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Graphical abstract 

 

 

Abstract. Implementation of an effective focal cell adhesion represents a significant challenge 

because it requires to develop appropriate materials and processes together with assuring that 

cells would interact with it effectively. Various coatings are under development in the area of 

biomaterials including hydrogels and polymeric surfaces. Here, we analyse modification of the 

coatings by colloidal nano- and micro-particles, which effectively modify the surface of soft 

hydrogel materials, enhance and allow for adjustment of mechanical properties, and enable 

molecule release capabilities. A classification of such hybrid coatings is presented, where natural 

and synthetic polymeric coatings are overviewed. These organic coatings are modified by 

inorganic micro- and nano- particles. Various approaches to the design of such hybrid coatings 

are overviewed, while additional functionalities such as release of encapsulated biomolecules 

and enhancement of mechanical properties are highlighted. The developments in this area target 

effective cell growth, which is shown to be enhanced by the addition of colloidal particles.  

 

Keywords: hydrogels, mineralisation, particles, focal adhesion, polymers. 
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Introduction 

A substantially high number of polymers can bind to form a three-dimensional network, which can contain 

a large amount of water, therefore, forming a hydrogel of natural or synthetic origin.[1] Most of them are 

biodegradable and biocompatible, which allows them to be used for biomedical purposes.[2] Thus, 

naturally derived hydrogels that are similar to native extracellular matrices (ECMs), with a fine 3D 

network, high water content, good biocompatibility, and versatile fabrication methods, have emerged as 

promising matrices for the fabrication of biomaterials.[3] Nevertheless, they may have poor mechanical 

properties and lack binding sites for cell adhesion proteins, which leads to a lack of cell adhesion on their 

surface.[4] But the surface properties of hydrogels can be changed by modification with colloidal 

polymers, nano and microparticles.[5] As shown by numerous studies, such a modification can change the 

macro and micromechanical properties,[6,7] give the cells the required number of binding sites,[8] which 

will ensure a strong connection of cells with the surface. Surface modification can improve not only cell 

adhesion, but also provide additional functionalisation, for example, the second component may contain 

drug molecules.[9] It is also possible to control not only adhesion but also give the cells the desired 

shape,[8] and direct their growth in the right direction.[9]  

In this regard, we need to classify sub-areas and components of hybrid hydrogels encompassing a 

modification of hydrogels by colloidal, nano and microparticles, and polymer complexes. 

Overall, this can be structurally classified as follows: 

(1) pure hydrogels, which can be sub-divided: 

(a) natural hydrogels (alginate,[10] chitosan,[11] collagen,[12] gellan gum,[13] hyaluronic acid,[14] 

gelatin,[15] natural peptides,[16] etc); 

(b) synthetic hydrogels (Poly(2-hydroxyethyl methacrylate),[17] polyethylene glycol,[18] poly(acrylic 

acid),[19] poly(methacrylic acid)[20], synthetic peptides,[16] etc). 

(2) Colloids: 

(a) nanoparticles (AuNPs,[21] SiNPs,[22] FeNPs,[23] BGNPs[24], etc); 

(b) microparticles (CaCO3,[25] SiO2,[26] Ca10(PO4)6(OH)2)[27], etc) ; 

(c) polymers (Layer-by-Layer,[28] Brushes,[29], etc). 

This structure is summarised in Figure 1 with additional details. Not surprising that colloidal science, which 

deals with polymers, inorganic nanoparticles and microparticles, etc. and their modification, has become 

a distinct discipline. 

Hybrid hydrogels 

Polymer hydrogels are a large class of soft materials consisting of hydrophilic molecules cross-linked 

chemically or physically in a network.[1] Due to the aquatic environment and imitation of biological 

tissues, hydrogels are widely used for medical purposes: from creating eye lenses to transplanting cells 

into damaged tissues and the remote delivery of drugs in the body.[30] Hydrogels, both natural and 

synthetic, can be formed by covalent bonds, physical cohesion forces between the polymer segments 

such as ionic bonding, hydrogen bonding, van der Waals forces, and hydrophobic interactions.[31] In the 

last decades, hydrogels have received growing attention because of their easily tunable properties, 

making them broadly applicable to many promising and emerging biomedical applications.[3] But often 

the surface of the hydrogel has a drawback - poor cell adhesion.[32] This problem can arise both because 

of poor mechanical properties, the chemical structure of hydrogel molecules and the absence of binding 

sites.[33] In this case, hydrogels require a qualitative modification, which would allow a hydrogel with 

poor cell adhesion to become a good bio-interface.[34] The second colloidal component acts as such a 
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modification of the hydrogel surface.[29] These can be polymers applied by the Layer By layer (LBL) 

system,[20,35] nanoparticles that are adsorbed onto the surface,[36] and microparticles grown on the 

surface of the hydrogel as a result of biomineralisation.[37] The second plus of surface modification of 

hydrogels is the possibility of additional surface functionalisation by loading bioactive molecules.[9] 

 

Fig. 1. Schematics presenting an overview of hybrid coatings composed of hydrogels and colloids. The pink and blue 

zones show synthetic and natural polymers, respectively. 

 

Developing hybrid materials by surface modification of hydrogel using polymers, nano- and microparticles 

is a growing field for biological research and for medical use.[38–41] One of the main challenges in 

developing matrixes for cells is a lack of knowledge about the regulation of cellular behaviour by hybrid 

material. For example, the spatial position of nanoparticles on the surface of a hydrogel and the strength 

of the bond between the particles and the hydrogel matrices can affect cell adhesion.[42,43]. 

Figure 2 demonstrates biological processes on a scale of length from nanometers to hundreds of 

micrometres. First important component of adhesion process is RGD -peptide. The size of the RGD peptide 

molecule is several nanometers. Cell using the integrin head (Integrins are a family of transmembrane 

heterodimeric adhesion receptors that biochemically and mechanically interact with specific ECM 

components.[44]) is about 13 nanometers in size, attached to the surface. The mature integrin complex 

is from 1 to 5 micrometres, and the whole cell body is 10-100 micrometres, depending on the type of 

cell.[44–46]. There are many materials for modifying hydrogels with poor cell adhesion.[1] At the same 

time, the size of the colloids used for modifications can range from several nanometers to hundreds of 

microns and even more, thereby not only cell adhesion, morphology, survival, and even integrin clustering 

can be regulated.[29,47] 
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Fig. 2. Length scales for cellular components, and size distribution of polymers, micro/nanoscale particles. TEM 

image of AuNPs reprinted with permission from ACS.[48] TEM image of TiO2 reprinted with permission from 

Elsevier.[49] AFM image of the brush polymer film reprinted with permission from Frontiers.[29] SEM image of LbL 

film reprinted with permission from RCS. [50] SEM image of vaterite particles reprinted with permission from 

Wiley.[51] SEM image of hydroxyapatite particles reprinted with permission from Elsevier. [52] TEM image of SiO2 

reprinted with permission from Wiley.[53]  

 

Cell-matrix interactions 

To better understand the technology for preparing hybrid materials for cell adhesion, we need to discuss 

the interaction of cells with natural surfaces.[54] Cell adhesion is a crucial process in intracellular and 

extracellular interactions.[42] During the initial interaction, cell receptors bind to cell-adhesive ligands 

(peptide or glycan ligands). These ligands are often short polypeptide sequences in ECM proteins that bind 

to integrin and form adhesions for cell attachment.[55] Upon forming complex linkages with the cellular 

cytoskeleton, integrins mechanically pull on the ligands, and this cell-generated force from actomyosin 

contraction is balanced by ECM resistance and surrounding cells. Then the cell increases its area due to 

the movement of lamellipodia (Fig. 3a). Lamellipodia have a length of two to four micrometres. At the 

end of the lamellipodia, there are filopodia, which are protrusions several microns long and several 

hundred nanometers wide.[56] Their goal is the search for cell-adhesive ligands in the environment. At 

this point, integrin clusters form. These clusters bind to actin microfilaments, which form stress fibres.[44] 

Such adhesions are about 250 nm in size and contain only paxillin and talin. With increasing mechanical 

stress, the size of the integrin complex increases to 500 nm. Complexes of this size incorporate α-actin 

and focal adhesion kinase (FAK). When the complex becomes 1-5 microns in size, it is considered to be a 

mature focal adhesion and contains vinculin and zyxin (Fig. 3b-c). Biochemical and mechanical signals 

about focal adhesion are transmitted to the rest of the cell and modulate its further behaviour: motility, 

morphology, size, polarity, adhesion and proliferation.[57,58] 
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Fig. 3. (a) Cell spreading and searching for adhesive areas (dark ovals) using sheet-like lamellipodium and finger-like 

filopodia. (b) The nanoscale structure of focal adhesions, and nanoscale connectivity to the cytoskeleton. An 

adhesion-related particle (green) at sites of focal adhesions. These particles can fit between gathered integrins and 

link nanoscale actin to microscale stress fibres. The inset shows a close-up of a particle. (c) The nanoscale structure 

of a focal adhesion showing the integrin/extracellular binding domain, integrin signalling layer, force transduction 

layer and actin regulatory layer. Figures reproduced with permission from Nature. [38] 

 

CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological 

functions in human and murine inflammations and tumour cells have been investigated comprehensively. 

HA was initially considered to be only an inert component of connective tissues but is now known as a 

"dynamic" molecule with the constant turnover in many tissues through rapid metabolism that involves 

HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and 

oligosaccharides. Such receptor systems help cells anchor on the surface of biomaterials but do not give 

such a strong connection as integrin molecules.[59] 

Also, cells, such as white blood cells, might use nonspecific and weak electrostatic interactions of 

glycosylated cell surface molecules with collagen fibres and other ECM components. These interactions 

might generate friction and thereby enable the transmission of forces generated by the cell to the 

ECM.[60] 

 

Cell adhesion on hydrogels functionalised with polymers 

A prerequisite for studying molecularly defined cell adhesion is the availability of a nonadhesive, 

passivated background surface that enables the attribution of specific cellular responses entirely to the 

interaction of the particular cell surface receptors with specific adhesion mediating ligands. Among these, 

polyethene glycol (PEG) and alginate-based substrates are widely used as surfaces without any ligands for 

cells adhesion.[61] 

The creation of branched PEG-based copolymers is an attractive method for functionalising the surface of 

a PEG hydrogel. The most common branched PEG materials are based on poly (oligoethylene glycol 

methacrylate) (POEGMA), which consists of a methacrylate backbone and one PEG side chain of tunable 

length per monomer repeat unit. This structure provides easy polymerisation through a free radical. Lutz 

and coworkers demonstrated that thermoresponsive oligo(ethylene glycol)‐based gold surfaces allow 

efficient control over cell‐adhesion within a convenient and applicable temperature range (25–37 °C).[62] 

Thus, these novel smart substrates advantageously combine some features of PNIPAM surfaces (i.e. 

switchability) and PEG surfaces (i.e. bio‐repellency at room temperature) (Fig. 4). These findings open new 

avenues for the design of advanced functional surfaces for cell culture engineering, bioseparation, and 

diagnostics applications (Fig. 3). 

Jo
ur

na
l P

re
-p

ro
of



 

Fig. 4. Phase‐contrast microscopy images of fibroblasts on poly(OEGMA‐co‐MEO2MA)‐modified gold substrates 

after 44 h of (a) incubation at 37 °C and (b) 30 min after cooling the sample to 25 °C. Reprinted with permission from 

Wiley. [62] 

Layer-by-layer (LbL) self-assembly technique is a simple and commonly used method to realise surface 

modification, which has attracted much attention because of its simplicity in procedure, wide choice of 

materials and fine-tuning of the microstructure.[63] LbL assembled multilayer is fabricated by sequential 

adsorption of materials with complementary functional groups employing electrostatic interactions, 

hydrogen bonding, or covalent interactions.[64] The LBL method is extremely simple for applying it to 

hydrogels.[40] This technique has been broadly used to modify the surface of biomaterials through 

deposition of biocompatible multilayers which could also release functional molecules upon stimuli 

response.[65,66] This method does not destroy the architecture of hydrogels and significantly increases 

its functionalisation.[67] The preliminary work on LbL modification of hydrogels was presented by 

Sakaguchi et al., in which PVA hydrogel was used as the template and coated with dextran sulfate and 

chitosan in an LbL fashion.[68] 

Modification of LBL hydrogels by polymers affects hydrogel parameters such as mechanical 

properties[69–72] and surface charge.[73,74] These parameters primarily affect cell adhesion. Between 

the layers, binding sites for cells can be fixed.[75,76] 

P. Gentile at al. developed functionalised hydrogels at the nanoscale by LbL assembly to promote cartilage 

healing (Fig. 5). Hydrogels, based on sodium alginate and gelatin, were prepared by an external gelation 

method consisting of CaCl2 diffusion and genipin addition for cross-linking (G cross-linking method). 

Genpin is the aglycone of geniposide, which increased water stability of scaffolds as well as the mechanical 

properties under compression.[77] Due to easy degradability of gelatin in vivo, they are improved stability 

and mechanical strength by parallel cross-linking of alginate/gelatin mixture. Successively, hydrogels were 

coated with G to obtain a positive charge on the surface, then functionalised by LbL assembly to create 

16 nanolayers, based on poly (styrene sulfonate)/poly (allyl amine) (PSS/PAH), including a specific peptide 

sequence and transforming growth factors β1. The presence of a biologically active LbL film over the 

hydrogel surface improved chondroblast proliferation and glycosaminoglycan secretion at the 

nanoscale.[10] 
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Fig. 5. (a) Schematic view of the alginate hydrogels coating (b-c) Optical and fluorescence microscopy images of (b) 

AG5%, (c) LbL functionalised hydrogels without biomolecules addition, and (d) LbL functionalised hydrogels with the 

addition of FITC- CTATVHL peptide and TGF-β1. Bar= 100 μm. Reprinted with permission from RCS. [10] 

 

One more class of hydrogel films functionalisation is presented by surface-grafted polymer networks 

(polymer gels or covalently cross-linked hydrogel brushes), which possess not only some of the 

characteristics of polymer brushes but also tunable swelling and mechanical properties. Polymer gel 

brushes were previously prepared either in situ, by surface-initiated polymerisation in the presence of 

cross-linker, or ex-situ, by postmodification of pre synthesised polymer brushes.[78–81] 

Also, as functionalisation of the surface of biomaterials, including hydrogels, polymer microcapsules can 

be used.[82] They can have a dual function: improve cell adhesion and be carriers of bioactive molecules, 

the release of which can be stimulated by ultrasound or laser.[83–85] 

Cell adhesion on hydrogels functionalised with nanoparticles 

Carbon-based nanoparticles (carbon nanotubes),[86–88] polymer nanoparticles (hyper-branched 

polymers),[19,89] inorganic particles (silicates),[90,91] ceramic nanoparticles (hydroxyappatite and 

calcium phosphate),[92,93] metal nanoparticles (gold, silver and iron)[94,95] are widely used to modify 

hydrogels: 1) response to various stimuli such as light,[96] electricity,[97] magnetic field,[98] 

ultrasound;[99] 2) improvement of mechanical properties;[21] 3) creating a three-dimensional relief on 

the surface; 4) improved cell adhesion.[100] 

Spark et al. studied the behavior of cells on a nanostructured material with emphasis on the fundamental 

adhesive properties of cells. Authors used a nanocolloidal assembly to study the possible allowable 

distance between nanoparticles for cell adhesion. For this reason, gold nanoparticle incorporated to PEG-

hydrogel with the controllable distance between them (Fig.6). The size of the gold nanoparticles was 8 

nm, which allowed only one integrin molecule to bind to the particle surface. They showed that when 

adhesive dots are separated by ≥73 nm, cell adhesion and spreading, as well as the formation of focal 

adhesions, are aberrant, whereas separation of ≤58 nm between the dots allows effective adhesion. This 

feature is not attributable to the insufficient number of ligand molecules but to the restriction of integrin 

clustering. Spark et al. found the maximum spacing between nanoparticles occupied integrins necessary 

for adhesion and focal adhesion formation to be between 58 and 73 nm, not just for MC3T3‐osteoblasts, 

but also for other cells cultures.[101] Jo
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Fig. 6. A schematic of a biofunctionalised gold particle substrate in contact with a cell membrane (left panel) and a 

scanning electron micrograph of PEG+AuNPs surface and light microscopy of a cell that is adhering to a gold particle 

(right panel). Reprinted with permission from Wiley. [101] 

Especially gold nanoparticles (AuNPs), which have unique size- and shape-dependent optical properties 

via surface plasmons, little toxicity, easy synthesis procedures, are desired materials not only for industry, 

and catalysis but also for biology and medicine.[102,103] For providing cell adhesion on the bio-inert PEG 

surfaces, several micro-fabrication techniques have been developed to modify the surface properties and 

to promote cellular adhesion; for example, applying patterns of surface nano- or microtopographies, 

patterns of elasticities, or chemical modifications. A good example of modifying the surface of a hydrogel 

with gold nanoparticles is an article by Yesildag et al. [94] They used a micro-contact printing system to 

create uniform coatings of gold nanoparticles on a PEG hydrogel (Fig. 7). They examined adhesion on the 

L929 fibroblast cell line. Figure 3 clearly shows that fibroblasts adhere exclusively to gold nanoparticles. 

This allows selective control of adhesion on the surface of the biomaterial. Due to such selective adhesion, 

it is possible to create tissue-engineering structures of the required configuration. 

 

Fig. 7. (a) Schematic view of reactive micro-contact printing (r-μCP) process of Au NPs on PEG hydrogels. (b) SEM 
images of amino-silanised PDMS-stamp (used master sizes was [20–10–5μm]) inked with Au NPs. (c) SEM images 
of an aligned and stretched cell on the AuNPs micro-pattern. Reprinted with permission from Frontiers, 2019 [94] 

 
Cell adhesion on hydrogels functionalised with microparticles 
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One of the most striking examples of microparticles for cell adhesion is calcium carbonate particles. 

Calcium carbonate has three anhydrous states: vaterite, calcite and aragonite, and over time can pass 

from one form to another.[51,104,105] Especially attractive is spherical porous vaterite particles, which 

can be pre synthesised with the following adsorption on the hydrogel [] as well as synthesised directly on 

the surface of various biomaterials.[25] The porosity of the vaterite particles makes them attractive to 

load various substances in them, for example, bioactive molecules and drugs.[106] In the process of 

recrystallisation, from unstable porous spherical vaterite, the phase of smooth calcite stimulate the 

payload release. The additional coating increases the hydrophilicity, which significantly improves cell 

adhesion.[107] (Fig. 8). The primary adhesion of cells occurs through a contact of hyaluronan with CaCO3 

surface.[108,109] Hyaluronan is a large, linear glycosaminoglycan composed of a repeating disaccharide 

of glucuronic acid and N-acetylglucosamine. Its large dimensions render it an excellent candidate for long-

range interactions of cells with external surfaces. It is presumed that one single molecule of hyaluronan 

may extend to several microns from the surface to which it is tethered or adsorbed. Hyaluronan 

synthesised on the membrane of a cell by hyaluronan synthetase and connected to CD44.[110] Due to the 

big size of hyaluronan, it works as an anchor and can connect with CaCO3 surface a couple of micrometres 

away (Fig. 8b) after that cell emits ligands (as fibronectin) and connects with CaCO3 by integrin, leading to 

a fully spreading and structural organisation (Fig. 8c). 

 

 

Fig. 8. (a) Phases of in vitro cell adhesion. (b) Detailed schematic of the adhesion process on CaCO3 

particles in phase II (c) Detailed schematic of the adhesion process on CaCO3 particles in phase III. 

Abalymov et al. in their work studied the possibility of modifying alginate hydrogels with vaterite CaCO3 

particles as a result of biomineralisation (Fig. 6). Alginate gels do not allow cell attachment in the absence 

of cell-adhesive ligands and are relatively biocompatible, and they, therefore, offer a tunable system in 

which cells attach only where cell-adhesive ligands are presented. Alginate hydrogel underwent thermal 

annealing (T-A), which significantly improved its mechanical properties in seven times (Fig. 9). After that, 

the hydrogels were mineralised. However, the mechanical properties of hybrid hydrogels were obtained 

by AFM and showed no statistical difference between Young's modulus of the vaterite particles of regular 

alginate hydrogel and T-A alginate hydrogel. It turned out that cells can adhere well only for mineralised 

T-A alginate. Such difference between cells adhesion on the particles incorporated to soft and hard 

hydrogels shows mechanosensitive properties of integrin connections with colloidal particles. In the case 
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of regular alginate hydrogels, cells anchored with particles by hyaluronan, but the formation of stable 

connection by integrin is impossible, because of the movement of particles in the soft matrix during the 

formation of stress fibres. [43] 

 

 

Fig. 9. (a) Young modulus values for alginate hydrogel and T-A alginate hydrogel obtained using Universal Testing 

Machine (1 mm tip) and AFM (scale bar is 4 μm). (b) Combined monitoring of cell adhesion on TA alginate hydrogels 

using AFM and confocal microscopy. Reprinted with permission from ACS, 2020. [43] 

However, the connection between hydrogel and particles is not only single possible factor that influences 

cell focal adhesion, proliferation, and ossification (the formation of an ECM consisting of proteins and 

hydroxyapatite, which is similar to bone). In the next work, authors varied by a ratio of CaCl2, Mg2CO3, and 

Na2CO3 in the reaction mixture for mineralisation of T-A Gellan Gum hydrogel. Particles obtained on the 

hydrogel surface as a result of mineralisation have different size, morphology, mass, and mechanical 

properties (Fig. 10). These factors have different effect on cell density, area, viability, alkaline 

phosphatase, and hydroxyapatite synthesis (Fig. 10a). The authors showed that all of the above factors 

affect the ability of cells to adhere to the surface. Primary adhesion is most affected by Young's modulus 

of the particles (YmP) and the percentage of calcium in the synthesis (Fig. 10b), their area (spreading and 

stable adhesion) is most affected by the amount of mineral, the YmP of the particles, and the percentage 

of calcium (Fig. 10c). Obviously, the YmP, and as a consequence, their combination with the hydrogel 

matrix, has a positive effect on cell adhesion. Particle mass is also an important parameter, since the more 

Jo
ur

na
l P

re
-p

ro
of



particles, the more binding sites for cell ligands. Cell viability is affected by a combination of all these 

factors (Fig. 10d). 

 

Fig. 10. (a) Schematic representation of major factors, which influenced cells ossification was analysed. The first 
column represents the initial technical parameters of gel mineralisation like the ratio of the calcium and magnesium 
ions. The second column represents the characterisation of the designed hybrid materials. The third column 
represents the factors related to the growth and activity of the cells. (b) Loading plot of the first two PC loading 
vectors: Mg2+, Ca2+, YmC, YmP, YmH, MassP, Area, Viability, SizeP, ALP, Density, HA. In red colour highlighted the 
factor of interest. The significance of the influence on the factor of interest is highlighted in various colours: 
significant positive influence (green); negative influence(blue) doesn't have a significant influence (black). 

 

Muderrisoglu et al. also used a combination of alginate and addition of CaCO3, and modified this system 

with alkaline phosphatase (ALP) molecules.[9] This one was also adsorbed onto the surface of the 

hydrogel. Due to the additional surface area, carbonate particles significantly increased the amount of 

enzyme, thereby improving the production of the extracellular matrix consisting of hydroxyapatite, which 

is one of the main components of the bone i.e. cells ossification. A plus of this system is the triplicity of 

vaterite particles, which are both binding sites for cells, containers for bioactive molecules, and a source 

of calcium ions. It should be noted that these particles can be not only synthesised on the surface of the 

material, but also obtained from a separate synthesis, modified separately, and after that built into the 

desired hydrogel. Abalymov et al. used vaterite particles into which ALP molecules were loaded. Such 

carriers are both a container and a building material for the extracellular matrix, thereby greatly 

accelerating the production of hydroxyapatite on the surface of osteoblasts.[111] 

Conclusion and outlook  

In conclusion, we have overviewed state-of-art and highlighted recent developments in the area of 

biomaterial and hydrogel modification by colloidal nanoparticles. Such a modification represents an 

effective way of designing new surfaces with improved cell adhesion capabilities. Modification of soft, 

organic coatings by inorganic micro- and nano- particles and colloids leads to the formation of the so-

Jo
ur

na
l P

re
-p

ro
of



called hybrid materials, where the two phases: organic and inorganic complement each other. Such hybrid 

materials have been shown to enhance, and most importantly, control mechanical properties and the 

Young's modulus of the coating, thus allowing to adjust them to match for any cell type. In addition to the 

adjustment of mechanical properties, the incorporated particles allow for a controlled release of 

encapsulated biomolecules, which further extend the range of functionalities of such hybrid coatings. Cell 

adhesion – one of the key applications of these coatings – has been enhanced and controlled due to these 

coatings.  

In future, it is expected that other types of particles will be used for the surface functionalisation. Remote 

release and remote-control functionalities are projected to be developed and applied for a controlled 

release of relevant molecules. Eventually, various cell types will be seeded, allowing a broad application 

of such coatings in tissue engineering and biomedicine.  
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