
J Real-Time Image Proc manuscript No.
(will be inserted by the editor)

Vasileios Avramelos1 · Ruben Verhack1,3 · Ignace Saenen1 · Glenn Van
Wallendael1 · Bart Goossens2 · Peter Lambert1

Highly Parallel Steered Mixture-of-Experts Rendering at
Pixel-Level for Image and Light Field Data

Received: date / Revised: date

Abstract A novel image approximation framework called
Steered Mixture-of-Experts (SMoE) was recently presented.
SMoE has multiple applications in coding, scale-conversion,
and general processing of image modalities. In particular,
it has strong potential for coding and streaming higher di-
mensional image modalities that are necessary to lever-
age full translational and rotational freedom (6 Degrees-of-
Freedom) in virtual reality for camera captured images. In
this paper, we analyze the rendering performance of SMoE
for 2D images and 4D light fields. Two different GPU im-
plementations that parallelize the SMoE regression step at
pixel-level are presented, including experimental evalua-
tions based on rendering performance and quality. In this
paper it is shown that on appropriate hardware, the OpenCL
implementation can achieve 85fps and 22fps for respectively
1080p and 4K renderings of large models with more than
100.000 of Gaussian kernels.
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1 Introduction

The consumption of virtual reality (VR) for camera cap-
tured content (e.g. 360° video) is lagging behind on the use
of VR experiences of computer generated scenes (e.g. in
computer games and edutainment software). 360° video al-
lows only rotational head movements around three perpen-
dicular axes for the viewer, but disregards any translational
movements in the same 3D coordinate space. To attain the
sense of freedom of computer generated VR content, Six
Degrees-of-Freedom (6DoF) are required, i.e. three trans-
lational movements (walking around and small sideways
head movements) combined with three rotational move-
ments (head rotations and tilts). Perceived as a virtual real-
ity by humans when combined, the rendered 2D images are
processed versions of the higher-dimensional light data that
surrounds us. In terms of signal processing, we are presented
with a high-dimensional sampling problem with nonuni-
form and nonlinear sample spacing and high-dimensional
spatio-directionally varying sampling kernels [1]. The high-
dimensional space is defined by the 5D plenoptic func-
tion [2]. However, when there are no occlusions (i.e. “open
space” assumption), the 5D space can be reduced to the 4D
light field [3, 4]. This assumption does not hold for 6DoF in
large scenes, however, at the moment this is a widely used
simplification [4].

One promising novel methodology that aims to provide
full 6DoF has been introduced, namely Steered Mixture-of-
Experts (SMoE). It directly models the underlying plenop-
tic function in a continuous, analytical form, or a lower-
dimensional projections of this function [2]. It does so by
identifying coherent regions in the coordinate space of the
samples and optimizes local linear regressors for that seg-
ment in the coordinate space. The total regression corre-
sponds to a smoothed piecewise linear approximation of the
plenoptic function (or of a lower-dimensional projection).
Currently, SMoE has been successfully applied for images,
video, and 4D light fields, with competitive rate-distortion
results for low- to mid-level bitrates [5–7]. The local regres-
sors currently reported are only linear and thus modeling
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very high spatial frequencies is challenging, however, the
theory does not limit the nature of the local regressors and
further developments are an active area of research.

Nevertheless, SMoE has some very beneficial proper-
ties for the distribution of 6DoF visual content compared
to traditional image coding methods. For rendering it has
three important properties. Firstly, view-rendering is very
lightweight and pixels are coded independent from one an-
other. Secondly, SMoE is a space-continuous representation,
thus rendering at arbitrary resolution consists of merely sam-
pling this function. Finally, all local light information in a
certain point in the physical space is also localized in the
SMoE model.

Digital image and video compression techniques have
been an important field of research since the 1950s. Stan-
dardized image and video coders typically rely on a trans-
form step (e.g. wavelet or DCT) and Differential Pulse-Code
Modulation (DPCM) (e.g. intra-prediction, and motion com-
pensation). As a result, the current state-of-the-art coders
like High Efficiency Video Coding (HEVC) are based on hy-
brid transform/DPCM coding schemes which consist mainly
of the above mentioned techniques [8]. The serial nature of
these old paradigms (e.g., intra-prediction) makes it impos-
sible to really achieve pixel-level parallelism. Fine grained
parallelism is becoming more and more desirable in algo-
rithms as modern hardware tends to increase the number of
execution threads rather than the speed of those threads. Fur-
thermore, traditional coding schemes based on dense sam-
ple/coefficient grids do not scale easily towards higher di-
mensional image modalities. Each dimension that is added
(e.g. time dimension in video, or two angular dimensions in
4D light fields) lets the amount of samples to be stored grow
exponentially with the dimensionality of the image modal-
ity.

The Moving Picture Experts Group (MPEG) has started
efforts to standardize a 6DoF video format by the year 2021
[9]. They aim at a process with two phases: (1) identifying
the most important 2D views, and (2) rely on view synthe-
sis methods to render other 2D views at decoder side. The
identified views are expected to be coded using the same
hybrid DPCM/transform coding approaches [10]. We claim
that there are two main concerns. First, the view synthesis
may require considerable computational complexity at the
decoder side. Secondly, the serial nature of the paradigms
is far from optimal as the prediction order is much less ev-
ident. In video coding, frames can be buffered if a logical
order exists between them, e.g. when the frames are time-
consecutive. However, considering the freedom to select a
particular point of view in a 6DoF VR experience, no such
logical order exists. As such, buffering and differential cod-
ing become more challenging.

Based on the above observations, we present an early
analysis of efficient pixel-level parallel decoders of the
SMoE framework that were built in-house on Graphics Pro-
cessing Units (GPUs) for this study. GPU programming is

challenging and it requires considerable programming ex-
pertise. We are therefore interested in the performance of a
highly tuned low-level OpenCL [11] implementation and a
more high-level automatic scheduling implementation using
Quasar. Quasar is a new, hardware-independent program-
ming framework for programming heterogeneous computa-
tion devices [12, 13]. A key goal of Quasar is to help pro-
grammers focus on the design and optimization of hard-
ware accelerated algorithms by solving hardware-specific
implementation issues automatically. Two implementations
through Quasar are presented here, as well as a dedicated
OpenCL implementation, and a CPU C++ version. These
versions are compared in terms of speed and numerical pre-
cision. A slower but numerically more precise implementa-
tion in MATLAB [14] was used as a ground truth to evaluate
numerical precision. The evaluation is performed on SMoE
models of 2D images and short-baseline 4D light fields (i.e.
very limited translational freedom).

This article is organized as follows. In Sec. 2, we discuss
related work. Next, in Sec. 3, a theoretical overview of the
SMoE framework is presented, with a focus on the render-
ing phase. Sec. 4 details a general high-level architecture of
a pixel-level parallelized SMoE renderer. In Sec. 5, an in-
depth analysis is done considering the rendering speed ver-
sus the numerical stability of the renderer. Sec. 6 describes
the various parallel reconstruction implementations devel-
oped for this work. Sec. 7 presents an overview of the ex-
perimental results when comparing the fast SMoE decoder
in different parallel computing platforms. Finally, in Sec. 8
we present our conclusions and future work.

2 Related Work

The SMoE framework works on the same data-driven princi-
ples as other machine learning methods like Support Vector
Regression (SVR), Radial Basis Function (RBF) networks,
and Artificial Neural Networks (ANNs) [15, 16]. Recent ad-
vances in this domain, combined with the development of
strong dedicated hardware (e.g., GPUs) have significantly
increased the feasibility to create computationally efficient
implementations of otherwise challenging algorithms [17].

The calculations of the loglikelihood in order to obtain
the kernel weights w j(x) (See Eq. 8 in the following sec-
tion) are also present in the Expectation step (E-step) of the
Expectation-Maximization (EM) algorithm [18]. In the past,
research has been done in order to accelerate the EM algo-
rithm using GPUs [19]. However, these approaches were in-
vestigated in order to accelerate the segmentation of large
amounts of data. Our goal on the other hand, is to perform
regression of which calculating the weights w j(x) is only a
part of.

In this work, we will evaluate the performance of pixel-
level parallel rendering of light fields. Light field rendering
has been around for decades but has recently been making
a comeback [3, 4]. The main difference between classical
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light field rendering [3] and our work, is that in classical
light field rendering each pixel in a rendered virtual view-
point is a linear combination of pixels in all captured views.
This means that in order to render views, all captured views
need to be in memory. This has always been a large draw-
back for light field rendering as it limits the scale of which it
can deployed in. The light field models in SMoE can be seen
as an intermediate processing step. In SMoE, we identify
the underlying function that could give rise to these views.
This function is built as a continuous statistical model of the
captured views. The intended goal is to reduce the memory
requirements by storing only the parameters of the model
in memory instead. For static light fields, a single Gaussian
(defined by its prior, center and covariance matrix) can rep-
resent thousands of pixels [20].

Despite the serial nature of video coding standards such
as HEVC, parallelism in decoding/rendering is still pursued.
HEVC relies on smart implementations, e.g. using a wave-
front approach [8]. This ensures that blocks are decoded as
soon as their dependencies are available. However, using 64-
by-64 CTU blocks in a 1080p video only allows for only
15 decoding blocks. In the case of 32-by-32 CTU blocks,
one can achieve 30 parallel streams. Such a scheme does fit
multi-threading architectures, but is less suited for massively
parallel architectures.

3 Steered Mixture-of-Experts

3.1 Introduction

Steered Mixture-of-Experts (SMoE) is a novel framework
for approximation of image modalities with many applica-
tions, such as image modality coding, scale conversion (e.g.
frame interpolation), and image description (e.g. depth esti-
mation). An in-depth overview about SMoE for images and
static 4D light fields is presented in [20]. Due to the sparse
structure in SMoE, it is readily extensible towards higher di-
mensional image modalities, such as 6DoF content. This is
in stark contrast to traditional image coding schemes which
rely on dense sample-grid structures. Moreover, SMoE de-
parts significantly from the conventional coding methods
by operating in the spatial domain and thus not using any
kind of transform coding. Instead of storing exactly the sam-
ples or the transform coefficients that define the image, this
method relies on modeling the underlying generative func-
tion that could have given rise to the samples. Generally, this
underlying function corresponds to lower-dimensional pro-
jections of the plenoptic function [2].

The function approximation of the underlying generative
function is done by identifying coherent, stationary regions
in the image modality. Each segment is modeled using a sin-
gle N-dimensional entity, which we call a kernel or com-
ponent. SMoE is based on the divide-and-conquer principle
that is present in all Mixture-of-Experts (MoE) approaches.
These methods are well-known in machine learning [21].

Gating
(soft-partitioning)

Expert 1
(regressor)

Expert K
(regressor)

· · ·

location x location x

location x

ŷ

w1(x)
w2(x)

m1(x) mK(x)

Fig. 1 Illustration of a classical Mixture-of-Experts with one layer for
regression. The gating function soft-partitions the input space in re-
gions where particular experts (in this case regressors) are the most
influential.

The input space (in SMoE this is the coordinate space) is
divided in soft-segments using a gating function. Local re-
gressors (or experts) are sought that locally approximate the
function optimally. The gating function then lets experts col-
laborate in segments where they are trustworthy. The gating
network is illustrated in Fig. 1.

SMoE is based on the Bayesian, or “alternative” defi-
nition of the Mixture-of-Experts model [21]. The Bayesian
Mixture-of-Experts approach jointly models the joint prob-
ability of the input space X and the output space Y us-
ing a Gaussian Mixture Model (GMM). Each Gaussian ker-
nel then simultaneously defines the gating function (soft-
segmentation of X) and the local regressors (through the
conditional probability function Y |X).

In SMoE, where the input space is the coordinate space
(i.e. sample locations) and the output space is the color
space (i.e. sample amplitudes), one such Gaussian then cor-
responds to one kernel as mentioned above. The gating func-
tion is thus defined by the probability of a coordinate to be-
long to a Gaussian, and each Gaussian simultaneously de-
fines an expert function, namely the conditional color am-
plitudes, given a coordinate. In general, the SMoE allows
to query the model at any sub-pixel coordinate to yield the
most optimal amplitude in a Bayesian interpretation.

SMoE thus arrives at a sparse representation. The whole
image modality is represented as a set of Gaussian kernels.
These kernels are defined by their centers and their steering
parameters. The coordinate space is 2D, 3D, or 4D in the
case of respectively images, video, and static light fields [5–
7]. The color space for color images is conventionally rep-
resented as a 3D space, e.g. RGB or YCbCr. As the Gaus-
sians model the joint probability of the coordinate and color
space, we thus arrive at 5D, 6D, and 7D Gaussian kernels.
The parameters of these kernels are typically estimated us-
ing computational efficient variations of the Expectation-
Maximization (EM) algorithm [18]. Due to this likelihood
optimization, kernels will steer along the dimensions of the
highest correlation, e.g., along spatial or temporal consis-
tencies. Promising MSE-based modeling approaches to find
the kernel parameters have been introduced very recently
[24, 25]. In this paper, however, we work on likelihood opti-
mized SMoE models without loss of generality.
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Fig. 2 An illustrative 1D example of SMoE on a part of a scanline taken from Lena using three Gaussian kernels (K = 3). Both coordinate
space and color space are 1D, thus resulting in a 2D joint probability density function (2a). Each Gaussian defines a linear regressor (2c). These
regressors are summed using the weighting in (2b), as such we arrive at a smoothed piecewise linear reconstruction (2d).

(a) Original (b) JPEG (c) SMoE

(d) 3D GMM (e) Topview (f) Softmax

Fig. 3 An example of the modeling with 10 components and recon-
struction of a 32x32 pixel crop from Lena (3a). For a grayscale image,
the coordinate space X is 2D and the colorspace Y is 1D. Modeling the
joint probability function of both X and Y using a Gaussian Mixture
Model results in 3D Gaussian kernels (3d). Each kernel thus defines
a 2D gradient as the expert function (X 7→ Y ). The gating function is
defined by the soft-segmentation (3f). Both JPEG (3b) and SMoE (3c)
are coded at 0.35 bpp [5].

For illustration purposes, Fig. 2 depicts a SMoE network
for the regression of samples from a 1D image scan line. No-
tice that for the 1D regression case we estimate 2D probabil-
ity density functions (pdfs) using steered Gaussians. Fig. 2
depicts the samples and the resulting ellipsoids of each ker-
nel and the three resulting linear hyper-planes of each model
derived from the conditional distributions. The expert func-
tions are linear functions in the 1D case which are gradients
operating around the center of the expert component. Also
shown are the associated three 1D window gating functions
and the resulting smoothed piecewise linear regression func-
tion. The product of each window function with its respec-
tive linear regressor defines the final contribution of this ex-
pert to the regression function. The sum of all the gated lin-
ear regressors results in the final non-linear regression func-
tion [20].

Fig. 3 shows an example of the compression capability
of the SMoE approach for coding a 32x32 pixel crop of Lena

Fig. 4 JPEG (left) vs SMoE (right) - reconstruction at 0.15 bpp. At this
low bitrate JPEG yields an image with heavy block artefacts. SMoE
typically results in an image which is excessively blurred and with fine
details missing.

(a) Original (b) SMoE

Fig. 5 Bikes [22, 23] light field example (K=8960), showing a central
view with (a1,a2) = (7,7). The original light field has 15x15x626x434
samples. Consequently, each Gaussian kernel “covers” 6822 samples
on average. (Mean PSNRYCbCr: 30.71 dB, mean SSIMY: 0.86, evalua-
tion as in [22]).

at 0.35 bits/sample in comparison to JPEG at same rate.
Clearly, the edges are reconstructed with convincing qual-
ity and sharpness, using merely 10 components. In general,
the framework achieves good performance for low-to-mid
bitrates compared to the state-of-the-art, which is consider-
able taking into account the high difference in maturity (see
Fig. 4). Fig. 5 illustrates a SMoE light field reconstruction
using only 8960 kernels.

Fig. 6 illustrates the high-level coding process. The en-
coding step thus relies on an iterative optimization process
using EM. Due to the specific structure of the data in im-
age modalities, many heuristics can be used to arrive at an
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Fig. 6 A high-level view of the encoding scheme based on SMoE. Ac-
quired sample grids are being modeled into a set of Gaussian kernels.
In order to store this model only the parameters of these Gaussians
need to be binarized. Decoding then consists of unpacking the Gaus-
sian parameters and rendering the desired view.

efficient encoding scheme. However, the scope of this pa-
per focuses on the rendering step, which is inherently light-
weight. Once the parameters are estimated, these are then
further quantized and binarized using an arithmetic coder
[7, 20].

The next subsection will elaborate on the mathematical
formulas present in SMoE which are needed for the ren-
dering of views from SMoE models and of which we will
present implementations in Sec. 6.

3.2 Theory

The SMoE framework aims to approximate the underlying
function that generates image modality samples. Instead of
storing sample grids, this is done using regression. Typically,
the goal of regression is to optimally predict a dependent
random vector Y ∈Rq from a known random vector X ∈Rp.
In SMoE, X corresponds to pixel coordinates (i.e., the coor-
dinate space) and Y to the pixel amplitudes (i.e., the color
space).

This regression uses a Bayesian variant of the Mixture-
of-Experts idea. The joint probability function of the coordi-
nate space X and color space Y is modeled as a multi-modal,
multi-variate Gaussian Mixture Model. Each Gaussian ker-
nel then defines a soft-segment and local regressor. The local
regressor is defined by a measure of central tendency (e.g.
the mean, median, mode) of the conditional function. In this
paper, we will limit the case to the mean-estimator. Note that
this is the lightest to compute, as it does not rely on the vari-
ance of the conditional.

Let us assume D = {xi,yi}N
i=1 to be N pixels to be mod-

eled with coordinates x and amplitudes y:

pXY (x,y) =
K

∑
j=1

π jN (µ j,R j) =
K

∑
j=1

π jφ j (1)

and
K

∑
j=1

π j = 1,µ j =

[
µX j

µY j

]
,R j =

[
RX jX j RX jY j

RY jX j RY jY j

]
(2)

The parameters of this mixture model with K Gaussian dis-
tributions are Θ = [θ1,θ2, · · · ,θK ], with θ j = (π j,µ j,R j),

being the population densities, centers, and covariances re-
spectively. The multivariate Gaussian pdf of dimension p is
defined as

Np(x; µ,R) =
exp
(
− 1

2 (x−µ)T R−1(x−µ)
)√

(2π)p|R|
(3)

Consider a normal pdf of dimension p+ q, this can be fac-
torized as

Np+q

([
µX
µY

]
,σ2
)
= Nq(µY |X ,σ

2
Y )Np(µX ,RXX )

and accordingly for a mixture

pXY =
K

∑
j=1

π jNY |X j
(m j(x),σ2

j )NX j(µX j ,RX jX j) (4)

with

m j(x) = µY j +RY jX j R
−1
X jX j

(x−µX j), (5)

σ
2
j = RY jY j −RY jX j R

−1
X jX j

RX jY j (6)

The conditional pdf Y |X is used to derive the regression
function [20, 26, 27]:

pY (Y |X = x) =
K

∑
j=1

w j(x)N (x;m j(x),σ2
j ) (7)

with mixing weights

w j(x) =
π jN (x; µx j ,RX jX j)

∑
K
i=1 πiN (x; µxi ,RXiXi)

(8)

Note that Eq. 8 corresponds to the normalized exponential
or the softmax function frequently used in artificial neural
networks and used to determine the support of the model
component. The regression of the model is defined as the
expected value y given a sample location x through the con-
ditional. From Eq. 7 and 8 follows the regression function
m(x):

ŷ = m(x) =
K

∑
j=1

w j(x)m j(x) (9)

A signal at location x can be predicted by the weighted sum
over all K mixture components (Eq. 9). Every mode in the
mixture model is considered as an expert and the experts
collaborate towards the definition of the regression function.
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4 Parallel Regression Architecture

In this section we outline a general pixel-level reconstruc-
tion architecture. In the next section, specific implementa-
tions of this architecture are being discussed. The presence
of the term “kernels” in SMoE, as well as in GPU architec-
tures creates confusion. In order to avoid this we will refer
to “computing kernels” in the case of GPU computing ker-
nels, and “components” when talking about Gaussian steer-
ing kernels.

The scope of the proposed architecture is limited to the
regression part, once the parameters of the model are un-
packed from the bitstream. A full SMoE decoding system
consists of entropy decoding, dequantization, and reverse
difference coding [20], which are out of the scope of this
work.

Given a set of component parameters, the goal of this
architecture is to reconstruct 2D views, independent of the
dimensionality of the coordinate space. Even when work-
ing on higher dimensional modalities, e.g. 4D light fields,
the requested views are 2D slices of this higher dimensional
coordinate space. This architecture consists of two levels of
parallelization. The first level is on block-level, the second
level is performed on pixel-level.

4.1 Block-level parallelism

A data point is reconstructed only from the components that
have a significant influence on that location. Independent of
whether the sample is a 2D pixel location, or whether it is a
4D light field sample location. Due to the competitive nature
of training, the amount of components that are responsible
for a certain part of the domain are narrowed down. There-
fore, the reconstruction for one location tends to be reduced
to a weighted sum of a very limited set of components. Only
components nearby the reconstructed pixel are considered
relevant, as such the memory requirements are constrained
and no unnecessary evaluations are performed.

Based on this observation, we perform a computationally
cheap and crude subdivision of the 2D coordinate space and
the Gaussian components. The coordinate space is divided
into rectangular blocks. The assumption is that every block
is processed in parallel. However, the regression of the cor-
responding color amplitudes in the color space Y could rely
on components that lie out of the boundaries of this block.
This is mitigated by defining a large enough relevance win-
dow in X around that block, i.e. each relevant component has
a center laying in this relevance window and are thus taken
into account during the regression of this block. Fig. 7 illus-
trates how the coordinate space is divided into blocks and
dispatched to separate computing kernel functions.

Alternatively, one could explicitly calculate which com-
ponents have an influence on this block, which would result

Kernel 2

Kernel 1

...

Kernel N

GPU

N = pixels per block

Fig. 7 Block-level parallelism: Each computing kernel is responsible
for a block of coordinates. Each block receives a set of Gaussian com-
ponents that are relevant for this block, which are found by defining a
relevance window around this block.

Kernel
thread 1

thread N

(1) w j(x),∀ j

(2) mY, j(x),mU, j(x),mV, j(x),∀ j

(3)
∑

K
j=0 w j(x)m j(x)

∑
K
j=0 w j(x)

Fig. 8 Pixel-level parallelism: Inside each computing kernel, the ker-
nel dispatches for each sample to be regressed one thread. In each
thread a single weight w j(x) is calculated and three regressors m j(x)
for each color channel. Consequently, in the same thread, the weights
are normalized and the weighted sum over each relevant Gaussian
component j is calculated. Note that each thread has access to the same
set of relevant components and computes the weighted sum over all
these components.

in a more fine-grained selection of the components. How-
ever, the straightforward method on seeing which compo-
nents are relevant for which part of the domain is com-
putationally intensive on its own. This requires evaluating
the weights (Eq. 8) for each component, thus being O(K)
Gaussian evaluations per sample-to-be-reconstructed, which
would not be feasible. On the contrary, defining a large
enough relevance window based on the Euclidean distance
(i.e. taking into account component with centers laying e.g.
32 or 64 pixels outside of the current block), we can avoid
any potential overhead in computation time since the calcu-
lation of the relevance window always stay in a negligible
time range, i.e. 0.1 - 0.3 ms according to our findings.

4.2 Pixel-level parallelism

Within one block, the goal is to reconstruct each pixel in-
dependently. As such, for every block calculated in parallel,
pixels are reconstructed simultaneously and full paralleliza-
tion can be claimed. To achieve this, every pixel/block com-
putation will be mapped efficiently on thread blocks which
can then be scheduled to run serially or in parallel on a GPU.
Another option would have been to operate on component-
level. However, the number of pixels per block is always
larger than the number of components in our case. As such,
it makes more sense to work on a pixel-level basis.
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Fig. 8 illustrates the mechanics inside one computing
kernel. Each computing kernel takes in a set of sample coor-
dinates and a set of components. The two main functions are:
(1) calculating the weights (Eq. 8), and (2) the regressors for
each color plane (Eq. 5). Each computing kernel dedicates
one thread to each sample which calculate the weights w j(x)
for each component j on that sample, as well as the three
color amplitudes m j(x). Inside the same thread, the summa-
tion over each component is done in order to arrive at the
reconstructed pixel amplitudes.

Note that the computations inside the threads are non-
trivial for GPU implementations. Calculating the weights
w j(x) involves an exponential and the Mahalanobis distance
(which includes a matrix inverse). Secondly, a matrix inver-
sion is also present in calculating each color plane. However,
with enough care during the implementation we can achieve
high speed and precision. The next section discusses the de-
sign choices to be taken here.

5 Algorithmic Speed-Precision Optimization

In this section, we will elaborate on the algorithmic de-
cisions that need to be made. Next to speed optimization
based on parallelization, we can also achieve speedups by
using faster, albeit less precise computations. Experiments
that evaluate these decisions are presented in Sec. 7.

Both in the calculation of the weights w j(x), more
specifically the evaluation of the Gaussian pdf (Eq. 3), as
well as in the calculation of the expert regressors m j(x) (Eq.
5), a matrix multiplication with a matrix inverse is present.
Multiplying a matrix with a matrix inverse corresponds to
solving a system of linear equations. It is well known that
multiple computation methods exist that differ in complex-
ity and precision [28, 29].

In order to avoid having tiny coefficients disappearing
to zeros, it is common practice in calculating likelihoods to
work in the logarithmic domain. The loglikelihood of the
Gaussian pdf then boils down to a summation of the log of
the constant and the argument of the exponential. The ar-
gument of the exponential corresponds to the Mahalanobis
distance, which is the part that contains the matrix inverse.

Brute-force calculation of the inverse is the fastest
method. However, this is also the least precise method as
it is sensitive to badly-conditioned matrices. In our imple-
mentations, we used closed-form calculations in the GPU
implementations [29] as well as in the C++ version, as the
inverse() operator in Eigen library relies on closed-form ex-
pressions for small matrices (≤ 4×4) [30].

A mathematical robust way of computing the Maha-
lanobis distance is to rely on the Cholesky decomposition:
R = LT L (Eq. 10) [29]:

(x−µ)T R−1(x−µ) = (x−µ)T (LT L)−1(x−µ) (10)

= (x−µ)T (L−1)T L−1(x−µ) (11)

= (L−1(x−µ))T (L−1(x−µ)) (12)

Consequently, it increases the robustness as the eigen-
values of L are square roots of the eigenvalues of R. If the
eigenvalues are close to zero (and thus dangerous for com-
putational accuracy), then the square root ensures that the
new eigenvalues are at least larger. Consequently, it is clear
that given the step in Eq. 11, the computation of the argu-
ment boils down to calculating L−1(x− µ). This still re-
quires solving a system of linear equations and L can still be
badly-conditioned. In order to maximize numerical stabil-
ity, a robust method (although slower) should be used, e.g.
QR-decomposition or Singular Value Decomposition (SVD)
decomposition [29]. In our implementation, we chose for
QR-decomposition as it is robust but still faster than SVD.
The QR decomposition issues a transform onto an orthog-
onal axis, which ensures the resulting inverse to be more
stable. As such, numerical drift is reduced compared to im-
mediately computing the inverse.

In order to calculate the linear regressor m j(x) for each
component (Eq. 5), the following linear system needs to be
solved: RY X R−1

XX (x−µ). In this case, we can choose again to
use brute-force inverse or a slower-but-robust method (e.g.
QR-decomposition).

To conclude, we state that there are design choices to be
made that potentially influence the visual reconstruction fi-
delity. A more robust method of solving a linear system (i.e.
using QR decomposition) also increases computation time.
If however, the matrices to be inversed are well conditioned,
then such a decomposition results in unnecessary overhead.
We thus define a slow mode, one using robust computations
(i.e. using QR decomposition), and a fast mode, one using
straightforward but potentially sensitive computations.

6 Implementation Details

This section describes the implementation details of par-
allel hardware-accelerated SMoE decoding in two GPU-
accelerated languages: Quasar and OpenCL. We discuss our
technique to map the algorithm efficiently on a GPU, and
offer a number of optimization strategies. As discussed in
the previous section, the performance behavior of the high
and low numerical accuracy versions are presented. Finally,
a brief discussion of the single-threaded C++ CPU version
is included for completeness and reference.
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6.1 Overview

Many research fields have progressed faster due to the in-
creasing numerical computation power that massive multi-
core processors in GPUs and in current many-core CPUs
bring to the table. The performance gain is generally
achieved by structuring multi-threaded computations so that
parallelism and data locality are exploited. In turn, the com-
putational challenges that researchers aspire to conquer have
become larger and more complex.

The low-level Compute Unified Device Architecture
(CUDA) language [31], which works exclusively on
NVIDIA graphics hardware, consistently outpaced all other
parallel processing platforms in terms of performance, fea-
tures and popularity. Similar to CUDA in terms of lan-
guage and performance while at the same time also retaining
cross-platform support for parallel programming on hetero-
geneous systems, is the OpenCL standard by the Khronos
Group [11, 32]. For this reason (hardware independence),
we opted for an OpenCL implementation.

The high-level parallel programming framework Quasar
hides implementation complexities so that development
can focus entirely on the algorithmic part [12, 13]. The
Quasar runtime system consists of four major components:
a memory manager, a scheduler, a load-balancer, and a
device back-end. Each of these components allows code-
optimizations at different stages of the pipeline. The device
back-end then communicates with the underlying hardware
through CUDA or OpenCL. These features are used in a per-
formance comparison of our SMoE algorithm using a GPU-
parallel CUDA approach. Hence, Quasar is used as a high-
level development tool to prove the feasibility of paralleliz-
ing SMoE on massively parallel hardware without expert
knowledge. To verify our results, a native OpenCL imple-
mentation of SMoE image and light field rendering at real-
time frame rates was also developed. With this approach we
hope to cover an adequate number of parallel implementa-
tions ranging from high-level language to low-level native
interface approaches and provide a comprehensive overview.
In Sec. 6.2, we discuss implementations details for Quasar,
and in Sec. 6.3, we provide details about the OpenCL ver-
sion. Finally, experimental evaluation results are discussed
in Sec. 7.

6.2 Quasar implementation

Following the optimization guide that is distributed with the
Quasar platform [35], our presented solution avoids the use
of dynamic memory such as described in [36] and dynamic
parallelism, and instead operates on fixed-size buffers and
vectors. As it has been described in previous sections, the
SMoE algorithm requires the inverse of the covariance ma-
trix R j to compute each component weight, and again to
compute the final pixel color reconstruction. A Cholesky de-

composition and/or a QR decomposition for solving a set of
linear equations can be used to increase numerical stability
and precision of the computations, at the cost of wall-clock
performance. Hence, a number of closed-form functions for
fixed-size inputs are developed for calculating the inverse of
a square matrix, the Cholesky decomposition and QR de-
compositions for that matrix. To execute functions as device
functions and maximize the use of vector registers for op-
timal performance, matrix vectorization is achieved by us-
ing vectorized memory access. The vectorized approach de-
creases the use of dynamic memory allocations in Quasar,
reducing both buffer synchronization and addressing. To fur-
ther improve performance, in the Quasar approach all output
image blocks are processed simultaneously using one big
GPU kernel. More specifically this was achieved by using
a 4D parallel loop (over the three color channels, 2D block
index, and Gaussian components).

Quasar uses various optimization techniques such as au-
tomatic generation of kernel functions for matrix expres-
sions, automatic parallelization of for-loops, register allo-
cation optimization and reductions. A number of additional
practices were deployed for boosting performance and/or
maintaining stability while operating on the GPU. An exam-
ple is uninitialized memory allocation. Using the function
zeros or ones for allocating memory is a common practice
in high-level programming. However, for those functions it
takes an extra step for clearing the memory associated to the
matrix to be allocated. Even if this step takes no more than
50 µs, it can still be avoided by using the Quasar function
uninit when that matrix is going to be overwritten by a fol-
lowing operation. Another practice we used is kernel bound-
ary check omission. Kernel arguments are being checked
for index-out-of-bounds by the kernel boundary check trans-
form. The boundary check was omitted with the use of the
argument modifier unchecked thereby assuming that the in-
dex never goes out of bounds. Vectors with a known size
smaller than 32, allowed us to store them directly into the
registers of the device as fixed-length vectors (vec4, vec8,
vec16, etc.). Accessing registers is significantly faster than
accessing global memory and leads to computational gain.

In the implementation of the SMoE algorithm in Quasar,
two major optimizations have lead to a significant perfor-
mance increase: (1) data layout optimization (placing all
model parameters inside one data matrix for which the num-
ber of columns is aligned to the cache line size of the GPU
and (2) use of shared memory of the GPU. Shared memory is
on-chip memory that has a lower latency (about a factor 100)
than global memory. Shared memory is shared between all
threads within one block of the GPU and limited in size (typ-
ically, 48KB per block). To take optimal use of shared mem-
ory, we made trade-offs between the number of registers, the
number of threads and the amount of shared memory used
by the kernel on the one hand and between global memory
access and recalculation on the other hand. Rather than pre-
calculating the Cholesky decomposition of the model covari-
ance parameters (because each decomposition is used sev-
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(a) Impact of block size (b) Impact of number of registers per thread (c) Impact of shared memory usage per block

Fig. 9 Impact of GPU occupancies when varying (9a) GPU block sizes, (9b) register count per thread and (9c) shared memory usage per
thread. All measurements are extracted from the the official CUDA Occupancy Calculator [33] (property of NVIDIA) for the OpenCL SMoE
implementation. As it can be seen from a, b and c, there is only room for improvement when reducing the number of registers to achieve higher
occupancy. The achieved occupancy per multiprocessor is in this case at 50%. However, note here that higher occupancy does not necessarily
mean better performance [34].

eral times), we compute several Cholesky decompositions
on-the-fly in parallel and then broadcast the results to all
the GPU threads using shared memory. Consequently, sev-
eral recomputations of Cholesky decompositions are being
performed, but because the recomputation is rather fast and
makes optimal use of the shared memory of the GPU, this
approach hides the global memory latency, leading to a sig-
nificantly improved computational performance compared
to an implementation that is not using shared memory. In
Quasar, shared memory allocation is obtained by calling the
function shared, synchronization of threads in a GPU block
is obtained using the keyword syncthreads(block).

6.3 OpenCL implementation

To estimate the feasibility of 2D and 4D SMoE recon-
struction visualization for a specific hardware platform, we
tested a native parallel GPU version of the SMoE algo-
rithm that combines insights from the Quasar implementa-
tion with common General Purpose GPU (GPGPU) opti-
mization techniques and considerations [37]. As each nu-
merical operation attributes numerical precision loss that
may result in PSNR error, native implementations offer a
level of control that is required to understand optimal SMoE
model configurations as well as hardware and software re-
quirements to counter the propagation of error.

The Khronos’ OpenCL API offers both coarse and fine-
grained hardware parallelism and is primarily chosen be-
cause of its extensive portability proposition [32]. In the next
paragraphs, we describe our algorithm in OpenCL’s termi-
nology applied to NVIDIA architectures.

In contrast to the Quasar implementation, shared mem-
ory was not used to compute matrix inverses in the OpenCL
version. Although promising in terms of benchmarking, we
also did not use the clDataTransfer communication tech-
niques proposed by Takizawa et al in [38]. Instead, the Gaus-
sian kernel buffer and index buffer are pinned to the host,
i.e. they cannot be paged out while the driver synchronizes

using Direct Memory Access (DMA) transfers to the GPU.
Using explicit map and un-map functions, all covariance and
domain information (i.e. the pixel coordinates to be recon-
structed) is uploaded to the GPU in blocks of 4096 values
before kernel execution starts. Image output is written to a
shared and resident OpenGL texture buffer for immediate
rendering, hereby avoiding host round-trip delay. The pixel-
parallel nature of the SMoE algorithm does not require the
use of (dynamic) memory allocations, but further research is
required to reduce the computational complexity per kernel
by using more memory intensive techniques, for example by
improving data locality using hash-tables. All pixels evalu-
ate k relevant components in parallel.

GPU occupancy is a measure that expresses the effi-
ciency of the GPU hardware scheduler as it distributes com-
puting tasks across hardware threads. Occupancy improves
when branching divergence within a warp (a group of 32
threads or a multiple thereof in our experiments) is mini-
mized. We selected work groups of 16×8 threads that each
share 48 KB of memory. In Fig. 9, we visualize the theoret-
ical occupancy of this OpenCL implementation when cal-
culated using NVIDIA’s CUDA Occupancy Calculator [33].
According to the selected GPU block sizes, it can be seen
that a 50% occupancy has been reached with the only bot-
tleneck being the number of registers per thread. Although
higher occupancy does not necessarily mean increased per-
formance [34], further research can be done on this imple-
mentation for reaching the optimal occupancy. Depending
on the Gaussian component dimension and the use of regis-
ters in the GPU kernel computation, more than one Gaussian
component can be stored in faster (local) shared memory, al-
lowing pre-fetching of the data and avoiding global memory
addressing penalties. The amount of shared memory that is
required must not exceed hardware capacity in order to avoid
warp re-scheduling operations that result in suboptimal per-
formance. Additionally, using less registers increases perfor-
mance and reduces instruction latency. Therefore, 2D Gaus-
sian components are trimmed from the original 31 values to
18 unique floating point values. The same trimming opera-
tion results in 33 unique values for a 4D Gaussian compo-
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nent. Our 2D experiment simultaneously loads 11 Gaussian
2D components into 256 shared floating point variables per
work group, allowing each pixel to compute the weighted
contribution of these 11 Gaussian 2D components in one it-
eration step. The relevant set of Gaussian components per
block is loaded from an index table. After all relevant Gaus-
sian components have contributed to each color channel,
the pixel color is reconstructed. For a single compute do-
main block of 512×512 threads (pixels), it was empirically
determined that full image reconstruction and visualization
is feasible in under 16 ms when approximately 265 rele-
vant components per block are used. This includes 2.2 ms
render-framework overhead. At the CPU side, the OpenCL
clEnqueueNDRangeKernel() function is used to subdivide
the compute domain block of maximum size of 512× 512
into hardware workgroups. The reconstruction of larger im-
ages is achieved by subdividing them into compute domain
blocks and repeating the procedure for each compute do-
main block.

Analogous to our Quasar experiments, all matrix oper-
ations are implemented in OpenCL as closed form func-
tions and vectorized using native OpenCL vector primitive
types such as vec2, vec4 and vec16, and fast native approx-
imation intrinsics such as native sqrt(), native log() and
native exp(). Timing results are produced for the complete
reconstruction of a single block for all block-sizes, including
each Gaussian weight computation and the final pixel recon-
struction of the SMoE algorithm. We measured an accurate
version that uses a combination of a QR matrix decompo-
sition and a Cholesky-based inversion, and a faster version
that uses unrolled loop matrix inversion in order to test the
sensitivity of the SMoE algorithm for accuracy and perfor-
mance. Some computations are simplified by reducing the
number of instructions, i.e. the computation of the final pixel
reconstruction does not require two full matrix multiplica-
tion expansions. Pointer dereferencing is not used to avoid
GPU hardware addressing logic.

The block-sizes for each dataset are multiples of the
preferred hardware requirements and workgroup sizes, and
ideal for further subdivision in hardware workgroups. For
visualization applications however, care must be taken to
convert OpenCL’s spatial interpretation of local and global
thread id’s (starting from the lower-right corner) in the 2D
compute domain to OpenGL’s interpretation that samples
textures starting from the top-left corner. Furthermore, the
original image in Matlab has the Y axis pointing upwards,
while the data-set stores blocks using a Y, X coordinate in-
dexing scheme. Additionally, the input domain X samples
the center of pixels, i.e. not at (0, 0) for the 2D case. To min-
imize performance impact, index translation is resolved be-
fore Gaussian kernel-weight computations start. If the image
resolution is not a multiple of the block-size dimension, the
compute domain is padded with one extra compute domain
block to streamline hardware processing so that all pixels are
reconstructed correctly.

The OpenCL API offers an event-based device timer that
reveals how asynchronous GPGPU execution behaves by
measuring and reporting when data transfer and process-
ing operations are queued, started and terminated by the
driver. Our Titan X device reports a device timer granular-
ity of 1000 nanoseconds. Buffer upload transfer times (map
and un-map operations) for the covariance matrices and rel-
evance index tables, the kernel executions and, if applica-
ble, buffer download transfer times (map and un-map opera-
tions again) for partial results such as the reconstructed color
channel values and weights are benchmarked.

Note that this implementation was built assuming to re-
construct the whole image, and not a single block. As such,
instead of reducing the compute domain when measuring
performance benchmarks for single blocks, the list of rele-
vant Gaussian components for all other blocks is left empty.
In this way, exactly one block performs at least one or
more Gaussian component weight computations and pixel
reconstructions, yielding an accurate benchmark result for
that block. Small differences in the data transfer latency of
blocks of the same block-size are thus likely caused by the
device and driver specific implementation details, and can-
not be attributed to the different numbers of relevant Gaus-
sian components for each block.

6.4 C++ single-thread implementation

A straightforward C++ version of the algorithm was imple-
mented using the library Eigen (version 3.3) [30]. It fol-
lows the same block-level subdivision, although it does the
pixel-level parallelism differently compared to the outlined
GPU architecture. When working on the CPU, it is much
more beneficial to do the computations on large matrices
due to efficient vectorization in modern hardware. Point-per-
point evaluation would result in high computational over-
head. Note that it is possible to implement a multi-threaded
CPU version, however, the achieved speedup would maxi-
mally be ×T , T being the number of CPU threads.

A fast implementation based on the inverse was done
using the built-in matrix inversion functions in Eigen. For
calculating the loglikelihood, the Cholesky decomposition
is used as in Eq. 12. Otherwise the left-hand side of Eq.
12 would result in a NxN matrix, because in this version
x is a N-dimensional vector. Without the Cholesky factor-
ization the matrix multiplication would thus result in huge
temporary memory storage, which we want to avoid. The
slow implementation uses the Householder rank-revealing
QR decomposition of a matrix with column-pivoting (using
the Eigen-function ColPivHouseholderQR) for both the Ma-
halanobis distance after the Cholesky decomposition, as well
as for the calculation of the linear regressors m j(x).
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(a) 2D Lena (K = 2095) (b) 2D Car (K = 21802) [39] (c) 4D Bikes (K = 8960) [23] (d) 4D Friends (K = 10080) [23]

Fig. 10 For the experiments four SMoE models were used that originate from four sources: two 2D images (Lena & Car) and two 4D light fields
(Bikes & Friends), with various K, i.e. the number of components. The reconstruction of the models are shown here. The two source images had
a 512x512 resolution. The source light field had 13x13 angular resolution and 434x626 spatial resolution.

7 Experimental Evaluation

7.1 Introduction

The goal of this section is to provide experimental evalua-
tion of the SMoE parallel implementations in terms of speed
and visual fidelity. Four experiments are presented. Firstly,
the algorithmic speed-precision trade-offs presented in Sec.
5 are evaluated. Secondly, the performance of all implemen-
tations are evaluated on single blocks for a range of block-
sizes in order to validate the pixel-level parallelism from
Sec. 4.2. Thirdly, we compare the speed of the fastest imple-
mentation on a high-end system versus a consumer laptop.
Finally, we evaluate the frame rate of a high-detailed 1080p
and 4K image by simulating the block-level parallelism from
Sec. 4.1.

7.2 Dataset

We conducted the experiments on two different image
modalities, i.e. 2D color images and two static 4D light
fields. For the first scenario, the test set consists of two
2D color images (Lena and a crop from Car of resolu-
tion 512x512 [39]). For the light field case, the static 4D
light field Bikes and Friends [23] were used. These images
were modeled using the SMoE approach with various model
sizes. The reconstructions of these models are illustrated in
Fig. 10.

In order to simulate the output of the block-level par-
allelism from Sec. 4.1 for different chosen block-sizes, we
output the pixel-coordinates and the relevant Gaussian com-
ponents for those pixel-coordinates using block-sizes of
[16,32,64,128,256] as in Fig. 7. Smaller block-sizes re-
sult in blocks containing less pixel locations and less rele-
vant components, however, it increases the number of rele-
vance lookups. The relevance of the Gaussian components
are decided by the relevance window. The less components
a model has, the larger the relevance window should be
taken in order to be sure to capture all relevant components.
Therefore, for Lena (K = 2095), Car (K = 21802), Bikes
(K = 8960) and Friends (K = 10080), the relevance win-

dows used were respectively the blocksize plus an outer bor-
der of 64,16, 32, and 32.

Using the high-precision MATLAB implementation
we output for each block for each image for every
block-size, the weights w j(x) and the three regressors
mY, j(x),mU, j(x),mV, j(x), and the final regression for each
color channel with a precision of 20 digits (20 decimal dig-
its per color channel in ASCII format). These values are then
used to compare the fidelity of the parallel implementations
in the following experiments. Note that the color channels
are normalized to [0−1].

7.3 Hardware

For the experiments two setups have been tested, one aiming
for performance and one for availability. For the first case, a
machine operating with an Intel® Core™ i7 - 5960X CPU
@3.00 GHz and assisted with a Maxwell-based NVIDIA
GeForce GTX Titan X graphic device has been employed.
Aside from standard watercooling hardware for all proces-
sors, no special overclocking strategies are used. For the sec-
ond case, we used a commodity laptop with an Intel® Core™

i7 - 6700HQ CPU @2.60 GHz assisted by an NVIDIA
GeForce GTX 960M graphic device. While the Titan X ma-
chine consists of 3072 CUDA cores, the 960M consists of a
more limited number of 640 CUDA cores.

7.4 Algorithmic precision evaluation

In this experiment, we compare the influence of the algo-
rithmic choices presented in Sec. 5, using the dataset cre-
ated by the high-precision implementation using MATLAB
as in Sec. 7.2. The goal is to evaluate how much visual loss
a faster, but less robust scheme produces.

Precision has been measured in terms of Mean Squared
Error (MSE) between each parallel coder and ground truth.
The most commonly supported precision in modern devices
is 8-bit (256 color levels) per color channel. There are usu-
ally three color channels, so that makes a color depth of 24
bits-per-pixel (bpp). Modern codecs support precisions of
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Table 1 Precision comparison for OpenCL fast vs. slow implementa-
tion for Car at block size of 64.

Luminance MSE Max pixel error Bitdepth fidelity

Fast 2.3891e-05 4.2367e-06 14-bit

Slow 2.4083e-05 4.5229e-06 14-bit

10- and 12-bits per channel (1024 colors and 30 bpp and
4096 colors and 36 bpp). Therefore, one of the goals is to
validate the bit-depth fidelity of our implementations for 8,
10, and 12 bits and report the highest precision that can be
delivered. Furthermore, the precision loss for each imple-
mentation must stay as limited as possible, and the precision
difference between implementations must range within rea-
sonable limits, especially regarding the reconstructed pixel
intensities.

We measured the MSE between the ground truth and our
implemented parallel rendering frameworks, and observed
that it stays within a reasonable low range. An example for
the dataset Car is given in Table 1. Interestingly, we noticed
that for both our fast and slow versions (as defined in Sec. 5)
the MSE and the maximum pixel error stays not only partic-
ularly low but it is almost identical at all cases.

Finally, we quantified the number of reconstructed pix-
els that satisfy the rule MSE < 1/2b, where b is [8,10,12]
for 8-, 10-, and 12-bits precision respectively. In all cases,
the number of pixels which do not satisfy that rule is zero.
The highest bit-depth precision we can reach without any
losses is 14-bit, while for the case of 16-bit a very limited
amount of pixels exceeds the above described limit (< 10
at all cases). We can conclude that for the given datasets,
it is valid to proceed to time evaluation using only the fast-
and-precise-enough version of the algorithm based on the
matrix inverse, instead of the QR-decomposition. The suffi-
ciently conditioned covariance matrices can be explained by
the regularization during modeling, which is done in order
to prevent singularities in the covariance matrices [5].

7.5 Implementation speed-evaluation for single blocks

Since the above experiment indicates that for the chosen
datasets the fast implementation (i.e. relying on the inversed
matrix) shows high enough precision, we perform the forth-
coming experiments using this mode. In this experiment,
we evaluated our results in terms of speed, as illustrated in
Fig. 11. We also compare to Quasar implementations, one
with and one without the use of shared memory (see Sec-
tion 6.2). The total timings for a single-block reconstruc-
tion were measured on the high-end NVIDIA GeForce GTX
TITAN X machine. Note here, that the timings were ac-
quired by using the Quasar built-in function for time mea-
surements (which internally relies on CUDA events), while
for the OpenCL implementation we derived the timings us-

Table 2 Indicative total timings for a block (128x128 pixels) in sec-
onds and speedup factors when compared to the C++ reference de-
coder. All timings were taken when working on a four Nvidia GeForce
GTX TITAN X GPU machine.

Dataset C++ Quasar Quasar (SM) OpenCL

Lena 2D 1.2s 0.0008s 0.0003s 0.0005s

Car 2D 3.5s 0.0021s 0.0007s 0.0013s

Bikes 4D 3.5s 0.0120s 0.0036s 0.0029s

Friends 4D 3.9s 0.0131s 0.0041s 0.0043s

Table 3 Data transfers average timings in Quasar and OpenCL for
dataset Car. It can be seen that data transfers are in the range of µ s and
they can be considered almost negligible. Average timings for datasets
Lena, Bikes and Friends are in the same range. Data transfers are op-
timized automatically by the Quasar data transfer optimizer. OpenCL
writes its image output to a shared and resident OpenGL texture buffer
for immediate rendering and avoids a host round-trip delay, therefore
we only measure the time from CPU→ GPU.

Quasar Quasar OpenCL

Block size CPU→ GPU GPU→ CPU CPU→ GPU

16 67µs 92µs 0.3µs

32 65µs 96µs 1.1µs

64 69µs 113µs 4.4µs

128 83µs 119µs 17µs

256 131µs 172µs 71µs

ing QueryPerformanceCounter() on each cl kernel execu-
tion round-trip.

The C++ reference decoder is used as a comparison mea-
sure. As an example, for block sizes of 128×128, the high-
level Quasar implementation reached speedup factors in the
range of ×1500− 1666 for 2D images and ×291− 297
for 4D light fields, while the Quasar implementation using
shared memory reached speedup factors up within ×4000−
5000 and ×951− 972 for images and light fields respec-
tively. The OpenCL implementation reached speedups in the
range of×2400−2692 and×906−1206 for 2D images and
4D light fields respectively (see Table 2).

Data-transfer timings are shown in Table 3. The data-
transfer times are close to negligible. As such, we only in-
clude the timings for the computations on the GPU. The
OpenCL version still reduces the data transfer substantially,
likely caused by numerous data optimizations and trimmings
as discussed in Sec. 6.3. Furthermore, it also writes directly
to the OpenGL texture buffers so there is no GPU-CPU col-
umn. Fig. 11, shows that there is an optimum when looking
at the average time per pixel. This means that sharing the
same set of components for a set of pixels is optimum for
block-sizes around 64. This can be used to lower data trans-
fer bandwidth to the GPU and storage. However, it is always
beneficial for rendering speed per pixel to have less compo-
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Fig. 11 Time evaluation for Lena, Car, Bikes, and Friends from top to bottom respectively for the C++, Quasar, OpenCL and Quasar SM
(Quasar implementation using shared memory). Left: total timings in seconds for different block sizes. Right: Average time in seconds for
calculations per pixel. Note that the timings here are for a single block reconstruction with the assumption that blocks are reconstructed in
parallel. While for the total timings the time per block increases when the block size increases, for the average time per pixel we can see that in
certain cases different block sizes are the best-fit for different data sets. Logarithmic scale has been used for better comparison.

nents to evaluate per pixel, so in practice, lower block-sizes
will result in higher frame rates if data transfer is not the
bottleneck.

Note that the dimensionality of the model seems to not
have a high influence on rendering speed. The amount of
components does however have a severe impact, i.e. a 2D

model with high K will render slower than a 4D model with
smaller K.
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Fig. 12 Time evaluation for Car using an NVIDIA GTX TITAN X
vs an NVIDIA GTX 960M. Top: total timings in seconds for different
block sizes. Down: Average time in seconds for calculations per pixel.
Note that the timings here are for a single block reconstruction with the
assumption that blocks are reconstructed in parallel. It can be seen that
even with a less powerful, more common GPU, the timings can stay
within the needed real-time constraints (under 40 ms).

7.6 Hardware complexity influence for single blocks

In this experiment, we tested the pixel-parallel SMoE ren-
derer in two different hardware setups. The first setup was
a laptop using an NVIDIA GeForce GTX 960M and second
setup was a desktop machine using a NVIDIA GeForce GTX
TITAN X. Due to its popularity and accessibility we chose
to use the OpenCL implementation for this demonstration.
Nonetheless, for the rendering scenarios using Quasar on a
laptop device, the results are similar and corresponding to
Sec. 7.5.

Fig. 12 shows that in terms of reconstructing a single
block, the consumer-grade hardware is able to achieve real-
time rendering as well. However, it is expected that the
throughput of number of blocks that can be rendered simul-
taneously differs as shown in the experiment in the subse-
quent section (Sec. 7.7).

Table 4 Rendering speeds for a single frame for 1080p and 4K resolu-
tions, as well as the average Gaussian kernels-per-block (kpb). As the
models are simulated by repeating blocks from the dataset, the over-
head of the block-level process (i.e. relevance look-up) is not included.
As such, smaller blocks lead to the fastest rendering speeds as they
yield less Gaussian evaluations per pixel. For the 960M machine, some
results lack due to driver crashes.

Titan X Titan X 960M 960M

Block size kpb 1080p 4K 1080p 4K

16 100.9 11.7ms 44.4ms 51.7ms 155.1ms

32 177.95 18.8ms 69.6ms 69.1ms 269.6ms

64 398.59 36.1ms 141.6ms 151.3ms 816.7ms

128 1087.3 92.7ms 365.5ms 483.4ms 1634.8ms

256 3665.5 309.6ms 2229.6ms 1750.1ms -

7.7 Simulation of high-detailed 1080p and 4K images

In this experiment, we simulate a high definition image by
copying over the Car model horizontally and vertically in
order to arrive at two models that simulate sources of resolu-
tions HD/1080p (1920x1080) and 4K UHD-1(3840x2160).
As such, we mimic a model that was created from a high res-
olution source. Car was chosen as it has the highest number
of Gaussian kernels, and we have shown that the number of
components is the most determining parameter for rendering
speed. The simulated models have respectively K = 169401
and K = 686763 Gaussian kernels. As such, we can compare
the influence of the block-sizes on a real-world scenario.

Table 4 shows the results for the two machines in con-
sideration. It is clear that the weaker machine is not able to
achieve similar throughput and does not deliver timings that
are acceptable in terms of real-time rendering, although it
comes close for 1080p with 20 fps. However, the machine
that contains the Titan X GPU, does provide 85.5 fps and
22.5 fps for respectively 1080p and 4K.

Furthermore, we find that lower block-sizes result in
the highest frames-per-second. This is caused by the fact
that lower block-sizes cause less component evaluations per
pixel. Consequently, we conclude that in this implementa-
tion it is more important to have a low amount of compo-
nent evaluations per pixel, rather than having optimal com-
ponent sharing for data transfer. Note however that timings
did not include the relevance-selection process (Sec. 4.1) as
this was already done when constructing the dataset (Sec.
7.2). The smaller the blocks, the higher the number of rele-
vance lookups as the number of blocks increases. We found
that while constructing the dataset in MATLAB the lookup
process accounted for 0.1-0.3ms per block, this could thus
have an impact. However, this lookup process can also be
further optimized and even straightforwardly be parallelized
on a per-kernel basis.
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8 Conclusions and Future Work

In this paper we have proven the viability of pixel-level ren-
dering of SMoE models. We presented a general high-level
architecture for rendering SMoE models. Next, we evaluated
the algorithmic design choices within the renderer. And fi-
nally presented two GPU implementations that differ in level
of abstraction. We have shown that the OpenCL and Quasar
implementations achieve speedup factors of up to ×5000
compared to a single-threaded C++ version. Furthermore,
we have shown that the dimensionality of the model (2D
image or 4D light field) is less of a determinant factor than
the amount of components in the model. Finally, we have
simulated high-detailed models of respectively 169401 and
686763 Gaussian components and rendered them at 1080p
and at 4K resolutions. We have shown that rendering at
frame rates of respectively 85.5 fps and 22.5 fps is possible
given appropriate hardware.

It is clear that the amount of Gaussian evaluations per
pixel is best kept as low as possible. Smaller block-sizes at
block-level ensure this. However, the overhead of the com-
ponent relevance process at block-level could produce sig-
nificant overhead. Future work consists of evaluating fast se-
lection strategies and implementations. Gaussian component
numbers can also be reduced by improving SMoE modeling
efficiency algorithmically. Using more optimized modeling
algorithms, we would need to achieve the same level of vi-
sual quality with less Gaussian components. On implemen-
tation level, the modeling still holds challenges. However,
as the rendering step corresponds to the E-step in the EM-
algorithm, the same ideas can be used to develop a highly
parallelized SMoE modeler. Especially keeping in mind the
extreme sample sets that will be present in the envisioned
6DoF content.
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