section, some calculations with the seniority-restricted tensor network
code are discussed. As these calculations are orbital dependent, several types
of orbitals are considered. The effect of allowing progressively more broken
pairs is also studied within each orbital set. In Section 4.2.1 and Section 4.2.3,
the dissociation of the nitrogen and neon dimer are considered, respectively.
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Section 4.2.2 discusses the benzenemolecule, a systemdemonstrating artificial
𝐷6ℎ symmetry breaking in the seniority-zero subspace [233]. In Section 4.2.4,
we study a rubidium phenanthrene coordination complex in a minimal basis
set with all electrons correlated. For this we only use theDOCI-TNSmethod as
to show its speed with respect to full TNS calculations in quantum chemistry.

The coupled cluster natural orbitals and Löwdin orthogonalized atomic
orbitals are obtained with PySCF [241–243]. The DOCI-optimized orbitals are
generated by an in-house DOSCF code and were carefully checked to corre-
spond to the lowest possible DOCI energy, i.e. the global minimum [244].
All seniority-restricted tensor network calculations are MPS calculations. We
exploit the spin symmetry and the reported bond dimensions for the tensor
networks are reduced bond dimensions; renormalized states belonging to the
samemultiplet are represented by one reduced renormalized state, thus reduc-
ing the needed bond dimension. Seniority-restricted tensor network calcula-
tions are, just as regular tensor network calculations, not exact; the accuracy
can be controlled by the bond dimension. The following calculations use a
large enough bond dimension such that results are within a high enough ac-
curacy for quantitatively accurate potential energy surfaces.

4.2.1. Nitrogen dimer
Characterized by a triple bond breaking, the nitrogen dimer is a much vis-
ited test case for new quantum chemical methods. Here, we study the ni-
trogen dimer in a cc-pVDZ basis set with all electrons correlated. Seniority-
restricted spin-adapted DMRG with a reduced bond dimension up to 1000 is
used to optimize the ground state in the different subspaces. The allowed se-
niority increases from 0 (DOCI) up to 10 for the largest calculations, allowing
5 electron pairs to be broken. In Fig. 4.2, the dissociation curves are given for
calculations within the different seniority subspaces. Calculations were per-
formed for canonical orbitals (Fig. 4.2a), DOCI-optimized orbitals (Fig. 4.2b)
and CCSD natural orbitals (Fig. 4.2c). Although the DOCI-optimized orbitals
are optimized for the seniority-zero subspace specifically, they also perform
better in higher seniority subspaces, albeit marginally. Eventually for 𝜈 ≤ 8
and onward, all orbital sets give quasi-FCI energies.

In Ref. [232], it is shown that, up to first order, the seniority-two sector de-
couples from the seniority-two-plus-zero sector for DOCI-optimized orbitals;
only a small correction should occur when introducing single broken pairs
in this orbital set. We indeed notice a small energy correction for the DOCI-
optimized orbitals, smaller than for canonical orbitals. In Fig. 4.3, the weights
of the different seniority subspaces are plotted for the ground state in both
canonical and DOCI-optimized orbitals. It is yet another illustration that for
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Figure 4.2: Dissociation curves at different seniority subspaces for the nitrogen dimer. Results
for canonical orbitals (a), DOCI-optimized orbitals (b) and CCSD natural orbitals (c) are given.
For (c), only results where CCSD converged are plotted.

DOCI-optimized orbitals (Fig. 4.3b) the seniority-two subspace is less impor-
tant than for canonical orbitals (Fig. 4.3a). However, a first order decoupling is
not an exact one; there are other orbital sets possible which give even smaller
energy corrections. This is illustrated by the natural orbitals (Fig. 4.2c); they
give even smaller energy corrections when allowing single broken pairs.

Hund’s rule
As a last observation we note that the largest change in energy occurs when
including the seniority-four subspace, and this for all orbital sets in Fig. 4.2.
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Figure 4.3: Weights of the different seniority subspaces for the ground state wave function of
the nitrogen dimer. Results for canonical orbitals (a), DOCI-optimized orbitals (b) and Löwdin
orthogonalized atomic orbitals (c) are given.

This trend was also noticed in Ref. [226] for the nitrogen dimer in nonlocal
orbitals. When including determinants up to seniority-four the energies are
close to FCI around the binding distance; however, the binding energy itself is
still overestimated due to missing dynamical correlation at the dissociation.

Intuitively, we would expect a much larger error when excluding the se-
niority-six subspace; Hund’s rule dictates dissociation to two nitrogen atoms
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with each three unpaired electrons. However, seniority and pairing is an orbit-
al-dependent concept [244]; we need to keep in mind that Hund’s rule applies
to a nitrogen atomwith orbitals localized around that atom. To study the inter-
pretation of Hund’s rule in non-local orbitals, we consider a toy model of two
sets of three orbitals (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) and (𝑝′𝑥, 𝑝′𝑦, 𝑝′𝑧). Each set of orbitals mim-
ics the local 𝑝-orbitals of each nitrogen atom, which are singly occupied and
couple together to a 𝑆 = 3/2 state, as dictated by Hund’s rule. Our performed
tensor network calculations target a singlet state for the dimer, so the two toy-
nitrogen atoms should couple as [3/2, 3/2]0. Mimicking non-local orbitals, we
rotate the orbitals pairwise as follows:

𝜋1 = 𝑝𝑥 cos 𝜃 + 𝑝′𝑥 sin 𝜃, 𝜋∗1 = −𝑝𝑥 sin 𝜃 + 𝑝′𝑥 cos 𝜃
𝜋2 = 𝑝𝑦 cos 𝜃 + 𝑝′𝑦 sin 𝜃, 𝜋∗2 = −𝑝𝑦 sin 𝜃 + 𝑝′𝑦 cos 𝜃
𝜎 = 𝑝𝑧 cos 𝜃 + 𝑝′𝑧 sin 𝜃, 𝜎∗ = −𝑝𝑧 sin 𝜃 + 𝑝′𝑧 cos 𝜃 .
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Figure 4.4: Toymodel of two nitrogen atoms with both 𝑆 = 3/2 respecting Hund’s rule. The two
atoms couple together to a singlet. The figure represents the weights of the different seniority
sectors for local (0, 𝜋/2), delocalized (𝜋/4) orbitals and everything in between.

In Fig. 4.4, the weights of the different seniority sectors are given for the
[3/2, 3/2]0 coupled toy wave function in function of the rotation angle 𝜃. As can
be seen in this model seniority-six is actually of no importance when working
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with delocalized orbitals (𝜃 = 𝜋/4). Instead, the correct dissociation can be
described with only seniority-zero-plus-four and both seniorities equally im-
portant.

Both canonical orbitals and the DOCI-optimized orbitals are delocalized
for the 2𝑝-orbitals in this system. The dominating importance of the seniority-
zero and four for the wave function at dissociation is very clear in Fig. 4.3a and
Fig. 4.3b. The other seniority sectors have very small contributions in compari-
son. As an illustration, we also included calculations with Löwdin orthogonal-
ized atomic orbitals in Fig. 4.3c. As these orbitals are localized, it corresponds
with 𝜃 = 0 in Fig. 4.4. These orbitals do give rise to a very important seniority-
six subspace at dissociation, as predicted by Hund’s rule. Furthermore, all
seniority sectors smaller than six express a superexponential decay.

4.2.2. Benzene

min Emin [Ha]
=0 57.78° -230.357
2 57.88° -230.382
4 59.41° -230.549
6 59.74° -230.559
8 60° -230.571

full 60° -230.572
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Figure 4.5: Benzene in a STO-6G basis set for different distortion angles. The minimal energies
and the corresponding distortion angles for increasing seniority subspaces are given in the inset.
A graphical depiction of the in-plane distortion of the aromatic ring in benzene is also shown.

In this section, the in-plane distortion of benzene is studied. The exact
nature of the distortion is given in the inset in Fig. 4.5 and is characterized
by the angle 𝜃. At 𝜃 = 60° the 𝐷6ℎ symmetric ground state geometry of ben-
zene is obtained. At other angles, the distortion introduces alternating shorter
and longer carbon-carbon bonds. For this system Boguslawski et al. [233]
showed that benzene (𝜃 = 60°) is not the ground state configuration within
the seniority-zero subspace; an artificial symmetry breaking occurs when al-
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lowing orbital optimization.
We use DOCI-optimized orbitals in the STO-6G basis set to study this ar-

tificial symmetry breaking with all electrons correlated. We chose STO-6G as
the distortion angle of theminimal energy DOCI structure is particularly large
for this basis set. The tensor network calculations are executed with a reduced
bond dimension of 1000.

In Fig. 4.5 the results for the ground state in the different seniority sub-
spaces are given. In accordance with Boguslawski et al. [233], we notice that,
indeed, the ground state is not found at 𝜃 = 60° in the seniority-zero subspace.
When the breaking of one pair is allowed in this orbital set, the correction is
rather small and the correct symmetry is not restored. This is expected due to
the aforementioned first order decoupling of the seniority-zero and seniority-
two subspace in these orbitals.
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Figure 4.6: Weights of the different seniority subspaces for the ground state wave function of
benzene under in-plane distortion. Results are given for DOCI-optimized orbitals.

When including progressively higher seniorities, the stable configuration
moves closer to the expected 𝐷6ℎ-symmetric benzene. The potential energy
surface enjoys a large qualitative correction when including the seniority-four
subspace in the calculations; however the minimum of the potential energy
surface is still off by 0.59°. The inclusion of seniority-six further improves the
quality of the potential energy surface, but only at seniority-eight the exact
ground state seems to be recovered, at least up to the resolution of our per-
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formed calculations. At this point, the results become very close to the un-
truncated seniority results. In Fig. 4.6, the weights of the different seniority
sectors in the ground state during distortion are also given. These weights do
not express the large changes as seen during dissociation of the nitrogen dimer
in Fig. 4.3. This is quite expected; the bond breaking of the nitrogen dimer is a
far more outspoken change than the small benzene distortions in this section.

4.2.3. Neon dimer
The neon dimer, constituting out of two noble gas atoms, is very weakly bond-
ing. Although the electrons do not feel the need to form covalent bonds be-
tween the two atoms, it expresses some bonding character due to weak dis-
persion forces. In Ref. [245], an empirically fitted potential curve results in a
binding energy of −134 µEh and a binding distance of 3.091Å.

As the binding of the neon dimer is rather weak and is due to dynamical
correlations, it will be very sensitive to the chosen basis set size. For an accu-
rate description of the potential energy curve, a large basis set should be chosen
and basis set superposition errors (BSSE) should be taken into account appro-
priately [246]. A clear example of the importance of BSSE-corrections is the
dissociation curve on theHartree-Fock level. At this level of theory no binding
is expected as the Hartree-Fock solution is dispersion-free. However, when us-
ing small basis sets, one would find a binding neon dimer at the Hartree-Fock
level if one neglects to correct the BSSE [246].

We study the neon dimer in the aug-cc-pVDZ basis, which was found to
have a favorable tradeoff between mitigating BSSE and numerical stability is-
sues of larger basis sets. Calculations with different allowed seniority sectors
are executed while using DOCI-optimized orbitals with a frozen 1𝑠 core. Re-
duced bond dimensions up to 800 are used for the DMRG calculations. As the
aug-cc-pVDZ basis is a rather small basis for capturing dispersion forces, ap-
propriately removing BSSE is important. This is done by using the Boys and
Bernardi counterpoise correction [247].

In Fig. 4.7 the raw uncorrected results are given for the different calcula-
tions. For all seniority calculations the neon dimer seems to be bonding. How-
ever, for seniority-zero and seniority-two-plus-zero the bonding seems to be
very weak; only for 𝜈 ≤ 4 calculations and higher the bonding character is
qualitatively corresponding with the untruncated seniority case.

For the counterpoise correction, equivalent calculations as for the dimer
are executed but with one neon atom replaced by a chargeless, electronless
ghost atom. This way, we can approximately correct for the extra stabilization
each neon monomer feels by the basis functions of the other monomer. The
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Figure 4.7: Dissociation curves for the neon dimer without BSSE-correction. The energies at
large separation distances is given in the inset.

BSSE-corrected dissociation energy for the dimer at distance 𝑟 is then given by

𝐸dissoc(𝑟) = 𝐸Ne−Ne(𝑟) − 𝐸Ne−ghost(𝑟) − 𝐸ghost−Ne(𝑟) . (4.14)

The same level of theory should be used for these ghost calculations as for
the original calculation. This poses a difficulty since the seniority restricted
calculations are not size consistent; 𝐸dissoc(𝑟 → ∞) does not tend to zero as
is desired. Assume we have executed a dimer calculation with 𝜈 ≤ 4, using
ghost calculations with the same 𝜈 ≤ 4 will overcorrect, while ghost calcula-
tions at the lower 𝜈 ≤ 2 will undercorrect. We try to solve this problem by
both over and undercorrecting the calculations and shift both curves to 0 in
the dissociation limit. Results for these BSSE-corrections are given for differ-
ent seniority sectors in Fig. 4.8 with the grayed area indicating where the exact
BSSE-correction is expected to be. From Fig. 4.8a and 4.8b, it seems that the
weak bonding character present in Fig. 4.7 for 𝜈 = 0 and 𝜈 ≤ 2 practically
or completely disappears when taking BSSE-corrections into account. When
correcting 𝜈 ≤ 4 calculations, we can again overcorrect or undercorrect. The
overcorrected dissociation underestimates the dissociation energy a bitwith re-
spect to the FCI BSSE-corrected calculations while the undercorrected dissoci-
ation overestimates the dissociation energy, as can be expected. It seems that
calculations with seniority-zero and seniority-two do not model the needed
dispersion and at least seniority-four is needed.
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Figure 4.8: Dissociation curves for the neon dimer with and without BSSE correction for dif-
ferent seniority subspaces. When BSSE-correction is performed, the used seniority subspace
for the ghost atom calculation is given in brackets in the legend. The dissociation curve for a
full-seniority calculation with full BSSE-correction is also shown in each subfigure. Results are
shown for 𝜈 = 0 (a), 𝜈 ≤ 2 (b) and 𝜈 ≤ 4 (c) subspace calculations.

Finally, we notice that the FCI dissociation energy with BSSE-correction is
a factor of three smaller than empirical measurements and the bond length is
overestimated. This is quite normal when studying dynamical correlations in
small basis sets. The limited basis set does not allow all the needed flexibility
for the stabilization of the dimer.
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4.2.4. A rubidium phenanthrene coordination complex

bond dimension truncation error energy [Eh]
canonical orbitals

25 3.4311 × 10−6 −6080.794 467
50 7.9219 × 10−7 −6080.794 988
100 1.5275 × 10−7 −6080.795 096
150 5.0740 × 10−8 −6080.795 110

split-localized orbitals
25 8.2824 × 10−5 −6081.980 409
50 3.3030 × 10−5 −6081.984 022
100 3.2201 × 10−6 −6081.984 583
150 1.3259 × 10−6 −6081.984 695
200 8.4201 × 10−7 −6081.984 741
250 4.2780 × 10−7 −6081.984 759

Table 4.2: DOCI energies for different bond dimensions for the rubidium phenanthrene co-
ordination complex. Calculations in both canonical orbitals and split-localized orbitals were
performed. The maximal norm of the discarded singular values during the T3NS optimization
is used for the truncation error.

Wewill conclude this chapter by studying the DOCI-TNSmethod for large
systems. A coordination complex of a Ru2+ ion surrounded by three phenan-
threne molecules is studied in a minimal basis set (STO-3G). By correlating
all electrons this problem results into the optimization of 162 electron pairs in
261 orbitals. This is a particularly hard problem as the system is close to half-
filling and it is far larger than possible by QC-DMRGmethods working in the
full Hilbert space.

In Table 4.2, DOCI-T3NS results are given for both canonical orbitals and
split-localized orbitals. Canonical orbitals are often not optimal for DOCI cal-
culations as seen in Section 4.2.1. Only a small amount of correlation can be
recovered in this orbital space; as such, low bond dimensions already suffice
for an accurate DOCI wave function. This is reflected in the low truncation
error even at low bond dimensions. Due to the low bond dimensions needed
and the lower computational complexity of DOCI-TNS, the calculations for
the canonical orbitals were easily executed on a common laptop.

On the other hand, split-localized orbitals are a good alternative when not
explicitly optimizing the orbitals for DOCI; they are localized – a property that
is frequently observed in DOCI-optimized orbitals – and since we localized oc-
cupied and virtual space of theHartree-Fockwave function separately, we kept
the Hartree-Fock Slater determinant in the DOCI space. Finding the DOCI
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wave function in this orbital set posesmore of a challenge asmuchmore corre-
lations can be found; we see an improvement of more than 1Eh when compar-
ing with the canonical orbitals. At 𝐷 = 250, 21 sweeps through the tensor net-
work were needed for a convergence of 0.1 µEh between subsequent sweeps;
each sweep took about 45 minutes on 9 cores. At 𝐷 = 150, each sweep took 5
minutes on 9 cores.

For both orbital sets, we used a radially expanding T3NS network. More
information on the orbital ordering can be found in Section 5.3.3.

4.3. A short recap
We joined the concept of seniority with tensor network methods. By using
seniority-invariant tensors, we can force all the renormalized states in the vir-
tual bonds to have a well defined seniority number. This allows for arbitrary
seniority-restricted calculations. However, there is a possible need for larger
bond dimensions than performing regular QC-T3NS calculations. For DOCI
(doubly occupied configuration interaction) calculations, we can immediately
implement the DOCI-projected quantum chemical Hamiltonian in Eq. (4.11).
This results in a fast tensor network calculation, partly because of the sim-
pler Hamiltonian, partly because the entanglement in the seniority-zero sub-
space is less substantial than for seniority-unrestricted calculations. Large
scale DOCI-TNS calculations were shown in Section 4.2.4. The DOCI-TNS
algorithm provides a fast initialization for subsequent QC-TNS calculations.

Several systems are studied within different seniority subspaces. For the
dissociation of the nitrogen dimer, only a quantitative dissociation curve can
be obtained when at least two pairs are allowed to be broken. This can be the-
oretically explained due to Hund’s rule. The planar distortion of benzene and
its artificial𝐷6ℎ symmetry breaking in the seniority-zero subspace [233] is also
studied. A large correction of the artificial symmetry breaking occurs when in-
cluding seniority-four, however up to eight unpaired electrons are needed for
a complete restoration of the correct benzene ground state in the used basis
set. We also considered the dissociation of the neon dimer. At the seniority-
zero level of theory the neon dimer is non-binding; DOCI does not capture the
dispersion forces needed for the weak binding characteristic of neon. Only at
seniority-four and onward, the dispersion forces are adequately picked up.

For all systems, the seniority-two subspace has only a small contribution to
the total wave function when using DOCI-optimized orbitals; this is expected
by the theoretical first order decoupling between seniority-zero and seniority-
two subspaces in these types of orbitals [232]. However, a first order decou-
pling is not an exact decoupling and other orbital sets can be found which
attribute even less importance to the seniority-two subspace. An example of
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this is given by the natural orbitals of the nitrogen dimer in Fig. 4.2c.





5
Orbitals in tensor networks

It is much more rewarding to do more with less.

Donald Knuth

In the previous chapters we extensively discussed the T3NS algorithm. Among
others, we discussed the usage of symmetries of the chemical Hamiltonian in the
algorithm. Although this provides a faster and more accurate optimization, it
cannot perform miracles. If the entanglement structure of the ground state is
badly represented by the tensor network, a large bond dimension will be needed
for accurate results. A bad representation of the entanglement structure can orig-
inate from a bad orbital choice (discussed in Section 5.1), a bad orbital ordering
on the tensor network (discussed in Section 5.2 and Section 5.3), or amore funda-
mental problem with the geometry of the network itself. Only the first two origins
of a bad entanglement structure can be addressed in the MPS, while the T3NS
exhibits some flexibility in its geometry that can be optimized (discussed in Sec-
tion 5.4).
Compared to DMRG, the T3NS has a less favorable scaling with respect to the
chosen bond dimension. As such, it is even more important for the T3NS to get
the orbital choice and ordering right. Compensation of a bad orbital choice and
ordering by increasing the bond dimension is less of an option for the T3NS.
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5.1. The orbital choice
Tensor network methods are not invariant under orbital rotations, although
they become less sensitive to the orbital choice with increasing bond dimen-
sion. A good choice of orbitals can have a sizable effect on the accuracy and
convergence speed of tensor network calculations. For large or elongated mol-
ecules the usage of localized orbitals has been shown advantageous for highly
accurate DMRG calculations [94, 145, 150, 182, 185, 187, 192, 203, 204, 248–
261]. This is not completely surprising as DMRG stems from the notion of
locality; it is particularly successful in studying systems with entanglement
arising from local interactions between the physical degrees of freedom.

The recent development of the sliced basis density matrix renormalization
group (SBDMRG) [262, 263] tries to further exploit locality by slicing the three-
dimensional space along the 𝑧 direction. While the basis states in the 𝑥 and 𝑦
directions are still derived from Gaussian basis sets, the 𝑧 direction becomes
discretized. The SBDMRG has proven very useful for linear molecules such as
long hydrogen chains.

Exploiting locality along all three dimensions for quantum chemical sys-
tems has recently been demonstrated by using multisliced gausslets [264] in
junction with DMRG (MSG-DMRG) [265]. Very accurate energies for H10 in
the complete basis set limit were obtained at low bond dimensions. Gausslets
are given by a sum of simple Gaussians centered around different points and
are smooth and localized while still keeping the Coulomb interactions diago-
nal (i.e. the Coulomb interactions are two-point interactions).

Another recent development for finding orbital sets where targeted states
have low entanglement has been made by Krumnow et al. [189, 266, 267].
Rather than constructing a spatially local basis set, they opted for optimizing
the spatial orbitals within a chosen basis set through Gaussian mode transfor-
mations. During the two-site DMRG optimization, the orbitals of the two-site
tensor are mixed by rotation to minimize the entanglement in the two-site ten-
sor.

In this chapter we do not focus on choosing a right orbital set, but rather
on ordering the chosen orbital set in a satisfactory fashion onto the network.

5.2. Ordering the orbitals
The choice of orbitals and their ordering is of key importance for an efficient
and accurate tensor network method in quantum chemistry. In condensed
matter physics, one can use the geometry of the lattice as a clear guiding tool
for the ordering of the physical degrees of freedom. This obvious choice is
lacking in quantum chemistry.
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Several methods have been developed for finding good orderings of the
orbitals onto the MPS, most of which are easily adapted to the T3NS. Most
methods are based on minimizing the bandwidth of certain two-orbital mea-
sures 𝐴𝑖𝑗, where high values of 𝐴𝑖𝑗 indicate highly interacting orbitals. A cost
function of the form

̂𝐴𝜂 = ∑
𝑖𝑗
𝐴𝑖𝑗𝑑𝜂𝑖𝑗 (5.1)

can be defined, where 𝑖 and 𝑗 are the indices of two orbitals (sites) in the tensor
network and 𝑑𝑖𝑗 is the network distance between the orbitals. It is given by
the number of edges traversed when going from orbital 𝑖 to orbital 𝑗 and is
well defined due to the absence of loops in both the T3NS and the MPS. The
cost function ̂𝐴𝜂 should be minimized for positive 𝜂-values, while it should be
maximized for negative 𝜂-values.

Choosing 𝜂 equal to two is perhaps the most advantageous, as it allows an
approximate solution through the Fiedler vector [149, 268]. We can define a
Laplacian 𝐿𝐴 = 𝐷 − 𝐴 of the matrix 𝐴 where 𝐷 is a diagonal matrix with ele-
ments𝐷𝑖𝑖 = ∑𝑗 𝐴𝑖𝑗. The Fiedler vector is then given by the second eigenvector
of 𝐿𝐴 and is a solution of the constrained minimization problem for

𝐴(𝑥) = 𝑥†𝐿𝐴𝑥 = ∑
𝑖𝑗
𝐴𝑖𝑗|𝑥𝑖 − 𝑥𝑗|2 (5.2)

with∑𝑖 𝑥𝑖 = 0 and∑𝑖 𝑥2𝑖 = 1 as constraints. By ordering the 𝑥𝑖 values of the
Fiedler vector in descending or ascending order, a mapping of of the orbitals
can be proposed onto a linearMPS. It provides an approximate solution for the
minimum of Eq. (5.1) with 𝜂 = 2.

For the T3NS the approximate solution provided by the Fiedler vector is
not an option, instead we opted to minimize cost functions given in Eq. (5.1)
by simulated annealing. We iteratively permute two randomly picked orbitals
on the network and accept the given permutation with a probability

𝑝 = min(𝑒−𝛽Δ�̂�𝜂 , 1) . (5.3)

Here, Δ ̂𝐴𝜂 is the difference in the cost function after and before the permuta-
tion and 𝛽 is a parameter tuning the acceptance of permutations that worsen
the cost function. This technique was also used by Rissler et al. [186] for the
optimization of a mutual information-based cost function (see further).

Several two-orbital measures for the cost function in Eq. (5.1) can be pro-
posed. The most straightforward measures to use are the ones based on the
one-electron and two-electron integrals in the Hamiltonian. In Ref. [204] the
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bandwidth of the 𝑇𝑖𝑗 one-electron integrals was minimized, effectively group-
ing orbitals belonging to the same irreps. Moritz et al. [248] compared the per-
formance of minimizing the bandwidth for the Coulomb integrals 𝐽𝑖𝑗 = 𝑉𝑖𝑗𝑖𝑗,
the exchange integrals 𝐾𝑖𝑗 = 𝑉𝑖𝑗𝑗𝑖, and the mean-field matrix𝑀𝑖𝑗 = 2𝐽𝑖𝑗 − 𝐾𝑖𝑗.
By testing different orderings on the chromium dimer, they concluded that or-
dering based on the exchange matrix worked best. Minimization of the band-
width in Refs. [204, 248] was not done by minimizing Eq. (5.1), instead a re-
verse Cuthill-McKee (RCM) algorithm [269, 270] was used. When using RCM,
a cutoff should be defined for thematrix elements of the consideredmeasure as
it only permutes the rows and columns of a sparse matrix to move all nonzero
elements as close as possible to the diagonal. The Fiedler vector provides a
better minimization of the bandwidth as it treats the different magnitudes of
the interactions appropriately.

Currently, the exchangematrix is themostwidely usedHamiltonian-based
measure for localized orbitals [169, 176, 254, 258, 260, 263] as it also reflects
the overlap between the orbitals. An ordering by using the Fiedler vector or
a genetic algorithm in junction with the exchange matrix is implemented in
open-source QC-DMRG projects such as CheMPS2 [92, 144, 176, 193] and
Block [148, 187, 199, 204, 258]. Other measures that have been used or pro-
posed are, for example, the Fock matrix for non-HF orbitals [271] and

𝑉2𝑖𝑖𝑗𝑗
𝜖𝑖 − 𝜖𝑗

, (5.4)

a measure based on the Møller-Plesset perturbation theory [272].
Not only measures based on the Hamiltonian can be used; entanglement-

based measures are perhaps even more suitable as the workings of tensor net-
workmethods are rooted in entanglement. Legeza and Sólyom [185] proposed
the usage of the single-orbital vonNeumann entropy. It is the entropy between
one orbital and the rest of the system. For T3NS and DMRG, these entropies
are quite easily calculated. One only has to bring the network in the canonical
formwith the appropriate site chosen as orthogonality center. A singular value
decomposition along the physical edge immediately results in the needed sin-
gular values, i.e.

𝐴𝑘

𝑘
→

𝑈𝑘

𝑠𝑖
𝑉𝑘
𝑘

(5.5)
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The single-orbital entropy 𝑆(𝑘) is now easily calculated by using Eq. (1.8):

𝑆(𝑘) = −∑
𝑖
𝑠2𝑖 ln 𝑠2𝑖 . (5.6)

The single-orbital entropy is a measure of the entanglement between the or-
bital and the rest of the system; as such, Legeza and Sólyom [185] proposed
to group the orbitals with the highest entropies together. As there is no a pri-
ori knowledge of the single-orbital entropies, an initial cheap low-D DMRG
calculation was proposed to obtain a first estimate of 𝑆(𝑘).

Amore suitable entanglementmeasure is given by themutual information
𝐼𝑘𝑙. Thismeasure, proposed by Rissler, Noack andWhite [186] for the ordering
of orbitals, quantifies the correlations between the two orbitals 𝑘 and 𝑙 and is
given by

𝐼𝑘𝑙 = (𝑆(𝑘) + 𝑆(𝑙) − 𝑆(𝑘, 𝑙)) (1 − 𝛿𝑘,𝑙) , (5.7)

where 𝑆(𝑘, 𝑙) is the von Neumann entropy between orbitals 𝑘 and 𝑙, and the
rest of the system. Although not as straightforwardly obtained as single-orbital
entropies, these two-orbital entropies can still be calculated quite efficiently in
an MPS and T3NS [186].

Just as for the single-orbital entropies, the calculation of the mutual infor-
mation needs an initial cheap calculation for the knowledge of the entropies.
Luckily, Rissler et al. [186] noticed no substantial changes for the mutual in-
formation between DMRG calculations at low bond dimension and more ac-
curate calculations. They also noticed that the mutual information between
orbitals of the same irrep were particularly large. This further strengthened
the already existing heuristic of grouping orbitals per irrep on the MPS, as 𝑇𝑖𝑗
terms vanish for 𝐼𝑖 ≠ 𝐼𝑗 [149, 204, 273]. Since the introduction of the mutual
information, this measure has been widely used for the ordering of orbitals in
DMRG [100, 146, 149, 168, 170, 192, 274]. The mutual information has also
been used in DMRG for the efficient reconstruction of the CI expansion [275].

The mutual information is generally formulated by using the von Neu-
mann entropy; as such it is a positive value for all 𝑘 and 𝑙 due to the subad-
ditivity of the von Neumann entropy [276]. If one would derive mutual in-
formations with respect to the Rényi entropies, the positivity of the mutual
information would only be ensured for 𝛼 > 1 as the Rényi entropy is only
subadditive for these values [277, 278].

5.3. Reordering the orbitals
Instead of optimizing the orbitals by Gaussian mode transformations as done
by Krumnow et al. [189, 266, 267], we will opt to only optimize the ordering of
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a chosen orbital set onto the tensor network. Optimizing the global ordering of
the orbitals can be easily done by repeated local permutations while sweeping
through the network. Let us first clarify these local permutations.

5.3.1. The local permutation
Suppose we have a two-site tensor built from two contracted physical sites; we
can easily swap the order of the two physical degrees of freedom within the
two-site tensor by a permutation of the indices of the tensor, i.e.

𝐴 𝐵𝛼 𝛽1

𝑎 𝑏
= 𝐴𝐵𝛼 𝛽

𝑎 𝑏
= 𝐴𝐵′𝛼 𝛽

𝑎𝑏
, (5.8)

where 𝑎 and 𝑏 are the physical edges, 𝛼 and 𝛽 are the unconnected virtual
edges and 1 is a virtual internal edge.

For the T3NS, swapping of the orbitals can be done in a similar fashion.
However, swapping of orbitals connected through an intermediate branching
tensor is also needed to ensure a global reordering; we need three-site tensors.
For example, we can swap the physical degrees of freedom 𝑎 and 𝑏 in the fol-
lowing example:

𝐴

𝐶

𝛼

𝛾1𝑎

𝐵
𝛽

2

𝑏

=

𝐴𝐵𝐶

𝛼

𝛾𝑎

𝛽 𝑏

=

𝐴𝐵𝐶
′

𝛼

𝛾

𝑎𝛽

𝑏 . (5.9)

Again, the loose virtual edges are denoted by the Greek letters 𝛼, 𝛽 and 𝛾 and
the virtual internal edges are given by the numbers 1 and 2. Similarly, one
could permute all three physical degrees of freedom neighboring a branching
site at once by forming a four-site tensor.

For fermionic tensors, the fermionic sign has to be taken into account
when permuting the indices of the rank-four tensor in Eq. (5.8) or rank-five
tensor in Eq. (5.9). A change of the coupling scheme is also needed if the ten-
sors are additionally written as SU(2)-invariant tensors. As these extra compli-
cations were already extensively discussed in Chapter 3, we will only briefly
mention the prefactors needed for the two permutations given in Eq. (5.8) and
Eq. (5.9). For the first permutation given in Eq. (5.8) we need to deform

𝐴𝐵𝛼 𝛽
𝑎 𝑏

= 𝐴𝐵𝑟
𝑥1𝑥𝛼𝛼𝛼 𝑥𝛽𝛼𝛽

𝑥𝑎 𝑥𝑏
x𝛼 x𝛽

x𝑎 x𝑏
x1

(5.10)
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to

𝐴𝐵′𝛼 𝛽
𝑎𝑏

= 𝐴𝐵′𝑟𝑥2𝑥𝛼𝛼𝛼 𝑥𝛽𝛼𝛽

𝑥𝑏 𝑥𝑎
x𝛼 x𝛽

x𝑏 x𝑎
x2

(5.11)

resulting into

𝐴𝐵′𝑟𝑥2𝑥𝛼𝛼𝛼 𝑥𝛽𝛼𝛽

𝑥𝑏 𝑥𝑎
= [𝑗2]2∑

𝑗1
(−1)𝑗1+𝑗2−𝑗𝑎−𝑗𝑏 {𝑗𝑎 𝑗𝛽 𝑗2

𝑗𝑏 𝑗𝛼 𝑗1
}

(−1)𝜋𝑎𝜋𝑏 𝐴𝐵𝑟
𝑥1𝑥𝛼𝛼𝛼 𝑥𝛽𝛼𝛽

𝑥𝑎 𝑥𝑏
.

(5.12)

The needed prefactor is obtained by using the 6j-swap property of the symme-
try tensor and including the appropriate fermionic sign. For the permutation
given in Eq. (5.9) we need to deform

𝐴𝐵𝐶
𝛼

𝛾𝑎

𝛽 𝑏

=

𝐴𝐵𝐶
𝑟𝑥1 𝑥

2

𝑥𝛼𝛼𝛼

𝑥𝛾𝛼𝛾𝑥𝑎

𝑥𝛽𝛼𝛽 𝑥𝑏

x𝛼

x𝛾
x𝑎

x𝛽 x𝑏

x1
x2

(5.13)

to

𝐴𝐵𝐶
′

𝛼

𝛾

𝑎𝛽

𝑏 =

𝐴𝐵𝐶
′𝑟𝑥3 𝑥

4

𝑥𝛼𝛼𝛼

𝑥𝛾𝛼𝛾𝑥𝑏

𝑥𝛽𝛼𝛽 𝑥𝑎

x𝛼

x𝛾
x𝑏

x𝛽 x𝑎

x3
x4

(5.14)

resulting into

𝐴𝐵𝐶
′𝑟𝑥3 𝑥

4

𝑥𝛼𝛼𝛼

𝑥𝛾𝛼𝛾𝑥𝑏

𝑥𝛽𝛼𝛽 𝑥𝑎

= [𝑗3]2[𝑗4]2 ∑
𝑗1𝑗2
(−1)𝑗2+𝑗𝑏−𝑗4−𝑗𝑎 {

𝑗𝛼 𝑗𝑎 𝑗1
𝑗𝑏 𝑗𝛽 𝑗2
𝑗3 𝑗4 𝑗𝛾

}

(−1)𝜋𝑎𝜋2+𝜋𝛽𝜋𝑏

𝐴𝐵𝐶
𝑟𝑥1 𝑥

2

𝑥𝛼𝛼𝛼

𝑥𝛾𝛼𝛾𝑥𝑎

𝑥𝛽𝛼𝛽 𝑥𝑏

,

(5.15)
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which is obtained by using the 9j-swap and the reflection property of the sym-
metry tensor and again including the appropriate fermionic sign. Prefactors
for other permutations of orbitals around a branching tensor can be found anal-
ogously.

5.3.2. Optimizing the orbital ordering
There are two options for optimizing the global order through local permuta-
tion of orbitals. In the first, one can permute during the energetic optimization
of the wave function; every time an optimized multi-site tensor has been ob-
tained, the best permutation of its local degrees of freedom can be searched.
Intertwining orbital reordering with energy optimization has the advantage
that one can directly permute the untruncatedmulti-site tensor; however, two-
site optimization is insufficient when treating a T3NS in this case and one has
to opt for three-site or four-site optimization to ensure a global permutation of
the local physical degrees of freedom. Another disadvantage is that the renor-
malized operators have to appropriately adapted at each permutation.

In the second, the optimization of the orbital ordering is done separately
from the energetic optimization; a sweeping procedure designated for orbital
reordering is executed once an optimized wave function is obtained. This pro-
cedure has the advantage that the renormalized operators can be completely
disregarded during the reordering; the operators can be recalculated once a
new order is obtained. This procedure has been implemented in our T3NS
code [156] and is called by using the ­­disentangle flag.

Selecting the best order
Themost straightforwardway of choosing the best permutationwould be to ac-
cept the ordering forwhich the truncated SVDof themulti-site tensor gives the
best approximation. However, this is only an optionwhen orbital ordering and
energy optimization are intertwined and not when optimizing the order in a
separate sweep. For the latter case, themulti-site tensor to decompose consists
out of a contraction of several single-site tensors with a give bond dimension
𝐷. As such, any truncated decomposition at the same bond dimension will be
error-less for the original order.

Alternatively, entropy measures such as the von Neumann entropy and
the Rényi entropy can be used for determining the best order. These entropy-
measures were introduced in Section 1.1.1 and are respectively given by

𝑆 = −∑
𝑖
𝑠2𝑖 ln 𝑠2𝑖 (5.16)
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and

𝑆𝛼 =
1

1 − 𝛼 ln (
𝑚
∑
𝑖=0
𝑠2𝛼𝑖 ) (5.17)

where 𝑠𝑖 are the singular values of an SVD. We remind the reader that the von
Neumann entropy corresponds to the Rényi entropy for 𝛼 → 1.

When reordering the orbitals on two neighboring sites as in Eq. (5.8), the
entropy of the two different singular value decompositions can be compared.
When reordering the physical edges as in Eq. (5.9), multiple SVDs are needed
for the decomposition and each SVD has an associated entropy. We opted for
comparing the sum of these entropies in this case; other options are also pos-
sible such as comparing the maximal value of the entropies.

As the permutations are local, it is quite sensitive to local minima during
optimization. We partially remedy this by accepting suboptimal local permuta-
tionswith exponentially decaying chance; i.e. we accept a certain permutation
with a probability 𝑝 = min (𝑒−𝛽Δ𝑆𝛼 , 1)whereΔ𝑆𝛼 is the difference in entropies
after and before permutation. The parameter 𝛽 can be freely chosen and tunes
the willingness to accept permutations with a higher entropy.

5.3.3. Numerical examples
In this section, somenumerical results for the reordering of the orbitals onto an
MPS and a T3NS are presented. Wewill compare orderingminimizing the cost
function ̂𝐾2, i.e. the cost function in Eq. (5.1) for the exchange matrix at 𝜂 = 2,
with results after local permutations. Both the von Neumann entropy (𝑆1) and
the Rényi entropy with 𝛼 = 1/4 (𝑆1/4) are used for the latter. The ordering with
̂𝐾2 as cost function is optimized by the Monte Carlo-esque acceptance given
in Eq. (5.3) with 𝛽 = 1.

Local permutations are accepted with a probability 𝑝 = min (𝑒−𝛽Δ𝑆𝛼 , 1)
where 𝛽 = 20 for both 𝑆1 and 𝑆1/4. After some experimentation, this value pro-
vided reliable convergence to lower entangled orderings while still allowing
suboptimal permutations to move out of local minima. All calculations were
converged up to an energy difference of 10 nEh between subsequent sweeps.

The [Cu2O2]2– bisoxo isomer
As a first case, wewill revisit the [Cu2O2]2–bisoxo isomer. We use the Stuttgart
pseudopotential and associated basis functions (ECP10MDF) [201] for Cu and
the atomic natural orbital (ANO) basis set of Pierloot et al. for O [202]; the
same active space was used as in Refs. [104, 149]. In Table 5.1, some results
are summarized for several DMRG calculations on said system. We exploited
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both the 𝐷2ℎ point group symmetry and SU(2)-symmetry in the following cal-
culations; the reported bond dimensions 𝐷red are reduced bond dimensions.

order 𝐷red Energy [Eh]
(1) Exchange matrix 200 −541.527 808
(2) Reordering (1) by von Neumann entropy 200 −541.532 380
(3) Reordering (1) by Rényi entropy (𝛼 = 1/4) 200 −541.533 353
(4) Reordering (1) by Rényi entropy (𝛼 = 1/4) 1000 −541.538 769
(5) Exchange matrix 1000 −541.538 469
(6) Reordering (5) by Rényi entropy (𝛼 = 1/4) 1000 −541.539 167
(7) Random ordering 1000 −541.535 873
(8) Reordering (7) by Rényi entropy (𝛼 = 1/4) 1000 −541.537 294
(9) Reordering (8) by Rényi entropy (𝛼 = 1/4) 1000 −541.537 340
(10) Reordering (9) by Rényi entropy (𝛼 = 1/4) 1000 −541.537 370

Table 5.1: Results for DMRG calculations of the [Cu2O2]
2–bisoxo isomer. The extrapolated

result for the bisoxo isomer was given in Table 3.2 to be−541.540 12Eh.

Optimizations at a reduced bond dimension of 200 and 1000 have been ex-
ecuted where the orbital order was determined by the exchange matrix; these
are calculations (1) and (5) in Table 5.1. Calculations (2) and (3) use the con-
verged calculation (1) and reorder the orbitals with the von Neumann entropy
and the Rényi entropy with 𝛼 = 1/4 as criterion, respectively. Afterwards the
optimization is continued at 𝐷red = 200. Calculation (4) is a continuation
of calculation (3) at 𝐷red = 1000. Finally, calculation (6) is given by a Rényi
entropy based reordering of the wave function of calculation (5) after which
optimization is continued.

The results enumerated in Table 5.1make it quite clear that optimizing the
order by local permutations improves upon the initial order obtained through
the exchange matrix. For both 𝐷red = 200 and 1000, the error with the extrap-
olated result is approximately halved after reordering with the Rényi entropy
at 𝛼 = 1/4. Using the von Neumann entropy as criterion for the local permuta-
tions also improves upon the initial ordering in (1) but to a lesser extent than
the Rényi entropy. Although no thorough research has been done to the op-
timal 𝛼-value for the entropy and the optimal 𝛽-value for the acceptance of
suboptimal permutations, we noted consistently better performances for 𝑆1/4
than for 𝑆1; this is probably due to the heavier weight assigned to slowly decay-
ing tails of singular values for the former measure.

In Fig. 5.1, a heat map of the Rényi entropy at all 𝛼-values and of the sin-
gular values is given for calculations (5) and (6) for each virtual bond in the
MPS. No large qualitative changes can be noted in the entropy-profile of the
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Figure 5.1: Heat map of the Rényi entropy and the singular values along each bond in the
MPS with𝐷red = 1000 for the [Cu2O2]2–bisoxo isomer. The orbitals were ordered by the cost
function �̂�2 using the exchange matrix in Eq. (5.1) (upper) and by subsequently optimizing the
order using the Rényi entropy at 𝛼 = 1/4 (lower). These wave functions correspond with (5)
and (6) in Table 5.1.

MPS before and after optimizing the orbital order; however, the profile after
optimizing seems more smoothed (especially around bonds 30 to 40) and the
entropies along the bonds are also lowered, resulting in more accurate calcu-
lations.

As an extra illustration, we have performed calculations with an initial ran-
dom ordering (denoted as (7) in Table 5.1). As could be expected, these calcu-
lations at 𝐷red = 1000 perform much worse than the other calculations (4–6).
We have subsequently optimized the ordering by local permutations with the
Rényi entropy 𝑆1/4 followed by a new energy optimization at 𝐷red = 1000. This
has been repeated three times and the results are denoted (8), (9) and (10) in
Table 5.1. Although the optimized ordering does perform substantially better
than the initial random ordering, it is still worse than the ordering based on
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Figure 5.2: Heat map of the Rényi entropy along each bond in the MPS with 𝐷red = 1000 for
the [Cu2O2]

2–bisoxo isomer. The orbitals were ordered randomly (left) and by subsequently op-
timizing the order using the Rényi entropy at 𝛼 = 1/4 three times (right). These wave functions
correspond with (7) and (10) in Table 5.1.

the exchangematrix. The Rényi entropy profiles of thewave functionwith ran-
dom ordering (7) and the wave function after reordering trice (10) are given in
Fig. 5.2. We note again the same smoothening and lowering of the entropies by
local permutations, but again, the overall shape does not change substantially;
peaks arise at the same region.

A rubidium phenanthrene coordination complex
As a next exposition of the local reordering, we will study a rubidium phenan-
threne coordination complex in a minimal basis set with split-localized or-
bitals through DOCI-T3NS. This is the same system studied in Section 4.2.4
and has 162 electron pairs in 261 orbitals. A radially expanding T3NS is used
with a maximal bond dimension of 150. In Fig. 5.3, heat maps of the Rényi
entropies and of the singular values are given along the virtual bonds of the
network before and after reordering. While a mapping of the bonds on a lin-
ear axis is quite straightforward for anMPS it is not for a T3NS; hence, we have
chosen to map the bonds in decreasing order of 𝑆1/4 entropy.

Although the tensor network is quite big (261 physical sites), most of the
virtual legs have a low bond dimension; in fact only 60 of the 390 virtual bonds
needed to be truncated. This is visible in the heat maps of the singular values
in Fig. 5.3 and is expected as approximately half of the physical sites are at the
border of the network for a radially expanding T3NS.

The initial ordering is decided through the exchangematrix. After the opti-
mization of a T3NS with a bond dimension of 𝐷 = 150, the ordering is further
optimized by using local permutations with the Rényi entropy 𝑆1/4 as swapping
criterion. The wave function with the newly obtained orbital order is finally
further optimized at a bond dimension of 150.

The ground state energies are given by −6081.983 891Eh for the initial or-
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Figure 5.3: Heat map of the Rényi entropy and the singular values along each bond in the
T3NS with 𝐷 = 150 for the rubidium phenanthrene coordination complex for a DOCI-T3NS
calculation. The bonds are plotted in order of decreasing Rényi entropy at 𝛼 = 1/4. Only the
Rényi entropies for the 100 most entangled bonds are shown. The orbitals were ordered by
using �̂�2 as cost function (upper) and by subsequently optimizing the order using the Rényi
entropy at 𝛼 = 1/4 (lower).

dering and −6081.984 695Eh for the final ordering. A notable improvement
of the energy is obtained, this is especially apparent when comparing with the
reported results in Table 4.2; even calculations at a bond dimension of 50 with
the final ordering perform better than the initial exchange matrix-based order-
ing at 𝐷 = 150.

When looking at Fig. 5.3, it is again quite apparent that reordering of the or-
bitals through local permutations smooths the entropy profiles and decreases
the entropies a bit. We have only plotted the Rényi entropies of the 100 most
entangled bonds.
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5.4. Deforming the tree tensor network
Not only the orbital order can be optimized for a T3NS, but also the geometry
of the network itself. Contracting two neighboring tensors and permuting the
indices as previously done for the TTNS [279] is not an option for the T3NS as
it does not preserve the T3NS structure. Instead, the virtual indices of a multi-
site tensor consisting out of two branching and one physical tensor should be
permuted; two unique swaps can be identified in this case, i.e.

(5.18)

Where physical tensors are colored green while branching tensors are blue.
These types of deformations leave the T3NS structure intact; no two branching
tensors are adjacent which is elemental for an efficient two-site optimization.

By executing a QR-decomposition on every second physical tensor in an
MPS, we can easily deform it as follows

= (5.19)

where again the same color scheme is used. Once this form is obtained, the
MPS can be changed to a general T3NS by repeated usage of Eq. (5.18).

The implementation of these deformations is a work in progress; hopefully
they will shedmore light on the competitiveness between T3NS and DMRG as
it gives us the opportunity for a controlled transformation between the two.

5.5. A short recap
We have started this chapter with a concise discussion of orbital choices for
QC-TNS calculations. Especially the recent research by White with respect to
multisliced gausslets [264, 265] seems promising as it exhibits a high degree of
locality while still being smooth and keeping Coulomb interactions diagonal.

The largest portion of this chapter deals with the ordering of a chosen or-
bital set onto the MPS or T3NS. We first discussed existing ordering methods;
the most commonly used methods to this day are grouping orbitals with high
mutual information or high exchange terms. In Section 5.3 we discussed local
permutations of the orbitals on an existing T3NS or MPS. The time needed for
locally permuting sites on the tensor network is negligible compared to the
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time needed for energetic optimizations while it provides an increased accu-
racy compared to ordering based on the exchange matrix. As such, it seems to
provide an efficient way to further enhance the accuracy of the T3NS.

Local permutations seem to only smoothen the initial ordering. Although
it improves the ordering, it does not seem to be capable of finding a more opti-
mal ordering with a vastly different entropy profile than the initial one. Maybe
this can be resolved by finding an acceptance of worse orderings which is not
too stringent while still improving the final result. Experimenting with, for
example, decreasing temperatures 1/𝛽 (as is common in simulated annealing)
did not solve the problem.

Bear in mind that these shown results are rather preliminary; research for
comparing the ordering by local permutations with other ordering methods
(such as the ones based on mutual information) is ongoing. Furthermore, we
did note experiment much with the control parameters for the simulated an-
nealing yet.

Finally, the deformations of the tree tensor networks as discussed in Sec-
tion 5.4 can have a large influence on the accuracy of the T3NS. These types of
deformations are not implemented yet, but can allow us for a systematic com-
parison between the MPS and the T3NS. As the T3NS has an increased flex-
ibility for the representation of entanglement compared to DMRG, it is quite
important to use this flexibility as optimal as possible.





6
Conclusions

A story has no beginning or end: arbitrarily one chooses that moment of
experience from which to look back or from which to look ahead.

Graham Greene

Since their advent in condensedmatter physics, tensor network statemeth-
ods have knownwide success in strongly correlated systems. For example, the
densitymatrix renormalization group (DMRG) provides an efficient algorithm
for the study of linear latticemodelswith local gappedHamiltonians, while the
projected entangled pair states (PEPS) are particularly well-suited for higher-
dimensional systems. The geometry of these tensor networks mimics the way
in which the different local degrees of freedom are entangled with each other;
it allows for an economical parametrization for states with low entanglement.

In quantum chemistry, DMRG has also known substantial success for the
simulation of strongly correlated molecules. However, the linear geometry
of the matrix product state (MPS), the underlying wave function for DMRG,
seems only ideal for encoding the correlations of linear or elongatedmolecules.
As DMRG provides an efficient optimization algorithm, the suboptimal geom-
etry of the MPS can still be partly overcome by increasing the used bond di-
mension. Quantumchemical DMRGcalculations generally need substantially
larger bond dimensions than their counterparts in condensed matter physics.

In this dissertation we have introduced the three-legged tree tensor net-
work state (T3NS), a new variational tensor network ansatz for quantumchem-
ical systems. The T3NS is a subclass of the tree tensor network states and pro-
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vides an improved flexibility for entanglement encoding compared to DMRG.
The branching character of the T3NS also allows a closer packing of correlated
orbitals in the network; hence, a lower bond dimension is generally needed for
T3NS calculations compared to QC-DMRG. Two-site optimization (an impor-
tant feature in quantum chemical tensor network calculations) is generally ac-
companied by an increased computational complexity in general TTNSs. This
is mitigated in the T3NS by interspersing physical and branching tensors in
the network. In Chapter 2, we discussed the T3NS algorithm for quantum
chemistry and showed some calculations comparing it to DMRG. These ini-
tial comparisons indeed showed the competitiveness of the T3NSwith DMRG;
the initial T3NS implementation was able to tackle large systems such as the
[Cu2O2]2– isomers with bond dimensions about three to four times smaller
compared to DMRG for the same accuracy.

Symmetries play a major role in the development of approximate methods
in quantum chemistry and physics as they substantially improve the efficiency
of these methods; correctly identifying the symmetries in the system sheds
more light on the possible dependencies between the parameters of the ansatz.
The point-group symmetry, the particle conservation, and the total spin con-
servation present in molecular systems introduce sparsities in the tensors. In
addition, the total spin conservation can result in a data compression by using
the Wigner-Eckart theorem on each tensor. Symmetry-induced dependencies
between the parameters of the ansatz are exposed by writing each tensor as
a reduced tensor independent of the magnetic quantum number of the basis
states and a suitable Clebsch-Gordan coefficient. The introduced sparsity and
data compression of the tensors can considerably speed up any tensor contrac-
tion needed.

Exploiting the total spin conservation is well understood and widely used
in QC-DMRG. A spin-adapted T3NS implementation is needed if we want to
obtain a faithful comparison between DMRG and T3NS. The initial proof-of-
concept implementation of the T3NS leveraged only the particle conservation;
much of the programmed routines needed to be completely overhauled to ac-
commodate the exploitation of multiplicity-free non-abelian symmetries such
as the total spin conservation. The resulting implementation can be found on
github [156]. In Chapter 3, we explained how such symmetries can be used in
the T3NS. We also showed some numerical results exemplifying the increased
efficiency when exploiting these symmetries.

Seniority restricted methods have also enjoyed recent success in the sim-
ulation of strongly correlated molecular systems. The seniority number of a
wave function is defined as the number of unpaired electrons. For example, a
wave function with seniority zero has only empty or doubly occupied orbitals.
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Unlike the total spin of the electrons, the seniority number is not a good quan-
tum number of the system. Nevertheless, doubly occupied configuration in-
teraction (DOCI, i.e. seniority zero) solutions seem to capture the majority of
the strong correlations in a molecule. This solution can be further improved
by including configurations with only a few broken pairs. However, restrict-
ing the allowed seniority numbers does not solve the exponential growth of
the Hilbert space; an exact treatment of seniority-restricted subspaces quickly
becomes unfeasible with increasing system size. By using the seniority num-
ber in junction with tensor network techniques, approximate calculations can
be performed in the exponentially scaling seniority-restricted subspaces at a
polynomial cost. In Chapter 4 we applied the same techniques used in Chap-
ter 3 to perform such seniority-restricted T3NS calculations. At low seniority
number, these calculations are faster than regular QC-T3NS calculations; es-
pecially calculations in the seniority-zero subspace prove to be quite fast as
the chemical Hamiltonian projected on the seniority-zero subspace is of lower
complexity than the full Hamiltonian. This is illustrated by calculating the
DOCI ground state energy in a rubidium phenanthrene coordination complex
in a minimal basis set with all electrons correlated. This active space is out of
reach for modern full QC-TNS calculations as it consists out of 162 electron
pairs and 261 spatial orbitals.

The seniority-restricted T3NS can be used for the systematic study of cer-
tain known shortcomings and artifacts of ground state solutions in the DOCI
subspace. We use the seniority-restricted T3NS for the study of the dissocia-
tion of the nitrogen dimer and the weakly bonding neon dimer. The artificial
point-group symmetry breaking of the DOCI ground state in benzene is also
studied.

In contrast to condensed matter physics, the mapping of the physical de-
grees of freedom onto the network is generally not straightforward. Hence,
multiple heuristics and cost functions for good orderings have been developed
over the years. Some of these methods are based on the structure of the quan-
tum chemical Hamiltonian, some are based on measures existing in quantum
information theory. In Chapter 5 we give a brief overview of some of the most
popular methods for orbital ordering and optimization. Instead of optimizing
the ordering of the orbitals globally, one can also reorder the orbitals locally
on an already existing T3NS wave function. By locally swapping the physical
degrees of freedom, we can minimize the entanglement in the tensor network.
We show some preliminary results of the improvements achieved in accuracy
with this optimization.
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Future outlook
Although the presented calculations demonstrate the competitiveness of the
T3NSwith DMRG, it is not yet clear if the T3NS can provide substantial advan-
tages for general quantumchemical calculations. Just asDMRG, the T3NSpro-
vides a computationally tractable way of calculating ground state wave func-
tions in quantum chemistry and symmetries are easily exploited. T3NS re-
quires demonstrably lower bond dimensions than theMPS due to an improved
entanglement encoding and the better grouping of highly entangled orbitals.
However, this does not necessarily result into more efficient calculations re-
garding CPU time; the favorable scaling of DMRG with respect to increasing
bond dimension means that we generally experienced similar accuracies in
less computational time compared to the T3NS.

To assess if the T3NS is generally advantageous with respect to DMRG we
need to leverage its strong points asmuch as possible. The increased flexibility
of the T3NS with respect to the MPS introduces extra opportunities for the
optimization of the orbital mapping since the geometry of the network itself
can be changed. Optimizing the geometry of the T3NS can be done in a similar
fashion as the optimization of the orbital ordering; by sweeping through the
network local permutations of the virtual degrees of freedom allows moving
branches around in the network. Although this is not implemented yet, it is
currently ongoing research. In thenear future, this functionalitywill hopefully
shed some light on the performance of T3NS with respect to DMRG in a given
orbital set.

Another option is to further investigate the effect of orbital choice within
the T3NS framework. For example, the usage of canonical transformations for
lowering the entanglement in the network can be studied for T3NS as previ-
ously done for the MPS by Krumnow et al. [189]. It is very much possible that
the impact of such optimizations will be different for the T3NS than for the
MPS due to its different network geometry.

Finally, the current implementation is primarily a proof-of-concept. Con-
siderable efforts have been invested in making an efficient and parallel code,
but there is still quite some room for improvement. While the code utilizes the
OpenMP API for shared memory parallelization, we could further improve by
using distributed memory parallelization on top. Furthermore, the memory
requirements of QC-DMRG and QC-T3NS are both dominated by the storage
of renormalized operators. As T3NS generally needs a lower bond dimension
than DMRG for similar accuracies, QC-T3NS tends to be less strenuous on
memory requirements. This could make T3NS particularly suitable for a hy-
brid CPU-GPU approach in the future.

All this could push T3NS to even increasingly larger system sizes. An as-
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sessment of a possible cross-over point between the performance ofQC-DMRG
and QC-T3NS for general molecules will probably require one or more of the
above mentioned improvements.





A
Two-site optimization

A.1. The approximation theorem
Being the workhorse of tensor network methods, it is more than appropriate
to at least assign an appendix to the singular value decomposition. Probably
the most fundamental theorem of the singular value decomposition is given
by the approximation theorem, i.e.

Theorem A.1 (Approximation theorem) Approximating the matrixA by a
matrix B𝑘 with rank 𝑘 has an error lower-bounded by

‖A − B𝑘‖2𝐹 ≥
min(𝑛,𝑚)
∑

𝑖=𝑘+1
𝜎2𝑖 , (A.1)

where 𝜎𝑖 are the singular values ofA in descending order and bothA and B𝑘 are
𝑚× 𝑛matrices.

Corollary A.1.1 The minimum of Eq. (A.1) is obtained for the truncated singu-
lar value decomposition of A, i.e.

B𝑘 =
𝑘
∑
𝑖=1
𝜎𝑖u𝑖v†𝑖 (A.2)

where

A =
min(𝑚,𝑛)
∑
𝑖=1
𝜎𝑖u𝑖v†𝑖 (A.3)

is the singular value decomposition of A.
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This theorem is quite often called the Eckart-Young theorem or the Eckart-
Young-Mirsky theorem. Although Carl Eckart and Gale Young did rediscover
the approximation theorem [280], it was, according to Stewart [281], Erhard
Schmidt who first formulated it [16].

LeonMirsky in his turn extended this theorem from the Frobenius norm to
every unitarily invariant norm [282]. A unitarily invariant norm is any norm
respecting ‖U†AV‖𝑈 = ‖A‖𝑈 for all unitary matricesU and V. His extension
of the approximation theorem can be formulated as follows [282]:

Theorem A.2 (Mirsky) Let 𝜌𝑖 and 𝜎𝑖 (𝑖 = 1, 2, … , 𝑛) be the singular values in
descending order of the complex matricesA and B respectively. Then

‖A − B‖ ≥ ‖diag(𝜌1 − 𝜎1, … , 𝜌𝑛 − 𝜎𝑛)‖ (A.4)

for any unitarily invariant norm.

It is quite straightforward to proveTheoremA.1using this theorem. We choose
the Frobenius norm as unitarily invariant norm and B to be a 𝑘-rankmatrix in
Eq. (A.4). Indeed, we obtain the approximation theorem:

‖A − B‖𝐹 ≥
𝑘
∑
𝑖=1
(𝜌𝑖 − 𝜎𝑖)2 +

𝑛
∑

𝑖=𝑘+1
𝜌2𝑖 (A.5)

‖A − B‖𝐹 ≥
𝑛
∑

𝑖=𝑘+1
𝜌2𝑖 . (A.6)

When performing a truncated singular value decomposition during a ten-
sor network optimization we are interested in the best rank 𝑘 approximation
to a certain matrix A under the constraint that the approximation has a fixed
norm ‖B𝑘‖ = 1; we have to minimize the following Lagrangian:

ℒ = ‖A − B𝑘‖2 − 𝜆 (‖B𝑘‖2 − 1) (A.7)

To solve this,Mirsky’s theorem ismore useful than the approximation theorem.
Indeed, we can state the following corollary.

Corollary A.2.1 Given the matrix A and a unitarily invariant norm ‖⋅‖. Solv-
ing the constrained minimization of ‖A − B‖ for constraints on B that can be
written purely in function of the singular values of B boils down to solving the
minimization problemof ‖diag(𝜌1−𝜎1, … , 𝜌𝑛−𝜎𝑛)‖under said constraintswhere

A = U diag(𝜌1, … , 𝜌𝑛)V†
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is the singular value decomposition of A. An optimal B is then given by

B = U diag(𝜎∗1 , … , 𝜎∗𝑛)V† .
The set of singular values 𝜎∗𝑖 is a solution for the constrained minimization of
‖diag(𝜌1 − 𝜎1, … , 𝜌𝑛 − 𝜎𝑛)‖.
This follows quite naturally from Theorem A.2. Indeed, for any matrix B′ ful-
filling the constraints we can construct the matrix B with the same singular
values as B′ but the unitary matrices for its SVD shared withA. This matrix B
still fulfills the constraints and we have ‖A − B′‖ ≥ ‖A − B‖, i.e. B is equal to
or better than B′ for the constrained minimization problem.

Let us prove that, using the Frobenius norm, the best normed rank-𝑘 ma-
trix approximatingA indeed corresponds with an ordinary truncated singular
value decomposition and renorming the result. From the previous corollary, it
is clear that minimizing the Lagrangian in Eq. (A.7) corresponds to minimiz-
ing

ℒ′ = ‖diag(𝜌1 − 𝜎1, … , 𝜌𝑘 − 𝜎𝑘, 𝜌𝑘+1, … , 𝜌𝑛)‖2𝐹
−𝜆 (‖diag(𝜎1, … , 𝜎𝑘, 0 … , 0)‖2𝐹 − 1)

(A.8)

or

ℒ′ =
𝑘
∑
𝑖=1
(𝜌𝑖 − 𝜎𝑖)2 +

𝑛
∑

𝑖=𝑘+1
𝜌2𝑖 − 𝜆(

𝑘
∑
𝑖=1
𝜎2𝑖 − 1) . (A.9)

Minimizing this Lagrangian corresponds to solving
𝜕ℒ′
𝜕𝜎𝑖

= −2(𝜌𝑖 − 𝜎𝑖) − 2𝜆𝜎𝑖 = 0 ∀𝑖 (A.10)
or

𝜎𝑖 =
𝜌𝑖
1 − 𝜆 . ∀𝑖 (A.11)

The rescaling factor can be easily computed as we imposed∑𝑖 𝜎2𝑖 = 1.
A very good historical overview of the singular value decomposition is

given in ref. [281] together with both Schmidt’s and Weyl’s proof for the ap-
proximation theorem for the Frobenius and spectral norm.

A.2. One-site versus two-site optimization
One-site and two-site optimizations do not necessarily result in the samewave
function. In fact, the next example will illustrate that they can be vastly dif-
ferent. Let us investigate a system consisting out of two interacting spin-1/2
particles. The Hamiltonian we are going to study is given by

�̂� = S1 ⋅ S2 + 2𝑆𝑧1 +
3
5𝑆

𝑧
2 , (A.12)
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i.e. they are subject to a Heisenberg nearest neighbor interaction and a mag-
netic field in the z-direction is presentwith a varying strength. Assume thatwe,
for some reason, want to find the ground state of this wave function through
an MPS with a bond dimension of 1.

Let us first examine for two-site optimization. Of course the algorithmwill
find the exact ground state during the optimization, which is given by

|Ψ⟩ = 0.9523|↓↑⟩ − 0.3052|↑↓⟩ , (A.13)

and has an energy 𝐸 = −1.1102. In the next step of the optimization this two-
site optimized wave function will be decomposed into two seperateMPSs with
a bond dimension of 1. This will result in |𝜑twosite⟩ = |↓↑⟩ and an energy of
𝐸 = −0.95.

However, when doing one-site optimization, the best mean-field solution
for the Hamiltonian can be found, i.e.

|𝜑onesite⟩ = [0.9948|↓⟩ − 0.1021|↑⟩] ⊗ [0.9317|↓⟩ + 0.3633|↑⟩] . (A.14)

This state has an energy of 𝐸 = −1.0542 which is better than the truncated
solution from the two-site optimization. On the other hand, its fidelity with
respect to the true ground state is much lower:

|⟨𝜑onesite | Ψ⟩|2 = 0.1392 (A.15)
|⟨𝜑twosite | Ψ⟩|2 = 0.9069 . (A.16)

Of course, we presented here quite an edge-case. The Hamiltonian was
tailored to accentuate the differences between the two optimizations and the
approximationmade by theMPS is not the least; only a bond dimension of one
was allowed. WhenworkingwithMPSswith larger, realistic bond dimensions,
the differences between the two optimizations are not expected to be this vast.
This example was merely to illustrate the possible different outcomes for the
optimizations.



B
Wigner symbols

In this appendix, some of the frequently used operations for the Wigner sym-
bols are given. Wewill extensively use a graphical representation of theWigner
3𝑗-symbol as introduced in Chapter 3. Here, we will only consider the SU(2)-
symmetry; Fermionic signswill be completely disregarded. Results were taken
from appendix B of Ref. [62] and from Ref. [283]; they are translated to the
graphical representation used in this dissertation.

This said, let us reiterate the relevant graphical depiction limited to the
SU(2)-symmetry:

x2
x3x1
= (−1)𝑗3−𝑚3 ( 𝑗1 𝑗2 𝑗3

𝑚1 𝑚2 −𝑚3
) . (B.1)

The arching arrow indicates the order of the coupling within the 3𝑗-symbol
while the arrows on the edges indicate the sign of their respective spin projec-
tions in the 3𝑗-symbol. Every outgoing edge of a vertex also introduces a phase
(−1)𝑗𝑖−𝑚𝑖 . For example, the following graphical depiction corresponds with

x3
x2x1
= (−1)𝑗1−𝑚1(−1)𝑗3−𝑚3 ( 𝑗1 𝑗3 𝑗2

−𝑚1 −𝑚3 𝑚2
) . (B.2)
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B.1. TheWigner 3𝑗-symbol
The relation between the Wigner 3𝑗-symbols and the Clebsch-Gordan coeffi-
cients is given by

⟨𝑗1𝑚1𝑗2𝑚2 | 𝑗3𝑚3⟩ = √2𝑗3 + 1(−1)𝑗1−𝑗2+𝑚3 ( 𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

) (B.3)

= (−1)𝑗2−𝑗1−𝑗3[𝑗3]
x2
x3x1
, (B.4)

where [𝑗3] is shorthand for √2𝑗3 + 1. Both the Wigner 3𝑗-symbols and the
Clebsch-Gordan coefficients dictate how to add angularmomenta; the 3𝑗-sym-
bols do it more symmetrically, as such, they are preferred for our purposes.
The 3𝑗-symbols are invariant for even permutations of the columns while an
extra sign of (−1)𝑗1+𝑗2+𝑗3 is introduced for odd permutations. Even permuta-
tions correspond with a rotation of the arching arrow and odd permutations
correspond with changing the direction of the arrow, i.e.

x2
x3x1 =

x2
x3x1 =

x2
x3x1 (rotation)

and x2
x3x1 = (−1)𝑗1+𝑗2+𝑗3

x2
x3x1 (reflection)

irrespective of the directions of the edges (signs of𝑚).
Orthogonality for the 3𝑗-symbols is given by

∑
𝑚1𝑚2

[𝑗3]2 (
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

) ( 𝑗1 𝑗2 𝑗′3
𝑚1 𝑚2 𝑚′

3
) = 𝛿𝑗3,𝑗′3𝛿𝑚3,𝑚′

3
(B.5)

or

∑
𝑚1𝑚2

[𝑗3]2 (
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

) ( 𝑗2 𝑗1 𝑗′3
−𝑚2 −𝑚1 −𝑚′

3
) = 𝛿𝑗3,𝑗′3𝛿𝑚3,𝑚′

3
(B.6)

or
x1

x2

x3 x3′ = (−1)𝑗1+𝑗2−𝑗3[𝑗3]−2 x3 . (orthogonality)

An implicit summation over𝑚1 and𝑚2 is assumed.
Last, we can change the direction of an internal edge; as an internal con-

traction implies a summation over its corresponding 𝑚𝑖 we can just change
to −𝑚𝑖. The only thing that should be taken into account is that the phase
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(−1)𝑗𝑖−𝑚𝑖 of the internal edge changes to (−1)2𝑗𝑖(−1)𝑗𝑖−𝑚𝑖 . Reversal is thus
given by

x𝑖 = (−1)2𝑗𝑖 x𝑖 . (reversal)

Just as the Clebsch-Gordan coefficients, the Wigner 3𝑗-symbols are triv-
ially zero except for valid couplings, i.e. for a 3𝑗-symbol ( 𝑗1 𝑗2 𝑗3𝑚1 𝑚2 𝑚3 ) we have

𝑚𝑖 ∈ {−𝑗𝑖, −𝑗𝑖 + 1, … , 𝑗𝑖 − 1, 𝑗𝑖} (B.7)
𝑚1 +𝑚2 +𝑚3 = 0 (B.8)
𝑗3 ∈ {|𝑗1 − 𝑗2|, |𝑗1 − 𝑗2| + 1, … , 𝑗1 + 𝑗2 − 1, 𝑗1 + 𝑗2} . (B.9)

B.2. TheWigner 6𝑗-symbol
When coupling three different angular momenta to a total angular momen-
tum, there are three different ways to achieve this. Depending on which spins
are first coupled to an intermediate total spin, we obtain different coupling
schemes. Wigner 6𝑗-symbols define the connection between these different
coupling schemes, i.e.

|(𝑗1, (𝑗2, 𝑗3)𝐽23)𝑗𝑚) = ∑
𝐽12
(−1)𝑗1+𝑗2+𝑗3+𝑗[𝐽12][𝐽23]

× {𝑗1 𝑗2 𝐽12𝑗3 𝑗 𝐽23
} |((𝑗1, 𝑗2)𝐽12, 𝑗3)𝑗𝑚) .

(B.10)

The coupling order are given in between brackets. We will use the Wigner
6𝑗-symbol extensively for the following symmetry tensor operation:

𝑗 𝑗4𝑗2

𝑗1 𝑗3
= ∑

𝑗′
[𝑗′]2(−1)𝑗+𝑗′−𝑗1−𝑗3 {𝑗1 𝑗4 𝑗

′

𝑗3 𝑗2 𝑗 } 𝑗′ 𝑗4𝑗2

𝑗1𝑗3
(6j-swap)

In this equation, we have swapped the angular momenta 𝑗1 and 𝑗3 by using a
6𝑗-symbol. This operation is independent of the directions of the arrows on
the loose edges.

B.3. TheWigner 9𝑗-symbol
While theWigner 6𝑗-symbol was used to change the coupling scheme of three
angular momenta, the Wigner 9𝑗-symbol is used when recoupling four angu-
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lar momenta, i.e.

|((𝑗1, 𝑗2)𝐽12, (𝑗3, 𝑗4)𝐽34)𝐽𝑀) = ∑
𝐽13𝐽24

[𝐽12][𝐽13][𝐽24][𝐽34]

× {
𝑗1 𝑗2 𝐽12
𝑗3 𝑗4 𝐽34
𝐽13 𝐽24 𝐽

} |((𝑗1, 𝑗3)𝐽13, (𝑗2, 𝑗4)𝐽24)𝐽𝑀) .
(B.11)

The first operation involving 9𝑗-symbols we will use is

𝐽12 𝑗4

𝑗3𝑗1

𝑗2 𝐽34
𝐽

= ∑
𝐽23𝐽14

𝐽23 𝑗4

𝑗3 𝑗1

𝑗2 𝐽14
𝐽

[𝐽23]2[𝐽14]2 {
𝑗2 𝑗1 𝐽12
𝑗3 𝑗4 𝐽34
𝐽23 𝐽14 𝐽

} .

(9j-swap)

This result is independent of the direction of the arrows on all the loose edges.
The equation can be shown by applying the 6j-swap three times for the consec-
utive swap of (𝑗1, 𝐽), (𝑗1, 𝑗3) and (𝐽, 𝑗3). Finally the obtained 6𝑗-symbols can be
changed to a 9𝑗-symbol by using [283]

{
𝑗1 𝑗2 𝐽12
𝑗3 𝑗4 𝐽34
𝐽13 𝐽24 𝐽

} = ∑
𝑥
(−1)2𝑥[𝑥]2 { 𝑗1 𝑗3 𝐽13

𝐽24 𝐽 𝑥 } {
𝑗2 𝑗4 𝐽24
𝑗3 𝑥 𝐽34

} {𝐽12 𝐽34 𝐽
𝑥 𝑗1 𝑗2

} . (B.12)

As a last way to handle the 3𝑗-symbols through a 9𝑗-symbol, we can use [283]

( 𝐽13 𝐽24 𝐽
𝑀13 𝑀24 𝑀

){
𝑗1 𝑗2 𝐽12
𝑗3 𝑗4 𝐽34
𝐽13 𝐽24 𝐽

}

= ∑
𝑚1𝑚2𝑚3𝑚4𝑀12𝑀34

( 𝑗1 𝑗2 𝐽12
𝑚1 𝑚2 𝑀12

) ( 𝑗3 𝑗4 𝐽34
𝑚3 𝑚4 𝑀34

)

( 𝑗1 𝑗3 𝐽13
𝑚1 𝑚3 𝑀13

) ( 𝑗2 𝑗4 𝐽24
𝑚2 𝑚4 𝑀24

) ( 𝐽12 𝐽34 𝐽
𝑀12 𝑀34 𝑀

)

(B.13)

or graphically:

𝑗4

𝑗2𝑗1

𝑗3

𝐽24𝐽13

𝐽34

𝐽12

𝐽 = {
𝑗1 𝑗2 𝐽12
𝑗3 𝑗4 𝐽34
𝐽13 𝐽24 𝐽

}
𝐽24

𝐽13

𝐽
(9j-merge)

Again, this result is independent of the arrows on the loose edges.
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In this appendix, we will discuss a few of the other operations useful for a
SU(2)-adapted T3NS code. Many of the needed operations for the manipu-
lation of the symmetry tensors are listed in Appendix B. Let us start by dis-
cussing the QR-decomposition.

C.1. The QR-decomposition
Just as the singular value decomposition discussed in Section 3.4.5, the QR-
decomposition needs a reformulation. To have a valid QR-decomposition, we
need to decompose a tensorA into a tensorQwhich is suitably orthogonalized
and a upper triangularmatrixR. The intricacies concerning orthogonalization
in a SU(2)-adapted T3NS are discussed in Section 3.2.2.

Assume we want to decompose the three-legged tensor

A =
𝑥2𝛼2

𝑥1𝛼1 𝑥3𝛼3𝐴𝑟

x2
x3x1
, (C.1)

for illustrative purposes we will discuss the decomposition along the third
edge; decompositions along the first and second edge are derived correspond-
ingly. Composing A results into

A =
𝑥2𝛼2
𝑥3𝛼3′𝑥1𝛼1

𝑄𝑟

x2
x3x1⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

Q

𝑥3𝛼3′ 𝑥3𝛼3𝑅𝑟 x3⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
R

(C.2)
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where Q is suitably orthogonal, i.e.

𝑥2𝛼2

𝑥3𝛼3

𝑥1𝛼1
𝑄𝑟

�̄�𝑟 𝑥3𝛼3′

= [𝑗3]2
𝑥3𝛼3

. (C.3)

See Section 3.2.2 for more information on this. To find the reduced tensors
we can execute a regular QR decomposition on every block of 𝐴𝑟 with fixed 𝑥3
label, i.e.

𝐴𝑟𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3 = 𝑄′𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3′𝑅
′
𝑥3𝛼3′ ;𝑥3𝛼3 (C.4)

Choosing the reduced tensors as

𝑄𝑟
𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3′ = [𝑗3]𝑄

′
𝑥1𝛼1;𝑥2𝛼2;𝑥3𝛼3′ (C.5)

𝑅𝑟𝑥3𝛼3′𝑥3𝛼3 = [𝑗3]
−1𝑅′𝑥3𝛼3′ ;𝑥3𝛼3 (C.6)

indeed results into a valid QR decomposition ofA; i.e. Q is suitably orthogonal
and R is upper triangular due to its reduced tensor being upper triangular.

C.2. The identity
The identity tensor is a three-legged tensor which couples to the singlet, it can
be safely inserted on edges in the tensor network and does not have any effect
on the value of the network. It is, for example, used to deform theHamiltonian
terms to mimic the T3NS in Section 3.3. The identity is given by

𝑥1𝛼1 𝑥2𝛼2𝟙
𝑥vac

x1𝛼1 x2𝛼2

xvac
(C.7)

with

𝑥1𝛼1 𝑥2𝛼2𝟙
𝑥vac

= (−1)2𝑗2[𝑗2] (C.8)

or

𝑥1𝛼1 𝑥2𝛼2𝟙
𝑥vac

x1𝛼1 x2𝛼2

xvac
(C.9)

with

𝑥1𝛼1 𝑥2𝛼2𝟙
𝑥vac

= [𝑗2] . (C.10)

The exact value of the reduced tensor of the identity depends on the exact order
of the coupling to the trivial irrep or vacuum.
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C.3. Somemore contractions
C.3.1. Physical update of a renormalized operator
In Section 3.4.2 the construction of an extended renormalized operator from a
minimal renormalized operator by appending a site operator was exemplified.
Here, we will show how said extended renormalized operator R can again be
updated by using an optimized canonicalized tensor B to a minimal renormal-
ized operator S:

𝑥𝐻
𝑥2′𝛼2′

𝑥2𝛼2
𝑆𝑟 x𝐻

x2′𝛼2′

x2𝛼2

= (−1)𝜋𝑝′ (−1)𝑗2′+𝑗𝑝′−𝑗3′⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
Due to the adjoint

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑝′

𝑥𝑝

𝑅
𝑟𝑥
3𝑝 𝑥

3 ′𝑝 ′
̄𝐵𝑟

𝐵𝑟

𝑥2′𝛼2′

𝑥2𝛼2 x3𝛼3

x3′𝛼3′

x𝐻

x𝑝′

x𝑝

x2′𝛼2′

x2𝛼2

x3′𝑝′

x3𝑝

(C.11)

where an extra phase is included for the adjoint of a suitably orthogonal tensor,
see Section 3.2.2. By using the orthogonality and the reversal property twice,
we obtain

𝑥𝐻
𝑥2′𝛼2′

𝑥2𝛼2
𝑆𝑟 =

𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑝′

𝑥𝑝

𝑅
𝑟𝑥
3𝑝 𝑥

3 ′𝑝 ′

̄𝐵𝑟

𝐵𝑟

𝑥2′𝛼2′

𝑥2𝛼2
𝛿x2,x3𝑝𝛿x2′ ,x3′𝑝′ (−1)

𝜋𝑝⏟⎵⏟⎵⏟
Fermionic

[𝑗2]−2[𝑗2′]−2(−1)𝑗2−𝑗3+𝑗𝑝⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
SU(2)

(C.12)

C.3.2. Branching update of a renormalized operator
Not only updates through physical tensors are possible, we can also update two
minimal renormalized operators to a new minimal renormalized operator by
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fusing it together with a branching tensor, i.e.

𝑥3𝛼3

𝑥3′𝛼3′ 𝑥𝑇𝑇𝑟

x3

x3′ x𝑇

= (−1)𝑗1′+𝑗2′−𝑗3′

𝑥1𝛼1

𝑥1′𝛼1′

𝑥𝑅𝑅𝑟

𝑆𝑟 𝑥𝑆

𝑥2𝛼2

𝑥2′𝛼2′
̄𝐴𝑟

𝐶

𝐴𝑟
𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝑇

x1

x1′

x𝑅
x𝑆

x2

x2′

x3

x3′

x𝑇
(C.13)

where 𝐶 is the needed factor for correctly fusing the two renormalized opera-
tors together. By using the 9j-merge, reflection and reversal propertywe obtain

𝑥3𝛼3

𝑥3′𝛼3′ 𝑥𝑇𝑇𝑟 =

𝑥1𝛼1

𝑥1′𝛼1′

𝑥𝑅𝑅𝑟

𝑆𝑟 𝑥𝑆

𝑥2𝛼2

𝑥2′𝛼2′
̄𝐴𝑟

𝐶

𝐴𝑟
𝑥3𝛼3

𝑥3′𝛼3′

𝑥𝑇 (−1)𝜋𝑅𝜋2⏟⎵⏟⎵⏟
Fermionic

{
𝑗1 𝑗1′ 𝑗𝑅
𝑗2 𝑗2′ 𝑗𝑆
𝑗3 𝑗3′ 𝑗𝑇

}
⏟⎵⎵⎵⏟⎵⎵⎵⏟

SU(2)

(C.14)

C.3.3. The effective Hamiltonian: The DMRG case
In Section 3.4.3 the action of the effective Hamiltonian on a physical and a
branching tensor was exemplified. Let us now discuss the action of the effec-
tiveHamiltonian on two physical sites instead. The two-site tensor to optimize
is now given by

M = 𝑥1𝛼1
𝑀𝑟

𝑥2
𝑥𝑖

𝑥3𝛼3
𝑥𝑗

x1𝛼1 x2
x𝑖

x3𝛼3
x𝑗 (C.15)

Two sets of extended renormalized operators are needed as given in Table 3.1,
one of each flavor (upstream and downstream). The action of these renormal-
ized operators upon the two-site tensor is given by

H = 𝑥1′𝛼1′
𝐻𝑟
𝑥2′

𝑥𝑖′
𝑥3′𝛼3′
𝑥𝑗′

x1′𝛼1′ x2′
x𝑖′

x3′𝛼3′
x𝑗′ (C.16)

=

𝑥1𝛼1
𝑀𝑟

𝑥2

𝑥𝑖
𝑥3𝛼3

𝑥𝑗

𝑥1′𝛼1′
𝑥𝑖′

𝑅𝑟 𝑥
1𝑖
𝑥 1

′ 𝑖
′

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑗′ 𝑆
𝑟𝑥3𝑗 𝑥

3 ′𝑗 ′

x1𝛼1

x𝑖
x3𝛼3

x𝑗

x1′𝛼1′
x𝑖′

x3′𝛼3′

x𝐻

x𝑗′

x2

x1𝑖

x1′𝑖′

x3𝑗

x3′𝑗′

. (C.17)
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By using three times orthogonality and reversal once we obtain

𝑥1′𝛼1′
𝐻𝑟
𝑥2′

𝑥𝑖′
𝑥3′𝛼3′
𝑥𝑗′ =

𝑥1𝛼1
𝑀𝑟

𝑥2

𝑥𝑖
𝑥3𝛼3

𝑥𝑗

𝑥1′𝛼1′
𝑥𝑖′

𝑅𝑟 𝑥
1𝑖
𝑥 1

′ 𝑖
′

𝑥3′𝛼3′

𝑥𝐻

𝑥𝑗′ 𝑆
𝑟𝑥3𝑗 𝑥

3 ′𝑗 ′ 𝛿x2,x1𝑖𝛿x2,x3𝑗𝛿x2′ ,x1′𝑖′𝛿x2′ ,x3′𝑗′

(−1)𝜋𝑗⏟⎵⏟⎵⏟
Fermionic

[𝑗2]−2[𝑗3𝑗]−2[𝑗3′𝑗′]−2(−1)(2𝑗𝑗)+(𝑗𝑗+𝑗3−𝑗3𝑗)+(𝑗𝑖+𝑗1−𝑗2)+(𝑗𝐻+𝑗3𝑗−𝑗3′𝑗′ )⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
SU(2)

(C.18)

The effective Hamiltonian of DMRG can be done by a tensor contraction with-
out the need of any Wigner symbols.
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