“A CFD-based study of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane”

Laurien A. Vandewalle, Kevin M. Van Geem, Guy B. Marin

The ideal reactor for oxidative coupling of methane (OCM) has two key characteristics: 1) limited species backmixing to maximize the selectivity towards intermediate C\textsubscript{2} products, and 2) sufficient thermal backmixing to allow steady-state multiplicity and autothermal operation. Non-reactive computational fluid dynamic (CFD) simulations have already shown that the first of these characteristics can be obtained in a gas-solid vortex reactor (GSVR). Whether the GSVR also exhibits the second key characteristic, i.e., sufficient thermal backmixing, is less straightforward to verify. A reactive Euler-Euler CFD methodology is developed for this purpose, allowing to simulate the GSVR while using detailed microkinetic models for both the homogeneous gas phase and heterogeneous surface chemistry. Simulations of a 2D adiabatic GSVR for OCM are performed, for inlet temperatures ranging from 873 K to 1198 K, in 25 K increments, while fixing the inlet composition, mass flow rate, catalyst mass and total pressure. The possibility for steady-state multiplicity is assessed by numerically igniting some of the non-ignited steady states, and evaluating whether or not these cases reach a new steady state on the ignited branch. Thanks to steady-state multiplicity, a CH\textsubscript{4} conversion of 40% (see Figure 1) and C\textsubscript{2} selectivity of about 75% (incl. 53% C\textsubscript{2}H\textsubscript{2}) can be obtained on the ignited branch, for an inlet temperature of merely 873 K.

Figure 1: Conversion of CH\textsubscript{4} and O\textsubscript{2} in a GSVR for OCM, clearly showing steady-state multiplicity.
(Sr-La/SiC catalyst, P = 2 bar, m\textsubscript{cat}/F\textsubscript{0(NTP)}\textsubscript{CH4} = 3.6 kg.s/Nm3, CH\textsubscript{4}:O\textsubscript{2}=4)