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In Brief
Differential analysis (DA) on a
label-free mass-spectrometry
benchmark study shows that
leading summarization strategies
often fail compared with the
peptide-based tool MSqRob,
and, we provide deep insights in
performance gaps of the former
methods.
MSqRob, however, is computa-
tionally expensive and does not
provide protein-summaries for
downstream analysis and
visualization.
Therefore, we propose MSqRob-
Sum, which fits MSqRob’s
model in a two-stage approach,
providing a fast modular frame-
work for robust protein summari-
zation and inference that outper-
forms leading summarization-
based methods for DA.
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• In depth performance assessment of leading tools for differential protein abundance.

• Novel fast modular framework MSqRobSum for robust protein summarization and inference.

• MsqRobSum outperforms leading protein summarization-based tools.

• MSqRobSum is on par with top-performing peptide based tool MSqRob.
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Robust Summarization and Inference in
Proteome-wide Label-free Quantification
Adriaan Sticker1,2,3,4x , Ludger Goeminne1,2,3,4, Lennart Martens2,3,4,*x ,
and Lieven Clement1,4,*x

Label-Free Quantitative mass spectrometry based work-
flows for differential expression (DE) analysis of proteins
impose important challenges on the data analysis be-
cause of peptide-specific effects and context dependent
missingness of peptide intensities. Peptide-based work-
flows, like MSqRob, test for DE directly from peptide in-
tensities and outperform summarization methods which
first aggregate MS1 peptide intensities to protein intensi-
ties before DE analysis. However, these methods are
computationally expensive, often hard to understand for
the non-specialized end-user, and do not provide protein
summaries, which are important for visualization or
downstream processing. In this work, we therefore eval-
uate state-of-the-art summarization strategies using a
benchmark spike-in dataset and discuss why and when
these fail compared with the state-of-the-art peptide
based model, MSqRob. Based on this evaluation, we pro-
pose a novel summarization strategy, MSqRobSum,
which estimates MSqRob’s model parameters in a two-
stage procedure circumventing the drawbacks of pep-
tide-based workflows. MSqRobSum maintains MSqRob’s
superior performance, while providing useful protein ex-
pression summaries for plotting and downstream analy-
sis. Summarizing peptide to protein intensities consider-
ably reduces the computational complexity, the memory
footprint and the model complexity, and makes it easier to
disseminate DE inferred on protein summaries. Moreover,
MSqRobSum provides a highly modular analysis frame-
work, which provides researchers with full flexibility to
develop data analysis workflows tailored toward their
specific applications.

Label-free quantitation (LFQ) mass spectrometry (MS)
based workflows have become standard practice in quanti-
tative proteomics (e.g. (1, 2)). This technology typically starts
with protein extraction followed by an enzyme digestion step
to produce peptides of a convenient length. The thus obtained
peptide mixture is then analyzed in a mass spectrometer
where intact peptide masses and their intensities are meas-
ured, resulting in an MS1 spectrum. In typical LFQ, the inten-

sities of the thus recorded peaks are taken as proxies for
peptide abundance. To identify the peaks observed in the
MS1 spectrum, these peaks are first isolated in the instru-
ment, and then subjected to fragmentation. Each of the re-
sulting fragmentation (MS2) spectra is then used for peptide
identification. In LFQ, each sample is separately analyzed on
the mass spectrometer, and differential expression is ob-
tained by comparing relative intensities between runs for the
same identified peptide (1).

However, this workflow also induces challenging data anal-
ysis problems. First, different peptides from the same protein
often have very distinct physio-chemical properties, leading
to large differences in their MS1 intensities even though these
peptides are of similar abundance (supplemental Fig. S1A1).
Second, because of technological constraints not all peptides
can be subjected to fragmentation. Indeed, only those pep-
tides with the highest MS1 intensities within a certain reten-
tion window are typically selected for fragmentation (3). As a
result, the identification in any given run depends not only on
the abundance of that peptide, but also on the abundances of
any co-eluting peptides. There can thus be context-depend-
ing missingness in a given run. Moreover, there are many
other potential sources of (random or non-random) missing-
ness, including peptide misidentification, ambiguous match-
ing of MS1 peaks, and poor quality MS2 spectra (4). Hence,
there is considerable variation in terms of the peptides that
are identified in each of the different MS runs in an experi-
ment. Taken together, the identification issue and the peptide
specific effects on quantification have a severe impact on the
downstream summarization of peptide intensities toward pro-
tein abundances (5).

Indeed, because of these issues, simple summarization
methods such as the mean or median peptide intensity are
known to give unreliable protein abundance estimates (5) and
more advanced summarization strategies have therefore been
proposed for LFQ data in the literature (6, 7, 8, 9). In Fig. 1A
we show the performance of these different data analysis
strategies on a benchmark dataset. Notably, we observe huge
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differences in performance between the different summariza-
tion strategies, which are driven by the absolute abundance,
and any differences in this abundance, of a protein between
conditions. Moreover, none of the summarization strategies
outperforms the others across all conditions.

To avoid these summarization issues, peptide-based mod-
els, such as MSqRob (10), allow testing for differentially ex-
pression (DE) of proteins directly from the observed peptide
intensities. The result is that these methods uniformly outper-
form summarization-based methods ((10) and Fig. 1A). In-
deed, by modeling peptide intensities directly, MSqRob nat-
urally accounts for differences in peptide characteristics, and
for differences in the number of identified peptides for a given
protein in each sample, resulting in a bias reduction and a
better uncertainty estimation on the fold change estimates.
However, the MSqRob method also suffers from some draw-
backs compared with summarization methods. MSqRob
must introduce random sample effects to account for corre-
lation between the peptide intensities for a given protein in the
same sample. This makes data analysis computationally more
demanding, renders appropriate degrees of freedom of the
test statistics unavailable, and even approximating these is
impossible because of imbalances in the peptides across
samples. The use of random effects also makes it difficult to
disseminate the method toward non-specialized end-users as
the interpretation of the result becomes correspondingly more
complex. Moreover, MSqRob does not readily provide protein
summaries for each sample, which are important for end-
users to explore and visualize the data, and for further proc-
essing in downstream applications.

We therefore here introduce a novel estimation strategy
for MSqRob using a two-stage approach, which we call
MSqRobSum. MSqRobSum provides robust protein level
summaries that account for peptide specific effects, which
are then further processed using robust ridge regression.
Hence, MSqRobSum combines the advantage of MSqRob’s
robust inference framework with the benefits of summariza-
tion, which allows fast and modular data analysis workflows.
In addition, these workflows benefit from the straightforward
visualization and interpretation of results at the protein level
that is offered by MSqRobSum. We illustrate the high per-
formance of MSqRobSum on a spike-in dataset, explain why
it surpasses existing state-of-the-art summarization-based
tools for DE in LFQ MS-based quantitative proteomics, and
apply it on two biological case studies.

EXPERIMENTAL PROCEDURES

We performed a comparison of current state-of-the-art software
tools for DE analysis of proteins on a benchmark spike-in dataset. We
compared one peptide-based tool, MSqRob and four summarization-
based tools: Proteus, Perseus, MSstats, and Differential Enrichment
analysis of Proteomics data (DEP). For all tools we aimed to use the
default workflow as suggested by the respective documentation. We
also introduce our own novel summarization strategy for DE analysis,

MSqRobSum, which aims to maintain MSqRob’s superior perform-
ance while also providing useful protein expression summaries.

Spike-in Data Set—The performance of MSqRobSum and other
state-of-the-art software tools for differential expression analysis
were benchmarked using a publicly available dataset (PRIDE identi-
fier: PXD003881 (11)). E. Coli lysates were spiked at five different
concentrations (3%, 4.5%, 6%, 7.5, and 9% wt/wt) in a stable human
background (four replicates per treatment). The twenty resulting sam-
ples were run on an Orbitrap Fusion mass spectrometer. Raw data
files were processed with MaxQuant (version 1.6.1.0, (12)) using
default search settings unless otherwise noted. Spectra were
searched against the UniProtKB/SwissProt human and E. Coli refer-
ence proteome databases (07/06/2018), concatenated with the de-
fault MaxQuant contaminant database. Carbamidomethylation of
cysteine was set as a fixed modification, and oxidation of Methionine
and acetylation of the protein N terminus were allowed as variable
modifications. In silico cleavage was set to use trypsin/P, allowing two
missed cleavages. Match between runs was also enabled using de-
fault settings. The resulting peptide-to-spectrum matches (PSMs)
were filtered by MaxQuant at 1% False Discovery Rate (FDR). In all
analyses, E. coli proteins are labeled as DE (true positives), and all
human proteins as equally expressed (true negatives).

To benchmark performance and FDR control of these different
quantification strategies, the False Discovery Proportion (FDP) and
True Positive Rate (TPR) of a set of proteins returned by the method
were calculated, with

FDP �
false positives

true positives � false positives
,

and,

TPR �
true positives
all positives

We define a set of significant DE proteins as the proteins with a p
value lower then a certain threshold. The FDP is then the fraction of
human proteins in the set of human and E. Coli proteins recovered,
whereas the TPR is the fraction of all E. Coli proteins recovered.

Biological Data Sets—We also illustrate MSqRobSum on two bio-
logical case studies.

In the first experiment, tissue samples were collected from patients
undergoing transurethral resection of bladder cancer. The dataset
consists of LFQ MS data from four non-invasive (pTa stage) and four
invasive tumor tissue samples (pT2� stage) (ProteomeXchange iden-
tifier: PXD002170) and is henceforth referred to as the Latosinska
dataset (13). The raw data files were processed with MaxQuant by
The et al. (2019) (14).

In a second experiment, Ramond et al. (15) knocked out the argi-
nine transporter gene, ArgP, in the pathogenic coccobacillus Franci-
sella tularensis and they assessed how this affects the proteome. To
this end, both wild-type and ArgP knockout mutants were grown in
biological triplicate and each replicate was analyzed in technical
triplicate with LFQ MS. The raw data files were processed with
MaxQuant (ProteomeXchange identifier: PXD001584) (15). This data-
set is henceforth referred to as the Francisella dataset.

Proteus Analysis—We performed the default workflow in the R
package Proteus (0.2.9) starting from the PSM values as reported in
the evidence.txt file in MaxQuant’s output (16). Proteins that are only
identified as contaminants or reversed sequences are removed from
the data set. The intensities of PSMs in a given sample that can be
assigned to the same peptide sequence are summed. Peptide inten-
sities are summarized to protein intensities using the high-flyer
method (6). Peptides were assigned to their leading razor protein.
Protein intensities are normalized to the median, and median in-

MSqRobSum
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tensities in each sample are equal. Protein intensities are log2

transformed.
DE of proteins is analyzed in Proteus with empirical Bayes moder-

ated t-tests using the bioconductor limma package (17). Note, that we
surpress an index for protein in all our model specifications for nota-
tional convenience.

In the limma analysis the following protein-wise linear models are
considered.

yst � �0 � �t
treatment � �st

with yst the normalized log2-transformed protein intensity in sample s
of treatment t, �0 the intercept, �t

treatment the effect of spike-in condition
t, and, �st the protein-wise random error terms, which are assumed to
be normally distributed with mean 0 and variance �2. The variances �2

are estimated with empirical Bayes, which stabilizes the estimates by
borrowing strength across proteins. Proteus corrects for multiple
testing using the Benjamini-Hochberg FDR procedure.

Perseus Analysis—We performed a standard Perseus workflow
starting from the MaxLFQ protein summaries calculated by Max-
Quant. MaxLFQ protein summaries are normalized and summarized
intensity values for each protein in each sample. We can summarize
the maxLFQ method as follows. The median ratio of the common
peptides from a protein in all pairwise sample comparisons is calcu-
lated. Non-linear least-squares regression on these ratios is used to
define an optimal protein expression profile across samples. This
profile is rescaled to match the total summed peptide intensities from
this protein in all samples (7). MaxLFQ protein summaries, as reported
in MaxQuant’s proteinGroups.txt file were further assessed in Per-
seus version 1.6.0.7. Proteins that are only identified by a modification
site, contaminants, and reversed sequences are removed from the
data set. Protein-wise two-sample t-tests on the log2 transformed
maxLFQ values are performed for all pairwise treatment combina-
tions. Perseus corrects for multiple testing using the Benjamini-Hoch-
berg FDR procedure.

MSstats Analysis—A standard MSstats (version 3.12 (9)) workflow
starts from the peptide intensities reported in MaxQuant’s evi-
dence.txt file. Peptides with only one or two measurements across all
samples, and peptides that occur in more than one protein are filtered
out. When a peptide is measured multiple times in a sample, only the
maximum intensity is kept. The log2 peptide intensities are median
normalized and missing values are imputed using an Accelerated
Failure Model (AFM). Peptide intensities are summarized to protein
intensities using Tuckey’s median polish algorithm (18). MSstats
builds protein-wise linear models based on these protein summaries.

yst � �0 � �t
treatment � �st

with yst the normalized log2-transformed protein intensity in sample s
of treatment t, �0 the intercept, �t

treatment the effect of spike-in condition
t, and, �st the protein-wise random error terms, which are assumed to
be normally distributed with mean 0 and variance �2. The multiple
testing problem is corrected using the Benjamini-Hochberg FDR
procedure.

Differential Enrichment Analysis of Proteomics Data (DEP)—Max-
LFQ values are analyzed with the standard workflow in the Biocon-
ductor software package DEP version 1.2.0 (8). Proteins that are
contaminants or that originate from reversed sequences are removed
from the data set. Only proteins with no missing values in at least one
treatment group are kept. The data are normalized using Variance
Stabilizing Normalization (VSN) (19).

Missing values are imputed differently for proteins that are missing
completely at random (MCAR), and proteins that are missing not at
random (MNAR) (4). MCAR proteins are defined as proteins observed
in at least one replicate for every condition, and these are imputed
with k-nearest neighbors averaging. MNAR proteins are assumed to

be missing under low abundance and are thus considered left-cen-
sored data. Proteins are labeled MNAR when completely missing in at
least one condition and are imputed with a stochastic minimal value
approach. In short, a value is drawn from a normal distribution cen-
tered around the first percentile of all observed protein expressions in
the sample, and with a standard deviation estimated as the median
protein-wise standard deviation.

DE of proteins is analyzed in DEP with empirical Bayes moderated
t-tests using the bioconductor limma package (17), like the Proteus
workflow. Multiple testing is corrected using an empirical FDR esti-
mation approach as implemented in the R package fdrtool.

MSqRob Analysis—The data is preprocessed using the MSnBase
R/Bioconductor package version 2.6.2 (20). The analysis is done
using the summarized peptide intensities as reported in the pep-
tides.txt file in MaxQuant’s output. The spike-in data and the La-
tosinka data are normalized using VSN, as in the default DEP work-
flow. The Francisella data, however, are normalized using quantile
normalization (21), like the MSqRob analysis described in the paper of
Goeminne et al. (2016) (10). Proteins that are only identified by a
modification site, contaminants, and reversed sequences are re-
moved from the data set. To avoid ambiguity, peptide sequences
attributed to both E. coli and human proteins are removed. Peptides
that are only observed once across all samples are also removed.
Finally, treatments in which a protein is only observed in one replicate
are still included in the DE analysis for this protein.

MSqRob is a linear regression peptide-based mixed model.
We consider the protein-wise models.

ytsp � �0 � �t
treatment � �s

sample � �p
peptide � �tsp,

with ytsp the normalized log2-transformed intensity of peptide p in
sample s with treatment t, �0 the intercept, �t

treatment the effect of
spike-in condition t, �s

sample a random effect that corrects for the
correlation in measured expression levels between the peptides from
the same protein in samples (pseudo replication on the sample level),
and, �p

peptide the effect of peptide p. Again the error term �tsp is as-
sumed to be normally distributed with mean 0 and variance �2.

When only one peptide is measured for a protein in all samples, the
model reduces to.

yts � �0 � �t
treatment � �ts

The parameters for treatment and peptide are tuned using pe-
nalised estimation by exploiting the link between random effects and
ridge regression.

Variability in the parameter estimators is reduced by shrinkage
toward zero when there are only few observations. This protects
against overfitting and makes the estimators more stable and accu-
rate. The influence of outliers is weighed down by M-estimation using
Huber weights. The variance of the protein-wise random error terms
�tsp are again estimated with limma’s empirical Bayes variance esti-
mator.

Multiple testing is corrected using the Benjamini-Hochberg FDR
procedure.

MSqRobSum Analysis—MSqRob’s mixed model can also be esti-
mated through a two-stage regression analysis (22). Here we first
summarize peptide intensities to the protein level and subsequently
test for DE on these protein summaries.

The same preprocessing is used as for the MSqRob analysis
described in section 2.6. In the first stage we aggregate all normalized
peptide intensities of a protein using robust regression with M-esti-
mation using Huber weights. We consider the protein-wise linear
model:

ysp � �s
sample � �p

peptide � �sp

MSqRobSum
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With ysp the normalized log2-transformed intensity of peptide p in
sample s and �p

peptide the effect of peptide p. By encoding the peptide
effect as a sum contrast, �s

sample can be interpreted as the mean
intensity in sample s for this protein. The error term �sp is assumed to
be normally distributed with mean 0 and variance �peptide

2 .
In the second stage, we perform an MSqRob analysis on protein

intensities with the reduced model.

yts � �0 � �t
treatment � �ts

With yts the summarized log2-transformed protein intensity in sample
s of treatment t, �0 the intercept, and, �t

treatment the effect of spike-in
condition t. Again, the error term �ts is assumed to be normally
distributed with mean 0 and variance �2. We correct for multiple
testing using the Benjamini-Hochberg FDR procedure.

We can expect a drop in performance in MSqRobSum compared
with MSqRob because we lose information on the measured intensi-
ties and introduce some random variation during summarization. We
also do not take into account that the covariance matrix of the
estimated sample estimates is highly dependent on the number of
measured peptide intensities in the sample (22). However, we expect
that the resulting impact on performance is minimal in practice.

Software—Data preprocessing, statistical analysis and figures
were done using the R programming language version 3.5.1. All R
code is open sourced for reproducibility (https://github.com/stat
Omics/MSqRobSumPaper). The MSqRob algorithm has been imple-
mented in R previously (10). However, we re-implemented MSqRob in
R, and extended it to also allow for our proposed two-stage param-
eter estimation strategy, MSqRobSum. Because we fit a mixed model
for each protein separately, we could easily parallelize the computa-
tions, which greatly speeds up the MSqRob and MSqRobSum anal-
ysis. In a full MSqRob peptide-level analysis, we typically allow for
twenty iterations in the M-estimation using Huber weights for robust
estimation of the model parameters. However, the MSqRob protein-
level analysis in MSqRobSum only does one iteration by default. This
sufficiently robustifies against outliers while maintaining proper FDR-
control. The robust summarization, MSqRob and MSqrobSum algo-
rithms are implemented as a open source R package MSqRobSum
(https://github.com/statOmics/MSqRobSum). The robust summariza-
tion algorithm is also ported to the combineFeatures function for
summarization in the R bioconductor package MSnbase (20).

RESULTS

State-of-the-art methods and our novel MSqRob approach
are all benchmarked using a dataset where an E. Coli pro-
teome was spiked at five different concentrations in a human
background. We first compare existing tools for DE analysis of
LFQ based quantitative proteomics, and critically assess why
the performance of summarization-based approaches breaks
down. Next, we show that our novel summarization-based
method, MSqRobSum, maintains the high performance of the
peptide-level based approach MSqRob. We further illustrate
that MSqRobSum unlocks MSqRob toward modular data
analysis workflows and we explain how and why MSqRob-
Sum improves upon competitive summarization-based ap-
proaches. We conclude this section by assessing MSqRob-
Sum in two biological case studies.

Comparison Between Methods—In this section we com-
pare four summarization-based methods (Proteus, Max-
Quant-Perseus, DEP, and MSstats), and one peptide-based
model (MSqRob).

The Proteus workflow corrects for missingness of peptides
under low abundance by summarizing using the high-flyer
method, which provide protein-level intensities by taking the
mean intensity of the three most intense peptides (6, 16).

However, this method does not correct for peptide specific
effects and removes information by only using the top three
peptide intensities. This introduces variability and bias in the
estimated protein summaries (supplemental Fig. S1B2). In-
deed, the most abundant peptides typically differ between
samples, leading to a low performance compared with all
other methods (Fig. 1A).

The popular MaxQuant-Perseus workflow is based on Max-
Quant’s MaxLFQ summarization and subsequent statistical
analysis with Perseus using t-tests (7). MaxLFQ corrects for
peptide specific effects by looking at pair-wise abundance
ratios of shared peptides between samples. However, the
heuristics in MaxLFQ often removes considerable informa-
tion, which leads to increased missingness and imprecise
summaries (supplemental Fig. 1C3). Comparisons that involve
low spike-in concentrations often have too few shared pep-
tides between samples, i.e. less than two, and these ratios are
unreliable for summarization. Even though MaxLFQ corrects
for peptide species by calculating ratios for shared peptides,
it still appears to produces biased fold change estimates. The
use of t-tests also results in suboptimal analysis as their
variance estimator only includes the information of the data
for the samples that are involved in the comparison. The
summarization method combined with the less efficient
downstream analysis often results in a low performance com-
pared with the other methods (Fig. 1).

The recent Differential Enrichment analysis of Proteomics
data (DEP) software package greatly improved MaxLFQ
based analysis by adopting a mixed imputation strategy for
missing protein intensities that infers whether random miss-
ingness or missingness because of low abundance occurs (8).
It also provides a more robust downstream DE analysis using
protein-wise linear models combined with empirical Bayes
statistics (through the limma package (17)). Hence, DEP pro-
duces both more accurate as well as more precise fold
change estimates and vastly outperforms the Perseus analy-
sis (Fig. 1).

MSstats (9) is another popular software suite for proteomics
data analysis. Initially, MSstats performed peptide-based
modeling using linear mixed models. However, recent re-
leases adopt summarization-based workflows in which pep-
tide intensities are first summarized to protein intensities, and
linear modeling is then performed on the protein level. The
default choice of summarization in MSstats is median polish,
which corrects for peptide specific effects and is robust
against outliers. Median polish is, however, unstable in the
presence of too much missing data but this is alleviated in
MSstats by imputing missing peptide intensities by default
using an Accelerated Failure Model (AFM). However, unlike
DEP’s mixed imputation strategy, AFM assumes that all in-

MSqRobSum
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tensities are missing because of low abundance, thus ne-
glecting to consider other sources of missingness. Indeed, it
turns out that MSstats’ performance increases when the im-
putation step is omitted, especially in comparisons with high
spike-in concentrations (supplemental Fig. S2), indicating that
AFM’s assumptions are insufficient.

The median polish summarization in MSstats produces
more accurate fold change estimates compared with MaxLFQ
(Fig. 1B). However, whereas MSstats outperforms MaxLFQ

based workflows at high fold changes (Fig. 1A, comparison
b-a and supplemental Fig. S3A, comparisons c-a and d-a), its
performance becomes increasingly worse in comparisons
with low fold changes (Fig. 1A, comparisons c-b and d-c).
This happens because the high fold change comparisons
are achieved by a low concentration of spike-in proteins,
with missingness predominantly caused by low abundance,
whereas the low fold change comparisons contain a high
concentration of spike-in proteins, with missingness originat-

b−a
Concentration (% wt/wt): b = 4.5%, a = 3%
Fold Change (b/a) = 1.5

c−b
Concentration (% wt/wt): c = 6%, b = 4.5%
Fold Change (c/b) = 1.33

d−c
Concentration (% wt/wt): d = 7.5%, c = 6%
Fold Change (d/c) = 1.25
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FIG. 1. Comparison of current state-of-the-art tools for DE analysis of proteins. We compare one peptide based tool, MSqRob and four
summarization based tools. Of these, Perseus and Differential Enrichment analysis of Proteomics data (DEP) with mixed imputation are both
based on maxLFQ protein intensities. MSstats uses median polish summarized protein intensities, whereas Proteus uses high-flyers
summarization. The data consists of E. Coli proteins spiked at four different concentrations (a, b, c, and d) in a human proteome. The plot in
Panel A shows the performance of each method for the pairwise comparisons b-a, c-b, and d-c (True Positive Rate � E. Coli/(Total E. Coli);
False Discovery Proportion � Human/(Human � E. Coli)). MSstats outperforms Proteus, DEP, and Perseus at higher fold changes, but drops
in performance down to Perseus levels at the lowest fold change. Proteus outperforms Perseus at higher fold changes but is less performant
at the lowest fold change. MSqRob always outperforms the other methods. The boxplots in panel B show estimated log2 fold changes of
differentially (E. Coli) and non-differentially (human) expressed proteins in the a versus b comparison. The thick gray line indicates the real log2

fold change for the E. Coli proteins. Perseus has biased fold changes for the E. Coli proteins, but has more precise fold changes for human
proteins than DEP and MSstats. MSqRob has more precise and more accurate fold changes than any other method.
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ing from other sources. The missingness by low abundance
assumption of MSstats is therefore much more likely to be
violated for low fold change cases, leading to a suboptimal
ranking and a breakdown of MSstats for these comparisons.
In contrast, DEP, which also accounts for random missing-
ness, does not breakdown for these comparisons.

It should be noted that DEP’s default preprocessing in-
cludes more stringent filtering for dubious proteins and thus
returns less proteins overall than MSstats, which renders the
better performance of MSstats in comparisons involving con-
centration a (b-a, c-a, d-a) superficial. Indeed, when only
considering common proteins, DEP shows higher sensitivity
then MSstats (supplemental Fig. S3B).

MSqRob, finally, uses a peptide-based approach that pro-
vides robustness against outliers and overfitting by adopting
M-estimation, ridge regression and a limma style empirical
Bayes procedure for variance estimation (10). MSqRob thus
derives unbiased fold change estimates with high precision
and outperforms all summarization-based models (Fig. 1A).
The increase in performance is even more apparent at low fold
changes (Fig. 1A comparison c-b and d-c).

MSqRobSum Has Similar Overall Performance to MSqRob—
In this section, we show that we can fit the MSqRob model in
a two-stage approach, with minimal impact on performance.

In the first stage of MSqRobSum we summarize peptide
intensities in a sample to protein intensities using robust

regression. This summarization is precise, and more robust
than both high-flyer and maxLFQ summarization (supplemen-
tal Fig. S1). In the second stage, MSqRobSum provides pre-
cise and unbiased fold change estimates, comparable to
MSqRob (supplemental Fig. S4).

MSqRobSum has a similar performance to MSqRob for
medium to highly differentially expressed proteins (Fig. 2,
comparison b-a and supplemental Fig. S5, comparisons c-a,
d-a, and d-b). Although the performance of MSqRobSum is
lower than that of MSqRob for increasingly lower fold changes
(Fig. 2 comparison c-b and d-c), it should be noted that all
summarization methods suffer from a drop in performance at
lower fold changes (Fig. 1).

A major contributor to the performance drop of MSqRob-
Sum is human protein Q9BZJ0, which has relatively low pro-
tein summaries for the samples in condition c because of
outlying intensities of one peptide in all samples of condition
c (supplemental Fig. S6). As a result, this protein receives a
very low p value from the MSqRobSum analysis for compar-
ison d-c and is thus returned as a false positive at 1% FDR
(supplemental Fig. S7). The MSqRob analysis, however, ex-
plicitly models the variance at the peptide level and the be-
tween sample variability and correctly rejects this protein.

The FDR is controlled at the 1 and 5% level for both
MSqRob and MSqRobSum across almost the whole range of
fold changes in differential expression (Fig. 2), except in com-
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Fold Change (b/a) = 1.5

c−b
Concentration (% wt/wt): c = 6%, b = 4.5%
Fold Change (c/b) = 1.33

d−c
Concentration (% wt/wt): d = 7.5%, c = 6%
Fold Change (d/c) = 1.25
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FIG. 2. Comparison of performance of MSqRob and MSqRobSum. We compare the performance of MSqRob and MSqRobSum. The data
consists of E. Coli proteins spiked at four different concentrations (a, b, c, and d) in a human proteome. The plot shows the performance of
each method for the pairwise comparisons b-a, c-b, and d-c (True Positive Rate � E. Coli/(Total E. Coli); False Discovery Proportion �
Human/(Human � E. Coli)). The estimated 1% (circle) and 5% (triangle) FDR is controlled if it remains below 1 and 5% FDP, respectively
(indicated by vertical gray lines). Performance of MSqRobSum is close to MSqRob in all comparisons, and MSqRobSum even outperforms
MSqRob in the b-a comparison. The performance of MSqRobSum does decline compared with MSqRob at decreasing fold changes between
treatments (e.g. c-b and d-c), but the FDR is controlled in all comparisons.
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parison c-a and d-a (supplemental Fig. S5). The loss of FDR
control in the latter comparison occurs because overspiking
(high spike-in concentrations) causes increased ion competi-
tion between the peptide molecules in the sample (23, 5). This
in turn causes peptides with equal abundance in two samples
to be less ionized in the sample with the higher total protein
concentration, resulting in a lower measured intensity for
those peptides in that sample.

This effect is clearly visible as the average estimated fold
changes of the human proteins steadily decreases as the
spiked-in E. Coli concentration increases (supplemental Fig.
S8A). At higher spiked-in E. coli concentrations, more human
proteins thus appear to be differentially downregulated, and
these additional false positives artificially inflate the estimated
FDR (supplemental Fig. S8B).

The rationale for switching to MSqRobSum instead of
MSqRob is based on two issues with MSqRob. The first issue
is that it is unclear which degrees of freedom should be used
for the test with MSqRob. MSqRob uses the degrees of
freedom of the variance at the peptide level (within sample
variance), but these do not correspond to the degrees of
freedom of the standard errors on the fold change estimates.
Indeed, these standard errors include both the within sample
variance and the between sample variance, and the correct
degrees of freedom therefore vary between those of the within
sample variance, and those that would be obtained for a tool
that models the data at protein level. For unbalanced data, the
correct degrees of freedom cannot be approximated and the
results of MSqRob are thus bound to be too liberal.

The second issue is speed, as fitting the large mixed mod-
els in a peptide-level MSqRob workflow is computationally
quite expensive. In contrast, the robust summarization in the
first stage of MSqRobSum is a relatively cheap operation
computationally. By switching to the two-stage approach in
MSqRobSum, analysis time is reduced to less than a third of
the MSqRob computation time (�10 min versus �3 min).
Parallelization of both methods maintains this speed differ-
ence, while decreasing processing time even further (�3 min
versus �1 min, supplemental Fig. S9).

Moreover, MSqRobSum also returns protein summaries
that are useful for visualization and for downstream analyses,
which are not available in MSqRob as it models the peptide
intensities directly.

MSqRobSum Allows for a Modular Data Analysis Work-
flow—The MSqRobSum workflow consists of three steps:
preprocessing, summarization with robust regression, and DE
analysis with robust ridge regression. Because each step can
have an important impact on the performance of the entire
data analysis workflow, the decoupling of summarization and
inference provides optimal flexibility to combine each of the
MSqRobSum steps with other tools in modular workflows. To
illustrate the usefulness of such modular workflows, we will
start from the default Perseus workflow and we will show how

each step in the MSqRobSum workflow ramps up the
performance.

The default Perseus workflow consists of maxLFQ summa-
rization combined with t-tests for statistical inference. Its per-
formance is relatively low and the FDR is not controlled at
either the 1% or the 5% level (Fig. 3). However, exploratory
data analysis revealed a strong batch effect across the sam-
ples which is undocumented in the experimental design.
Batch effects should be corrected for during the statistical
analysis but if undocumented, it is not always obvious if and
how samples are organized in batches (supplemental Fig.
S10). Often, normalization strategies already sufficiently cor-
rect for these sample effects. We can thus improve the per-
formance and FDR control of the Perseus analysis by prepro-
cessing the maxLFQ summarized intensities with VSN (Fig. 3).

The statistical inference in Perseus is based on t-tests,
which are underpowered when dealing with more than two
conditions and other more complex study designs. We can
therefore further improve performance by modeling intensities
with MSqRob’s robust ridge regression approach, which al-
lows for higher performance and good FDR control. Note,
however, that FDR is not controlled in conditions c-a and d-a
because of ion competition, as also highlighted above (sup-
plemental Fig. S11).

MaxLFQ’s summarization strategy, based on pairwise ra-
tios between samples, is inefficient for samples with low
concentrations, which leads to unstable summaries and/or
missingness. DEP dealt with this through a context-depend-
ent imputation strategy, which increases the power of the
subsequent statistical inference (Fig. 3). At high protein con-
centrations, there is low missingness and the effect of impu-
tation will be small (Fig. 3 comparison d-c).

With MSqRobSum, we correct for peptide-specific effects
through a model-based robust summarization strategy which
models the log-transformed peptide intensities directly
through robust regression. This robust regression efficiently
uses all available protein intensities and imputation such as
used in MaxLFQ is therefore not required (supplemental Fig.
S12). The full MSqRobSum workflow thus further boosts per-
formance while maintaining good FDR control (Fig. 3). More-
over, this MsqRobSum workflow uniformly outperforms all
other modular approaches.

Performance of MSqRobSum in Biological Data Sets—In
this section we adopt MSqRobSum on two case studies. The
Latosinka study that compares the proteome of non-invasive
and invasive human bladder cancer tumors, and the Francis-
cella study that assesses the impact of knocking out the
arginine transporter gene on the proteome of the pathogenic
coccobacillus Francisella tularensis.

Fig. 4 compares the performance of MSqRob, MSqRob-
Sum, MSstats and DEP in the Latosinka study. It illustrates
that MSqRob is much more liberal and returns many more
proteins at a fixed FDR level than the summarization based
approaches. At 5% FDR MSqRob returns 45 DE proteins,

MSqRobSum
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whereas MSqRobSum and DEP return 4, and MSstats returns
none. At 1% FDR, DEP returns 2 DE proteins and MSqRob-
Sum returns none. However, MSqRobSum takes over at more
liberal FDR levels. Also note that DEP performs a more strin-
gent filtering, which results in a lower multiple testing burden.
When only considering proteins that were analyzed with both
tools, MSqRobSum returns more proteins over the entire FDR
range (supplemental Fig. S13). This shows that the difference
in DE proteins between MSqRobSum and DEP at low FDR
levels is induced by the filtering strategy, and that MSqRob-
Sum is the most liberal method among the summarization-
based approaches.

When we further dissect the differences between MSqRob
and MSqRobSum (supplemental Fig. S14), both methods
show similar fold change (FC) estimates (gray dots panel A),
similar t test statistics (gray dots panel B), and similar stand-
ard errors on the fold change estimates (gray dots panel D) for
the bulk of the proteins. For a small set of proteins, indicated
by dots close to the x or y axis, very distinct estimates are
obtained. The degrees of freedom, however, are generally
much larger for MSqRob than for MSqRobSum for many
proteins (gray dots in panel C). When we focus on the 45 DE
proteins flagged by MSqRob, we can identify several reasons

b−a
Concentration (% wt/wt): b = 4.5%, a = 3%
Fold Change (b/a) = 1.5

c−b
Concentration (% wt/wt): c = 6%, b = 4.5%
Fold Change (c/b) = 1.33

d−c
Concentration (% wt/wt): d = 7.5%, c = 6%
Fold Change (d/c) = 1.25
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FIG. 3. Improvements of DE analysis using a modular data analysis workflow. We show incremental improvements in DE analysis by
incrementally changing components in the workflow. The data consists of E. Coli proteins spiked at four different concentrations (a, b, c, and
d) in a human proteome. The plot shows the performance of each method for the pairwise comparisons b-a, c-b, and d-c (True Positive Rate �
E. Coli/(Total E. Coli); False Discovery Proportion � Human/(Human � E. Coli)). The circle and triangle are at 1 and 5% FDR, respectively, as
estimated by the method. Perseus default performs t-tests on maxLFQ protein summaries for DE analysis. However, its performance is low
and FDR is not controlled. Adding VSN normalization to the protein summaries boosts the performance of the DE analysis (perseus vsn). This
workflow is further improved by replacing conventional t-tests by MSqRobSum’s inference step (MSqRobSum maxLFQ). Adopting DEP’s
mixed imputation scheme results in an additional gain in performance (MSqRobSum DEP), whereas the best results are obtained by replacing
maxLFQ and mixed imputation with our robust summarization (MSqRobSum default).
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FIG. 4. Comparison of different tools for DE analysis of proteins
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why more DE proteins are reported than with MSqRobSum.
(1) The t test of MSqRob cannot correctly account for the
degrees of freedom (DF) of the standard error on the FC
estimate, which consists of the within and between sample
error. Its DF is therefore solely based on the DF of the within
sample variance estimator, which is vastly overestimated for
proteins with many peptides. When the MSqRobSum analysis
is run with the MSqRob DF, the number of DE proteins rises
from 4 to 15 at 5% FDR (full red and blue dots in supplemental
Fig. S14). (2) The t test result is larger for those proteins that
are only significant for MSqRob. This is mainly because of a
lower standard error for MSqRob (empty dots in supplemental
Fig. S14B and S14D). Note that the estimator for the between
sample variance can be expected to have a large uncertainty
in experiments with few samples and that it will therefore be
often underestimated by random chance (blue dots in sup-
plemental Fig. S14B and S14D). For such proteins, the sta-
tistical test of MSqRob almost acts as if all observed peptide-
level data are independent, which might lead to an
underestimation of the standard error on the estimated FC
estimator. (3) For a few proteins, the shrinkage of the FC
estimator is also higher in MSqRobSum, leading to a more
conservative fold change estimate (supplemental Fig. S14A).
Issues (1) and (2) thus indicate that MSqRob can be expected
to produce too liberal protein lists in experiments with small
sample sizes.

Like the paper of Goeminne et al. (2016) (10), we also
evaluate the performance of the method in the Francisella
dataset of Ramond et al. (2015) (15). In Fig. 5, we observe that
the Ramond et al. analysis flags many DE proteins. Most of
these DE proteins, however, have fold changes close to zero
and are downregulated in the wild type as compared with the
knockout (supplemental Fig. S15). This is counter intuitive
because the knockout induces arginine deficiency, which can

be expected to affect many proteins negatively rather than
positively. Goeminne et al. (2016) argue that the Ramond et al.
(2015) analysis treats all technical repeats as biological re-
peats because Perseus cannot account for technical repli-
cates. Hence, the Perseus analysis can be expected to pro-
duce too liberal results and reports many DE proteins with
near-zero FC estimates. Goeminne et al. (2016) also showed
that the proteins that were discovered by Ramond et al. (2015)
and not by MSqRob did not bear strong evidence for differ-
ential expression between WT and mutant. The MSqRob and
the MSqRobSum analysis report fewer DE proteins, and, as
expected from biology, most of these DE proteins are up-
regulated in wild type as compared with knockout (supple-
mental Fig. S15). Here again, MSqRobSum reports less pro-
teins that MSqRob. However, in this experiment with more
MS runs, we can observe that the major difference between
both tools is driven by the difference in degrees of freedom.
Indeed, the performance of MSqRob and MSqRobSum is
much closer when they are both based on the asymptotic
z-test (supplemental Fig. S16).

DISCUSSION

In this work, we introduced MSqRobSum, a novel summa-
rization-based method for LFQ which offers stable protein
intensity estimation and high-performance protein DE analy-
sis. We performed a benchmark study of different existing
software implementations for summarization based LFQ
methods and the state-of-the-art peptide-based model,
MSqRob. MSqRob uses the information on all peptides during
statistical inference and outperforms all summarization-based
methods, which can only carry out inference on the protein
summaries. However, MSqRob models are computationally
quite expensive, can be hard to understand by experimental-
ists, include tests with unspecified degrees of freedom, and
do not provide protein summaries for visualization and down-
stream processing. These MSqRob drawbacks are not pres-
ent in summarization-based methods. Indeed, summarization
is usually a relatively cheap operation and reduces the num-
ber of data points, whereas the obtained protein summaries
allow easy visual inspection of the data. The use of protein
summaries also reduces model complexity and enables sta-
tistical inference with t-statistics that have well-defined de-
grees of freedom. However, many existing summarization-
based methods suffer a considerable drop in performance
compared with MSqRob (Fig. 1). Our analysis shows that this
drop in performance is dependent on issues with the summa-
rization method used. Methods that do not take into account
peptide specific effects, such as the high-flyer method in
Proteus, show a clear drop in performance, whereas a
method like MaxLFQ does consider peptide specific effects,
but is based on heuristics and is not very data efficient. With
MSqRobSum, we instead rely on robust regression for sum-
marization, which allows correction for peptide-specific ef-
fects, effectively exploits all data in its model based summa-
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MSqRobSum. Ramond et al. return the largest number of proteins as
DE and MSqRobSum returns the lowest number of DE proteins.

MSqRobSum

Mol Cell Proteomics (2020) 19(7) 1209–1219 1217

 at U
N

IV
E

R
SIT

E
IT

 G
E

N
T

 on A
ugust 18, 2020

https://w
w

w
.m

cponline.org
D

ow
nloaded from

 

http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
http://www.mcponline.org/cgi/content/full/RA119.001624/DC1
https://www.mcponline.org


rization, and is robust against outliers. Taken together, the
result is a considerable boost in performance in the DE anal-
ysis when compared with MaxLFQ.

We also show that preprocessing is crucial for the perform-
ance of a DE workflow. The first type of such preprocessing is
normalization, which can have a large impact on DE analysis
(Fig. 3). The second type of preprocessing is imputation of
missing values, and this too can be beneficial (Fig. 3). How-
ever, because several different imputation methods exist, and
because each of these applies to different sources of miss-
ingness, the best results are typically achieved when using a
mixed imputation, where randomly missing values and values
missing under low abundance are imputed differently (8). It
should be noted, however, that the robust modeling in
MSqRobSum can safely omit imputation altogether (supple-
mental Fig. S12).

Another crucial component in LFQ is the statistical model
for discovering DE proteins. Perseus utilizes standard t-tests,
but these are vastly underpowered compared with linear
regression based models in more complex experimental
designs. Moreover, MSqRob extends the linear model to
robustify it against outliers and to improve uncertainty es-
timation (5). In the MSqRobSum workflow, we therefore use
MSqRob’s robust linear model approach instead of t-tests
on the protein summaries. This considerably improves per-
formance of the DE analysis, reaching a level comparable to
MSqRob for a wide range of DE proteins (Fig. 3). And
although MSqRob does show lower performance for in-
creasingly lower fold changes in DE (Fig. 2), all summariza-
tion methods suffer from a drop in performance in these
cases, often more severe than that of MSqRobSum (Fig. 1
and 2 comparisons c-b and d-c).

Moreover, we show in the analysis of the two biological
datasets that MSqRob can be too liberal in datasets with few
samples because of overestimation of the degrees of freedom
and an underestimation of the between sample error.

Lastly, the robust summarization approach has the merit
that the entire analysis workflow has become modular: the
provided robust protein abundance estimates can be used for
visualization and integration in other tools for DE, whereas
MSqRob can now also start from protein summaries provided
by other tools. This gives users considerable additional flexi-
bility to develop modular workflows that are tailored toward
their specific applications and renders MSqRob future proof
when novel and more performant summarization procedures
become available.
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