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Abstract

A pseudo-embedding of a point-line geometry is a representation of the geometry
into a projective space over the field F2 such that every line corresponds to a frame
of a subspace. Such a representation is called homogeneous if every automorphism
of the geometry lifts to an automorphism of the projective space. In this paper, we
determine all homogeneous pseudo-embeddings of the three Witt designs that arise
by extending the projective plane PG(2, 4). Along our way, we come across some
codes with automorphism group PΣL(3, 4) and sets of points of PG(2, 4) that have
a particular intersection pattern with Baer subplanes or hyperovals.
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1 Introduction

This paper deals with a number of problems regarding the projective plane PG(2, 4) and
the Witt designs W22 = S(3, 6, 22), W23 = S(4, 7, 23) and W24 = S(5, 8, 24).

It is known that the projective plane PG(2, 4) has 360 Baer subplanes and 168 hyper-
ovals. The set B of all Baer subplanes and the set H of all hyperovals form one orbit for
the projective group PGL(3, 4). Under the action of PSL(3, 4), both sets split into three
suborbits of equal size, say B = B1∪B2∪B3 and H = H1∪H2∪H3, where the subindices
can be chosen in such a way that the following two properties hold (see [11, 15, 17]):

• If i ∈ {1, 2, 3}, then any two Baer subplanes of Bi meet in an odd number of points,
any two hyperovals of Hi meet in an even number of points and any Baer subplane
of Bi meets every hyperoval of Hi in an even number of points.

• If i, j ∈ {1, 2, 3} with i 6= j, then any Baer subplane of Bi meets every Baer subplane
of Bj in an even number of points, any hyperoval of Hi intersects every hyperoval
of Hj in an odd number of points, and any Baer subplane of Bi intersects every
hyperoval of Hj in an odd number of points.
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These facts lead to the following problems.

Problem 1. Which are the sets of points of PG(2, 4) that meet a given Baer subplane
of Bi in an even (respectively, odd) number of points?

Problem 2. Which are the sets of points of PG(2, 4) that meet a given hyperoval of Hi

in an even (respectively, odd) number of points?

In this paper, we solve both problems. While solving these problems, we come across four
codes whose properties (weights of codewords, automorphisms) will be investigated.

Our results about these sets of points will have implications for the so-called pseudo-
embeddings of the Witt designs W22, W23 and W24.

Suppose S = (P ,L, I) is a point-line geometry for which the number of points on each
line is finite and at least three. A pseudo-embedding of S is a mapping ε from P to the set
of points of a projective space PG(V ), with V an F2-vector space, such that the following
properties are satisfied:

(PS1) The image of ε generates PG(V ).

(PS2) ε maps any line L of S to a frame of the subspace 〈ε(L)〉 of PG(V ).

Such a pseudo-embedding will shortly be denoted by ε : S → PG(V ). With a frame of
a projective space of finite dimension d, we mean here a set of d + 2 points no d + 1
of which are contained in a hyperplane. In the above definition of pseudo-embedding,
it is required that ε maps each line of S in an injective way to a frame of a subspace
of PG(V ). It is however not required that the map ε itself must also be injective. An
injective pseudo-embedding is also called a faithful pseudo-embedding.

Two pseudo-embeddings ε1 : S → PG(V1) and ε2 : S → PG(V2) of the same point-line
geometry S are called isomorphic if there exists a linear isomorphism θ from V1 to V2 such
that ε2 = θ ◦ ε1.

If G acts as a group of automorphisms on S, then we call a pseudo-embedding ε : S →
PG(V ) G-homogeneous if for every θ ∈ G, there exists a (necessarily unique) θ̃ ∈ GL(V )

such that θ̃ ◦ ε = ε ◦ θ. If this is the case, then the map G → GL(V ) : θ 7→ θ̃ defines
a modular representation of G, and V becomes a (possibly reducible) G-module. If G is
the full group of automorphisms of S, then a G-homogeneous pseudo-embedding is also
called a homogeneous pseudo-embedding.

Suppose ε : S → PG(V ) is a pseudo-embedding of S and α is a subspace of PG(V )
having no point in common with ε(P) nor with any of the 〈ε(L)〉’s, where L ∈ L. Then the
map x 7→ 〈α, ε(x)〉 defines a pseudo-embedding ε/α of S into the quotient projective space
PG(V )/α (whose points are the subspaces of PG(V ) that contain α as a hyperplane). We
call ε/α a quotient of ε. If ε1, ε2 are two pseudo-embeddings of S, then we write ε1 ≥ ε2 if
ε2 is isomorphic to a quotient of ε1.

If ε̃ is a pseudo-embedding of S with the property that ε̃ ≥ ε for any other pseudo-
embedding ε of S, then we call ε̃ a universal pseudo-embedding of S. It can be proved that
if S has pseudo-embeddings, then it also has a universal pseudo-embedding which is more-
over unique, up to isomorphism. If S has faithful pseudo-embeddings, then the universal
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embedding is faithful as well. The universal pseudo-embedding is always homogeneous.
The vector dimension of the universal pseudo-embedding is called the pseudo-embedding
rank. If |P| < ∞, then the pseudo-embedding rank is equal to |P| − dim(C), where C
is the binary code of length |P| generated by the characteristic vectors of the lines of S.
So, besides the connection with modular representation theory alluded to above, there is
also a connection between pseudo-embeddings and coding theory, and the study of certain
problems in the area of coding theory can benefit from this connection.

Pseudo-embeddings have been introduced in [7] and further investigated in [6, 8]. We
refer to these papers for proofs of the above-mentioned facts. In the present paper, we
classify all homogeneous pseudo-embeddings of the Witt designs W22, W23 and W24. We
show that W22 has, up to isomorphism, two homogeneous pseudo-embeddings, namely
the universal one in PG(10, 2) and another one in PG(9, 2). We also show that W23

and W24 have up to isomorphism unique homogeneous pseudo-embeddings, namely their
universal pseudo-embeddings in respectively PG(10, 2) and PG(11, 2). As a useful by-
product we prove that the projective plane PG(2, 4) has up to isomorphism five PSL(3, 4)-
homogeneous pseudo-embeddings. We also give explicit constructions (using coordinates)
for each of these pseudo-embeddings.

Representations of point-line geometries in projective spaces where the lines corre-
spond to certain nice configurations of points in subspaces have been intensively inves-
tigated in the literature. The standard representations are those where the lines of the
geometry correspond to full lines of the projective space. Such representations are called
full projective embeddings. Other situations have also been investigated: lines can corre-
spond to subsets of lines (the so-called lax projective embeddings), conics [14, 18], ovals
[12, 20, 23], ovoids [4, 9, 10, 16] and rational normal curves [19]. For pseudo-embeddings,
the lines correspond to frames of subspaces and in this case the projective space should
be defined over the field F2. In the case each line has exactly three points, such frames are
projective lines and so the notions of pseudo-embeddings and full projective embeddings
then coincide. For geometries with four points per line, such frames are hyperovals in
planes, and for geometries with five points per line, such frames are ovoids of 3-spaces.
It is therefore no surprise that pseudo-embeddings have showed up in some of the above
literature. In [9] for instance, a connection was mentioned between the universal pseudo-
embeddings of the projective space PG(2, 4) and the Witt design S(5, 8, 24). We will meet
this connection later in Section 7 of this paper.

Besides the “large” Witt designs W22, W23 and W24, there are two other Witt designs,
namely W11 = S(4, 5, 11) and W12 = S(5, 6, 12). These arise by extending the affine plane
AG(2, 3). In [7, Proposition 3.4(2)], it was shown that AG(2, 3) does not have pseudo-
embeddings. The results of Section 7 (more precisely, Proposition 7.1) then imply that
neither of the “small” Witt designs W11 and W12 can have pseudo-embeddings.

The homogeneous pseudo-embeddings of the large Witt designs we determine here
realize models of these designs as sets of points in projective spaces where the blocks can
be obtained as intersections with certain subspaces. This situation is very similar to the
realization of the Witt design W12 in PG(5, 3) described by Coxeter in [5].

3



2 Preliminaries

In this section, we recall some known facts on pseudo-embeddings and Witt designs.

Suppose S = (P ,L, I) is a point-line geometry with the property that the number of
points on each line is finite and at least 3.

An even set of S is a set of points meeting each line of S in an even number of
points. The empty point set is the trivial example of an even set. The complements of
the nontrivial even sets are also called pseudo-hyperplanes. We denote by ES the set of
all even sets of S. If X1, X2 ∈ ES , then their symmetric difference X1 + X2 := X1∆X2

also belongs to ES . For every X ∈ ES , we also define 0 · X := ∅ and 1 · X := X. With
this definition, the set ES becomes an F2-vector space with zero vector ∅ ∈ ES . If S has
pseudo-embeddings and |ES | <∞, then it is a consequence of Proposition 2.1 below that
the dimension of the vector space ES coincides with the pseudo-embedding rank of S.

If ε : S → PG(V ) is a pseudo-embedding of S, then for every hyperplane Π of PG(V ),
the set HΠ := ε−1(ε(P) ∩ Π) is a pseudo-hyperplane of PG(V ) by [7, Theorem 1.1]. The
set of all pseudo-hyperplanes arising in this way will be denoted by Hε. The set of all
complements of the elements of Hε will be denoted by Eε ⊆ ES \ {∅}. The following can
be said about Hε if ε is the universal pseudo-embedding of S, for a proof see Theorem 1.3
of [7].

Proposition 2.1 ([7]). Suppose S has pseudo-embeddings and denote by ε̃ : S → PG(Ṽ )
the universal pseudo-embedding of S. Then Hε̃ is the set of all pseudo-hyperplanes of S.
In fact, the map Π 7→ HΠ = ε̃−1(ε̃(P) ∩ Π) defines a bijective correspondence between the

set of hyperplanes of PG(Ṽ ) and the set of pseudo-hyperplanes of S.

If ε : S → PG(V ) is a pseudo-embedding and the pseudo-hyperplane H of S is equal to
ε−1(ε(P)∩Π) for some hyperplane Π of PG(V ), then Π might not be the only hyperplane
of PG(V ) containing ε(P). If Π′ is another such hyperplane, then the pseudo-hyperplane
H ′ = ε−1(ε(P)∩Π′) properly contains H. An example where such a situation occurs will
be given in the paragraph following Lemma 8.6.

The following proposition was proved on page 79 of [7].

Proposition 2.2 ([7]). Suppose ε1 and ε2 are two pseudo-embeddings of S. Then ε1 and
ε2 are isomorphic if and only if Hε1 = Hε2.

Not all point-line geometries with the property that the number of points on each line is
finite and at least three have pseudo-embeddings. However, it is possible to give neces-
sary and sufficient conditions for the existence of pseudo-embeddings in terms of pseudo-
hyperplanes. The following proposition is precisely Theorem 1.4(1) of [7].

Proposition 2.3 ([7]). S has a pseudo-embedding if and only if the set of all pseudo-
hyperplanes of S satisfies the following conditions.

• If L is a line containing an odd number of points and x is a point of L, then there
exists a pseudo-hyperplane intersecting L in the singleton {x}.
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• If L is a line containing an even number of points and x1, x2 are two points of L,
then there exists a pseudo-hyperplane intersecting L in the pair {x1, x2}.

The following proposition was proved in Proposition 2.6 and Corollary 2.7 of [8].

Proposition 2.4 ([8]). Suppose G ≤ Aut(S). A set H of pseudo-hyperplanes is of the
form Hε for some G-homogeneous pseudo-embedding ε of S if and only the following
properties hold:

(a) H is the union of G-orbits of pseudo-hyperplanes;

(b) if H1, H2 ∈ H with H1 6= H2, then the complement of H1∆H2 also belongs to H;

(c) if L is a line of S containing an odd number of points and x ∈ L, then there exists
an H ∈ H such that H ∩ L = {x};

(d) if L is a line of S containing an even number of points and x1, x2 ∈ L with x1 6= x2,
then there exists an H ∈ H such that H ∩ L = {x1, x2};

(e) for every point x of S, there exists an H ∈ H not containing x.

The following proposition is precisely Theorem 3.1 of [6].

Proposition 2.5 ([6]). Let V1 and V2 be two vector spaces over F2. For every i ∈ {1, 2},
let εi be a map from the point set P of S to the point set of PG(Vi) and let Hi be the set
of all sets of the form ε−1

i (εi(P) ∩ Π), where Π is some hyperplane of PG(Vi). If ε1 is a
pseudo-embedding of S and H1 = H2, then also ε2 is a pseudo-embedding of S. Moreover,
ε2 is isomorphic to ε1.

The Witt designs W11, W12, W22, W23 and W24 are examples of so-called Steiner
systems. A Steiner system of type S(t, k, v) with t, k, v ∈ N such that 2 ≤ t ≤ k ≤ v is a
block design (P ,B) having v = |P| points such that every block B ∈ B contains exactly k
points and every t distinct points are contained in a unique block. The Witt designs W11,
W12, W22, W23 and W24 are the unique Steiner systems of types S(4, 5, 11), S(5, 6, 12),
S(3, 6, 22), S(4, 7, 23) and S(5, 8, 24). Explicit constructions of these designs can be found
in [11, 15, 17]), or in Sections 4, 5 and 6 of this paper.

Suppose S = (P ,B) is a Steiner system of type S(t, k, v) with t ≥ 3. Let x ∈ P
and denote by Bx the set of all sets of the form B \ {x} where B ∈ B contains x. Then
Sx = (Px,Bx) with Px = P \ {x} is a Steiner system of type S(t− 1, k − 1, v − 1) which
is called a derived design of S. Conversely, S is called an extension of Sx. The Witt
design W22 is an extension of the projective plane PG(2, 4) which is the unique Steiner
system of type S(2, 5, 21), W23 is an extension of W22 and W24 is an extension of W23. The
automorphism groups of W24 and W23 are the respective Mathieu groups M24 and M23.
The Mathieu group M22 is the derived subgroup of the automorphism group Aut(W22)
of W22 and has index 2 in Aut(W22) ∼= M22 : 2. The Mathieu group Mi, i ∈ {22, 23, 24},
acts (i− 19)-transitively on the points of Wi.
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3 Four codes with automorphism group PΣL(3, 4)

During the classification of the homogeneous pseudo-embeddings of the large Witt designs,
we will rely on some information about certain codes related to hyperovals and Baer
subplanes of PG(2, 4). Codes related to these point sets have already been investigated
(as in [2]), but the novelty is that we will study some codes that originate from the
PSL(3, 4)-orbits of hyperovals and Baer subplanes.

Let V be a 3-dimensional vector space over F4 = {0, 1, ω, ω2}. Consider the projective
plane PG(2, 4) = PG(V ) with point set P and line set L. For every set X of points of
PG(2, 4), we denote by X := P \ X the complement of X. For every set A of sets of
points of PG(2, 4), we define A := {X |X ∈ A}. Recall that B denotes the set of all
Baer subplanes of PG(2, 4) and that H denotes the set of all hyperovals of PG(2, 4). We
consider the following additional sets of points in PG(2, 4):
• U is the set of unitals of PG(2, 4);
• V consists of all sets of the form L1∆L2 where L1 and L2 are two distinct lines;
• W consists of all sets of the form H ∪ L, where H ∈ H and L ∈ L with H ∩ L = ∅.

The sizes of these sets are |U| = 280, |V| = 210 and |W| = 1008. If A is a set of points of
PG(2, 4), then |A| = |A|. Note that each element of V is the set of points defined by a
pencil of three lines.

The first claim of the following lemma is precisely Theorem 19.6.2 of Hirschfeld [13] and
is a special case of results obtained by M. Tallini Scafati [21, 22].

Lemma 3.1. The sets of points of PG(2, 4) intersecting each line in an odd number of
points are precisely the elements of {P} ∪ L ∪ V ∪ B ∪ U ∪H ∪W. The sets of points of
PG(2, 4) intersecting each line in an even number of points are precisely the complements
of these sets, i.e. the elements of {∅} ∪ L ∪ V ∪ B ∪ U ∪H ∪W.

Let B1, B2 and B3 be the three PSL(3, 4)-orbits of Baer subplanes and H1, H2 and H3

the three PSL(3, 4)-orbits of hyperovals (as in Section 1). For every i ∈ {1, 2, 3}, let Wi

denote the set of all sets of the form H ∪ L, where H ∈ Hi and L is a line disjoint from
H. Then |W1| = |W2| = |W3| = 336.

Lemma 3.2. A unital U intersects every Baer subplane in an odd number of points, and
every hyperoval in an even number of points.

Proof. The unital U can be written as L1∆L2∆L3, where L1, L2 and L3 are three
nonconcurrent lines. Indeed, if we take a reference system such that U has equation
X3

1 +X3
2 +X3

3 = 0, then we take for Li, i ∈ {1, 2, 3}, the line with equation Xi = 0. The
claims then follow from the fact that each line intersects any Baer subplane in an odd
number of points and any hyperoval in an even number of points.

The following lemma is well-known and straightforward to prove.

Lemma 3.3. The group PSL(3, 4) has one orbit on U (namely U), one orbit on V (namely
V) and three orbits on W (namely W1, W2 and W3).
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If (ē1, ē2, ē3) is a basis of V , then the Baer subplanes

B = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ē3〉, 〈ē2 + ē3〉, 〈ē1 + ē2 + ē3〉},

B′ = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ωē3〉, 〈ē2 + ωē3〉, 〈ē1 + ē2 + ωē3〉},
B′′ = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ω2ē3〉, 〈ē2 + ω2ē3〉, 〈ē1 + ē2 + ω2ē3〉}

mutually intersect in precisely four points and so belong to distinct Bi’s. Assume that we
have chosen the Bi’s in such a way that B ∈ B1, B′ ∈ B2 and B′′ ∈ B3.

We denote by PΣL(3, 4) the subgroup of PΓL(3, 4) generated by PSL(3, 4) and the
additional field automorphism:

θ : 〈x1ē1 + x2ē2 + x3ē3〉 → 〈x2
1ē1 + x2

2ē2 + x2
3ē3〉.

As θ fixes B, it stabilizes the set B1 (and hence also H1 andW1). As PΣL(3, 4) has index
3 in PΓL(3, 4), we thus have that PΣL(3, 4) consists of those automorphisms of PG(2, 4)
that stabilizes the set B1 (or equivalently H1 or W1). As (B′)θ = B′′, we thus see that θ
interchanges B2 and B3. Choosing another basis in V , we could similarly find an automor-
phism of PG(2, 4) stabilizing B2 and interchanging B1 and B3. The group PΓL(3, 4) thus
induces the full symmetric group on the set {B1,B2,B3} and so PΓL(3, 4)/PSL(3, 4) ∼= S3.

Lemma 3.4. There exist two Baer subplanes B,B′ ∈ B1 such that B∆B′ ∈ V.

Proof. Let B be an arbitrary Baer subplane of B1, and choose a basis {ē1, ē2, ē3} in V
such that

B = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ē3〉, 〈ē2 + ē3〉, 〈ē1 + ē2 + ē3〉}.

Now, let B′ be the Baer subplane

B′ = {〈ē1〉, 〈ē2〉, 〈ē1+ē2〉, 〈ωē1+ω2ē2+ē3〉, 〈ω2ē1+ω2ē2+ē3〉, 〈ωē1+ωē2+ē3〉, 〈ω2ē1+ωē2+ē3〉}.

Then |B ∩B′| = 3 and so B′ ∈ B1. The set B∆B′ is equal to

{〈ē3〉, 〈ē1 + ē3〉, 〈ē2 + ē3〉, 〈ē1 + ē2 + ē3〉, 〈ωē1 +ω2ē2 + ē3〉, 〈ω2ē1 +ω2ē2 + ē3〉, 〈ωē1 +ωē2 + ē3〉,

〈ω2ē1 + ωē2 + ē3〉},
i.e. equal to L1∆L2, where L1 = 〈ē1 + ē2, ē3〉 and L2 = 〈ē1 + ē2, ē2 + ē3〉.

Lemma 3.5. Let X be a set of points of PG(2, 4) intersecting each Baer subplane of B1 in
an even number of points. Then either X meets every line of PG(2, 4) in an even number
of points or X meets every line of PG(2, 4) in an odd number of points.

Proof. Let L1 and L2 be two arbitrary distinct lines of PG(2, 4). As PSL(3, 4) acts
transitively on pairs of distinct lines of PG(2, 4), there exist by Lemma 3.4 two Baer
subplanes B,B′ ∈ B1 such that L1∆L2 = B∆B′. X intersects B,B′ and hence also
L1∆L2 = B∆B′ in an even number of points. This implies that |L1 ∩ X| and |L2 ∩ X|
have the same parity.
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Set # Set # Set #

∅ 1 Elements of B1 120 Elements of H3 56

Elements of L 21 Elements of U 280 Elements of W1 336
Elements of V 210 Elements of H1 56 Elements of W2 336

Elements of B2 120 Elements of H2 56 Elements of W3 336
Elements of B3 120

Table 1: The sets meeting the elements of B1 in an even number of points

Set # Set # Set #

∅ 1 Elements of B1 120 Elements of H1 56

Elements of L 21 Elements of U 280 Elements of W1 336
Elements of V 210

Table 2: The sets meeting the elements of B2 ∪ B3 in an even number of points

The following theorem is a consequence of Lemmas 3.1, 3.2, 3.3 and 3.5.

Theorem 3.6. The sets of points of PG(2, 4) intersecting each Baer subplane of B1 in
an even number of points are precisely the sets mentioned in Table 1. There are precisely
2048 = 211 such sets and they fall into 13 PSL(3, 4)-orbits.

Corollary 3.7. The binary code Cb generated by the characteristic vectors of the Baer
subplanes of B1 has dimension 10, its dual code C⊥b has dimension 11 and consists of all
characteristic vectors of the sets mentioned in Table 1.

Proof. The dual code C⊥b consists of all characteristic vectors of the sets meeting all Baer
subplanes of B1 in an even number of points. By Theorem 3.6, we then know that C⊥b
has dimension 11. The dimension of Cb therefore equals |P| − 11 = 10.

Lemma 3.8. The sets of points meeting all Baer subplanes of B2∪B3 in an even number
of points are precisely the sets mentioned in Table 2.

Proof. This follows by applying Theorem 3.6 twice, once with B1 replaced by B2 and once
with B1 replaced by B3.

Theorem 3.9. The codewords of Cb are precisely the characteristic vectors of the sets
mentioned in Table 2. The dual code C⊥b is the code generated by the characteristic vectors
of the elements of B2 ∪ B3.

Proof. By Table 1, the characteristic vectors of the elements of B2 ∪ B3 belong to C⊥b .
So, all sets whose characteristic vectors belong to Cb can be found in Table 2. The first
claim then follows from the fact that Table 2 lists |Cb| = 210 sets. Also, the binary code C
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generated by the characteristic vectors of the elements of B2 ∪B3 is contained in C⊥b . So,
it suffices to prove that dim(C) = dim(C⊥b ), or equivalently dim(C⊥) = dim(Cb) = 10.
From Table 2, it indeed follows that dim(C⊥) = 10.

Theorem 3.10. The nonzero codewords of Cb have weight 7, 8, 11, 12, 15 and 16. The
nonzero codewords of C⊥b have weight 6, 7, 8, 10, 11, 12, 14, 15, 16. The automorphism
groups of Cb and C⊥b are isomorphic to PΣL(3, 4).

Proof. The claims regarding the weights follow from Corollary 3.7 and Theorem 3.9. We
can consider Aut(Cb) as a subgroup of the symmetric group SP acting naturally on the
points of PG(2, 4). Each element of Aut(Cb) maps codewords of weight 16 to codewords of
weight 16, and hence each line of PG(2, 4) to a line of PG(2, 4). So, Aut(Cb) is a subgroup
of PΓL(3, 4). As also the codewords of weight 7 are mapped to the codewords of weight
7, also the elements of B1 should be fixed. So, Aut(Cb) is a subgroup of PΣL(3, 4), and
necessarily isomorphic to the latter as PΣL(3, 4) maps the sets mentioned in Table 2 to
other sets mentioned in Table 2. Note also that the automorphism group of C⊥b is the
same as the one of Cb.

Lemma 3.11. There exist two hyperovals H,H ′ ∈ H1 such that H∆H ′ ∈ V.

Proof. Let H = {r, s, r1, s1, r2, s2} be an arbitrary hyperoval of H1. Put L1 := r1s1,
L2 := r2s2, L := rs and {x} = r1s1∩r2s2. The third line through x meeting H (necessarily
in two points) is the line L = rs. As H is a hyperoval, the lines rr1, rs1 intersect
L2 in points distinct from r2, s2 and x. Calling these two points t2 and u2, we have
L2 = {r2, s2, t2, u2, x}. The lines sr1, ss1 must intersect L2 in the respective points u2

and t2 for a similar reason. By symmetry, if we put L1 = {r1, s1, t1, u1, x}, then each of
the lines rr2, rs2, sr2, ss2 intersects L1 in one of the points t1 and u1. It follows that
H ′ = {r, s, t1, u1, t2, u2} is a collection of six points no three of which are collinear, i.e. a
hyperoval. Obviously, H∆H ′ = L1∆L2. As |H ∩H ′| = 2, we also have H ′ ∈ H1.

Similarly as in Lemma 3.5, one can prove the following.

Lemma 3.12. Let X be a set of points of PG(2, 4) intersecting each hyperoval of H1 in
an even number of points. Then either X meets every line of PG(2, 4) in an even number
of points or X meets every line of PG(2, 4) in an odd number of points.

The following is a consequence of Lemmas 3.1, 3.2, 3.3 and 3.12.

Theorem 3.13. The set of points of PG(2, 4) intersecting each hyperoval of H1 in an
even number of points are precisely the sets mentioned in Table 3. There are 2048 = 211

such sets and they fall into 14 PSL(3, 4)-orbits.

Similarly as in Corollary 3.7, one can prove the following.

Corollary 3.14. The binary code Ch generated by the characteristic vectors of the hy-
perovals of H1 has dimension 10, its dual code C⊥h has dimension 11 and consists of all
characteristic vectors of the sets mentioned in Table 3.
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Set # Set # Set #

∅ 1 Elements of V 210 Elements of H1 56

P 1 Elements of B1 120 Elements of H1 56

Elements of L 21 Elements of B1 120 Elements of W1 336

Elements of L 21 Elements of U 280 Elements of W1 336

Elements of V 210 Elements of U 280

Table 3: The sets meeting the elements of H1 in an even number of points

Set # Set # Set #

∅ 1 Elements of B1 120 Elements of H1 56

Elements of L 21 Elements of U 280 Elements of W1 336
Elements of V 210

Table 4: The sets meeting the elements of B1 ∪H1 in an even number of points

Lemma 3.15. The sets of points meeting all sets of B1∪H1 in an even number of points
are precisely the sets mentioned in Table 4.

Proof. These are precisely the sets occurring in Tables 1 and 3.

Similarly as in Theorems 3.9 and 3.10, one can prove the following.

Theorem 3.16. The codewords of Ch are precisely the characteristic vectors of the sets
mentioned in Table 4. The dual code C⊥h is the code generated by the characteristic vectors
of the elements of B1 ∪H1.

Theorem 3.17. The nonzero codewords of Ch have weights 6, 8, 10, 12, 14 and 16. The
nonzero codewords of (Ch)

⊥ have weight 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 21.
The automorphism groups of Ch and (Ch)

⊥ are isomorphic to PΣL(3, 4).

The following results accompany Theorems 3.6 and 3.13.

Theorem 3.18. (a) The sets of points of PG(2, 4) intersecting each Baer subplane of
B1 in an odd number of points are precisely the elements of

{P} ∪ L ∪ V ∪ B1 ∪ B2 ∪ B3 ∪ U ∪H1 ∪H2 ∪H3 ∪W1 ∪W2 ∪W3.

(b) The sets of points of PG(2, 4) intersecting each hyperoval of H1 in an odd number
of points are precisely the elements of

B2 ∪ B2 ∪ B3 ∪ B3 ∪H2 ∪H2 ∪H3 ∪H3 ∪W2 ∪W2 ∪W3 ∪W3.
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Proof. (a) These are obviously the complements of the sets mentioned in Table 1.
(b) Again by relying on Lemma 3.11, one can show (similarly as in Lemma 3.5) that

if X is such a set, then X intersects every line of PG(2, 4) in an even number of points or
X intersects every line of PG(2, 4) in an odd number of points. The claim then follows
from Lemmas 3.1 and 3.2.

4 The even sets of W22

Let (P22,B22) be the Witt design W22. Then P22 = P ∪ {∞}, where ∞ is a symbol not
contained in P . There are two types of blocks in W22:
• {∞} ∪ L, where L ∈ L;
• the hyperovals of H1.

Note that the derived design of W22 with respect to ∞ is precisely PG(2, 4). Now,
Aut(W22) ∼= M22 : 2 has a subgroup G ∼= M22 of index 2, Aut(W22)∞ ∼= PΣL(3, 4)
and G∞ ∼= PSL(3, 4). In fact, the group G∞ stabilizes the sets H1,H2,H3, while each
element of Aut(W22)∞ \G∞ stabilizes H1 and interchanges H2 and H3.

We classify all even sets X of points of W22. Note that the pseudo-hyperplanes of W22

are precisely the even sets distinct from P22. We distinguish two cases.

(1) Suppose ∞ ∈ X. Then X = {∞} ∪ Y where Y is a set of points meeting each
hyperoval of H1 in an even number of points and each line of PG(2, 4) in an odd number
of points. By Lemma 3.1 and Theorem 3.13, we have the following possibilities for Y :

Y # |X| = |Y |+ 1 Y # |X| = |Y |+ 1

P 1 22 Elements of U 280 10

Elements of L 21 6 Elements of H1 56 16

Elements of V 210 14 Elements of W1 336 12
Elements of B1 120 8

(2) Suppose ∞ 6∈ X. Then X intersects every hyperoval of H1 and every line in an even
number of points. By Lemma 3.1 and Theorem 3.13, we have the following possibilities
for X:

X # |X| X # |X|
∅ 1 0 Elements of U 280 12

Elements of L 21 16 Elements of H1 56 6

Elements of V 210 8 Elements of W1 336 10

Elements of B1 120 14

Theorem 4.1. Up to isomorphism, W22 has 8 even sets. W22 has pseudo-embeddings and
the universal pseudo-embedding of W22 has vector dimension 11.
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Proof. Since Aut(W22) ∼= M22 : 2 is 3-transitive on the points, every even set containing
∞ and distinct from P is isomorphic to an even set not containing ∞. By the above
tables, the fact that Aut(W22)∞ ∼= PΣL(3, 4) and Lemma 3.3, it then follows that there
are up to isomorphism 8 even sets. By the above tables, it also follows that for every block
B and every two points x1, x2 ∈ B, there exists a pseudo-hyperplane intersecting B in
{x1, x2}. So, W22 has pseudo-embeddings by Proposition 2.3. By the above tables, there
are |EW22| = 2048 = 211 even sets. As explained in Section 2, the dimension 11 of the
F2-vector space EW22 is precisely the vector dimension of the universal pseudo-embedding
of W22.

5 The even sets of W23

Let (P23,B23) be the Witt design W23. Then P23 = P ∪{∞1,∞2}, where∞1 and∞2 are
two symbols not contained in P . There are three types of blocks in W23:
• {∞1,∞2} ∪ L where L ∈ L;
• {∞i} ∪H where H ∈ H3−i and i ∈ {1, 2};
• B ∈ B3.

If we put ∞ :=∞1, then the derived design of W23 with respect to ∞2 is precisely W22.
We have Aut(W23) ∼= M23, Aut(W23)∞2

∼= M22 and Aut(W23)∞1,∞2
∼= PSL(3, 4).

The pseudo-hyperplanes of W23 are precisely the complements of the nontrivial even
sets of W23. There are three possibilities for an even set X.

(a) ∞1,∞2 6∈ X. Then X intersects each element of L ∪ H1 ∪ H2 ∪ B3 in an even
number of points. We have the following possibilities:

X # |X| X # |X|
∅ 1 0 Elements of V 210 8

Elements of L 21 16 Elements of U 280 12

(b) ∞1,∞2 ∈ X. Then X = Y ∪ {∞1,∞2} where Y is a set of points of PG(2, 4)
meeting each set of L∪B3 is an even number of points and each set of H1 ∪H2 is an odd
number of points. The possibilities for Y are as follows:

Y # |X| = |Y |+ 2

Elements of B3 120 16
Elements of H3 56 8

Elements of W3 336 12

(c) ∞i ∈ X and ∞3−i 6∈ X for some i ∈ {1, 2}. Then X = Y ∪ {∞i} where Y is a set
of points of PG(2, 4) intersecting each element of L∪H3−i in an odd number of points and
each element of B3 ∪Hi is an even number of points. We have the following possibilities:
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Y # |X| = |Y |+ 1

Elements of Hi 120 16
Elements of Bi 56 8
Elements of Wi 336 12

Theorem 5.1. Up to isomorphism, W23 has four even sets. W23 has pseudo-embeddings
and the universal pseudo-embedding of W23 has vector dimension 11.

Proof. Since Aut(W23) ∼= M23 is 4-transitive on the points, every even set of size at most
21 is isomorphic to an even set not containing ∞1 nor ∞2. By the above tables, the fact
that Aut(W23)∞1,∞2

∼= PSL(3, 4) and Lemma 3.3, it then follows that there are up to
isomorphism four even sets. By the above tables, it also follows that for every block B and
every point x ∈ B, there exists a pseudo-hyperplane intersecting B in {x}. So, W23 has
pseudo-embeddings by Proposition 2.3. By the above table, there are |EW23| = 2048 = 211

even sets. The dimension 11 of the F2-vector space EW23 is precisely the vector dimension
of the universal pseudo-embedding of W23.

6 The even sets of W24

Let (P24,B24) be the Witt design W24. Then P24 = P ∪ {∞1,∞2,∞3}, where ∞1, ∞2

and ∞3 are three symbols not contained in P . There are four types of lines:
• {∞1,∞2,∞3} ∪ L where L ∈ L;
• {∞i,∞j} ∪H where H ∈ Hk and {i, j, k} = {1, 2, 3};
• {∞i} ∪B where B ∈ Bi for some i ∈ {1, 2, 3};
• elements of V .

Note that the derived design of W24 with respect to ∞3 is precisely W23. We have
Aut(W24) ∼= M24, Aut(W24)∞3

∼= M23 and Aut(W24)∞1,∞2,∞3
∼= PSL(3, 4). The pseudo-

hyperplanes of W24 are precisely the even sets of W24 distinct from P24. We have the
following possibilities for an even set X.

(a) Suppose ∞1,∞2,∞3 6∈ X. Then X intersects every set of L ∪ B ∪ H ∪ V in an
even number of points. We then have the following possibilities for X:

X # |X| X # |X|
∅ 1 0 Elements of V 210 8

Elements of L 21 16 Elements of U 280 12

(b) Suppose ∞i ∈ X and {∞j,∞k} ∩ X = ∅ where {i, j, k} = {1, 2, 3}. Then X =
{∞i}∪Y where Y is a set of points of PG(2, 4) intersecting each element of L∪Hj∪Hk∪Bi
in an odd number of points and every set of Hi∪Bj ∪Bk∪V in an even number of points.
We then have the following possibilities for Y :
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Y # |X| = |Y |+ 1

Elements of Bi 120 8

Elements of Hi 56 16
Elements of Wi 336 12

(c) Suppose ∞j,∞k ∈ X and ∞i 6∈ X where {i, j, k} = {1, 2, 3}. Then X = Y ∪
{∞j,∞k} where Y is a certain set of points of PG(2, 4). The set Y intersects each element
of L∪Hi ∪Bi ∪ V in an even number of points and each element of Bj ∪Bk ∪Hj ∪Hk in
an odd number of points. We have the following possibilities:

Y # |X| = |Y |+ 2

Elements of Hi 56 8

Elements of Wi 336 12

Elements of Bi 120 16

(d) Suppose∞1,∞2,∞3 ∈ X. Then X = {∞1,∞2,∞3}∪Y where Y is a set of points
of PG(2, 4) which intersect each element of L ∪ B in an odd number of points and each
element of H ∪ V in an even number of points. We have the following possibilities:

Y # |X| = |Y |+ 3 Y # |X| = |Y |+ 3

P 1 24 Elements of V 210 16
Elements of L 21 8 Elements of U 280 12

Theorem 6.1. Up to isomorphism, W24 has five even sets. W24 has pseudo-embeddings
and the universal pseudo-embedding has vector dimension 12.

Proof. Since Aut(W24) ∼= M24 is 5-transitive on the points, every even set of size at
most 21 is isomorphic to an even set not containing ∞1, ∞2 nor ∞3. By the above
tables, Aut(W24)∞1,∞2,∞3

∼= PSL(3, 4) and Lemma 3.3, it then follows that there are up
to isomorphism five even sets. By the above tables, it also follows that for every block
B and every two points x1, x2 ∈ B, there exists a pseudo-hyperplane intersecting B in
{x1, x2}. So, W24 has pseudo-hyperplanes by Proposition 2.3. By the above table, there
are |EW24| = 4096 = 212 even sets. The dimension 12 of the F2-vector space EW24 is
precisely the vector dimension of the universal pseudo-embedding of W24.

Theorem 6.1 is basically known. The code C∗ generated by the characteristic vectors of
the blocks of W24 is the so-called extended binary Golay code. This is a 12-dimensional
code of length 24 for which the weights of the codewords are 0, 8, 12, 16 and 24. These
codewords are the characteristic vectors of respectively the empty point set, the blocks,
the dodecads, the complements of the blocks and the whole point set P24 (see e.g. Lemma
19.7(2) of [1]). We claim that these sets are precisely the even sets. Indeed, the fact that
any two blocks of W24 meet in an even number of points implies that C∗ ⊆ (C∗)⊥ and
hence that C∗ = (C∗)⊥ as 12 = dim(C∗) ≤ dim(C∗)⊥ = 24 − dim(C∗) = 12. So, the
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fact that W24 has up to isomorphism five even sets is basically a known result. However,
for our classification of the homogeneous pseudo-embeddings of the large Witt designs
and for our purpose to give explicit descriptions of these pseudo-embeddings, we need to
describe the even set with respect to the three given points ∞1,∞2,∞3, and the present
section realizes this goal.

If we denote the ith coordinate vector of F24
2 by ēi (i ∈ {1, 2, . . . , 24}), then the

map from W24 to PG(F24
2 /C

∗) mapping the ith point of W24 to the 1-space 〈ēi + C∗〉 of
PG(F24

2 /C
∗) is isomorphic to the universal pseudo-embedding of W24, see [7, Theorem

1.2(2)]. The vector space F24
2 /C

∗ can in a natural way be regarded as a module for the
group M24 = Aut(W24). This module is known as the 12-dimensional Todd module ([1, p.
92], [24]). The fact that F24

2 /C
∗ hosts a pseudo-embedding for W24 was already mentioned

on page 414 of Todd [24] (although he did not use this terminology).

7 Derived pseudo-embeddings

Suppose S = (P ,L, I) is a point-line geometry with the property that the number of
points on each line is finite and at least three. If X 6= P is a nonempty set of points of
S and LX denotes the set of lines of S containing X and having at least |X| + 3 points,
then the subgeometry SX of S determined by the point set P \ X and the line set LX
is called the derivation of S with respect to X. If X is a singleton {x}, then SX will
also be denoted by Sx and called the derivation with respect to x. If X1 and X2 are two
disjoint subsets of P , then SX1∪X2 = (SX1)X2 = (SX2)X1 . The notion of derivation can be
regarded as a generalization of the one given in Section 2 for Steiner systems.

Proposition 7.1. Let X 6= P be a nonempty set of points of S. Then the setwise stabilizer
Aut(S)X can be regarded in a natural way as a group of automorphisms for SX .

Suppose ε : S → PG(W ) is a pseudo-embedding of S. For every x ∈ P, let w̄x ∈ W
such that ε(x) = 〈w̄x〉. Suppose the vectors w̄x, x ∈ X, are linearly independent and
w̄y 6=

∑
x∈X w̄x for every y ∈ P \ X. Put p∗ := 〈

∑
x∈X w̄x〉 and consider the quotient

projective space PG(W )/p∗ whose points are the lines of PG(W ) through p∗. For every
point y of S not contained in X, let ε′(y) be the line p∗ε(y) through p∗. Then the following
hold:

(1) ε′ is a pseudo-embedding of SX in PG(W ′)/p∗, where W ′ is a suitable subspace of
W through p∗;

(2) if ε is G-homogeneous for some G ≤ Aut(S), then ε′ is GX-homogeneous;

(3) W ′ = W if and only if there exists no Y ∈ Eε with Y ⊆ X and |Y | even;

(4) the elements of Eε′ are the nonempty sets of the form Y \ X, where Y ∈ Eε with
|Y ∩X| even.

Proof. Put X = {x1, x2, . . . , xk}. Claim (1) follows from the fact that if {ε(x1), ε(x2), . . . ,
ε(xk), y1, y2, . . . , yl} is a frame in a subspace of PG(W ) for some l ∈ N \ {0, 1, 2}, then
{p∗y1, p

∗y2, . . . , p
∗yl} is a frame in a subspace of PG(W )/p∗.
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As for Claim (2). Suppose θ ∈ GX . Since ε is G-homogeneous, there exists an

automorphism θ̃ of PG(W ) such that ε ◦ θ = θ̃ ◦ ε. Since θ stabilizes X, θ̃ stabilizes

{ε(x1), ε(x2), . . . , ε(xk)} and thus fixes p∗. Let θ̃′ be the automorphism of PG(W )/p∗

induced by θ̃. Taking quotients with respect to p∗ in both sides of the equality ε◦θ = θ̃◦ε,
we see that ε′ ◦ θ = θ̃′ ◦ ε′. So, ε′ is GX-homogeneous.

For any hyperplane U of W , let EU ∈ Eε denote the set of all points x of S for which
w̄x 6∈ U . Now, W ′ = W if and only if there exists no hyperplane U of W through

∑
x∈X w̄x

containing W ′, i.e. if and only if there exists no hyperplane U of W through
∑

x∈X w̄x for
which EU is contained in X.

Now, any hyperplane U of W is an additive subgroup of index 2 and so U contains∑
x∈X w̄x if and only if EU contains an even number of elements of X. Claim (3) follows.
As for Claim (4), the elements of Eε′ are precisely the elements of the form EU \ X,

where U is a hyperplane of W through
∑

x∈X w̄x not containing W ′, or equivalently the
elements of the form EU \X, where U is a hyperplane of W through

∑
x∈X w̄x for which

EU \X is nonempty. Also Claim (4) follows.

We call the pseudo-embedding ε′ in Proposition 7.1 a derived pseudo-embedding, or the
pseudo-embedding which arises from ε by derivation with respect to X (or by derivation
with respect to x if X = {x} is a singleton).

Remarks. (1) Suppose that for every y ∈ P \X, there exists a line of size at least |X|+3
containing X ∪ {y}, then the condition w̄y 6=

∑
x∈X w̄x is satisfied for any y ∈ P \X.

(2) In case, ε is the universal pseudo-embedding of S = W24 and |X| = 3, then
it was observed in [9, p. 85] that ε′ is isomorphic to the universal pseudo-embedding
of SX ∼= PG(2, 4). This is a consequence of the fact that the vector dimension of the
universal pseudo-embeddings of PG(2, 4) is 11 ([7, Proposition 4.6], [9, p. 79]), which is
one less than the vector dimension of the universal pseudo-embedding of W24.

The following is a special case of Proposition 7.1.

Corollary 7.2. Using the same notation as in Proposition 7.1, suppose that X is a
singleton {x}. Then the pseudo-hyperplanes contained in Hε′ are of the form Y \{x} with
Y ∈ Hε such that x ∈ Y , and the even sets contained in Eε′ are precisely the even sets of
Eε not containing x.

Corollary 7.3. (a) The universal pseudo-embedding of W23 is isomorphic to the pseudo-
embedding of W23 obtained by deriving the universal pseudo-embedding of W24 with
respect to ∞3.

(b) The universal pseudo-embedding of W22 is isomorphic to the pseudo-embedding of
W22 obtained by deriving the universal pseudo-embedding of W24 with respect to
{∞2,∞3}.

Proof. This follows from the fact that in each case both pseudo-embeddings have the same
dimension, see Theorems 4.1, 5.1 and 6.1.

16



Recall that if ε is a universal pseudo-embedding, then Eε is the set of all nontrivial even
sets. We now see that the nontrivial even sets of W22 and W23 (as described in Sections
4 and 5) are obtained from the nontrivial even sets of W24 (as described in Section 6) as
stated in Proposition 7.1 and Corollary 7.2 (taking into account Corollary 7.3). Applying
Proposition 7.1 and Corollary 7.2 another time, we find:

Corollary 7.4. (a) W22 has a (nonuniversal) M22-homogeneous embedding ε22 in PG(9,
2) which is obtained by deriving the universal pseudo-embedding of W23 with re-
spect to ∞2. The projective plane PG(2, 4) has a PSL(3, 4)-homogeneous pseudo-
embedding ε21 in PG(8, 2) which is obtained by deriving ε22 with respect to ∞1.

(b) Eε22 = L ∪ V ∪ U ∪ {{∞} ∪X |X ∈ H1 ∪ B1 ∪W1} and Eε21 = L ∪ V ∪ U .

In [6], we constructed a homogeneous pseudo-embedding εh of PG(2, 4) that satisfies
Eεh = L∪V∪U and which is called the Hermitian Veronese pseudo-embedding of PG(2, 4).
Combining this with Corollary 7.4(b) and Proposition 2.2, we find:

Corollary 7.5. The pseudo-embedding ε21 of PG(2, 4) constructed in Corollary 7.4(a) is
isomorphic to the Hermitian Veronese pseudo-embedding εh of PG(2, 4).

8 Homogeneous pseudo-embeddings of the largeWitt

designs

In this section, we classify all homogeneous pseudo-embeddings of the Witt designs W22,
W23 and W24. Certain knowledge on the PSL(3, 4)-homogeneous pseudo–embeddings of
PG(2, 4) will be useful to that end. So, we start by studying these pseudo-embeddings.

8.1 PSL(3, 4)-homogeneous pseudo-embeddings of PG(2, 4)

In the following table, we mention the even sets of S = PG(2, 4), see Lemma 3.1.

Set E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13

Definition {∅} L V B1 B2 B3 U H1 H2 H3 W1 W2 W3

Size 1 21 210 120 120 120 280 56 56 56 336 336 336

If ε : PG(2, 4) → PG(W ) is a PSL(3, 4)-homogeneous pseudo-embedding of PG(2, 4),
then by Proposition 2.4(a)+(b) and Lemma 3.3 Eε ∪ {∅} is a subspace of ES that is the
union of some of the Ei’s. We now determine all subspaces E that are the union of some
of the Ei’s. Obviously, ES = E1 ∪ E2 ∪ · · · ∪ E13 and {∅} are two such subspaces. So, we
may suppose that {∅} ( E ( ES . Since |E| is even, we have that E contains E1 ∪ E2. By
Corollary 7.4(b), we know that E ′ := E1 ∪ E2 ∪ E3 ∪ E7 is a subspace. Since E ∩ E ′ is a
subspace (whose number of elements is a power of 2) we see that E contains E ′. Assume
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that E ′ is properly contained in E . Since |E| is a power of 2, we see that the only possibility
is that E contains besides E1, E2, E3 and E7, precisely one of B1,B2,B3, precisely one
of H1,H2,H3 and precisely one of W1,W2,W3. If E contains Hi for some i ∈ {1, 2, 3},
then we know by Theorem 3.16 that E also contains Bi and Wi. (Indeed, the sum of the
characteristic vectors of two sets is the characteristic vector of their symmetric difference.)
By Theorem 3.16, we also know that {∅} ∪ L ∪ V ∪ U ∪ Bi ∪ Hi ∪Wi is a subspace. So,
we have:

Lemma 8.1. The following are the subspaces of ES that can be written as the union of a
number of the Ei’s:
• {∅} = E1;
• {∅} ∪ L ∪ V ∪ U = E1 ∪ E2 ∪ E3 ∪ E7;
• {∅} ∪ L ∪ V ∪ U ∪ B1 ∪H1 ∪W1 = E1 ∪ E2 ∪ E3 ∪ E7 ∪ E4 ∪ E8 ∪ E11;
• {∅} ∪ L ∪ V ∪ U ∪ B2 ∪H2 ∪W2 = E1 ∪ E2 ∪ E3 ∪ E7 ∪ E5 ∪ E9 ∪ E12;
• {∅} ∪ L ∪ V ∪ U ∪ B3 ∪H3 ∪W3 = E1 ∪ E2 ∪ E3 ∪ E7 ∪ E6 ∪ E10 ∪ E13;
• ES = E1 ∪ E2 ∪ · · · ∪ E13.

By Propositions 2.2, 2.4 and Lemma 8.1, we then have:

Theorem 8.2. Up to isomorphism, PG(2, 4) has five PSL(3, 4)-homogeneous pseudo-
embeddings: the Hermitean Veronese pseudo-embedding in PG(8, 2), the universal pseudo-
embedding in PG(10, 2) and three nonisomorphic pseudo-embeddings in PG(9, 2).

We now define five “embeddings” of PG(2, 4) and show that they are the PSL(3, 4)-
homogeneous pseudo-embeddings of PG(2, 4) mentioned in Theorem 8.2.

(1) Let εh be the map from PG(2, 4) to PG(8, 2) mapping the point (X1, X2, X3) to

(X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 + ω2X2X

2
1 , X1X

2
3 +X3X

2
1 , ωX1X

2
3 + ω2X3X

2
1 ,

X2X
2
3 +X3X

2
2 , ωX2X

2
3 + ω2X3X

2
2 ).

(2) Let εu be the map from PG(2, 4) to PG(10, 2) mapping the point (X1, X2, X3) to

(X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 + ω2X2X

2
1 , X1X

2
3 +X3X

2
1 , ωX1X

2
3 + ω2X3X

2
1 ,

X2X
2
3 +X3X

2
2 , ωX2X

2
3 + ω2X3X

2
2 , X1X2X3 +X2

1X
2
2X

2
3 , ωX1X2X3 + ω2X2

1X
2
2X

2
3 ).

(3) For every λ ∈ F∗4, let ελ be the map from PG(2, 4) to PG(9, 2) mapping the point
(X1, X2, X3) to

(X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 + ω2X2X

2
1 , X1X

2
3 +X3X

2
1 , ωX1X

2
3 + ω2X3X

2
1 ,

X2X
2
3 +X3X

2
2 , ωX2X

2
3 + ω2X3X

2
2 , λX1X2X3 + λ2X2

1X
2
2X

2
3 ).

By [6], we know that εh is the Hermitean Veronese pseudo-embedding of PG(2, 4) and
that εu is isomorphic to the universal pseudo-embedding of PG(2, 4). We thus have
Eεh = L ∪ V ∪ U and Eεu = L ∪ V ∪ U ∪ B ∪H ∪W .

The following is a well-known property of the group PSL(3, 4).
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Lemma 8.3. The group PSL(3, 4) is generated by the following maps:

(a) θσ : (X1, X2, X3) 7→ (Xσ(1), Xσ(2), Xσ(3)), σ ∈ S3;

(b) θλ : (X1, X2, X3) 7→ (X1 + λX2, X2, X3), λ ∈ F4.

Lemma 8.4. Let ε : PG(V ) → PG(W ) be one of εh, εu, ε1, εω, εω2. Then for every θ ∈
PSL(3, 4), there exists a θ̃ ∈ GL(W ) such that ε ◦ θ = θ̃ ◦ ε.

Proof. It is straightforward to prove this if θ is one of the maps mentioned in Lemma 8.3.
The claim then follows from the fact that these maps generate PSL(3, 4).

Theorem 8.5. Let ε : PG(V ) → PG(W ) be one of εh, εu, ε1, εω, εω2. Then ε is a
PSL(3, 4)-homogeneous pseudo-embedding of PG(2, 4).

Proof. One can easily verify that 〈Im(ε)〉 = PG(W ) in each of the five cases. In view
of Lemma 8.4, it remains to prove that ε maps every line L of PG(2, 4) to a frame of a
subspace of PG(W ), and it suffices to prove the latter for the line 〈(1, 0, 0), (0, 1, 0)〉. But
the verification for this line is straightforward.

We already know Hε if ε is equal to εh or εu, and that there are three possibilities for Hε

if ε is equal to ε1, εω or εω2 (see Lemma 8.1). We now determine which of these three
possibilities actually occurs. Define the following three Baer subplanes:

B1 = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ē3〉, 〈ē2 + ē3〉, 〈ē1 + ē2 + ē3〉},

B2 = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ωē3〉, 〈ē2 + ωē3〉, 〈ē1 + ē2 + ωē3〉},

B3 = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ω2ē3〉, 〈ē2 + ω2ē3〉, 〈ē1 + ē2 + ω2ē3〉}.

Any two of these intersect in four points and so they belong to distinct Bi’s. Suppose that
Bi ∈ Bi for every i ∈ {1, 2, 3}. The verification of the following lemma is straightforward.

Lemma 8.6. • B1 has equation X1X2X3+X2
1X

2
2X

2
3 +X1X

2
2 +X2X

2
1 +X1X

2
3 +X3X

2
1 +

X2X
2
3 +X3X

2
2 = 0 and thus belongs to Hε1.

• B2 has equation ω2X1X2X3 + ωX2
1X

2
2X

2
3 + X1X

2
2 + X2X

2
1 + ωX1X

2
3 + ω2X3X

2
1 +

ωX2X
2
3 + ω2X3X

2
2 = 0 and thus belongs to Hεω2 .

• B3 has equation ωX1X2X3 + ω2X2
1X

2
2X

2
3 + X1X

2
2 + X2X

2
1 + ω2X1X

2
3 + ωX3X

2
1 +

ω2X2X
2
3 + ωX3X

2
2 = 0 and thus belongs to Hεω .

Note that each Baer subplane Bi, i ∈ {1, 2, 3}, is contained in seven members of V (one
pencil of three lines for each of the seven points of Bi), but that none of these sets satisfy
the equations mentioned in Lemma 8.6. If we consider the universal embedding εu of
PG(2, 4), then the image of Bi is thus contained in more than one hyperplane, although
there is only one hyperplane whose intersection with the image of εu coincides with εu(Bi).

Lemmas 8.1, 8.6 and Theorem 8.5 now imply the following.
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Corollary 8.7. The following holds:

• Eε1 = L ∪ V ∪ U ∪ B1 ∪H1 ∪W1,

• Eεω2 = L ∪ V ∪ U ∪ B2 ∪H2 ∪W2,

• Eεω = L ∪ V ∪ U ∪ B3 ∪H3 ∪W3.

The following is now a consequence of Theorems 8.2, 8.5 and Corollary 8.7.

Corollary 8.8. The five nonisomorphic PSL(3, 4)-homogeneous pseudo-embeddings of
PG(2, 4) are precisely the maps εh, εu, ε1, εω, εω2.

8.2 The (M24-)homogeneous pseudo-embeddings of W24

By Theorem 6.1, we know that S = W24 has up to isomorphism five even sets. We denote
the isomorphism classes of these even sets by E0 = {∅}, E8, E12, E16 and E24 = {P24},
where Ei denotes the set of all even sets of size i ∈ {0, 8, 12, 16, 24}. By the tables of
Section 6, we find:

|E0| = 1, |E8| = 759, |E12| = 2576, |E16| = 759, |E24| = 1.

In order to find the (M24-)homogeneous pseudo-embeddings of W24, we must find by
Proposition 2.4(a)+(b) the subspaces of ES that can be written as a union of some of
the Ei’s. As the number of elements in a subspace is a power of 2, there are only three
subspaces that can be written like that, namely E0, E0∪E24 and ES = E0∪E8∪E12∪E16∪
E24. By Propositions 2.2 and 2.4, only the latter corresponds to an M24-homogeneous
pseudo-embedding. We thus have:

Theorem 8.9. Up to isomorphism, W24 has a unique homogeneous pseudo-embedding,
namely the universal pseudo-embedding in PG(11, 2).

Suppose now that (ē1, ē2, ē3) is a basis of V such that

B1 = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ē3〉, 〈ē2 + ē3〉, 〈ē1 + ē2 + ē3〉} ∈ B1,

B2 = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ωē3〉, 〈ē2 + ωē3〉, 〈ē1 + ē2 + ωē3〉} ∈ B2,

B3 = {〈ē1〉, 〈ē2〉, 〈ē3〉, 〈ē1 + ē2〉, 〈ē1 + ω2ē3〉, 〈ē2 + ω2ē3〉, 〈ē1 + ē2 + ω2ē3〉} ∈ B3.

Let (X1, X2, X3) denote the coordinates of a generic point of PG(V ) = PG(2, 4) and let
(Y1, Y2, . . . , Y12) denote the coordinates of a generic point of PG(11, 2). The hyperplane of
PG(11, 2) with equation a1Y1 +a2Y2 + · · ·+a12Y12 = 0 will be denoted by [a1, a2, . . . , a12].
Now, let ε̃24 be the following map from P24 = P ∪ {∞1,∞2,∞3} to PG(11, 2):

(X0, X1, X2) 7→ (X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 +ω2X2X

2
1 , X1X

2
3 +X3X

2
1 , ωX1X

2
3 +ω2X3X

2
1 ,
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X2X
2
3 +X3X

2
2 , ωX2X

2
3 + ω2X3X

2
2 , X1X2X3 +X2

1X
2
2X

2
3 + 1,

ω2X1X2X3 + ωX2
1X

2
2X

2
3 + 1, ωX1X2X3 + ω2X2

1X
2
2X

2
3 + 1),

∞1 7→ (0, 0, . . . , 0, 1, 0, 0),

∞2 7→ (0, 0, . . . , 0, 0, 1, 0),

∞3 7→ (0, 0, . . . , 0, 0, 0, 1).

Theorem 8.10. ε̃24 is isomorphic to the universal pseudo-embedding of W24.

Proof. By Propositions 2.1 and 2.5, it suffices to show that the pseudo-hyperplanes (or
the even sets distinct from P24) are precisely the sets AΠ := ε̃−1

24 (ε̃24(P24) ∩ Π), where Π
is a hyperplane of PG(11, 2). With εh, ε1, εω and εω2 as defined in Section 8.1, we have:

If Π is of the form [. . . , 0, 0, 0], then AΠ is of the form {∞1,∞2,∞3} ∪ X where
X ∈ Hεh .

If Π is of the form [. . . , 1, 0, 0], then AΠ is of the form {∞2,∞3} ∪ X where X ∈
Hε1 \ Hεh .

If Π is of the form [. . . , 0, 1, 0], then AΠ is of the form {∞1,∞3} ∪ X where X ∈
Hεω2 \ Hεh .

If Π is of the form [. . . , 0, 0, 1], then AΠ is of the form {∞1,∞2} ∪ X where X ∈
Hεω \ Hεh .

If Π is of the form [. . . , 1, 1, 0], then AΠ is of the form {∞3}∪X where X ∈ Hεω \Hεh .
If Π is of the form [. . . , 1, 0, 1], then AΠ is of the form {∞2}∪X where X ∈ Hεω2 \Hεh .
If Π is of the form [. . . , 0, 1, 1], then AΠ is of the form {∞1}∪X where X ∈ Hε1 \Hεh .
If Π is of the form [. . . , 1, 1, 1], then AΠ is of the form X where X ∈ Hεh ∪ {P}.

The claim then follows from Corollary 8.7 and the tables of Section 6, taking into account
that for a pseudo-embedding ε, the elements of Hε are precisely the complements of the
elements of Eε.

Remark. Let i ∈ {1, 2, 3}. If we derive the universal pseudo-embedding of W24 with
respect to∞i, and subsequently this derived pseudo-embedding with respect to {∞1,∞2,
∞3} \ {∞i}, then we obtain a PSL(3, 4)-homogeneous pseudo-embedding of PG(2, 4) in
PG(9, 2). In this way, we obtain the three nonisomorphic pseudo-embeddings of PG(2, 4)
described in Section 8.1.

8.3 The (M23-)homogeneous pseudo-embeddings of W23

By Theorem 5.1, we know that S = W23 has up to isomorphism four even sets. We
denote the isomorphism classes of these even sets by E0 = {∅}, E8, E12 and E16, where
Ei denotes the set of all even sets of size i ∈ {0, 8, 12, 16}. By the tables of Section 5, we
find

|E0| = 1, |E8| = 378, |E12| = 1288, |E16| = 381.

In order to find the (M23-)homogeneous pseudo-embeddings of W23, we must find by
Proposition 2.4(a)+(b) the subspaces of ES that can be written as a union of some of
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the Ei’s. As the number of elements in a subspace is a power of 2, there are only two
subspaces that can be written like that, namely E0 and ES = E0 ∪ E8 ∪ E12 ∪ E16. By
Propositions 2.2 and 2.4, we then know:

Theorem 8.11. Up to isomorphism, W23 has a unique homogeneous pseudo-embedding,
namely the universal pseudo-embedding in PG(10, 2).

The following is a consequence of Corollary 7.3(a) and Theorem 8.10.

Corollary 8.12. Let ε̃23 be the following map from P23 = P ∪ {∞1,∞2} to PG(10, 2):

(X0, X1, X2) 7→ (X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 +ω2X2X

2
1 , X1X

2
3 +X3X

2
1 , ωX1X

2
3 +ω2X3X

2
1 ,

X2X
2
3 +X3X

2
2 , ωX2X

2
3 +ω2X3X

2
2 , X1X2X3 +X2

1X
2
2X

2
3 + 1, ω2X1X2X3 +ωX2

1X
2
2X

2
3 + 1),

∞1 7→ (0, 0, . . . , 0, 1, 0),

∞2 7→ (0, 0, . . . , 0, 0, 1).

Then ε̃23 is isomorphic to the universal pseudo-embedding of W23.

8.4 The M22- and (M22 : 2)-homogeneous pseudo-embeddings of
W22

By Theorem 4.1, we know that S = W22 has up to isomorphism eight even sets. We denote
the isomorphism classes of these even sets by E0 = {∅}, E6, E8, E10, E12, E14, E16 and
E22 = {P22}, where Ei denotes the set of all even sets of size i ∈ {0, 6, 8, 10, 12, 14, 16, 22}.
By the tables of Section 4, we find

|E0| = 1, |E6| = 77, |E8| = 330, |E10| = 616, |E12| = 616, |E14| = 330, |E16| = 77, |E22| = 1.

The Ei’s are orbits for both the groups M22 and M22 : 2. In order to find the M22-
and (M22 : 2)-homogeneous pseudo-embeddings, we must find by Proposition 2.4(a)+(b)
the subspaces E of ES that can be written as a union of some of the Ei’s. As E0 and
ES = E0 ∪ E6 ∪ · · · ∪ E22 are two such subspaces, we may assume that E0 ( E ( ES . By
Corollary 7.4(b), we also know that E ′ = E0∪E8∪E12∪E16 is such a subspace. As E ′∩E
is a subspace whose number of elements is a power of 2, we necessarily have E ∩E ′ = E ′ or
E ∩E ′ = E0. The fact that |E| is a power of 2 then implies that either E = E ′, E = E0∪E22

or E = E0∪E6∪E10∪E14. The latter case can however not occur. Since E then contains
all subsets of the form {∞}∪L with L a line of PG(2, 4), it would also contain all subsets
of the form ({∞} ∪ L1)∆({∞} ∪ L2) = L1∆L2, where L1 and L2 are two distinct lines
of PG(2, 4). This is impossible as any set of the form L1∆L2 belongs to E8. We thus
conclude:
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Lemma 8.13. The following are the subspaces of ES that can be written as the union of
a number of the Ei’s:
• E0 = {∅};
• E0 ∪ E22 = {∅,P22};
• E0 ∪ E8 ∪ E12 ∪ E16;
• ES = E0 ∪ E6 ∪ · · · ∪ E22.

By Corollary 7.4, Propositions 2.2, 2.4 and Lemma 8.13, we then have:

Theorem 8.14. Up to isomorphism, W22 has two M22-homogeneous pseudo-embeddings:
the universal pseudo-embedding in PG(10, 2) and the pseudo-embedding in PG(9, 2) that
arises by deriving the universal pseudo-embedding of W23 with respect to ∞2. These M22-
homogeneous pseudo-embeddings are also (M22 : 2)-homogeneous.

The following is a consequence of Corollaries 7.4(a) and 8.12.

Corollary 8.15. Let ε22 be the following map from P22 = P ∪ {∞} to PG(9, 2):

(X0, X1, X2) 7→ (X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 + ω2X2X

2
1 , X1X

2
3 +X3X

2
1 ,

ωX1X
2
3 + ω2X3X

2
1 , X2X

2
3 +X3X

2
2 , ωX2X

2
3 + ω2X3X

2
2 , X1X2X3 +X2

1X
2
2X

2
3 + 1),

∞ 7→ (0, 0, . . . , 0, 1).

Then ε22 is isomorphic to the M22-homogeneous pseudo-embedding of W22 in PG(9, 2).

The following is a consequence of Corollary 7.3(b) and Theorem 8.10.

Corollary 8.16. Let ε̃22 be the following map from P22 = P ∪ {∞} to PG(10, 2):

(X0, X1, X2) 7→ (X3
1 , X

3
2 , X

3
3 , X1X

2
2 +X2X

2
1 , ωX1X

2
2 +ω2X2X

2
1 , X1X

2
3 +X3X

2
1 , ωX1X

2
3 +ω2X3X

2
1 ,

X2X
2
3 +X3X

2
2 , ωX2X

2
3 + ω2X3X

2
2 , X1X2X3 +X2

1X
2
2X

2
3 , 1),

∞ 7→ (0, 0, . . . , 0, 1).

Then ε̃22 is isomorphic to the universal pseudo-embedding of W22.

Remark. It is also possible to prove Corollaries 8.15 and 8.16 in a similar way as Theorem
8.10.
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9 The pseudo-generating ranks of W22, W23 and W24

For point-line geometries with three points per line, the notion of a pseudo-embedding
coincides with the notion of an ordinary projective embedding. The vector dimension of
the universal (pseudo-)embedding is in this case also called the embedding rank. One of
the main tools in determining the embedding rank is finding a generating set of smallest
possible size. The latter number is called the generating rank of the geometry. The
determination of generating ranks of geometries has been the subject of active research,
see e.g. [3].

In the theory of pseudo-embeddings, there is a similar tool for determining pseudo-
embedding ranks, namely the one of pseudo-generating sets (of smallest possible size).
Although we determined the pseudo-embedding ranks of the large Witt designs without
this tool, we will for reasons of completeness now also determine the smallest sizes of
pseudo-generating sets for these designs.

As before, let S be a point-line geometry for which the number of points on each line
is finite an at least three. A pseudo-subspace of S is a set S of points such that every line
that has at most one point outside S has all its points in S. Every pseudo-hyperplane is
a pseudo-subspace. The whole point set P is an example of a pseudo-subspace and the
intersection of any number of pseudo-subspaces is again a pseudo-subspace. This implies
that every nonempty set X of points is contained in a smallest pseudo-subspace, namely
the intersection of all pseudo-subspaces containing X. If this smallest pseudo-subspace
coincides with P , then X is called a pseudo-generating set. The smallest size of a pseudo-
generating set is called the pseudo-embedding rank. The following result which was proved
in [7, Theorem 1.5] explains why pseudo-generating sets can be important for determining
universal pseudo-embeddings of geometries.

Proposition 9.1 ([7]). Suppose S has pseudo-embeddings. Then the following hold.

(1) The pseudo-embedding rank of S is bounded above by the pseudo-generating rank of
S.

(2) If there exists a pseudo-embedding ε : S → PG(V ) and a pseudo-generating set X
of S such that |X| = dim(V ) < ∞, then the embedding and generating ranks of S
are equal to dim(V ) and ε is isomorphic to the universal pseudo-embedding of S.

In fact, we could say more in Proposition 9.1: the image ε(X) ofX then forms a basis of the
universal embedding space PG(V ). Indeed, if ε(X) is not a basis, then it is contained in a
hyperplane Π of PG(V ) and the pseudo-hyperplane ε−1(ε(P)∩Π) would then be a pseudo-
subspace containing X, in contradiction with the fact that X is a pseudo-generating set.

In the following lemma, we determine a pseudo-generating set of size 11 in PG(2, 4).
That such a pseudo-generating set exists was already known, see [7, Lemma 4.5(1)] and
[9, p. 79], but the particular construction of such a set given here will be used in the
construction of a pseudo-generating set of size 11 in W22.
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Lemma 9.2. PG(2, 4) has a pseudo-generating set of size 11.

Proof. Let x be a point and L1, L2, L3, L4, L5 the five lines through x. Put X1 := L1\{x},
let X2 be a subset of size 3 of L2 \ {x}, X3 a subset of size 3 of L3 \ {x} and L4 = {x4}
a singleton contained in L4 \ {x}. We show that the set X1 ∪ X2 ∪ X3 ∪ X4, which has
size 11, is a pseudo-generating set. Denote by S the smallest pseudo-subspace containing
X1 ∪ X2 ∪ X3 ∪ X4. Since X1 ⊆ S, also the remaining point x of L1 is contained in S.
The latter implies that also the unique points on L2 \ (X2 ∪ {x}) and L3 \ (X3 ∪ {x})
are contained in S. Hence, L1 ∪ L2 ∪ L3 ⊆ S. By considering lines through x4 ∈ S not
containing x, we then see that all points of L5 are contained in S. By considering lines
not containing x, we subsequently see that also all points of L4 are contained in S. Hence,
S coincides with the whole point set of PG(2, 4).

Lemma 9.3. The Witt design W22 has a pseudo-generating set of size 11.

Proof. Let H ∈ H1. Let x ∈ PG(2, 4) \H, let L1, L2 and L3 be the three lines through
x intersecting H in two points, and let L4 be an additional line through x. Put X1 :=
L1 \ {x}, let Xi with i ∈ {2, 3} be a subset of size 3 of Li \ {x} containing Li ∩H, and let
X4 be a singleton contained in L4 \ {x}. Then X1 ∪X2 ∪X3 ∪X4 is a pseudo-generating
set of PG(2, 4) (see the proof of Lemma 9.2) and hence X1 ∪ X2 ∪ X3 ∪ X4 ∪ {∞} is a
pseudo-generating set of W22.

Now, let h ∈ H be arbitrary. Then obviously, every pseudo-subspace containing
(X1 ∪X2 ∪X3 ∪X4 ∪ {∞}) \ {h} also contains h (by considering the line H of W22) and
hence coincides with W22. So, (X1 ∪X2 ∪X3 ∪X4 ∪ {∞}) \ h is a pseudo-generating set
of size 11 of W22.

A quadrangle of PG(2, 4) is a set of four points, no three of which are collinear. Any
quadrangle of PG(2, 4) is contained in a unique Baer subplane and a unique hyperoval.
The following lemma will be useful in the reasoning that allows to determine the pseudo-
generating rank of W23.

Lemma 9.4. Let B be a Baer subplane of PG(2, 4), let x ∈ B, and let L1, L2, L3 be the
three lines through x meeting B in exactly three points. Then ((L1 \ {x}) ∩ B) ∪ ((L2 \
{x})∩B)∪ (L3 \B) is the unique hyperoval containing the quadrangle ((L1 \ {x})∩B)∪
((L2 \ {x}) ∩B).

Proof. If this set would not be a hyperoval, then there would exist a line meeting (L1 \
{x})∩B, (L2\{x})∩B and L3\B. But that is impossible as any line meeting (L1\{x})∩B
and (L2 \ {x}) ∩B also meets (L3 \ {x}) ∩B.

Lemma 9.5. The Witt design W23 has a pseudo-generating set of size 11.

Proof. Let x be a point of PG(2, 4) and B a Baer subplane of B3 through x. Let L1, L2,
L3, L4 and L5 be the five lines through x such that |L1 ∩ B| = |L2 ∩ B| = |L3 ∩ B| = 3.
Put Li ∩ B = {x, yi, zi} and Li = {x, yi, zi, ui, vi} for every i ∈ {1, 2, 3}. By Lemma
9.4, the set {y1, z1, y2, z2, u3, v3} is the unique hyperoval containing {y1, z1, y2, z2}. Let
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H be the unique hyperoval containing {y1, z1, y2, u2}. If H ∩ {y3, z3} 6= ∅, then there
exists a line through y2 containing a point of {y1, z1} ⊆ H and a point of {y3, z3} ∩ H,
which is impossible. If H ∩ {u3, v3} 6= ∅, then H has at least four points in common with
the hyperoval {y1, z1, y2, z2, u3, v3} and hence coincides with it. This is impossible as u2

belongs to precisely one of these hyperovals. We thus have |L1 ∩H| = |L2 ∩H| = 2 and
|L3∩H| = 0. Without loss of generality, we may suppose that |L4∩H| = 2. As |H∩B| = 3,
we know that H 6∈ H3. Hence, H ∪ {∞} is a line of W23 for some ∞ ∈ {∞1,∞2}.

Now, put Y1 := L1 \ {x}, Y2 := {y2, z2}, Y3 := {y3} and Y4 := H ∩ L4. Then
X := Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ {∞1,∞2} is a set of 11 points of W23. We show that X is a
pseudo-generating set. To that end, consider the smallest pseudo-subspace S containing
X.

As the line L1 ∪ {∞1,∞2} contains 6 points of X (namely the six points of (L1 ∪
{∞1,∞2}) \ {x}) we see that also x ∈ S. As the line B of W23 contains 6 points of S
(namely y1, z1, x, y2, z2, y3), also the seventh point z3 belongs to S. As the line {∞} ∪H
contains 6 points of S (namely∞, y1, z1, y2 and the two points of L4∩H), we see that also
the seventh point u2 belongs to S. Now, the line {∞1,∞2}∪L2 has six points in common
with S (namely the points of ({∞1,∞2}∪L2) \ {v2}) and hence also the seventh point v2

belongs to S. At this stage, we thus already know that L1 ∪L2 ∪{y3, z3}∪ (L4 ∩H) ⊆ S.
Let B′ be the unique Baer subplane containing {x, y1, z1} ∪ (L4 ∩ H). As H is the

unique hyperoval containing {y1, z1} ∪ (L4 ∩ H), we know by Lemma 9.4 that the line
connecting the two remaining points y2 and u2 of H must intersect B′ in three points.
So, {x, z2, v2} ⊆ B′.

Now, the lines z2y1 and z2z1 intersect L3 in points of S (namely y3 and z3) and L4 in
points of S (namely the points of L4 ∩H). So, these lines intersect L5 in points a1 and
a2 belonging to S.

As the lines z2y1 and z2z1 intersect U := {a1, a2} ∪ (L4 ∩H) ∪ {y3, z3} in two disjoint
sets of size 3, U ∪{x} cannot be a Baer subplane. So, there exists a line M not containing
x meeting U in precisely two points. Let u be the point of (L3 ∪ L4 ∪ L5) ∩ M not
contained in U and suppose u ∈ Li with i ∈ {3, 4, 5}. Then the line {∞1,∞2} ∪ M
contains six points of S (namely ∞1,∞2,M ∩ L1,M ∩ L2 and the two points of M ∩ U)
and so also u ∈ S. But as the line Li ∪ {∞1,∞2} of W23 now contains six points of
S (namely ∞1,∞2, x, u and the two points of Li ∩ U), we also see that Li ⊂ S. Now,
put {3, 4, 5} \ {i} = {j, k}. By considering lines of PG(3, 4) through a point of Lj ∩ U
(respectively Lk ∩ U) not containing x and extending them to lines of W23, we see that
all points of Lk (respectively Lj) must belong to S. Hence, S consists of all points of
W23.

Lemma 9.6. The Witt design W24 has a pseudo-generating set of size 12.

Proof. Recall that W23 is obtained from W24 by derivation with respect to ∞3. If Y is
a pseudo-generating set of size 11 of W23 (see Lemma 9.5), then X := Y ∪ {∞3} is a
pseudo-generating set of size 12 of W24.

By Theorems 4.1, 5.1, 6.1, 8.2, Proposition 9.1 and Lemmas 9.2, 9.3, 9.5, 9.6, we have:
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Corollary 9.7. The pseudo-generating ranks of PG(2, 4), W22 and W23 are equal to 11.
The pseudo-generating rank of W24 is equal to 12.
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