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ABSTRACT: Spectral similarity searching to identify peptide-derived MS/MS spectra is a 

promising technique, and different spectrum similarity search tools have therefore been developed. 

Each of these tools, however, comes with some limitations, mainly due to low processing speed 

and issues with handling large databases. Furthermore, the number of spectral data formats 

supported is typically limited, which also creates a threshold to adoption. We have therefore 

developed COSS (CompOmics Spectral Searching), a new and user-friendly spectral library search 

tool supporting two scoring functions. COSS also includes decoy spectra generation for result 
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validation. We have benchmarked COSS on three different spectral libraries and compared the 

results with established spectral searching tools and sequence database search tool. Our 

comparison showed that COSS more reliably identifies spectra, is capable of handling large 

datasets and libraries and is an easy to use tool that can run on low computer specifications. COSS 

binaries and source code can be freely downloaded from https://github.com/compomics/COSS. 
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INTRODUCTION 

Tandem mass spectrometry (MS/MS) is a commonly used method to analyze and identify peptides 

and proteins. Typically, MS/MS analysis and identification consists of several steps1. First, an 

unknown protein mixture is digested into peptides with the aid of a protease, and the resulting 

peptides are then separated in time by liquid chromatography (LC). This LC is coupled directly to 

a mass spectrometer’s source where the eluting peptides are detected, selected, and fragmented. 

The resulting fragment ions are then analyzed by a second stage of mass spectrometry to acquire 

an MS/MS spectrum. These MS/MS spectra can then be subjected to different computational 

approaches to match them to peptide sequences.  

Commonly used approaches are de novo sequencing, sequence database searching, and spectral 

library searching. De novo sequencing2 algorithms directly infer the amino acid sequence from the 

experimental spectrum. In this technique, the quality of the spectrum affects the success of the 

inference process and hence the identification result. Therefore, the identification rate of such 

algorithms in practice is typically limited3, in turn limiting their use. In sequence database 

searching, an in silico digest of a protein sequence database produces a list of peptide sequences, 
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each of which is then used to generate theoretical mass spectra. These theoretical spectra are 

subsequently compared with experimental spectra using a similarity scoring function. Due to their 

performance, sequence database search engines are the most widely used approach to analyze 

MS/MS data. Nevertheless, despite its popularity, database searching comes with some 

drawbacks4. The first problem with database searching is the computational complexity imposed 

when working with large databases. As the algorithm needs to consider all possible peptides 

derived from a protein sequence, the resulting databases will grow exponentially when taking into 

account multiple missed cleavages and a variety of potential post-translational modifications 

(PTMs)3. Another important disadvantage of database searching is the lack of peak intensity 

information and information on non-canonical fragments in the generated theoretical spectra, 

which limits the sensitivity of the scoring function. 

Spectral library searching seeks to correct for these two issues, by comparing experimental spectra 

to a spectral library built from previously identified spectra5. Nowadays, this spectral library 

searching approach is gaining more attention due to a number of advantages6. Because the search 

space is confined to previously observed and identified peptides, the computational complexity is 

reduced7. Moreover, spectral searching can take advantage of all spectral features, including actual 

peak intensities and the presence of non-canonical fragment ions8, to determine the best possible 

peptide match. As a result, this technique often yields improved sensitivity9. 

Different tools to apply spectral library searching have been developed over the past years, with 

SpectraST10, the National Institute of Standards and Technology (NIST) MS-Search11 and 

MSPepSearch (https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch), ANN-

SoLo12 and X!Hunter13 as notable examples. Each of these tools, however, comes with some 

limitations, such as some of them run with a low processing speed, issues with handling large 
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databases, and operational complexity. Furthermore, these tools typically support only specific 

spectral data formats, which also creates a threshold to adoption if the desired library is not 

presented in a compatible format. Taken together, these issues have prevented widespread 

adoption of the spectral library searching approach in proteomics. 

We have therefore developed COSS (CompOmics Spectral Searching), a new, fast, and user-

friendly spectral library search tool capable of processing large databases and supporting different 

file formats. Two scoring functions are available in COSS, namely MSROBIN, which relies on 

probabilistic scoring, and the cosine similarity score. COSS also offers an intuitive graphical user 

interface, allowing it to be adopted easily. To control the false discovery rate, a built-in mechanism 

to generate decoy spectral libraries has been provided as well. We have benchmarked COSS on 

three different spectral libraries and our results show that, compared to established tools, COSS 

delivers more reliable identification. At the same time, COSS requires a reasonable lower 

computation time than most other algorithms and has a much-reduced memory footprint, 

eliminating the requirement for high performance and costly equipment, and further lowering the 

threshold to adoption of the spectral library searching approach.
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MATERIALS AND METHODS 

Implementation 

COSS is developed in Java in a modular fashion so that its code is reusable and future-proof. 

Separate modules have been developed for key tasks such as indexing, filtering, matching, and 

decoy generation. To ensure maximal compatibility with input formats, the spectrum reader has 

been developed as a separate subsystem. COSS supports mzXML14, mzML15, ms2 and dta input 

formats through the mzIdentML16 library, while support for the msp and mgf formats is included 

through an in-house implementation. The compomics-utilities17 library was used for spectra 

visualization. Because COSS is completely developed in Java, it is platform independent, allowing 

users to run the software in their own preferred environment (e.g., Windows, Linux, or MacOS). 

Scoring function 

COSS implements two scoring functions: MSROBIN, which is based on the probabilistic scoring 

function of  Yilmaz et al.18, itself a derivative of the Andromeda scoring function19 and the cosine 

similarity score. The scoring procedure consists of two main steps. First, both the query and library 

spectrum are divided into 100 Da windows and within each window, the q peaks with the highest 

intensity are selected. Next, the score is calculated for q varying from 1 to 10 and the highest score 

is retained. The MSROBIN scoring function consists of two parts, an intensity part and a 

probability part. The probability scoring part is as follows: 
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Where n is the number of peaks, k is number of matched peaks, and p is the probability of finding 

a match for a single matched peak, calculated by dividing the number of retained high intensity 

peaks by the mass window size which we set at 100 Da.  

The second part is the intensity scoring which is calculated as: 
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Here, I is the peak intensity, X is the set of matched peaks and Y is the set of intense peaks selected 

from each 100 Da window. The final score is then computed as: 
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 We have calculated the cosine similarity scoring function as follows: 
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Where Q is the intensity of the matched peak found in the query spectrum, L the intensity of the 

matched peak found in the library spectrum and N is the total number of matched peaks between 

query and library spectra under comparison. The score is weighted by the number of matched 

peaks. 
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False discovery rate estimation 

Erroneous peptide assignments can occur due to poor spectrum quality or limitations in the scoring 

function. Validation of the obtained results is therefore a key step in peptide identification, and 

typically takes the form of false discovery rate (FDR) control20. For this purpose, COSS 

implements a decoy spectral library strategy, which can generate a number of decoy spectra equal 

to the size of the original spectral library using reverse and random sequence decoy generation 

technique as described in Zhang et al.21. Briefly, the sequence of each spectrum is reversed, leaving 

the last amino acid in place. Based on this sequence, the masses of the a, b and  y ions are calculated 

and the corresponding annotated peaks in the spectrum are moved on the m/z axis accordingly 

leaving the unannotated peaks in place. 

The generated decoy spectra are concatenated to the original spectra in the library, and the search 

is run against this concatenated target-decoy spectral library. The corrected FDR value is then 

calculated as described previously in Sticker et al.20.  

To evaluate whether the generated decoys accurately control FDR, we have used a modified 

entrapment method22. For this, we have obtained a tandem mass spectrometry dataset of 

Pyrococcus furiosus (ProteomeXchange23 ID PXD001077) which contains a total of 15,615 

spectra. Unlike the original entrapment method, where Pyrococcus furiosus spectra are appended 

to the library spectra, we have appended it to our query spectra and then ran the search against the 

NIST library concatenated with the generated decoy spectra. FDR and false discovery proportion 

(FDP) are then calculated as follows: 
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With f the fraction of Pyrococcus furiosus spectra over non-Pyrococcus spectra in the search.  

Benchmarking datasets and spectral libraries 

We obtained raw data files from eleven runs from the Human Proteome Map24 

(ProteomeXchange23 ID PXD000561) and ten runs from the deep proteome and transcriptome 

abundance atlas25 dataset (ProteomeXchange ID PXD010154) as benchmarking data sets 

(Supplementary Table S-1). All these  21 raw files were converted to Mascot Generic Format (mgf) 

format using the msconvert tool (ProteoWizard26), with the peak picking algorithm activated. 

Benchmarking was performed using three distinct spectral libraries (Table 1), obtained from 

PRIDE27, NIST and MassIVE26. 

Table 1. Spectral libraries used to benchmark COSS.  

Spectral Library 
Total number 
of spectra 

URL 
Version 

PRIDE Cluster27 
(Human) 

789,745 
https://www.ebi.ac.uk/pride/cl
uster/#/libraries 

2015-04 

NIST (human HCD 
library) 

1,127,970 
https://chemdata.nist.gov/doku
wiki/doku.php?id=peptidew:li
b:humanhcd20160503 

July 25, 2018 

MassIVE26 (Human 
HCD Spectral 
Library) 

2,154,269 
http://massive.ucsd.edu/Proteo
SAFe/static/massive-kb-
libraries.jsp 

1.3.3 
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Running searches 

All benchmarking is performed on the same virtual machine, equipped with dual Xeon E5-242016 

processors at 1.90GHz, 28 GB of RAM, and running the Microsoft Windows 10 operating system. 

To run SpectraST, we used the Trans Proteomic Pipeline (TPP v5.2.0-b1) software for Windows. 

SpectraST was run in command line mode according to the user manual 

(http://tools.proteomecenter.org/wiki/index.php?title=Software:SpectraST). The spectral libraries, 

originally in msp format, were first converted to the splib file format, and then a consensus 

spectrum from the generated splib file was created. Quality control was applied on this consensus 

file, and finally decoy spectra were generated and appended to the consensus file. Search settings 

were a precursor m/z tolerance of 0.01 Th, with the rest of the settings left at their defaults 

(Supplementary methods). 

Since MSPepSearch (version 0.96) does not include decoy generation functionality, we first 

generated the decoy appended library using COSS. Next, using Lib2NIST (version 1.0.6.5) we 

have converted the msp file to MSPepSearch’s binary file format and performed the searches using 

a precursor tolerance of 10 ppm and fragment tolerance 0.05 Da. 

For ANN-SoLo, libraries were generated as recommended on the ANN-SoLo wiki page 

(https://github.com/bittremieux/ANN-SoLo/wiki/Search). In brief, SpectraST was used for library 

preparation. First, libraries were converted from the msp format to the splib file format. Next, a 

consensus spectral library was constructed from the generated splib file followed by a quality 

control step using through SpectraST's quality filters. Finally, decoy spectra were generated and 

appended to the consensus file. After library preparation, the search is performed in ANN-SoLo 

using a precursor tolerance of 10 ppm, a fragment tolerance of 0.05 Da. and an FDR threshold of 

0.01. 
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Sequence database searches using MS-GF+28 (version v2018.04.09), have been performed through 

SearchGUI29 (version 3.3.16) and PeptideShaker30 (version 1.16.42). The search database is 

constructed from the human proteome (UP000005640) as obtained from UniProt31 (consulted on 

9/10/2018). Carbamidomethylation of cysteine and oxidation of methionine are used as fixed, and 

as variable modification respectively. Trypsin is used as protease and a maximum of two missed 

cleavages was allowed. Precursor m/z tolerance was set to 10 ppm, and fragment tolerance to 0.05 

Da. Precursor charges from 2 to 4 are considered. 

To run COSS, decoy spectra were generated using the reversed sequence decoy generation 

technique. For the MassIVE and PRIDE libraries, where spectra are not (fully) annotated, we have 

first annotated the library using the built-in spectra annotator in COSS and a fragment tolerance of 

0.05 Da. In this way, a, b and y ions where annotated, taking into account +1, +2 and +3 as possible 

charges and H2O and NH3 as possible neutral losses. The generated decoys were appended to the 

original spectral library and searches were performed using a precursor m/z tolerance of 10 ppm 

and a fragment m/z tolerance of 0.05 Da. 
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RESULTS AND DISCUSSION 

Graphical user interface 

COSS comes with a user-friendly interface that allows the user to set all parameters 

(Supplementary Figure S-1) needed for spectral similarity search. COSS supports most common 

MS/MS spectrum formats (including mgf, msp, ms2, mzML, mzXML, and dta). The user can 

generate decoy spectra for their spectral library using two types of decoy generation techniques 

that are implemented and integrated in COSS. COSS also provides an intuitive interface to visually 

inspect the obtained results (Figure 1). This interface reports all experimental spectra with matches 

in the spectral library in an interactive table, sorted by descending match score. When a query 

spectrum is selected, the top 10 matched spectra from the spectral library are displayed in the 

bottom table. For each match, the query spectrum and the matched library spectrum can be visually 

inspected. The results can be exported in tab-delimited text format, comma-delimited text format 

(CSV) and Microsoft Excel format (xlsx) for further processing and reporting. In addition to the 

graphical user interface, COSS also comes with a documented command-line interface to easily 

deploy the software on servers and high-performance clusters. The flexibility of COSS is further 

enhanced by its ability to run on all common operating systems. 
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Figure 1. Search result interface of COSS:  the upper table lists the experimental spectra while the 

lower table lists the top 10 matched spectra for the selected experimental spectrum. An interactive 

spectrum comparison view is presented at the bottom with the selected experimental spectrum 

(red) mirrored with the selected matched library spectrum (blue). 
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Evaluation of false discovery rate estimation 

To evaluate the ability of COSS to accurately assess the FDR based on the implemented decoy 

generation technique, we used the modified entrapment approach using Pyrococcus furiosus 

spectra22. Our results show that while SpectraST underestimates the FDR (at 1% estimated FDR, 

the actual FDP as measured by Pyrococcus identifications is 2.57%) while COSS and 

MSPepSearch assess it quite accurately (at 1% estimated FDR, actual FDP is 1.8% and 1.6% 

respectively, Figure 2, Supplementary Figure S-2). Of note: ANN-SoLo is not included in this 

comparison since decoy hits are not reported in the output file.  

 

Figure 2. COSS accurately controls the FDR. Here, decoy rate (FDR) is shown in conjunction 

with the Pyrococcus rate (FDP) for search results from three runs from the Human Proteome Map. 

Shown are the FDR and FDP from COSS with the MSROBIN scoring function, COSS with cosine 

similarity scoring function, SpectraST and MSPepSearch. At the 1% FDR level, both scoring 

functions from COSS and MSPepSearch accurately assess the FDR while SpectraST 

underestimates it. Interestingly, MSPepSearch actually slightly overestimates the FDR at higher 

FDR values while the estimates from COSS remain very close to the actual FDR. 
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Search result comparison 

Figure 3 shows the identification rate of COSS (MSROBIN and cosine similarity scoring 

functions), SpectraST, MSGF+, MSPepSearch and ANN-SoLo at 1% FDR (Supplementary Table 

S-2). The overall identification rates of COSS with the MSROBIN scoring function are 9.4%, 

13.4% and 16.1% against the PRIDE, NIST, and MassIVE libraries respectively, while the cosine 

scoring function of COSS obtains 8.8%, 12.7% and 15.5% against PRIDE, NIST and MassIVE 

respectively. The identification rates thus nicely follow the size of the spectral library, with PRIDE 

being the smallest and MassIVE the largest, showing that the larger spectral libraries offer a more 

complete coverage of the proteome. It is important to note that the PRIDE spectral library is the 

oldest and also includes data with lower resolution fragment ions, which could further explain the 

lower identification rates observed with this library. The identification rates of SpectraST are very 

similar at 9.0% and 16.0% against PRIDE and NIST respectively. It should be noted that the 

default SpectraST parameters may not be ideal for high-resolution spectra and we did not perform 

extensive optimization to evaluate whether the identification rate could be improved. SpectraST’s 

performance against the MassIVE database could not be assessed as SpectraST could not handle 

a library of this size, even on our server with 28GB of RAM. MSPepSearch results are comparable 

to COSS and SpectraST for the PRIDE and NIST libraries with 8.9% and 11.3% respectively. 

However, the performance against the MassIVE library is very poor at 2.3% compared to the 

16.1% achieved with COSS. ANN-SoLo identifies 4.1% and 12.9% against PRIDE and NIST 

libraries. Since ANN-SoLo relies on SpectraST to generate the indexed libraries, we faced the 

same issues in the decoy generation step and were unable to produce results for the MassIVE 

spectral library.  
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Overall, the identification rate of COSS is higher compared to the other three spectral library 

searching tools and the identification rate scales consistently with the size of the spectral library. 

When comparing to the sequence database search approach (MS-GF+, 15.3% identification rate) 

we observe overall lower identification rates for the smaller spectral libraries (NIST and PRIDE), 

while the identification rates against MassIVE are very much in line. 
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Figure 3. COSS performance evaluation against SpectraST, MSPepSearch, ANN-SoLo and 

sequence database searching in terms of identification rate. Shown here is the identification rate at 

1% FDR against the PRIDE Cluster, NIST and MassIVE spectral libraries for COSS and 

SpectraST, and against the human proteome sequence database for MS-GF+. The dashed vertical 

lines represent the overall identification rate for that tool and library result across all samples in 

the dataset. Due to excessive memory requirements, SpectraST and ANN-SoLo could not run the 

MassIVE spectral library on our server with 28GB of RAM.  

The identifications of the spectral library tools show a good overlap in terms of the identified 

peptides (Figure 4, Supplementary Figures S-3, S-4 and S-5). While COSS (MSROBIN score), 

MsPepSearch and ANN-Solo have a high degree of overlap (Figure 4), SpectraST has more unique 

identified peptides. This can probably be attributed to an underestimation of the FDR by SpectraST 

(Figure 2 and Supplementary Figure S-2). The identification overlap between the two scoring 

functions of COSS is very large in all the three different libraries (Supplementary Figure S-6). 

 

 

Figure 4. Search result overlap of COSS (MSROBIN score), SpectraST, MSpepSearch, and ANN-

SoLo against the NIST spectral library. Intersections represent spectra with identical peptide 

identification. The results represent the union of the identifications in both datasets (PXD000561 

and PXD010154) at 1% FDR. With the exception of SpectraST, the sequence level identifications 

of the different tools are very much in agreement. The discrepancy and higher identification rate 

observed for SpectraST can probably be attributed to an underestimation of the FDR (Figure 2 and 

Supplementary Figure S-2). 
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Execution time comparison 

To evaluate the computational efficiency of the algorithm, we ran COSS, SpectraST, 

MSPepSearch and ANN-SoLo on the same data sets using the same virtual machine and recorded 

the execution time for each algorithm. The results of the comparison are shown in Figure 5. While 

the size of the query dataset and the spectral library both clearly influence the executing time, we 

found that COSS outperforms SpectraST, yet ANN-SoLo and MSPepSearch are faster in all cases. 

Here again, there is no runtime information for SpectraST and ANN-SoLo for the MassIVE library 

due to the inability to run them against this library on our server.  

It should be noted that only the time required for searching is considered here and library 

preparation is not taken into account. Library format conversion, decoy generation and indexing 

take a substantial amount of time. For the NIST library, SpectraST took 12+ hours to prepare the 

library and generate and append decoy spectra. MSPepSearch and ANN-SoLo both rely on 

SpectraST for decoy generation, yet after decoy generation MSPepSearch libraries need to be 

converted to a binary format which took an additional four hours. For COSS, all these steps 

combined took around 20 minutes for the NIST library on the same machine. 
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Figure 5. Execution times of COSS (using MSROBIN score), SpectraST, MSPepSearch and 

ANN-SoLo. While COSS is faster than SpectraST, MSPepSearch and ANN-SoLo outperform 

COSS. The execution time however only considers the time required for searching and does not 

include spectral library preparation which takes a considerable amount of time for SpectraST, 

MSPepSearch and ANN-Solo. Interestingly, the runtime for MSPepSearch against the MassIVE 

library is much lower than against the NIST library despite the former being much larger in size. 

This is in line with the low identification rate observed for MSPepSearch on the MassIVE library 

(Figure 3). There is no runtime information for SpectraST and ANN-SoLo for the MassIVE library 

due to the inability to run them against this library on our server.  

CONCLUSIONS 

There is a need for spectral library search tools that can easily analyse data from today’s high-

throughput mass spectrometry-based proteomics experiments, and that can match tens of 

thousands of acquired spectra against proteome-wide spectral libraries. A few such search 
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algorithms like SpectraST, MSPepSearch and ANN-SoLo have already been developed but come 

with important limitations: an inability to handle very large spectral libraries, limited input file 

format support and only usable by advanced users due to lack of graphical user interface. Here we 

present COSS, a user-friendly spectral library search tool that is fast, can handle large datasets, 

and supports the most commonly used MS/MS data formats. COSS also includes library and decoy 

generating in a single step making COSS the “all-in-one” tool to perform spectral library searching 

very easily. COSS offers both a graphical as well as a command-line interface, enabling users to 

perform anything from small-scale analyses on laptops to automated, large-scale data reprocessing 

on high-performance compute clusters. Because COSS is developed in Java, it is also platform 

independent, allowing it to run seamlessly on all commonly used operating systems. Furthermore, 

COSS’s modular architecture and open-source code invites and facilitates future development by 

the community at large. We have compared COSS to SpectraST, MSPepSearch, ANN-SoLo and 

a sequence database search algorithm, MS-GF+, in terms of identification performance, and found 

that COSS offers a more reliable identification and a reasonable runtime even with a large query 

dataset and large spectral libraries. While MSPepSearch and ANN-SoLo offer faster searches, 

library generation is much slower and more cumbersome compared to COSS. The identification 

rates for the PRIDE and NIST libraries are comparable between the tools, yet COSS outperforms 

all the other tools on the large MassIVE library which contains 2+ million spectra. Combined, 

these properties make COSS a user-friendly tool, highly suitable for large-scale analyses against 

ever expanding spectral libraries, including those that aim to cover an entire proteome of an 

organism.  
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AVAILABILITY 

The software and its source code can be freely downloaded from 

https://github.com/compomics/COSS and is licensed under the permissive, open-source Apache 

License, version 2.0. 

 

ACKNOWLEDGMENTS 

This project is supported by the National Institute of Health (NIH) [NCI-ITCR grant number 

1U24CA199347 to G.A.S.], Research Foundation - Flanders (FWO) [3E023815 to E.V., grant 

number 1S50918N to R.G., grant number G042518N to L.M.], the Horizon 2020 programme of 

European Union project EPIC-XS [grant number 823839], and Kom op tegen Kanker (Stand up to 

Cancer), the Flemish cancer society [to P.V.]. We would like to thank Zheng Zhang from NIST, 

USA for providing us with the R code for generating decoy spectra libraries. We would like to 

thank Wout Bittremieux for helping us in running the ANN-SoLo searches. We would also like to 

thank all the CompOmics group members for their ideas, discussions and support. 

  



 22

REFERENCES 

(1)  Ingvar, Eidhammer; Kristian, Flikka; Lennart, Martens; Svein‐Ole, M. Protein 

Identification and Characterization by MS. In Computational Methods for Mass 

Spectrometry Proteomics; 2007; p 97,98. 

(2)  Hughes, C.; Ma, B.; Lajoie, G. A. De Novo Sequencing Methods in Proteomics BT  - 

Proteome Bioinformatics; Hubbard, S. J., Jones, A. R., Eds.; Humana Press: Totowa, NJ, 

2010; pp 105–121. 

(3)  Costa, E.; Menschaert, G.; Luyten, W.; Grave, K. De; Ramon, J. Peptide Identification 

Using Tandem Mass Spectrometry Data. Tech. Rep. 2013. 

(4)  Yen, C.-Y.; Stephane, H.; G, A. N.; Old; William M. Spectrum-to-Spectrum Searching 

Using a Proteome-Wide Spectral Library. Mol. Cell. Proteomics 2011, 10 (7), 

M111.007666. 

(5)  Lam, H.; Aebersold, R. Using Spectral Libraries for Peptide Identification from Tandem 

Mass Spectrometry (MS/MS) Data. Curr. Protoc. Protein Sci. 2010, 2010. 

(6)  Lam, H.; Aebersold, R. Building and Searching Tandem Mass (MS/MS) Spectral Libraries 

for Peptide Identification in Proteomics. Methods. 2011. 

(7)  Ahrné, E.; Masselot, A.; Binz, P. A.; Müller, M.; Lisacek, F. A Simple Workflow to 

Increase MS2 Identification Rate by Subsequent Spectral Library Search. Proteomics 2009, 

9 (6), 1731–1736. 

(8)  Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. SPECIAL FEATURE : Mobile 

and Localized Protons : A Framework for Understanding Peptide Dissociation. J. Mass 



 23

Spectrom. 2000, 1406 (September), 1399–1406. 

(9)  Zhang, X.; Li, Y.; Shao, W.; Lam, H. Understanding the Improved Sensitivity of Spectral 

Library Searching over Sequence Database Searching in Proteomics Data Analysis. 

Proteomics 2011, 11 (6), 1075–1085. 

(10)  Lam, H.; Deutsch, E. W.; Eddes, J. S.; Eng, J. K.; King, N.; Stein, S. E.; Aebersold, R. 

Development and Validation of a Spectral Library Searching Method for Peptide 

Identification from MS/MS. Proteomics 2007, 7 (5), 655–667. 

(11)  Stein, S. E.; Scott, D. R. Optimization and Testing of Mass Spectral Library Search 

Algorithms for Compound Identification. J. Am. Soc. Mass Spectrom. 1994. 

(12)  Bittremieux, W.; Meysman, P.; Sta, W.; Laukens, K. Fast Open Modification Spectral 

Library Searching through Approximate Nearest Neighbor Indexing. J. Proteome Res. 

2018, 17, 3463–3474. 

(13)  Craig, R.; Cortens, J. C.; Fenyo, D.; Beavis, R. C. Using Annotated Peptide Mass Spectrum 

Libraries for Protein Identification. J. Proteome Res. 2006, 5 (8), 1843–1849. 

(14)  Pedrioli, P. G. A.; Eng, J. K.; Hubley, R.; Vogelzang, M.; Deutsch, E. W.; Raught, B.; Pratt, 

B.; Nilsson, E.; Angeletti, R. H.; Apweiler, R.; et al. A Common Open Representation of 

Mass Spectrometry Data and Its Application to Proteomics Research. Nat. Biotechnol. 2004, 

22 (11), 1459–1466. 

(15)  Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander, F.; Shofstahl, J.; Tang, W. 

H.; Ro, A.; Neumann, S.; Pizarro, A. D.; et al. MzML — a Community Standard for Mass 

Spectrometry Data*. Mol. Cell. Proteomics 2011, 1–7. 



 24

(16)  Jones, A. R.; Eisenacher, M.; Mayer, G.; Kohlbacher, O.; Siepen, J.; Hubbard, S. J.; Selley, 

J. N.; Searle, B. C.; Shofstahl, J.; Seymour, S. L.; et al. The MzIdentML Data Standard for 

Mass Spectrometry-Based Proteomics Results. Mol. Cell. Proteomics 2012, 11 (7), 

M111.014381. 

(17)  Barsnes, H.; Vaudel, M.; Colaert, N.; Helsens, K.; Sickmann, A.; Berven, F. S.; Martens, 

L. Compomics-Utilities: An Open-Source Java Library for Computational Proteomics. 

BMC Bioinformatics 2011, 12 (1), 70. 

(18)  Yllmaz, Ş.; Victor, B.; Hulstaert, N.; Vandermarliere, E.; Barsnes, H.; Degroeve, S.; Gupta, 

S.; Sticker, A.; Gabriël, S.; Dorny, P.; et al. A Pipeline for Differential Proteomics in 

Unsequenced Species. J. Proteome Res. 2016, 15 (6), 1963–1970. 

(19)  Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R. A.; Olsen, J. V.; Mann, M. 

Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. 

Proteome Res. 2011, 10 (4), 1794–1805. 

(20)  Sticker, A.; Martens, L.; Clement, L. Mass Spectrometrists Should Search for All Peptides, 

but Assess Only the Ones They Care About. Nat. Methods 2017, 14, 643. 

(21)  Zhang, Z.; Burke, M.; Mirokhin, Y. A.; Tchekhovskoi, D. V.; Markey, S. P.; Yu, W.; 

Chaerkady, R.; Hess, S.; Stein, S. E. Reverse and Random Decoy Methods for False 

Discovery Rate Estimation in High Mass Accuracy Peptide Spectral Library Searches. J. 

Proteome Res. 2018, 17 (2), 846–857. 

(22)  Vaudel, M.; Burkhart, J. M.; Breiter, D.; Zahedi, R. P.; Sickmann, A.; Martens, L. A 

Complex Standard for Protein Identification, Designed by Evolution. J. Proteome Res. 



 25

2012, 11 (10), 5065–5071. 

(23)  Rosenberger, G.; Navarro, P.; Gillet, L.; Schubert, O. T.; Wolski, W.; Collins, B. C.; 

Aebersold, R.; Diseases, M. ProteomeXchange Provides Globally Coordinated Proteomics 

Data Submission and Dissemination. Nat. Biotechnol. 2014, 32 (3), 223–226. 

(24)  Kim, M.-S.; Pinto, S. M.; Getnet, D.; Nirujogi, R. S.; Manda, S. S.; Chaerkady, R.; 

Madugundu, A. K.; Kelkar, D. S.; Isserlin, R.; Jain, S.; et al. A Draft Map of the Human 

Proteome A. Nature 2014, 509 (7502), 575–581. 

(25)  Wang, D.; Eraslan, B.; Wieland, T.; Hallström, B.; Hopf, T.; Zolg, D. P.; Zecha, J.; Asplund, 

A.; Li, L.; Meng, C.; et al. A Deep Proteome and Transcriptome Abundance Atlas of 29 

Healthy Human Tissues. Mol. Syst. Biol. 2019, 1–16. 

(26)  Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Frewen, B.; Baker, T. A.; Brusniak, M.; 

Paulse, C.; Lefebvre, B.; Kuhlmann, F.; et al. HHS Public Access. Nat. Biotechnol. 2013, 

30 (10), 918–920. 

(27)  Vizca, J. A.; Csordas, A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-riverol, Y.; Reisinger, F.; 

Ternent, T.; Xu, Q.; Wang, R.; et al. 2016 Update of the PRIDE Database and Its Related 

Tools. Nucleic Acids Res. 2016, 44 (November 2015), 447–456. 

(28)  Kim, S.; Pevzner, P. A. MS-GF+ Makes Progress towards a Universal Database Search 

Tool for Proteomics. Nat. Commun. 2014, 5, 5277. 

(29)  Barsnes, H.; Vaudel, M. SearchGUI: A Highly Adaptable Common Interface for Proteomics 

Search and de Novo Engines. J. Proteome Res. 2018, 17 (7), 2552–2555. 

(30)  Vaudel, M.; Burkhart, J. M.; Zahedi, R. P.; Oveland, E.; Berven, F. S.; Sickmann, A.; 



 26

Martens, L.; Barsnes, H. PeptideShaker Enables Reanalysis of MS-Derived Proteomics 

Data Sets: To the Editor. Nat. Biotechnol. 2015, 33 (1), 22–24. 

(31)  The Uniprot Consortium. UniProt : A Worldwide Hub of Protein Knowledge. Nucleic Acids 

Res. 2019, 47 (November 2018), 506–515. 

 


