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Abstract 32 

Questions 33 

How do contrasting environmental conditions among forests and hedgerows affect the vegetative and reproductive 34 

performance of understorey forest herbs in both habitats? Can hedgerows support reproductive source 35 

populations of forest herbs, thus potentially allowing progressive dispersal of successive generations along the 36 

linear habitats? 37 

Location 38 

Hedgerows and deciduous forest patches in agricultural landscapes across the European temperate biome. 39 

Methods 40 

First, we assessed differences in environmental conditions among forests and hedgerows. Next, we quantified plant 41 

performance based on a set of functional life-history traits for four forest herbs (Anemone nemorosa, Ficaria verna, 42 

Geum urbanum, Poa nemoralis) with contrasting flowering phenology and colonization capacity in paired 43 

combinations of forests and hedgerows, and compared these traits among both habitats. Finally, we assessed 44 

relationships between plant performance and environmental conditions in both habitats. 45 

Results 46 

All study species showed a higher aboveground biomass in hedgerows than in forests. For P. nemoralis and G. 47 

urbanum, we also found a higher reproductive output in hedgerows, which was mainly correlated to the higher sub-48 

canopy temperatures therein. The ‘ancient forest herb’ A. nemorosa, however, appeared to have a lower reproductive 49 

output in hedgerows than in forests, while for F. verna no reproductive differences were found between the two 50 

habitats. 51 

Conclusions 52 

This is the first study on such a broad geographical scale to provide evidence of reproductive source populations 53 

of forest herbs in hedgerows. Our findings provide key information on strategies by which forest plants grow, 54 

reproduce and disperse in hedgerow environments, which is imperative to better understand the dispersal corridor 55 

function of these wooded linear structures. Finally, we highlight the urgent need to develop guidelines for 56 
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preserving, managing and establishing hedgerows in intensive agricultural landscapes, given their potential to 57 

contribute to the long-term conservation and migration of forest herbs in the face of global environmental change. 58 

Keywords 59 

Agricultural landscapes, contrasting environmental conditions, forest herbs, functional traits, hedgerows, forest 60 

fragmentation, metapopulation dynamics, microclimate, migration corridors, plant performance, source-sink 61 

dynamics, understorey vegetation  62 
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1. Introduction 63 

Forest ecosystems across the globe are increasingly threatened by human activities (Curtis et al. 2018), with severe 64 

implications for global biodiversity (Haddad et al. 2015; Tracewski et al. 2016) and ecosystem functioning (van der 65 

Plas et al. 2016) as well as the delivery of essential supporting (e.g. primary production), provisioning (e.g. wood 66 

and medicinal plants), regulating (e.g. carbon sequestration and pest control) and cultural (e.g. recreational 67 

activities) services (Valdés et al. 2020). Forests harbour about two-thirds of all terrestrial species on Earth 68 

(Millenium Ecosystem Assessment 2005). Among vascular plants in temperate forests, the large majority is 69 

concentrated in the herb layer (Gilliam 2007; Landuyt et al. 2019). Many herb-layer species are characterized by 70 

slow colonization rates and specific habitat requirements (Honnay et al. 2002; Matlack 2005), making them 71 

particularly susceptible to the effects of habitat loss and fragmentation (Flinn & Vellend 2005; Honnay et al. 2005). 72 

These species are often poor at crossing open habitats such as grassland and arable land, and their long-term 73 

survival in agricultural landscapes depends on the availability of remnant habitat patches as well as the connectivity 74 

among remnant and newly established patches. 75 

Wooded corridors (e.g. hedgerows and other linear woody habitats) are traditional components of agricultural 76 

landscapes across Europe (Baudry et al. 2000), and have been repeatedly advocated as a tool for land managers to 77 

enhance habitat connectivity (Davies & Pullin 2007). Indeed, a myriad of studies have shown that hedgerows may 78 

function as a refuge habitat or dispersal route for forest herbs among otherwise isolated forest fragments (Corbit 79 

et al. 1999; Sitzia 2007; Liira & Paal 2013; Van Den Berge et al. 2019). From this perspective, hedgerows may be 80 

crucial to the long-term persistence of forest herbs in forest devoid agricultural landscapes. Moreover, their 81 

importance for species movements through the landscape is expected to increase given the predicted range shifts 82 

of species under climate change (McGuire et al. 2016).  83 

Even so, over the past decades, the efficacy of hedgerows as migration corridors has been the subject of 84 

considerable debate (Gilbert-Norton et al. 2010; Paal et al. 2017). Most importantly, for hedgerows to act as 85 

efficient dispersal conduits, they must support persistent populations of forest herbs with the ability to reproduce, 86 

thus allowing the progressive movement of successive generations along the corridor (Corbit et al. 1999). Yet, due 87 

to their linear structure, hedgerows are generally characterized by a reduced habitat quality for many understorey 88 

forest herbs owing to edge effects, e.g. high soil nutrient levels combined with high light levels and less buffered 89 

microclimates, stimulating the growth of highly competitive ruderal species at the expense of typical forest herbs 90 
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(Roy & de Blois 2008; Wehling & Diekmann 2008; Vanneste et al. 2020a). These deteriorated conditions compared 91 

to forest habitats could further aggravate the risk of local extinction in hedgerows, because long-term persistence 92 

is potentially hampered for forest herb species that have colonized these wooded linear structures (see Schmucki 93 

& de Blois 2009). 94 

Hitherto, we know little about the performance of forest herb species once they have colonized hedgerows, and 95 

how their performance relates to the prevailing abiotic and biotic conditions in these corridors. Some studies (e.g. 96 

Endels et al. 2004; Wehling & Diekmann 2008; Schmucki & de Blois 2009) reported that hedgerows may harbour 97 

viable populations of forest plants, but that reduced recruitment could hamper their persistence and sustainability 98 

as a source population. However, these studies focussed on relatively small study regions, making it difficult to 99 

generalize conclusions. A promising approach to resolve this knowledge gap is to compare plant performance 100 

traits (i.e. a combination of vegetative and reproductive characteristics) of forest herbs between forest interiors and 101 

hedgerows, and repeat this along a large environmental gradient in a systematically paired design (forests vs. 102 

hedgerows). Indeed, it is expected that, for instance, macroclimate variables that vary at continental scales will 103 

significantly affect hedgerow habitats, e.g. via increased thermal buffering in warmer, southern macroclimates 104 

(Vanneste et al. 2020b). Plant performance traits provide vital information on the strategies by which forest plants 105 

survive and reproduce in the sub-optimal forest environment of hedgerows (McGill et al. 2006; Zanne & Falster 106 

2010; Diaz et al. 2013; Poorter et al. 2018), and how these strategies will in turn influence their capacity to persist 107 

and migrate along these linear landscape structures (see also Paal et al. 2020). 108 

Here, we compiled data from eight regions across the European temperate forest biome and quantified 109 

intraspecific differences in the functional trait attributes of forest plant species using a systematic paired design of 110 

comparison between forest interiors and hedgerows. For this study, four temperate forest herbs were chosen based 111 

on differences in colonization capacity and flowering phenology: Anemone nemorosa (spring flowering, slow 112 

colonizer), Ficaria verna (spring flowering, fast colonizer), Poa nemoralis (summer flowering, moderate colonizer) and 113 

Geum urbanum (summer flowering, fast colonizer). The large-scale environmental gradient along which the study 114 

sites are located, assured that the wide climatic variation of temperate Europe was represented adequately in our 115 

study and allowed us to test the generality of the observed patterns. Specifically, we addressed the following 116 

questions: 117 
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(1) Do abiotic and biotic environmental conditions differ in forests vs. hedgerows along a macro-118 

environmental gradient within temperate Europe? 119 

(2) Can differences in plant performance traits of the four study species be detected between the two 120 

contrasting habitats along the gradient? 121 

(3) What are the relationships between plant performance traits and environmental conditions in the two 122 

habitats? 123 

(4) Can hedgerow understories support reproductive source populations of forest herbs (including ancient 124 

forest specialists), thus potentially allowing the progressive dispersal of successive generations along the 125 

corridor? 126 

2. Materials and methods 127 

2.1. Study area 128 

This study was conducted in eight regions across the European temperate forest biome (Fig. 1). These regions 129 

were chosen to represent a broad environmental gradient with a mean annual temperature (MAT) range of 5.1–130 

10.4 °C and mean annual precipitation (MAP) range of 601–1251 mm year-1 (long-term average values for the 131 

period 1970–2000; Fick & Hijmans 2017) (Fig. S1). In each region, we selected four paired combinations of 132 

hedgerows connected to ancient forests (i.e. no land-use change since 1850), whereof the canopy mainly consisted 133 

of broadleaved woody species. The selected hedgerows were at least 50 years old (critical age to be colonized by 134 

typical forest herbs; Brunet & Von Oheimb 1998), had a diverse vertical structure (herbs, shrub and tree layer) and 135 

were surrounded by a non-wooded habitat (e.g. road, cropland, etc.) (see also Vanneste et al. 2020b). 136 

2.2. Study species 137 

Four model plant species were specifically selected for this study based on their distribution range (present in a 138 

majority of the study regions), reproductive traits (both sexual and clonal propagation), and their flowering 139 

phenology (two early spring vs. two summer flowering species) and colonization capacity (along a gradient of very 140 

slow to relatively fast colorizers; Table S2): Anemone nemorosa L. (Ranunculaceae), Ficaria verna L. (Ranunculaceae), Poa 141 

nemoralis L. (Poaceae) and Geum urbanum L. (Rosaceae). These species are common for temperate Europe’s deciduous 142 

forests, but are sometimes also found in forest edges, hedgerows and open habitats. To illustrate, the European 143 

forest species list of  Heinken (2019) classifies A. nemorosa and P. nemoralis as ‘true forest specialists’ (1.1 species), 144 

while F. verna and G. urbanum are classified as ‘species of both forests and open habitats’ (2.1 species). 145 
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Anemone nemorosa and F. verna are both vernal geophytes (Taylor & Markham 1978; Shirreffs 1985). Flowers of A. 146 

nemorosa are hermaphroditic and mostly pollinated by insects, though selfing occurs sporadically (Müller et al. 2000). 147 

Each flowering ramet produces 10–30 flask-shaped, single-seeded fruits (often referred to as ‘achenes’) per year. 148 

The seeds are mainly gravity-dispersed, although dispersal via slugs or ants can occur as well (Türke et al. 2010). 149 

A. nemorosa also propagates clonally via rhizomes (Philipp & Petersen 2007). The species is known as an ‘ancient 150 

forest specialist’, and has very slow colonization rates (Verheyen et al. 2003). Ficaria verna starts its growth in winter, 151 

and the flowers appear in early spring. The carpels develop into achenes, each containing a single seed. The diploid 152 

subspecies of F. verna produces a larger number of seeds, while the tetraploid subspecies (not sampled here) 153 

produces only very few seeds (Taylor & Markham 1978). Ficaria verna also spreads vegetatively via adventitious 154 

roots or by means of bulbils or tubers, which separate easily and develop into new plants allowing the species to 155 

colonize new habitats rapidly. The species is often associated with moist woodland soils and frequently occurs 156 

along streams or river banks, but is sometimes also found on drier, upland soils (Taylor & Markham 1978). 157 

Poa nemoralis and G. urbanum are respectively tussock- and rosette-forming hemicryptophytes (Taylor 1997). P. 158 

nemoralis produces flowers arranged in panicles from June to August. Fruits (caryopses) are mostly dispersed via 159 

epizoochory. The bristly diaspore (i.e. with straight appendages) is an adaption to disperse by adhesion to animals’ 160 

fur, mainly to mid-sized mammals (Heinken & Raudnitschka 2002). Zoochory and a high quantity of seeds ensures 161 

the quick colonisation success of P. nemoralis in new forest plantations within abandoned arable lands (Brunet & 162 

Von Oheimb 1998) and abandoned wooded grasslands (Dahlgren et al. 2006). Even so, the species mainly spreads 163 

clonally via tussock growth, and therefore has slow vegetative colonization rates (Heide 1986; Plue et al. in press). 164 

For G. urbanum, however, vegetative spread is rather limited and sexual reproduction via seeds is more common. 165 

It is self-compatible and flowers from July to September. Each flowering head can produce up to several hundreds 166 

of achenes. These achenes typically have a hooked awn, which enables them to attach to the fur of animals and 167 

hence assist seed dispersal over large distances via epizoochory (Taylor 1997). 168 

2.3. Plant performance traits 169 

In each of the selected forest-hedgerow pairs, we sampled populations of each species, both in the hedgerow and 170 

in the adjacent, connected forest patch. Specifically, we located a point in both the hedgerow and forest patch at 171 

50 m from their connection, and defined the search area as a circle with 30 m radius around these points. For the 172 

hedgerows, the sampling was not performed outside the hedgerow canopy area (Fig. S2). Notably, we strictly 173 
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focused on the forest-hedgerow paired combinations. So, if a species occurred only in the forest and not in the 174 

corresponding hedgerow (or vice versa), the species was not sampled in this particular site (Table S3). All trait 175 

measurements were performed on healthy individuals at seed maturity, following the standardized protocol of 176 

Pérez-Harguindeguy et al. (2013). Individuals with obvious symptoms of pathogen attack or insect predation were 177 

avoided. Depending on the phenology of the species and the geographical region, the sampling was performed on 178 

different dates (see Table S4). 179 

Both in the forest and in the corresponding hedgerow, we randomly selected 10 healthy-looking individuals of 180 

each species at the time of seed maturity (10 individuals × 2 plots × 4 sites = 80 individuals of each species per 181 

region). Because not all species were available in all regions, our total number of individuals was 1032. 182 

Subsequently, the following set of functional life-history traits was measured on each of these individuals: plant 183 

height, specific leaf area (SLA), dry aboveground biomass, seed releasing height, seed number, seed mass and 184 

resource investment in reproduction (RIR). We avoided performing measurements on neighbouring individuals 185 

(i.e. less than 50 cm from each other; especially for clonal species) to avoid a potentially strong spatial 186 

autocorrelation signal in plant traits.  187 

Plant height was measured as the vertical distance between the ground level and upper boundary of the main 188 

photosynthetic tissues, excluding inflorescences (i.e. the highest leaf). Plant height at maturity is associated with a 189 

species’ competitive vigour as well as its ability to cope with various forms of environmental stress (Westoby 1998). 190 

Next, seed-releasing height was measured as the vertical distance between the ground level and highest elevation 191 

of seeds or fruits. For species with multiple flowers per individual (e.g. G. urbanum), this measurement was repeated 192 

and averaged for all flowering heads. This trait is strongly related to a species’ dispersal potential (Tackenberg et 193 

al. 2003).  194 

For the SLA measurements, we collected a young but fully expanded, healthy leaf for each plant individual. Leaves 195 

were oven-dried to constant mass (carefully flatted between drying papers) in a drying stove at 60 °C for 48 h. The 196 

leaf area (mm²) was measured with a LiCor LI-3000C Area Meter (LI-COR Biosciences, Nebraska, USA). Leaf dry 197 

matter (mg) was weighed to the nearest 0.1 mg with a Mettler Toledo AG204 DeltaRange Analytical Balance 198 

(Mettler Toledo, Ohio, USA). Specific leaf area (mm² mg-1) was then calculated as leaf area divided by leaf dry 199 

matter. Specific leaf area typically reflects the trade-off between leaf photosynthetic capacity and leaf longevity 200 

(Wright et al. 2004). High SLA species usually have shorter leaf lifespans but higher photosynthetic rates. Besides, 201 
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increasing SLA is generally associated with higher potential growth rates and higher resilience against various 202 

disturbance regimes (Bernhardt-Römermann et al. 2011). Finally, we harvested all aboveground biomass of each 203 

individual. The plant material was oven-dried to constant mass in a drying stove at 60 °C for 48 h, and subsequently 204 

weighed to the nearest 0.1 mg. 205 

To determine the seed number and seed mass, we collected all seeds per individual in the field. The number of 206 

seeds was simply counted by hand, and the seed mass was calculated as the total mass of all seeds divided by the 207 

seed number. Seed traits play a key role in a species’ colonization capacity, and are associated with dispersal 208 

distances, seed bank persistence, germination, establishment and survival potential of the seeds (Coomes & Grubb 209 

2003). In general, smaller seeds can be produced in larger number with the same reproductive effort. Heavier seeds, 210 

however, typically have a higher survival and establishment rate upon emergence, notably in the face of 211 

environmental stress (e.g. drought, herbivory, etc.) (Moles et al. 2007). To account for this trade-off, we calculated 212 

the resource investment in reproduction (RIR) of each individual as the seed mass multiplied by the seed number 213 

(sensu De Frenne et al. 2009). 214 

2.4. Site characteristics 215 

Five variables were used to describe the canopy structure in each forest and hedgerow: the total canopy cover, the 216 

total shrub and tree cover (quantified as the sum of cover percentages of the individual shrub and tree species, 217 

respectively), and the average shrub and tree height. Height measurements were performed with a vertex (Haglöfs 218 

Vertex IV), while the total canopy cover was estimated with a convex spherical densiometer (Forestry Suppliers, 219 

Model A). Furthermore, the composition of the canopy was characterized by the shade-casting ability (SCA) and 220 

litter quality (LQ) of all overstorey (shrub and tree) species. For each forest and hedgerow, these variables were 221 

calculated as the cover-weighted average of SCA and LQ scores of the individual canopy species, respectively 222 

(sensu Verheyen et al. 2012). These scores range between ‘1’ (very low SCA or LQ) and ‘5’ (very high SCA or LQ) 223 

(see Table S5).  224 

Mineral topsoil (0-10 cm) samples were collected as mixed-soil samples from three random locations in each forest 225 

and hedgerow. The samples were subsequently dried to constant weight at 40 °C for 24 h and sieved through a 2 226 

mm mesh before analysing pH-H20, carbon-to-nitrogen (C/N) ratio, bio-available soil phosphorous (P) 227 

concentrations (mg kg-1) and sum of basic cations (Ca2+ + Mg2+ + K+) (mg kg-1) (see Appendix S1; Table S1).  228 
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Sub-canopy (microclimate) temperatures were recorded in each forest and hedgerow using “HOBO Pendant” data 229 

loggers.  These loggers were mounted at 1 m height in a radiation shield, and recorded the air temperature every 230 

two hours from 1st September 2017 to 1st September 2018. For each logger, we computed daily summary statistics 231 

(that is, minimum, mean and maximum temperatures). Corresponding ‘free-air’ (macroclimate) temperature data 232 

were retrieved for each study site from nearby weather stations (Table S6). Temperature offset values were 233 

calculated for each summary statistic as microclimate temperatures minus macroclimate temperatures. In this study, 234 

we mainly focused on the effect of maximum summer temperature offsets, because this summary statistic has been 235 

shown to differ most between forests and hedgerows (Zellweger et al. 2019; Vanneste et al. 2020b). Finally, it 236 

should be noted that sub-canopy temperature measurements were available for all sampled sites, except for the 237 

four forest-hedgerow combinations in Poland. For these sites, the maximum summer temperature offset was 238 

predicted based on the available temperature data from the 28 remaining sites taking into account the 239 

corresponding canopy characteristics and macroclimate temperature (see Appendix S1). 240 

2.5. Data analyses 241 

To test for differences in abiotic and biotic environmental conditions between forests and hedgerows, we fitted 242 

linear mixed-effect models (LMM) with restricted maximum-likelihood model estimation (REML) (Zuur et al. 243 

2009). In these models, the environmental variables (canopy cover, tree and shrub cover, tree and shrub height, 244 

SCA, LQ, soil pH, soil C/N ratio, soil P, sum of basic cations and maximum summer temperature offset; Table S7) 245 

were included as response variable and the factor variable ‘habitat’ (‘forests’ vs. ‘hedgerows’) as fixed effect. In 246 

addition, a nested random intercept term (‘region/site’) was included to account for the hierarchical structure of 247 

the dataset and spatial autocorrelation between populations of the same geographical region or study site.  248 

Next, we assessed whether the functional traits of each species differed between the two contrasting habitats. As 249 

above, we built LMMs with REML including the functional traits as response variable, ‘habitat’ (‘forests’ or 250 

‘hedgerow’) as fixed effect, and ‘region/site’ as nested random intercept term. Finally, we tested the relationship 251 

between the functional traits of each species and the different environmental variables in both habitats. For each 252 

species and for each functional trait, we ran a series of separate univariate LMMs, one per predictor variable as 253 

fixed effect. We specifically used this univariate regression approach to avoid multicolinearity issues. As above, the 254 

models were fit with REML including the functional traits as response variable, the environmental variable as fixed 255 

effect, and ‘region/site’ as nested random intercept term. All predictors were centred to a mean of zero and scaled 256 

http://www.onsetcomp.com/products/data-loggers/ua-001-08
http://www.onsetcomp.com/products/data-loggers/ua-001-08
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to a standard deviation of one prior to analysis. P values were adjusted for multiple testing via the false discovery 257 

rate (FDR) correction, i.e. the adjusted P values depict the expected proportion of type I errors (rejections of a 258 

true null hypothesis or “false discoveries”) when the threshold for rejecting the null hypothesis is set at the original 259 

P value (sensu Benjamini & Hochberg 1995). The FDR-based correction procedure for multiple comparisons is 260 

more appropriate for detecting significant results than the traditional methods (e.g. Bonferroni), and has been 261 

shown to be especially useful for studies in ecology and evolution (Verhoeven et al. 2005; Pike 2011). 262 

All data analyses were performed in R Version 3.5.1 (R Core Team 2019), using the functions p.adjust of the stats 263 

package (R Core Team 2019), lmer of the lme4 package (Bates et al. 2015) and r.squaredGLMM of the MuMin package 264 

(Barton 2017). Several response variables required a transformation prior to analysis to achieve normality of their 265 

distribution (Zuur et al. 2009). Shrub height, shrub cover, and bio-available P were transformed with natural 266 

logarithm. The seed releasing height, seed number, seed mass and RIR of Ficaria, the seed number, RIR and SLA 267 

of Poa, and the seed number, RIR and biomass of Geum were square root transformed. 268 

3. Results 269 

3.1. Abiotic and biotic environment 270 

Trees in hedgerows were 10.9 (±1.9 SE) m smaller than in forests, while shrub cover was higher in hedgerows. 271 

Tree cover and SCA were marginally lower in hedgerows (Fig. 2; Fig. S4). The total canopy cover, shrub height, 272 

litter quality, soil C/N ratio and sum of basic cations did not differ between habitat types. As to soil properties, 273 

only bio-available P concentrations differed significantly between habitats, with consistently higher values in 274 

hedgerows than in forests. Maximum summer temperature offset was 0.941 (±0.053 SE) °C less negative (i.e. lower 275 

thermal buffering) in hedgerows (Fig. 2; Fig. S4). 276 

3.2. Plant performance traits 277 

In general, we found higher vegetative performance in hedgerows than in forests in all study species. For instance, 278 

plant individuals of Anemone were 0.751 (±0.268 SE) cm taller in hedgerows than in forests. In addition, all species 279 

showed a higher biomass and all species except Ficaria showed a significantly lower SLA in hedgerows than in 280 

forests (Fig. 3; Fig. S6-S9). The reproductive performance was higher in hedgerows than in forests in Poa and 281 

Geum but lower in Anemone and not significantly different between habitats in Ficaria. To illustrate, we observed a 282 

higher seed releasing height, seed number per individual and seed mass in hedgerows for Poa as well as a higher 283 
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RIR in hedgerows for both Poa and Geum. For Anemone, however, we detected a reduced RIR in hedgerows, notably 284 

due to the lower seed mass (Fig. 3; Fig. S5; Fig. S6-S9). 285 

3.3. Trait-environment relationships 286 

Plant height of the studied forest herbs was mainly affected by overstorey variables. In general, we found smaller 287 

plant individuals under denser canopies. To illustrate, plant height decreased with increasing tree cover in Anemone 288 

and with increasing total canopy cover in Ficaria and Poa. In Poa, we also detected a negative effect of soil C/N 289 

ratio on plant height. Furthermore, SLA showed consistent negative relationship with tree height in all study 290 

species. As to the biomass, no such consistent results among species were found, albeit individual negative effects 291 

of tree cover and microclimatic buffering on the biomass could still detected in Anemone and Poa, respectively. 292 

Finally, reproductive output (RIR) of the vernal species was not affected by any of the environmental variables, 293 

whereas for both summer-flowering species a strong positive effect of lower microclimatic buffering was found. 294 

In Poa, RIR also correlated positively to soil P levels (Fig. 4; see Table S8-S10 for additional analyses with 295 

hedgerow-specific characteristics).  296 

4. Discussion 297 

Using a systematic paired design among forest interiors and hedgerows across temperate Europe, we show that 298 

contrasting environmental conditions among the two habitat types led to differences in the life-history traits as 299 

well as vegetative and regenerative performance of understorey forest herbs. Overall, we found a higher biomass 300 

of the studied forest plants in hedgerows than in forests, while the reproductive fitness showed a divergent 301 

response being higher in hedgerows than in forests for the summer-flowering species but equal or slightly lower 302 

for the vernal species. This suggests that hedgerows will likely act as suitable habitats and, on a longer time scale, 303 

also as effective corridors for some (albeit not all) forest plant species to migrate among remnant and newly formed 304 

woodland patches. These findings underpin the importance of preserving, managing and establishing hedgerows 305 

in intensively managed agricultural landscapes with few remaining forest habitats, given their potential to contribute 306 

to the long-term conservation and migration of forest herbs in the face of global environmental change. 307 

4.1. Divergent environmental conditions of forests and hedgerow habitats 308 

As expected, the abiotic and biotic environment of hedgerows and forest interiors differed consistently. For 309 

instance, trees in the studied hedgerows were consistently smaller than in the adjacent forests. This can, at least 310 
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partly, be attributed to contrasting growth strategies of trees in both habitats (Loehle 1998; Sterck et al. 2005). 311 

Hedgerows also tended to have a higher cover of shrubs compared to forest interiors, likely because of the higher 312 

light availability in hedgerow environments allowing the formation of a dense and structurally diverse shrub layer. 313 

The higher soil P content in hedgerows than in forest interiors is likely caused by the inflow of fertilizers and 314 

runoff from adjacent agricultural lands (Wehling & Diekmann 2008). Here it is noteworthy that the soil P values 315 

in our hedgerows (~40 mg kg-1) were markedly higher than the ones reported by Sitzia et al. (2014) (~12 mg kg-1), 316 

presumably owing to a difference in soil fertility and soil pH being neutral in our study vs. weakly alkaline in Sitzia 317 

et al. (2014). Finally, linear habitats such as hedgerows are also more prone to edge effects, including greater wind 318 

speeds and higher levels of lateral radiation reaching the understorey. These conditions directly affect the near-319 

ground microclimate of hedgerows, most notably causing consistently higher temperature extremes than in forests 320 

interiors (Vanneste et al. 2020b).  321 

4.2. Performance of forest herbs in hedgerows 322 

Interestingly, all studied forest herbs displayed a higher vegetative performance in hedgerows than in forest 323 

interiors. This is clearly demonstrated by the consistently higher aboveground biomass of plant individuals growing 324 

in the hedgerow habitats. A similar observation for post-agricultural vs. ancient forests was made by Baeten et al. 325 

(2010), who reported that the biomass of several forest herb species tended to respond positively to the higher 326 

resource availability as well as higher light levels in post-agricultural forest stands. In our study, we indeed found 327 

that several structural canopy characteristics related to a higher light availability and warmer microclimate in 328 

hedgerows than in forests (e.g. lower and more open tree canopy as well as lower SCA) positively affected the 329 

biomass production of the studied forest herb species. Additionally, the SLA of all species (albeit not significant 330 

for Ficaria) was lower in hedgerows, and displayed a consistent negative relationship with tree height (shown to be 331 

lower in hedgerows). Low SLA values are a clear response to higher light availability and may reflect a greater 332 

physical strength of the leaves, and allow the plant individuals to cope with the higher irradiance and lower humidity 333 

in hedgerow understories (Dahlgren et al. 2006). Alternatively, their lower SLA values could also reflect higher 334 

herbivore pressure in hedgerows, because plants have to invest more in protection tissues (Schädler et al. 2003; 335 

Agrawal & Fishbein 2006). Finally, we also found larger plant individuals of Anemone in the hedgerow habitats. On 336 

the one hand, plant height can be linked to competition strategies, with hedgerow plants thus being competitively 337 

stronger. In this respect, the higher stature could be perceived as a potential response of the species to competition 338 

from generalist and grassland species in the linear habitats (Roy & de Blois 2008; Paal et al. 2017). On the other 339 
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hand, plant height has also been related to light limitation and nutrient stress (Westoby 1998), which is reflected 340 

by the negative effect of overstorey cover (in Anemone, Ficaria and Poa) as well as C/N ratio of the topsoil (only in 341 

Poa) in our systems. 342 

As to their reproductive performance in the understorey of both habitat types, the studied forest plant species 343 

seemed to respond in three different ways. First, the ‘ancient forest herb’ Anemone showed a lower reproductive 344 

output in the hedgerows than in the adjacent forest patches. A potential explanation could be the strong 345 

competition with opportunistic competitors such as Urtica dioica and Rubus sp. that benefit from the higher nutrient 346 

availability (particularly phosphate) in hedgerows (Endels et al. 2004; Hipps et al. 2005; Baeten et al. 2009). Indeed, 347 

several earlier studies have reported the vigorous growth of these species as a key factor limiting the successful 348 

colonization and establishment of many ancient forest species in the herb layer of nutrient-enriched, post-349 

agricultural forests (Verheyen & Hermy 2004; Orczewska 2009). Besides, while De Frenne et al. (2010) found 350 

consistently positive effects of warmer temperatures on the sexual reproduction of A. nemorosa, it is not unlikely 351 

that the species’ reproductive success might still be reduced by drought in the hotter and drier microclimate of 352 

hedgerows (see e.g. Ali et al. 2007; Mondoni et al. 2008; Leuschner & Lendzion 2009). Owing to the stronger 353 

competition and less favourable environment, we argue that Anemone individuals in hedgerows are more likely to 354 

allocate a greater amount of energy to growth and persistence, and thus invest less in their generative reproductive 355 

output. Alternatively, the reduced reproductive success of this forest specialist in hedgerows could also be a 356 

consequence of its generally smaller and more sparsely distributed populations in these habitats. Smaller 357 

populations tend to attract fewer pollinators, which could in turn negatively affect seed production (Jacquemyn et 358 

al. 2002; Brys et al. 2004; Hofmeister et al. 2013).  359 

Even so, it should be noted that, as a typically clonally spreading species, Anemone does not so much rely on sexual 360 

reproduction via seeds, but could also spread vegetatively via rhizomes and thus still maintain a viable population 361 

in hedgerows. Moreover, echoing Herben et al. (2012), we could expect that Anemone will compensate the 362 

unfavourable conditions for sexual reproduction by investing more in vegetative reproductive organs and thus 363 

even enhance its clonal spread in hedgerow habitats. This is further corroborated by Klimešová et al. (2011), who 364 

highlighted that (i) extensive lateral spread is typical for plants growing in more productive habitats with high levels 365 

of aboveground competition where seedling establishment could be hampered, and that (ii) this higher investment 366 

vegetative reproduction tends to be strongly correlated with plant height. Although speculative, the later could 367 

partly explain the higher stature of Anemone individuals found in hedgerows. Yet, this hypothesis remains to be 368 
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confirmed, for instance, by comparing clonal traits for this species (or even a larger set of clonally spreading species) 369 

among forest and hedgerow habitats (e.g. Lohmus et al. 2014; Paal et al. 2020). 370 

Second, Ficaria seemed to be indifferent to both habitat types, albeit with a marginally higher RIR in hedgerows. 371 

This is not surprising given that the species has been shown to exhibit a broad ecological amplitude (Taylor & 372 

Markham 1978). For instance, Ficaria performs equally well in ancient and newly established forests on former 373 

agricultural land (Verheyen & Hermy 2004; Baeten et al. 2009), with both forest types displaying highly divergent 374 

habitat characteristics (e.g. pH, nutrient and light availability) (Flinn & Vellend 2005). Besides, as a very early vernal 375 

geophyte Ficaria has the major part of its photosynthetic active period before the canopy has flushed, so that the 376 

effect of forest canopy density and shading on its performance is almost negligible. 377 

Third, the reproductive success of the summer-flowering species Poa and Geum was consistently higher in the linear 378 

habitats. For Geum, this could be mainly attributed to the higher diurnal temperature maxima during the growing 379 

season, whereas for Poa also the higher soil P levels and lower tree height played an important role. Indeed, both 380 

species have been shown to occur abundantly in hedgerows. For instance, Endels et al. (2004) demonstrated that 381 

the fast-colonizing G. urbanum is able to cope relatively well with both edaphic and microclimatic conditions 382 

experienced in hedgerow habitats. Even more, in many across Northwest Europe, G. urbanum is much more a 383 

species of hedges and woodland margins than of woodland interiors (see also Schmidt et al. 2009). The species’ 384 

preference for hedgerow environments is also corroborated by Taylor (1997), who reported that the reproductive 385 

success and viable seed production of G. urbanum was enhanced as a response to increased light availability and 386 

higher soil temperatures in the rooting zone after canopy disturbance. For P. nemoralis, Plue et al. (2013) found that 387 

seed production increases as populations grow larger over time. In addition, the authors detected a negative effect 388 

of increasing canopy cover on population size, leaving them to conclude that populations growing in shaded 389 

habitats produce fewer seeds. Furthermore, it has been repeatedly documented in literature that the species tends 390 

to forage after the available light at the forest floor, and therefore avoids darker forests or sites with varying light 391 

intensities (see e.g. Diekmann 1994; Tinya and Odor 2016). This also suggests that the higher irradiance level in 392 

hedgerows may actually be beneficial for its growth and essential for its regeneration. Finally, it should be noted 393 

that, apart from a higher seed production, the ability of Poa and Geum to benefit from hedgerows as movement 394 

conduits may be further enhanced by their dispersal mode. Seeds of these species may attach to the feet or fur of 395 

vertebrates that move through hedgerows, hence achieving dispersal over large distances or across gaps in these 396 
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linear features. Ant- or slug-dispersed forest herbs such as A. nemorosa, on the other hand, have much lower rates 397 

of population expansion and may experience difficulty crossing gaps in hedgerows (Matlack 2005). 398 

5. Conclusion 399 

Hedgerows are common forest-like elements in agricultural landscapes (Baudry et al. 2000), and have been 400 

repeatedly advocated as an effective surrogate habitat for many forest herbs (Corbit et al. 1999; Roy & de Blois 401 

2008; Liira et al. 2012; Vanneste et al. 2020a). Furthermore, given the predicted range shifts under contemporary 402 

climate change, hedgerows may be crucial to allow the migration of species among isolated habitat fragments. The 403 

occurrence of forest herbs in hedgerows has often been considered as evidence for habitat suitability (see de Blois 404 

et al. 2002; Wehling & Diekmann 2009). However, to enhance the function of hedgerows as migration corridors 405 

for forest plants, it is important that they also support the progressive, short-distance dispersal of multiple 406 

generations. This is particularly the case for many forest specialist herbs, which are more likely to proximally 407 

colonize a hedgerow attached to a forest patch, and then gradually migrate along the wooded corridor through 408 

successive generations (see Lenoir et al. 2019). Our findings suggest that overall plant performance (i.e. a 409 

combination of vegetative traits and reproductive fitness) of the summer-flowering forest herbs tends to be better 410 

in hedgerows than in forest interiors, most probably due to the direct effect of the higher light and soil 411 

phosphorous availability as well as more benign microclimate (i.e. higher growing season temperatures). The 412 

ancient forest specialist A. nemorosa, however, showed a reduced reproduction from seeds in the hedgerows, but 413 

could potentially maintain a viable population in these linear habitats by relying on its vegetative spread. Yet, since 414 

sexual reproduction is still considered most important for population spread in this species (Brunet & Von Oheimb 415 

1998), it remains unclear whether its progressive dispersal along hedgerow corridors will be limited on the longer 416 

term. At large geographical scale, we demonstrate that hedgerows may contain reproductive populations of some 417 

but not all forest herbs, and could therefore act as functional migration corridors to connect isolated forest 418 

fragments (see also Endels et al. 2004; Paal et al. 2017; Lenoir et al. 2019). We underpin that strategies to conserve, 419 

manage and establish hedgerow corridors in degraded agricultural landscapes across the globe are urgently needed, 420 

given their potential to host diverse plant communities, and benefit the long-term persistence and migration of 421 

species in an era of environmental change. These measures should not only focus on improving the habitat quality 422 

within the hedgerows themselves, but also consider the surrounding landscape context as well as spatial positioning 423 

of the hedgerows (i.e. proximity to historically continuous seed-source habitats; de Blois et al. 2002; Lenoir et al. 424 

2019; Vanneste et al. 2020a). 425 
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Even so, deriving generalized conclusions from our results remains difficult because the response of forest plant 426 

performance to hedgerow conditions is undoubtedly highly species specific (see Endels et al. 2004; Schmucki & 427 

de Blois 2009). While some forest herbs perform better in hedgerows by taking advantage of the greater access to 428 

resources and withstanding microclimatic stress, others may still prefer the environment of forest interiors where 429 

potential competitors are supressed due to reduced light and lower nutrient supply. Finally, even though our 430 

findings suggest that well-established populations of forest herbs may thrive in hedgerows, it must be kept in mind 431 

that recruitment was not explicitly accounted for in this study. Schmucki and de Blois (2009) found significantly 432 

less seedlings and juveniles of Trillium grandiflorum in hedgerows than in forests, and suggested that the greater 433 

microclimatic and edaphic stress observed in the linear habitats adversely affected the recruitment of this species. 434 

Ultimately, lower germination rates as well as reduced survivorship of seedlings and juveniles may limit long-term 435 

population persistence and hamper migration of forest herbs along hedgerow corridors. More detailed 436 

demographic studies during multiple growing seasons are required to fully unravel the demography of forest herbs 437 

once they have colonized these linear habitats.  438 
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Figures 681 

 682 

Fig. 1. Map showing the distribution of the eight study regions across Europe. The light green area represents the 683 

temperate forest biome (broadleaf, mixed and coniferous forests) (adapted from Olson et al. 2001).  684 
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 685 

Fig. 2. Violin plots showing the difference in tree height (a), tree cover (b), shrub cover (c), shade-casting ability 686 

(SCA) (d), bio-available soil phosphorous (P) concentrations (e) and maximum summer temperature (Tmax-summer) 687 

offset (temperature difference with a nearby weather station) (f) among forests and hedgerows. Differences 688 

between both habitats were tested with a linear mixed-effect model (LMM), and are indicated as “***” for P < 689 

0.001, “**” for P < 0.01, “*” for P < 0.05 and “.” for P < 0.1. 690 

  691 
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 692 

Fig. 3. Violin plots showing the difference in plant height (a, b, c, d), specific leaf area (SLA) (e, f, g, h), biomass 693 

(i, j, k, l), seed releasing height (m, n, o, p) and resource investment in reproduction (seed number × seed mass; 694 

RIR) (q, r, s, t) among forests and hedgerows for Anemone nemorosa, Ficaria verna, Poa nemoralis and Geum urbanum, 695 

respectively. Differences between both habitats were tested with a linear mixed-effect model (LMM), and are 696 

indicated as “***” for P < 0.001, “**” for P < 0.01, “*” for P < 0.05 and “.” for P < 0.1. 697 
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 698 

Fig. 4. Heat maps showing the predictive pairwise relationships between plant performance traits and 699 

environmental variables for Anemone nemorosa (a), Ficaria verna (b), Poa nemoralis (c) and Geum urbanum (d). The 700 

relationships between plant performance traits and environmental variables were tested with linear mixed-effect 701 

models (LMM). The colours represent the standardized parameter estimates (SPEs) and direction of the 702 

relationships; red and blue squares denote positive and negative relationships, respectively. Statistically significant 703 

relationships after correction for false discovery rate (FDR) are indicated as “*” at P < 0.001. 704 


