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ABSTRACT Indoor localization knows many applications, such as industry 4.0, warehouses, healthcare,
drones, etc., where high accuracy becomes more critical than ever. Recent advances in ultra-wideband
localization systems allow high accuracies for multiple active users in line-of-sight environments, while they
still introduce errors above 300mm in non-line-of-sight environments due tomulti-path effects. Current work
tries to improve the localization accuracy of ultra-wideband through offline error correction approaches using
popular machine learning techniques. However, these techniques are still limited to simple environments
with few multi-path effects and focus on offline correction. With the upcoming demand for high accuracy
and low latency indoor localization systems, there is a need to deploy (online) efficient error correction
techniques with fast response times in dynamic and complex environments. To address this, we propose (i) a
novel semi-supervised autoencoder-based machine learning approach for improving ranging accuracy of
ultra-wideband localization beyond the limitations of current improvements while aiming for performance
improvements and a small memory footprint and (ii) an edge inference architecture for online UWB ranging
error correction. As such, this paper allows the design of accurate localization systems by using machine
learning for low-cost edge devices. Compared to a deep neural network (as state-of-the-art, with a baseline
error of 75mm) the proposed autoencoder achieves a 29% higher accuracy. The proposed approach leverages
robust and accurate ultra-wideband localization, which reduces the errors from 214 mm without correction
to 58 mmwith correction. Validation of edge inference using the proposed autoencoder on a NVIDIA Jetson
Nano demonstrates significant uplink bandwidth savings and allows up to 20 rapidly ranging anchors per
edge GPU.

INDEX TERMS Autoencoders, edge computing, machine learning, ultra-wideband localization.

I. INTRODUCTION
Ultra-wideband (UWB) is a popular technology for
estimating distances between two nodes with cm-level
accuracy. Due to the use of short time pulses, accurate
timestamps of incoming UWB packets can be recorded,
allowing to calculate distances (ranges) with accuracy of
several centimeters in Line-of-sight (LOS) conditions [1]. As
a result, UWB technology has attracted significant interest,
both from industry and from the research community [2].
High-accuracy localization at low cost is a crucial enabler for
several new use cases such as industrial, warehouse, medical
surgery, etc. Example scenarios which require high accuracy
(cm-level) UWB technology include autonomous flying
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drones [3], sport tracking [4], automated guided vehicles
(AGVs) and collision avoidance systems [5]. In the last cou-
ple of years, several affordable UWB chips appeared on the
market i.e., [6]. As a result, UWB chips are being integrated
on consumer devices that offer personalized services. One
example consumer device that contains UWB technology is
the recently available iPhone 11 from Apple. This ongoing
integration of UWB in smartphones will pave the way to
novel use cases such as secure opening of (car) doors, file
transfers to the most nearby persons and other location based
personal services.

The accuracy ofUWB ranging estimation is experimentally
investigated in several papers [1], [7], [8]. The majority of
these studies evaluate the UWB accuracy in less challenging
conditions, considering mostly LOS communication and/or
(small) office-like buildings. However, together with the
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increasing popularity of UWB, also the number of environ-
ments where UWB systems are being deployed is increasing
[9]–[12]. New deployments include industry 4.0 applications,
which are challenging due to the presence of metal obstacles
(racks, machinery, etc.) and metallic walls. In these environ-
ments, UWB signals can be reflected and blocked by obstruc-
tions causing the UWB ranging and positioning accuracy to
deteriorate very quickly. Inaccurate localization of objects
in industrial environments can be problematic and unsafe.
Recent advances of Machine Learning (ML) in the domain
of signal processing promise the ability to learn to correct
such errors. For example, models can be trained to predict the
error from a UWB-chip based on the signal characteristics
in the channel impulse response (CIR). As shown in the
related work section, ML-based error correction for simple
environments has recently been proposed. Unfortunately,
efficient UWB ranging accuracy improvement solutions in
challenging conditions are missing. As such, there is a need
for solutions that improve UWB accuracy also in industrial
environments. Many recent innovations in ML have the
potential to support this, but not without any drawbacks. That
is, collecting sufficient datasets for training and applying
such novel ML techniques requires significant (manual) data
collection and annotation efforts, making progress in this
field challenging and time consuming.

In recent years, more and more connected Internet of
Things (IoT) devices are producing information as opposed
to mainly consuming data since IoT has been introduced
in 1999 [13]. In traditional a cloud architecture, devices
send requests containing data forward and get results back
from the cloud computing platform. However, this gets
increasingly more difficult as devices are producing mas-
sive amounts of data. Considering UWB localization, imple-
menting this architecture becomes even more challenging
where low latency requirements are crucial and the required
bandwidth is high. While cloud computing platforms are
unsuitable for real-time, low-latency operations [14], edge
computing architectures allow computation close to the
data producer. This leads to numerous advantages such as
increased spectrum efficiency through uplink bandwidth sav-
ings, low latency, increased security and data privacy [15].
For many IoT solutions these advantages are important,
especially when proposing Artificial Intelligence (AI)- and
big data-based solutions for systems with time-sensitive
characteristics such as UWB localization deployments. The
proposed approach in this paper can work in complex
environments, while retaining lightweight hardware require-
ments. This solution allows UWB range correction at the
edge, mitigating bandwidth and latency requirements to cloud
systems and reducing costs at each end-device. Recent devel-
opment in low-power GPU devices i.e. NVIDIA Jetson
allows this novel UWB ranging correction architecture at the
edge.

The following are the main contributions of the paper.
• Introduction of a novel autoencoder based ML
approach for semi-supervised learning, allowing

superior performance, improved feature extraction
efforts and reduced manual data annotation efforts.

• Realistic ML using low-power edge GPUs for fast
response times and low uplink bandwidth requirements.

• Experimental validation of improved accuracy with the
proposed models on a large testbed in an industrial
setting with 21 fixed anchors and 23 mobile positions.
Compared to models based on related work, a stacked
autoencoder and a Deep Neural Network (DNN) (which
has a baseline error of 75.7mm), the proposed autoen-
coder achieves a 18% and 29% accuracy increase respec-
tively.We also calculate the number of required low-cost
embedded edge devices (Nano Jetson) required to per-
form error correction for a number of anchor nodes and
update rate combinations.

• Release of both the training dataset and the implementa-
tion possibility of the proposed semi-supervised model
towards the research community.

We believe that these contributions are crucial and need
to be evaluated collectively, in order to close the loop and
provide an integrated system that can benefit researchers in
the future in making design decisions for their low-cost ML
models and communication infrastructure. In short, this paper
addresses the need towards UWB accuracy improvements at
the edge that can be applied to a complex environment.

The remainder of the paper is organized as follows. First,
Section II discusses related work. Next, the UWB localization
system is presented together with the Edge GPU computing
architecture. Section IV presents details of our proposed
autoencoder-based architecture, used for error correction.
Next, results are analysed in Section VI. Here, the models
are compared in terms of ranging accuracy, generalization,
localization positioning accuracy in our testbed and their
performance on GPU edge devices. The paper ends with
conclusions and future work in Section VII.

II. RELATED WORK
In this section we discuss (i) the state-of-the-art (SOTA)
relevant to UWB ranging error correction and (ii) novel
approaches in edge computing for wireless networks.

A. UWB RANGING ERROR CORRECTION
Table 1 presents an overview of papers that propose ML to
either correct ranging errors or to classify received packet
conditions as LOS or Non-line-of-sight (NLOS).

The authors of [16] focused on correcting ranging errors
caused by different antenna orientations. To this end, they
propose a DNN based approach for ranging error predic-
tion. Multiple antennas angles were considered to introduce
ranging errors. The environment of this setup consisted of
LOS conditions (both indoor and outdoor) while the tag and
anchors were in close proximity (3.57 m). Due to this simple
setup, the ranging error in the collected dataset, without
correction, is already very low with a maximum ranging
error of 100 mm. Using a 80%/20% training/validation split,
the authors achieved < 20 mm accuracy with their DNN
as error correction model. In Section VI we compare the
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TABLE 1. Comparing data collection, data characteristics and machine learning approach proposed in this paper with related work. Dataset errors labels
indicate the error magnitude of the dataset (Low: max error < 300 mm, Medium: max error < 1000 mm, High: max error > 1000 mm, or estimated from
their NLOS topology if not provided.).

accuracy of this DNN model with the autoencoder approach
we propose in this paper. Both models are validated on the
dataset we captured in more challenging conditions.

The authors in [17] propose a Least-squares support-vector
machine (LS-SVM) approach for (i) identification of LOS
and NLOS ranging and (ii) correction of NLOS rang-
ing errors. Not all hyper-parameters of their model are
specified, resulting in only a partly open-sourced model.
Moreover, their supervised approach limits the usage of
unlabelled datasets. Additionally, their dataset is not openly
available. Again, the dataset used in this paper is rather
simple and contains NLOS range errors with a maximum
error of 200 mm. Moreover, the dataset consists of only
1000 samples measured in an indoor environment without
taking into account more complex environments. After error
correction, the authors achieve an average ranging error
of < 100 mm with their proposed model. Because of the
limited dataset it is unclear if their solution scales towards
complex environments.

In [18] the authors propose a probabilistic learning learning
approach to perform ranging error correction. Although the
paper describes the loss functions of the models in a detailed
manner, it does not specify how the layers of the Neural
Network (NN) fit together and which hyper-parameters are
used. This makes the model partially open source, as it is
not possible to exactly replicate their experiments. Although
the authors hint to the usage of semi-supervised learning in
future work, it has not been exploited yet, making unlabelled
datasets futile. The dataset, consisting of 700 ranges, is not
publicly available. However the used dataset, measured in an
indoor office environment, consists of complex environments
with a maximum ranging error of 900 mm. The authors
achieved 179 mm ranging error accuracy with correction.
Additionally, the paper discusses the trade-offs of training
on a smaller dataset. At 10% of the original dataset size,
an average ranging error of 240 mm is achieved.

Another way to improve localization performance is tomit-
igate the usage of NLOS ranges. The authors of [19] propose
Neural Networks and Boosted Decision Trees to perform

classification of LOS and NLOS. A 87% detection accuracy
is achieved in complex factory environments using three fea-
tures. In [20] the authors propose a Support-vector machine
(SVM) approach and achieve 92% classification accuracy in
an anechoic chamber and near 100% accuracy in corridor sce-
narios. In order to identify which features are most important,
the authors of [21] applied genetic algorithms and performed
LOS/NLOS detection using SVM. An accuracy of 91.86%
is achieved in an office environment. Here, the training set
is particularly different from the testing dataset, addressing
generalization capabilities of the model. Although according
to recent papers LOS/NLOS classification performs well and
can be useful in some environments, more complex envi-
ronments often suffer from only NLOS conditions. Filtering
out NLOS in this situation is not feasible. This again raises
the need to correct ranging errors in many use-cases and
environments and is the focus of our work.

In contrast to the methodology proposed in this paper,
which tries to exploit the deep learning capabilities of CNNs
using raw CIR data, the authors of [22] and [23] focus on
extracted features from grouped ranges to classify and cor-
rect NLOS signals. The authors collected their open-source
dataset in two locations situated in office environments.
Neural networks as well as k-NN, gaussian process regression
models, support vector machines and decision trees were
used to classify and correct NLOS errors. Overall, the dataset
contains rangingswith high errors (> 900mm95th percentile)
while a reduction of the MAE of 380 mm to 84.5 mm is
achieved. Compared to this related work, our paper focuses
on raw CIRs as an opportunity to extract and learn all features
without to need to remain stationary to get statistics of the
received signal strength and rangings. Moreover, the dataset
in this paper comprises of more positions (21 vs 9 and 4).
Their dataset does contain large errors and is comparable with
the errors in our dataset.

The authors of [24] proposed a simple neural network
with three layers and provides an open source dataset with
high errors (MAE > 1000 mm). 36 positions where consid-
ered in an office environment, resulting in 3600 samples.
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Compared to this research, we have collected 28473 samples
on 21 locations spaces out in an industrial environment.
Moreover, we try to correct the errors, whereas the authors of
[24] focus only on NLOS detection and subsequent localiza-
tion accuracy improvements. The neural network’s topology
is provided but lacks training hyperparameters and activation
function specifics for result replication.

Related work in Table 1 shows improvements to UWB
localization systems using ML, but lacks validation on large
datasets collected in complex environments. Moreover, to the
best of our knowledge, most of the related work does not
open source data and their models, which is essential for
validation of results. Additionally, all the related work ML
approaches use supervised learning, which limits the use of
unlabeled dataset. Our work addresses these shortcomings
while also presenting a novel semi-supervised approach for
error correction which can better cope with complex envi-
ronments, offers generalization and can still fit on edge GPU
devices. In addition to random split validation as performed
by most other papers, we also decided to take into account
leaving locations out of the dataset and evaluate them as
completely unseen data. This method validates generalization
more thoroughly compared to random split validation.

B. EDGE COMPUTING IN WIRELESS NETWORKS
Current related work focuses on building complex models
which are validated on offline datasets and target high-end
computing solutions available in centralized computing solu-
tions and/or cloud platforms. Despite great effort, these works
did not validate the performance in a deployed localized
system. Moreover no present works propose a solution to
implement their UWB range correctionmethods in large scale
localization systems, where bandwidth and latency are real
obstacles.

In this paper, we are the first to propose an edge computing
framework for UWB ranging error correction to improve
localization systems by considering the real limits of wireless
systems including bandwidth and power constraints.

Although the approach of edge computing in UWB net-
works is novel, researchers have recently started applying
edge computing in other domains. The authors of [25] pro-
pose edge computing for wireless acoustic sensor networks.
Their findings demonstrate significant power savings by mit-
igating transmissions of large quantities of audio. In [26]
the authors propose deep learning at the edge for dietary
assessment, while the authors of [27] propose algorithms at
the edge that can monitor fall detection for stroke mitigation.
Similar to this paper, the authors achieve SOTA accuracy
and reduced response times. Other domains currently inves-
tigating benefits from edge computing include Unmanned
Aerial Vehicle-assisted systems and vehicular infrastructure
networks [28], [29], [30].

III. NETWORK ARCHITECTURE DESIGN
A. UWB LOCALIZATION SYSTEMS
In order to illustrate the problem, we consider an UWB
localization setup as depicted in Figure 1. It comprises of

FIGURE 1. Simple UWB scenario with four anchors and one tag, which is
using Two Way Ranging (TWR) to estimate its distance to the anchors.
An obstacle between the tag and one of the anchors attenuates the direct
path (NLOS).

four fixed anchor nodes to form the infrastructure that is
used by the mobile node (tag) to compute its own position.
Moreover, the tag operates in two contrasting conditions,
namely LOS with anchor 2 and NLOS with anchor 1. The
latter situation is the result of an obstacle between the tag and
the anchor, which is a typical cause of attenuation, reflec-
tion and/or refraction. Generally, the anchors are manually
positioned and calibrated i.e., their coordinates (x, y, z) are
known to the system with the maximum possible accuracy.
We consider that the tag or anchor measures the CIR sent
by the anchors/tags and computes the distance by Two Way
Ranging (TWR). In TWR, distance estimation is done after
three or four messages are exchanged between the nodes
(double sided TWR) [3]. More precisely, each message is
timestamped by the receiver and transmitting node, which
will be combined in the anchor node. Doing so, Time of
Flight (ToF) can be estimated and so the distance is derived
by multiplying it with the speed of light.

In complex environments such as indoor areas with
reflections, obstructions and NLOS conditions, UWB is not
always able to guarantee the best performance, mainly in
terms of ranging accuracy. In environments like these ranging
errors will occur, because of secondary (reflected) or faulty
peak detection. Wrong peak detection is usually the result of
a missed or delayed first path index (when the signal rises
above the noise floor). However, one of the advantages of this
technology is the high time resolution [31]. Thus, by record-
ing the CIR, as illustrated in Figure 2 of the UWB communi-
cation between tag and anchors, secondary and faulty peaks
in the signal can be detected and isolated. This can result in
the detection and correction of UWB ranging errors.

In the following, we indicate the actual distance between
the tag and the anchors by1i, the estimated distance between
the tag and the anchors by 1i, and the ranging error by
εi = 1i −1i, where i ∈ {1, 2, . . . ,N }, where N = 4 in
Figure 1. The proposed autoencoders based architectures and
the benchmarks are used to predict the ranging error εi from
the CIR and the distance can be computed by 1i = 1i − εi.
In order to find the most probable position of the tag, we use a
particle filter [4], where at least three ranging distances from
different anchors are required.

The followed approach using time division multiple access
(TDMA) will not compromise on the scalability of TWR
UWB systems at the cost of the update rate [32]. As the
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FIGURE 2. Typical UWB channel impulse response (blue) in NLoS
conditions with secondary peaks higher than the first one. The data is
centered around the first path index (red) to inform the model when the
DW1000 chip was starting to receive the signal. The orange signal
illustrates the predicted and denoised output generated by the proposed
autoenocder.

collection of the CIR in the DW1000 registers will be done
when the UWB spectrum is used by other tag-anchor pairs,
the limit on tag-anchor pairs that can range will remain the
same. Moreover, UWB systems facilitate an update rate of
between 343 Hz and 2892 Hz depending on the selected
physical settings [3]. The CIR is logged in the registers of
the DW1000 upon correct reception of a UWB packet. The
CIR is bidirectional and therefore it is for machine learning
sufficient to collect only one of them, in our case at the anchor.
While tags are mostly constrained in size and battery power,
anchor nodes can be connected wired or with high throughput
wireless links, effectively minimizing latency.

B. EDGE GPU COMPUTING DESIGN
Figure 3a presents an overview of a traditional cloud-based
computing architecture. Here, each anchor needs to send its
data to the gateway. This gateway will then forward the CIR
data of N anchors to a cloud platform. High-end GPUs with

high computational capabilities respond upon calculating the
corrected range. These ranges are then send back to the
localization system. High latency is one obvious drawback
of this approach. This is especially true considering loca-
tions with a low capacity uplink and a large sending interval
e.g. industrial zones using LoRa [33]. Moreover, this
approach occupies an unnecessary high bandwidth in the
local area network (LAN) and wide area network (WAN).
This leads to an inefficient design where it quickly becomes
unfeasible in many use-cases. In contrast, we propose an edge
computing architecture as is illustrated in Figure 3b. This
architecture follows subsequent steps to allow UWB ranging
correction: (i) Anchors rangewith a tag for localization or dis-
tance measurement purposes (ii) anchors send the calculated
range together with the CIR to the edge GPU node using
short range wireless technologies with sufficient bandwidth
e.g. Bluetooth Low Energy or sub-GHz technologies such
as IEEE 802.11ah (iii) the edge node calculates the rang-
ing error εi of the collected CIRs and immediately sends
a response to the anchors or localization system. Here we
assume that the CIRs are correctly received at the edge
node by using short range wireless technologies. Investigat-
ing the integrity of the CIRs at the edge node is outside
the scope of the work. For the sake of simplicity, we con-
sider one edge node, but in reality multiple edge nodes
are required for connecting multiple anchors. Edge nodes
can periodically send statistics and collected CIRs to cloud
platforms for diagnostics and model improvements. Finally,
after centralized and generalized model training, cloud plat-
forms can push updates resulting in up-to-date models at
the edge. It is interesting to quantify how this architecture

FIGURE 3. Overview of the different UWB correction architectures. Figure (a) shows a typical cloud architecture, where all data needs to be transferred
from the UWB anchors (blue) towards an IP gateway (purple). This data needs to be further directed to a cloud service using the internet, resulting in
large uplink requirements. In Figure (b) the UWB devices send their data to a wired or wireless low-cost GPU edge node (green). This edge node can still
receive model updates or send statistics towards a cloud service, without requiring a large uplink connection.
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compares to cloud-computing methodologies. To address
this, we describe the following metrics: (i) latency: how fast
the localization system can expect a response from the range
error correction process (ii) bandwidth: how much band-
width do both architectures use on both the LAN or WAN
size. The results of these metrics are described in detail in
Section VI-C.

Depending on the use case and the need for spatial
awareness at the tag, the positions are calculated locally at
the tag, or centralized (with connections to the anchors).
The latter can both be wired or wirelessly. In this paper,
we assume that the tags have limited energy budget, whereas
the anchors are cabled and have a high bandwidth (wired) to
the low-cost edge GPU. As such, the anchors in our testbed
send their CIRs to an NVIDIA Jetson Nano via Next Unit
of Computings (NUCs) that are wired to the testbed net-
work. Even for systems where no wired- or high throughput
wireless-backbone is available, an affordable embedded GPU
device can be added to each anchor node to correct the
distance.

IV. MACHINE LEARNING ARCHITECTURE
In this section, we introduce the basics of autoencoders and
propose a novel autoencoder architecture.

A. AUTOENCODER BASIC PRINCIPLES
An autoencoder is a special class of NN that traditionally used
for dimensionality reduction and feature learning [34]. To this
end, the autoencoder reduces the dimensions of the input
features towards a reduced set of output features. To ensure
that the output of the autoencoder still contains all relevant
input information (e.g. the reduced output signal can be used
to reconstruct the original signal), autoencoder are trained
to (i) first process an input signal to reduce the input size,
and (ii) to afterwards generate (almost) the same output by
again extending this signal towards the same dimensions as
the original signal. Mathematically, an autoencoder consists
of two parts, (i) an encoder that maps h = f (x), where h
is termed as the code, and (ii) a decoder that generates a
reconstruction r = g(h). In practise, autoencoders are not
used to get x̄ = g(f (x)), but to obtain an h representation
that contains useful information about x. In order to realize
this the dimension of h is constrained to be smaller than x.
This type of autoencoder is called undercomplete and is used
to learn important features from the input data distribution
itself. The learning procedure of an autoencoder is described
by minimizing the loss function and is represented as:

minimize L(x, g(f (x))). (1)

where L is a loss function that indicates the similarity between
the input x and the reconstructed output g(f (x)). In order to
learn good features and to avoid learning an exact copy of the
input (e.g. to avoid overfitting), denoising auntoencoders use
a loss function that discourages learning the identity function.
Denoising autoencoders are mathematically represented as
follows:

minimize L(x, g(f (xn))). (2)

where xn is a copy of x that has been corrupted with random
Gaussian noise which lets the autoencoder to generalize in a
better way.

Compared to related work on UWB ranging error pre-
diction, which is based on heuristics or supervised learning
approaches such as DNNs, we propose a novel learning archi-
tecture which only requires trimmed CIR input based on the
combination of (i) a denoising autoencoder with (ii) a Con-
volutional Neural Network (CNN). The autoencoder helps by
learning the most relevant latent features for reconstructing
the CIR, while its combination with the CNN is able to use the
autoencoder output for learning advanced features by stretch-
ing the reduced learned features. As a result, the proposed
combination is more robust and requires less labeled data,
to learn features, than traditional CNNs. In addition, the pro-
posed approach can still be combined with best practices
such as dropout, batch-normalization, regularization, etc. for
further improving the model accuracy. Finally, we note that
no manual features, except the first path index, are used
in our solution as the aim is to fully exploit deep learning
capabilities on raw data that contains most features logged by
the Decawave transceiver. More specifically, the timestamp
of receiving the packet in the DecawaveDW1000 is internally
performed with a leading-edge detection algorithm. By using
the CIR information, the machine learning models can esti-
mate the chances of wrong detection of the first peak and
evaluate the channel for multipath components.

Our recent work, e.g., [35], train autoencoders in two
phases: a) an unsupervised pre-training phase and b) a super-
vised training phase. This pre-trained stacked autoencoder
architecture is shown in Figure 4. Applied to the UWB
domain, in the unsupervised learning step, the decoder g(h)
tries to reconstruct the noise perturbed CIR xn according
to (2) while learning important latent features h from the
distribution of x. The loss function of the pre-trained stacked
autoencoder, Lpre−trainedAE , is written as:

Lpre−trainedAE =
1
N

N∑
i=1

|xi − x ′i |. (3)

whereN is the number of training CIR samples in each batch,
xi is the input to the autoencoder of the ith CIR sample, and
x ′ is the predicted output of the autoencoder of the ith CIR
sample.

After the unsupervised learning step, the encoder and
decoder layers are decoupled and the trained weights of the
encoder are locked. Then, a CNN predictor is attached to the
latent feature layer h for predicting the ranging error εi as
shown in Figure 4. The loss function, Lpre−trainedCNN , of the
CNN predictor is represented as:

Lpre−trainedCNN = −
1
N

N∑
i=1

yi · log(y′i). (4)

where N is the number of training CIR samples, yi is the true
class of the ith training sample, and y′i is the predicted output
of the ith training sample.
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FIGURE 4. Architecture of the semi-supervised AEP. First the encoder and decoder are trained in a more traditional semi-supervised approach. Later the
predictor is attached to the encoder layers and trained to predict the output. Training the novel dual-loss model takes the UWB CIR and learns the
ranging error εi (LCNN ) while at the same time also trying to regenerate the original CIR (LAE ). Error prediction happens in a supervised fashion, while
learning features from trying to regenerate the original signal can be trained unsupervised.

One drawback of having locked and untrainable layers is
the risk of having useless features h. A resulting classifier
will subsequently not reach satisfactory performance. From
our experience, one of the difficulties of this approach is
balancing the loss when pre-training, before attaching the
predictor layers. Longer training will decrease the loss fur-
ther as opposed to early stopping. On one hand, in very
low loss situations the output signal looks almost identical.
This is useful as the latent features have learned to represent
the signal accurately. On the other hand, early stopping the
training process can have an additional benefit of de-noising
the signal. This will smooth out small fluctuations in the
signal that may not be relevant for the wanted prediction of
the model. As seen in Figure 2 the smoothing helps reduce
fluctuations in the beginning and ending portion of the signal,
while the peaks of the signal’s first path are still constructed.

B. A DUAL LOSS SEMI-SUPERVISED AUTOENCODER
The dual loss autoencoder learns latent features of
signal reconstruction and prediction simultaneously. The
architecture of the dual loss autoencoder has been inspired
by the difficulties faced in pre-training autoencoders for
classification tasks. There it was shown to be difficult to
find a balance between the unsupervised and the supervised
learning steps.

Algorithm 1 describes the training of the dual-loss
semi-supervised autoencoder. Analog to supervised mod-
els, labeled datasets (Xs) are required but can be optionally
extended with unlabeled datasets (Xu). This can be used to
pre-train the autoencoder (MAE ) in an unsupervised fashion.
This model can also be trained prior to the execution of the
algorithm and is thus given as an optional parameter. The
output of the algorithm is a trained model that can predict
the error εi on UWB ranges, as described in section III-A.
CreateModel() returns the architecture of the autoencoder
proposed in this paper. Next, RunModel() executes the model
with training data Xu and returns the loss of the autoen-
coder. Using this loss, function OptimizeModel() trains the
model until accuracy requirements are satisfied. The pro-
posed CNN predictor gets returned by CreatePredictor() and

Algorithm 1 Training Algorithm of Dual-Loss Semi-
Supervised Autoencoder
Input:
• Labeled dataset (CIR + εi): Xs
• (Optional) Unlabeled dataset (CIR): Xu
• (Optional) Trained autoencoder network:MAE

Output:
• Trained dual loss model:MAEP

if MAE Not Exists then
MAE = CreateModel();

else

if Xu Exists then
while Unsupervised training do

LAE = RunModel(MAE , Xu);
MAE = OptimizeModel(MAE , LAE );

else

MP = CreatePredictor();
MAEP =MergeModels(MAE , MP);
Xu = RemoveLabels(Xs);
Xn = AddGausianNoise(Xu);
while Semi-supervised training do

LAE , LCNN = RunDualLossModel(MAEP, Xs, Xu, Xn);
LAEP = WLAE * LAE + WLCNN * LCNN ;
MAEP = OptimizeModel(MAEP, LAEP);

returnMAEP

is subsequently merged with the autoencoder. Both models
share the same hidden layer h. Next, a second dataset without
labels is created by the RemoveLabels() to learn features in
an unsupervised level at the autoencoder layers. The autoen-
coder is additionally trained to denoise any input signals by
learning to reconstruct noisy data Xn (corrupted signals with
Guassian noise) to Xu. The advantages of this method are
analog to the ones described in section IV-A. The (merged)
dual-loss model is provided with both labeled, unlabeled
and noisy data in function RunDualLossModel(), which
returns the loss of the autoencoder (LAE ) and the loss of the
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TABLE 2. Machine learning architectures.

predictor (LCNN ). The main strength of the semi-supervised
AEP is the simultaneous training of both an unsupervised
autoencoder MAE = g(f (x)) and a supervised classifier
MP = p(f (x)) = y, that share encoder layers h = f (x).
To maximise the predictor performance, the loss of both the
autoencoder and predictor is combined using a weighted sum:

LAEP = WLAE ∗ LAE +WLCNN ∗ LCNN . (5)

where WLAE and WLCNN are configurable weights given to
the loss of the autoencoder and the loss of the CNN respec-
tively. These losses are similar to the losses described in
equation 3 and equation 4. To give flexibility to the proposed
approach and balance the loss LAEP, we introduce the weights
as an extra hyper-parameter.

This loss function will enforce the model to learn an opti-
mal latent layer h using both unsupervised and supervised
features at the same time. This overcomes the problem
where the over-trained autoencoder cannot learn anymore
features for prediction. Instead, worse prediction caused
by the autoencoder will increase the loss and vice versa.
Finally, the model gets optimised (training) in function
OptimizeModel() until high accuracy levels are reached.
Figure 4 shows the AEP from an architectural perspective.

The encoder f (x) takes input x and shares learned features
with the decoder g(f (x)) and predictor p(x). Both g(f (x)) and
p(x) share layer h, uponwhich they further have their own lay-
ers for signal reconstruction and classification respectively.
It is interesting to visualize the output of the proposed model.
For each input x, two outputs g(f (x)) y = p(f (x)) are gener-
ated. Figure 2 shows the output the decoder generates, which
is part of the autoencoder layers. Clearly the model is able to
reconstruct the (denoised) signal with reduced dimensionality
at layer h. This indicates that h contains useful features that
can describe the signal.

Table 2 gives an overview of the proposed autoencoder
models and compares it with the DNN architecture proposed
by [16]. Additionally a CNN, part of the autoencoder-based

models, serves as a benchmark for SOTA deep learning solu-
tions. This also helps demonstrate the benefits of our innova-
tion in machine learning where unsupervised layers, i.e. the
autoencoder layers, are added to the CNN architecture. Each
convolutional layer and dense (fully-connected) layer has a
ReLU activation function (f (x) = max(0, x)), first proposed
in [36]. This activation function achieves the highest accuracy
in our models.

To achieve the highest accuracy on unseen validation data,
we trained the models for 500 epochs with early stopping
conditions (no validation loss improvement for 25 epochs).
We used an Adam optimizer [37] to train the weights of the
neural networks with a learning rate of lr = 0.001.

V. EXPERIMENTAL SETUP & DATA COLLECTION
The devices used for data collection [38] include a
UWB Decawave transceiver and provide the CIR as
sequence of 1016 (Pulse Repetition Frequency (PRF) =
64 MHz) or 992 (PRF = 16 MHz) complex numbers. The
CIR index is approximately 1 ns long (or more precisely half
a period of the 499.2 MHz UWB fundamental frequency),
which means the precision is about 30 cm per index. To
collect a representative dataset 1 in complex environments,
we ran several experiments in one of our facilities [39]. The
testbed presented in Figure 5a shows 19 UWB anchors scat-
tered in many different locations, in an area of approximately
30 × 10 m2. These locations vary little in height and are
chosen to cover every position in the testbed. Still, many
NLOS rangings can occur as there are three metal racks in
the middle of the testbed, containing metal objects that will
absorb or reflect the signal (Figure 5b). In total 21 measure-
ment locations were used. The ground truth of these locations,
as well as the locations from the anchors, are measured using
a lasermeasuring tool where the distance to twowalls indicate
their Cartesian coordinate. Various locations are tested at

1Available on request: jaron.fontaine@ugent.be
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FIGURE 5. (a) Ground plan of UWB testbed with 21 anchor locations (green wireless symbol) and 23 measurement locations, with a height of 1.50 m
(light-green circle) and a height of 1.84 m (blue circle). (b) Picture of testbed with visible metal shelves to have realistic attenuation with indicated NLOS
and an open space for LOS conditions.

multiple heights (around 1.5 m and 1.84 m) to introduce
more variety in the dataset and ensure both LOS and NLOS
conditions. We do not expect this variation to influence the
accuracy in the tested locations significantly. Throughout
the experiments the anchors and the tag used a fixed set of
UWB settings, i.e., channel 1, datarate of 110 kpbs, PRF
of 64 MHz and preamble length of 1536 symbols. Data,
more specifically estimated distances from the anchors and
diagnostic information (including CIR), was locally recorded
at the tag. This led to a total of 28473 ranging measurements
with LOS 18796 ranges and 9677 NLOS ranges. Afterwards,
ranges were combined with the particle filter and the position
of the tag was estimated. By separating these two steps (actual
ranging and positioning), we can easily reproduce and test
again a single location to evaluate the impact of different
approaches. Portions of the CIRwere carefully trimmedwith-
out the loss of information to reduce computational overhead.
In this regard, the first path index of the signal reported by
the DW1000 transceiver, is used as a feature by centering
the 500 CIR samples around this position. This leads to a
consistent position of the reported peak, that follows the first
path index, in the signal. Finally, we validated the model
in our localization testbed on one edge node. This node
consist of a NVIDIA Jetson Nano GPU and supports our
trained models. We calculated results using this GPU on
edge computing latency and throughput. These results can
lead to better decision making into designing an edge-based
architecture for UWB ranging and determining the opti-
mal number of edge nodes for the considered localization
systems.

VI. RESULTS
This section highlights advantages of our proposed
semi-supervised model and discusses results in terms of
(i) accuracy and complexity, indicating how well our pro-
posed model perform in complex environments compared
to other SOTA models, (ii) investigating generalization in
unseen locations of the testbed, (iii) drawing final results
indicating how well the final positioning improves, using
corrected ranges.

TABLE 3. Performance of proposed classifiers compared to traditional
SOTA CNN’s. Our AEP shows a superior Mean Absolute Error (MAE) with
minimal model footprint overhead.

A. SEMI-SUPERVISED LEARNING: ACCURACY,
COMPLEXITY AND GENERALIZATION
In this section we compare baseline models, which include
the DNN proposed in [16], our CNN (part of the autoen-
coder), the pre-trained stacked autoencoder and the dual-loss
autoencoder predictor. Their performance is expressed in
MAE,while their complexity is denoted in parameter amount.
Ranging results are presented in Table 3. The dual-loss
autoencoder outperforms all other approaches. In terms of
accuracy, the non-corrected UWB range values in this metal-
lic warehouse environment have a mean average error ε
of 214.7mm. Compared to SOTA deep neural networks,
the relative difference is 29.2%. The average difference
compared to the CNN is smaller, but still significant. The
pre-trained AE does not perform as well as the dual-loss AE,
with a difference of 18.4%. Although the pre-trained AE still
greatly increases ranging accuracy, we found training and
fine tuning rather difficult. Balancing the amount of unsu-
pervised pre-training and supervised training is challenging,
as denoted in IV-A. Although this approach of using stacked
autoencoders is often used in the literature, it shows difficult
optimization, which the dual-loss AE addresses. Compared
to the raw ranges, without any correction, the dual-loss AE
achieves an increase in accuracy of 266.4%, which translates
into 156.1 mm more accurate ranges. In terms of complexity,
the dual loss AE model slightly requires more parameters
than the DNN to predict ranging errors, nonetheless it still
superior accuracy. The autoencoder has a favorably smaller
footprint compared to the CNN.

Each location in our dataset can influence the received
signals differently, leading to new properties and behaviours
of the CIR. Therefore, it is also important to consider the

VOLUME 8, 2020 139151



J. Fontaine et al.: Edge Inference for UWB Ranging Error Correction Using Autoencoders

FIGURE 6. CDF of proposed models and baseline model. Performance is
measured on an unseen location to exploit generalization capabilities of
the models.

following use-case: given a model which performs very well
on a numerous locations that it has been trained for, how
capable is the model on unseen locations, which were not
present in the training dataset. To address this, we left out
all the ranges from the tag at 3 positions to all 21 anchors
and used these ranges to validate our model. This is a step
towards generalized models which can perform in any given
location and environment. Figure 6 displays the cumulative
distribution function (CDF) of all corrected-ranges and the
original-ranges of the unseen locations. The dual-loss autoen-
coder achieves, similarly to previous results, the highest accu-
racy. 95% of ranges have been reduced to an error ε smaller
than 350 mm, whereas the original-ranges had an error ε of
just above 700 mm. The CNN achieves a ε of 380 mm in this
scenario, for the pre-trained autoencoder ε = 470 mm and
for the DNN ε = 600 mm. These numbers show the impor-
tance to test the generalization capabilities of the models on
UWB ranging in unseen locations, as the difference between
the models is much larger compared errors discussed before
(trained on all locations).

B. LOCALIZATION RESULTS
The localization system deployed in our testbed uses ranges
from the tag to multiple anchors. The error εi on these ranges
is one of the factors that will determine the positioning accu-
racy. Given all ranges, which are corrected by the proposed
models, it is interesting to validate how much the localization
algorithm benefits from these improved ranges. As described
in Section V, the localization testbed contains open spaces,
but also three long metal racks, causing reflections, NLOS
conditions and errors. The accuracy of the position estimation
is closely related to geometry of the anchors, i.e., where
they are located in space. For example, if the position of tag
is calculated only using anchors that are in one line, the
dilution of precision (DOP) will be very high and estimation
may significantly be affected by it [40]. To give meaningful
and representative results, a leave-one-out cross-validation
technique is considered. Here, three positions were carefully
chosen as unseen positions and thus left out of the training
dataset one by one. The first chosen position sits between
the metal racks (NLOS conditions), the second position is
located in the open space (mostly LOS anchors) and finally
the third location is close to the walls and upper left cor-
ner of the testbed (high DOP and low confidence level).

TABLE 4. Localization performance of the testbed using ranging error
correction.

The results are presented in Table 4. The first position without
any ranging corrected applied achieves an average localiza-
tion accuracy of 204 mm. With range correction, using our
proposed dual-loss autoencoder, this accuracy improves to
114 mm. Furthermore, the uncorrected accuracy is maximum
501 mm for 95% of the data, while this number improves
to 289 mm with error correction. The average accuracy in
the second position improved from 106mm to 70mmwithout
and with ranging error correction respectively. Again, this
position achieves a 95th percentile error of 229 mm for
uncorrected ranges, while the localization system achieves a
maximum error of 187 mm using corrected ranges. Finally,
the third position without ranging correction achieves an
average error of 161 mm, which is improved to 111 mm
with ranging correction. This position has 95% probability
that the error is below 420 mm without correction, while
ranging correction improves this to 333 mm. These numbers
show that ranging correction on our localization system can
increase it’s accuracywith around 100-200mm inNLOS con-
ditions. We see that especially the errors of outliers are dras-
tically reduced, diminishing unwanted sudden large errors in
ranging and localization systems.

C. EDGE INFERENCE
In order to highlight the capabilities of the proposed edge
architecture, this section quantifies inference speed and
latency. Results are generated by a NVIDIA Jetson Nano,
which is deployed as an edge device in our testbed with
multiple anchors connected.

1) EDGE GPU REQUIREMENTS
Although edge GPUs prove to be very capable at inference
of trained models, they are still limited in computing power
by their low-power design. In the proposed architecture it is
trivial to determine how many edge GPUs are required for
any localization system. Equation 6 determines the amount of
required edgeGPUs given any amount of anchors and ranging
frequency. Equation 7 shows the prediction time (latency) in
milliseconds for each range to be corrected, depending on the
batch size bs. The first part of this equation is constructed
using a power fit of the prediction performance capabilities
of the model (AEP and DNN) running on the NVIDIA Jetson
Nano. The minimum between the number of anchors and
batch size is introduced to batch process multiple inputs at the
same time, if enough anchors are given. I.e. One prediction
can take 9.49 ms, while running a batch size of 16 results
in a total time of 16.31 ms and thus takes only 1.02 ms per
prediction. The second part of the equation is for the fixed
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FIGURE 7. Required amount of edge GPU nodes required based on number of used anchors and ranging correction frequency using the proposed
autoencoder architecture (a) AEP compared to (b) DNN.

latency we measured before each classification occurs.

requirededges = Na ∗ Rfreq ∗ Tpred . (6)

where
Na = amount of anchors,
Rfreq = ranging frequency (Hz) and,
Tpred = time for one prediction (sec).
Tpred can be expressed as,

Tpred =
fit ∗ min(Na, bs)fitexp

1000
+

lat
min(Na, bs)

. (7)

where
bs = batch size,
lat = latency before prediction (28 ms),
fit = performance fit parameter, AEP: 9.4985, DNN:

2.1183,
fitexp = exponential performance fit parameter AEP:
−0.805, DNN: −0.939.

Figure 7a shows the required edge GPUs for environments
with 1 up to 50 anchors and for a ranging frequency from
1 up to 100 Hz. E.g. a large environment with 30 anchors and
a ranging frequency of 60 Hz need 5 edge GPUs. One edge
GPU can support a smaller environment with 10 anchors and
a ranging frequency up to 25 Hz. In Figure 7b SOTA DNN
performs marginally faster at the cost of lower accuracy.

2) BANDWIDTH SAVINGS
The total uplink bandwidth saved in this architecture equals
to the Rfreq ∗ Nanchor ∗ sizeCIR, where sizeCIR = 2 (IQ) *
4 (bytes/value) * 500 (values) bytes. E.g. in a typical envi-
ronment with 10 anchors and a ranging frequency of 25 Hz,
a total uplink bandwidth of 4.096 Mbits/s is preserved.
Considering industrial sites with many environments using

localization systems, this could potentially save hundreds of
gigabytes each day.

VII. CONCLUSION AND FUTURE WORK
In the broad landscape of indoor localization applications,
reliable localization becomes increasingly more important.
This work proposes SOTA autoencoders for improved rang-
ing and localization accuracy in complex environments using
semi-supervised machine learning methods. This method
outperforms current machine learning algorithms while still
achieving confined complexity. To address the practical lim-
itations cloud computing, e.g. low response times and high
bandwidth requirements, we propose an edge inference archi-
tecture for UWB localization systems with minimal response
times and great bandwidth savings. We found that each edge
can support up to 20 anchors with a high ranging frequency.
This work can be extended by considering transfer learning
with generative adversarial networks towards other locations
for easy model retraining and validation. In addition, future
work can employ federated learning and involve anchors
along with the edge in the ranging error correction process.
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