
Training Binary Neural Networks With Knowledge
Transfer

Sam Leroux∗, Bert Vankeirsbilck, Tim Verbelen, Pieter Simoens, Bart Dhoedt

Authors are with Ghent University - imec, IDLab, Department of Information Technology

iGent Tower - Department of Information Technology
Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium

Abstract

Binary Neural Networks (BNNs) use binary values for both weights and acti-

vations instead of 32 bit floating point numbers typically used in deep neural

networks. This reduces the memory footprint by a factor of 32 and allows a very

efficient implementation in hardware. BNNs are trained using regular gradient

descent but are harder to optimise, take longer to train and generally require a

more careful tuning of hyperparameters such as the learning rate decay schedule

than floating point versions. We propose to use Knowledge Transfer techniques

to make it easier to train BNNs. Knowledge transfer is a general technique

that tries to transfer the knowledge stored in a large network (the teacher) to

a smaller (student) network. In our case the teacher is a network trained with

floating point weights and activations while the student is a BNN. We apply

different Knowledge Transfer techniques to the task of training a BNN. We

introduce a novel similarity based Knowledge Transfer algorithm and show that

this technique results in a higher test accuracy on different benchmark datasets

compared to training the BNN from scratch.

Keywords: Binary Neural Networks, Deep learning, Knowledge Transfer

∗Corresponding author
Email address: sam.leroux@ugent.be (Sam Leroux)

Preprint submitted to Neurocomputing August 16, 2018



1. Introduction

Deep neural networks are exceptionally powerful but they also require large

amounts of resources such as compute power and memory. Training a neural

network is the computationally most expensive part but this is usually done offline

on high performance systems in a datacenter. The basic computational operation5

of a neural network is a matrix-matrix multiplication. This operation is highly

parallelizable and can be very efficiently performed on Graphical Processing

Units (GPUs). GPUs are currently the best option to train neural networks.

Once trained the network needs to be deployed in a real-world environment.

This stage (known as inference) requires less resources than training but even a10

moderate sized network can take billions of floating point operations (FLOPs)

just to process one input. In addition the device also needs to store all parameters

of the network which quickly adds up to hundreds of megabytes.

Binary neural networks are more efficient because they are constrained to binary

weights and activations. This reduces the memory footprint of the weights by a15

factor of 32 and also allows for a very efficient implementation in hardware since

the 32 bit floating point multiplications can now be replaced with bitwise logical

operations [1].

Courbariaux et al. first showed that it is possible to train modern large neural

networks for image classification with binary weights and activations [1]. This20

suggests that typical neural networks are overparameterized [2]. While we were

able to replicate these results we found that BNNs typically take longer to

train and are more sensitive to hyperparameters such as the architecture of

the network, the initial learning rate, the learning rate decay schedule, the

optimization algorithm and regularization terms.25

Instead of training a BNN from scratch we propose to use the knowledge from

an already trained floating point model. A floating point teacher model can

be trained using existing state-of-the-art techniques and then be used to guide

2



the optimisation process of the student network. This concept is known as

Knowledge Transfer. We describe two common Knowledge Transfer techniques30

in Section 2. In Section 3 we present our novel similarity based Knowledge

Transfer technique and we compare the three techniques applied to training

binary neural networks for image classification in section 4.

2. Related work

Deep neural networks (DNNs) have been successfully applied in various areas35

such as computer vision [3, 4, 5], remote sensing [6], speech recognition [7],

robotics [8], metric learning [9, 10] and recently even in image generation [11],

style transfer [12] and caption generation [13]. For a comprehensive overview of

the history of deep learning we refer to [14].

2.1. Resource constrained deep learning40

Various works have reduced the computational cost and/or the memory footprint

of DNNs. Two of the first works to recognize the fact that neural networks

typically contain redundant parameters were Optimal Brain Damage [15] and

Optimal Brain Surgeon [16]. They used second order derivative information

to identify the connections that can be safely pruned. More recently Han et45

al. proposed a three step method [17] where first the network was trained to

learn which connections are important. Next the unimportant connections were

pruned and finally the remaining weights were fine-tuned to compensate for the

lost accuracy. This technique is able to reduce the number of parameters in state

of the art networks by an order of magnitude.50

Other approaches include transforming the weight matrices into low rank de-

compositions [18, 19] or even a hashing based technique [20] where connection

weights are grouped into hash buckets and all connections within the same bucket

share the same value.

3



It is well known that full precision floating point numbers are not needed for55

weights and activations. 8 bit fixed point integers are usually sufficient [21] and

these allow for efficient implementation in hardware. Other works further reduce

the precision of the weights to 4 bits (for convolutional layers) or to two bits

(for fully connected layers) [22].

2.2. Binary neural networks60

In the extreme case the precision of weights and activations can even be reduced

to 1 bit. This allows an extremely efficient implementation in hardware. The

BinaryConnect paper by Courbariaux et al. [23] was the first to train large

modern neural networks for image classification with binary weights. This was

later extended in [1] to binary weights and binary activations and in a follow-up65

paper [24] results on the Imagenet dataset were presented. The name “binary

neural network” had been used long before for networks that were capable of

learning binary-to-binary mappings [25]. These networks used ternary (-1, 0, +1)

or integer weights that make them more efficient in hardware implementations

[26] and could be trained with different techniques such as expand-and-truncate70

learning (ETL) [27] or DNA-like learning [28].

The basic operation in a BNN is the binarization function that transforms the

floating point weights and activations (x) to binary values (-1 and +1). This

function simply thresholds the value based on the sign:

Binarize(x) = sign(x)

+1 if x ≥ 0

−1 if x < 0
(1)

This binarization function is used to binarize both the weights of the network and

the activations. The forward pass is then described by algorithm 1. Where N is

the number of layers in the network. Wk are the floating point weights of the k−th

layer and W b
k are the binarized weights. Similarly, ak are the activations of the75

k − th layer. Batchnorm(x) represents the Batch Normalization [29] operation

4



and BinaryDotProduct(x, w) calculates the binary dot product between the

(binary) input vector x and the binary weights w.

Algorithm 1 Forward pass through a BNN [23]
Input: Full-precision weights Wk for each layer k. The total number of layers

N . A minibatch of data a0.

1: procedure forward

2: for k=1 to N do

3: W b
k ← Binarize(Wk)

4: ak ← BinaryDotProduct(ak−1, Wk)

5: ak ← BatchNorm(ak)

6: if k < L then

7: ak ← Binarize(ak)

8: end if

9: end for

10: end procedure

Training a neural network with binary weights and activations is not straight-

forward for two reasons. First, stochastic gradient descent (SGD) relies on80

making many small updates to weights. Every update on itself is very noisy but

the noise is averaged out by accumulating many updates. Restricting the weights

to binary values is a much too coarse approximation for SGD since the small

updates would be lost in the quantization noise. The solution is to accumulate all

updates in floating point weights and to use binarized copies for the dot product.85

The second problem is that the sign function that is used for binarizing the

weights and activations has a zero derivative almost everywhere (hard threshold)

which makes it incompatible with backpropagation since the gradient of the loss

with respect to the input of the sign function would be zero [23]. The solution

is to use a “straight-through estimator” [30] which approximates the outgoing90

gradient by the incoming gradient .

The XNOR-net paper [31] proposed a similar but slightly different approach

5



where the output of the binary layers was multiplied with a floating point scale

factor to recover the dynamic range. This yields better results on the Imagenet

dataset but makes a hardware implementation more difficult. The first and last95

layers still used 32 bit floating point numbers in this implementation making it

a slightly less resource efficient solution compared to fully binary networks.

It might seem surprising that it is possible to train neural networks with binary

weights and activations. There has been some very recent theoretical work

that gives a possible explanation. Anderson et al. [32] show that a binary100

approximation of a high dimensional vector still preserves the direction of

the vector very well. This would suggest that the information loss caused by

the binarization process is not as severe as it would seem. They also find

that the batch normalized weight-activation dot products (the intermediate

representations) are approximately preserved under the binarization of the105

weight vectors and they show that this is a sufficient condition for the binary

operations to approximate the underlying floating point operations. Lastly they

argue that the computations done by the first layer of neural networks trained

for image classification are fundamentally different than the computations being

done in the rest of the network. The impact of binarization on this layer is much110

more severe. This is why they suggest to use a floating point convolution for

this very first layer. This layer then projects the floating point input to a high

dimensional binary space.

BNNs can be evaluated much more efficiently than floating point networks but this

requires custom implementations since most general purpose compute platforms115

like CPUs or GPUs are not optimized for binary operations. Courbariaux et al.

implemented a custom GPU kernel that is able to evaluate BNNs seven times

faster than a baseline kernel on GPUs [1]. Other works have designed Field

Programmable Gate Array (FPGA) implementations [33] or even completely

custom hardware platforms [34] to fully exploit the potential of BNNs.120

6



2.3. Knowledge distillation

An interesting family of techniques tries to export the knowledge stored in a

large model or in an ensemble of models (the teacher) to a smaller network

(the student) that is more efficient to evaluate. A first version of this idea was

proposed in [35] where a large trained ensemble was used to label additional125

data that can then be used to train a new more compact network.

More recently Hinton et al. introduced an elegant transfer technique called

Knowledge Distillation [36]. It is based on the observation that the output of the

trained teacher (the probability distribution of the classes) can be used as a soft

target for the student. This soft target provides more information than a hard130

class label since it also encodes information about the similarity between classes.

This makes it easier for the student to discover structure in the data. A neural

network trained for classification typically uses a softmax activation (equation

2.3) for the last layer. This activation transforms the logits zi to probabilities qi:

qi = ezi/T∑
j ezj/T

(2)

Where T is a temperature parameter that is typically set to 1. Smaller values

of T cause the network to produce more confident results while larger values

of T cause a softer probability distribution over the classes. The Knowledge

Distillation technique passes a batch of training data through the teacher network

and uses the obtained probability distribution as a soft target for the student.

To train the student we minimize the cross-entropy loss (equation 3) between

the soft target p(x) and the output of the student q(x).

H(p, q) = −
∑

i

p(x)log(q(x)) (3)

If the correct labels are available for (some of) the training samples we can use135

a weighted sum of two cross entropy loss functions. One calculated on the soft

targets and the other calculated on the hard ground truth labels.

7



The idea of distillation was later extended in Fitnets [37] where the intermediate

representations of the teacher were used to guide the training process of the

student in addition to the soft outputs. The student is encouraged to have a140

similar intermediate representation as the teacher. Since the dimensionalities of

the intermediate representations of both networks do not necessarily correspond

they added additional regressor layers that could map the intermediate represen-

tation of the student to the spatial size as the intermediate representation of the

teacher. The student is trained to minimize the euclidian loss function shown145

in equation 4 where pi calculates the intermediate representation of the teacher

network up to layer i and qj similarly calculates the activations of the student

network after layer j. r is the regressor network that converts the activations of

the student to the same size as the the activations of the teacher.

fi(B) = 1
2‖pi(x)− r(qj(x))‖ (4)

Both approaches are illustrated in Figure 1. Knowledge distillation on the left150

uses the output of the teacher as a soft target to train the student while Fitnets

(right) rely on layer wise pretraining.

Teacher

Student

L

(a) Knowledge Distillation

Teacher

Student

L

(b) Fitnets

Figure 1: Conceptual difference between Knowledge Distillation (a) and Fitnets (b). Knowledge

distillation uses the soft output of the teacher as a target for the student. Fitnets use the

intermediate representations to guide the learning process of the student. L indicates the loss

function that is optimised with gradient descent.

8



3. Similarity based knowledge transfer

Deep neural networks use multiple layers to transform a high dimensional input

into an abstract output such as a class label. Each layer transforms its input

into a representation that makes it easier to distinguish the different classes for155

the next layer.

We propose to explicitly use this property to guide the training of the student.

We pass a batch B of b images through the teacher network and record the

intermediate representations teacheri(B) after layer i. We then calculate the

cosine distances dxy between the representations of each example pair (x, y)

following equation 5. The resulting b ∗ b distance matrix gives us an idea of

the transformation that the neural network has learned after layer i. A single

element dxy in the distance matrix measures how similar two input samples x

and y are according to the network up to layer i.

dxy = cos(x, y) = x · y
‖x‖‖y‖ =

n∑
i=0

xiyi√
n∑

i=0
x2

i

√
n∑

i=0
y2

i

(5)

We then pass the exact same batch through the student network to record

its intermediate representations studentj(B) after layer j and calculate the

corresponding distance matrix again following equation 5.

We train the student with gradient descent by minimizing the cosine distance160

between the two distance matrices. This encourages the student network to learn

a transformation that mimics the behaviour of the teacher. Two images that have

a similar intermediate representation for the teacher should also have a similar

intermediate representation in the student network. There is no constraint on

the similarity of the learned representations between teacher and student, the165

9



student can learn completely different features from the teacher as long as two

images that are (dis)similar to the teacher are also (dis)similar to the student.

This process is illustrated in Figure 2.

Teacher

Student

L

i

j

Figure 2: Our similarity based Knowledge Transfer technique: The same batch is passed through

the teacher network and the student network. Both intermediate representations are recorded

and used to calculate two distance matrices. We minimise the cosine distance (indicated by L )

between the two distance matrices, forcing the student to learn a transformation where two

images have a similar intermediate representation only when they have similar intermediate

representations in the teacher network.

We repeat this procedure for different (i, j) layer combinations and finetune the

network afterwards using supervised learning by minimizing the cross-entropy170

loss function from equation 3 between the predictions and the true labels. Our

technique is also compatible with Knowledge Distillation during the finetuning

stage but we found that this only has a minimal effect on the final performance.

The full algorithm can be found in Algorithm 2

To calculate the loss term during pretraining we only need the two distance175

matrices. The two networks can have completely different architectures (different

depth, different number of convolutional filters, different nonlinearities, ...). In

our case the student is constrained to binary weights and activations but this

10



technique can also be used to train floating point student networks.

Since our pretraining step is completely unsupervised we can use large amounts180

of new unlabelled data and only rely on labelled data for the finetuning step.

A disadvantage of knowledge transfer methods is that we need to evaluate the

teacher for every train step of the student since we need the additional training

signal based on the output or the intermediate representations of the teacher.

Knowledge distillation uses the outputs of the teacher as soft targets which means185

that we always need to evaluate the entire network. Fitnets and our similarity

based approach use intermediate representations which are less expensive to

obtain since we only need to evaluate part of the network. It is possible to

evaluate both teacher and student networks in parallel (even on different GPUs)

since they are completely independent. Another solution to reduce the overhead190

of evaluating the teacher every time is to cache the outputs or the intermediate

representations of the teacher. The teacher is a fixed network that is not changed

when training the student. It is therefore possible to pass the entire training set

through the teacher once to record the intermediate representations or network

output. These cached representations can then be used to calculate the different195

loss functions of the knowledge transfer methods. This approach reduces the

training time in exchange for increased storage needs.

4. Experiments

In this section we evaluate our approach on different default image classification

benchmark datasets: CIFAR10/CIFAR100 and ILSVRC2012200

4.1. CIFAR10 and CIFAR100

The CIFAR-10 dataset [38] consists of 60 000 32x32 color images in 10 classes,

with 6 000 images per class. There are 50 000 training images and 10 000 test

11



Algorithm 2 Pretraining and finetuning with similarity based knowledge trans-

fer
1: procedure pretrain(i, j)

2: Input: The indices i, j of the layers of respectively the teacher and the

3: student that knowledge should be transferred between and a set of

4: (unlabelled) training samples.

5: for each batch B of training samples do

6: yi ← teacheri(B)

7: yj ← studentj(B)

8: dteacher ← cos(yi)

9: dstudent ← cos(yj)

10: loss← cos(dteacher, dstudent)

11: perform gradient update to the weights of the student network

12: end for

13: end procedure

14: procedure finetune

15: Input: A set of labelled training samples.

16: for each batch B of training samples and associated labels L do

17: y ← student(B)

18: loss← cross_entropy(y, L)

19: perform gradient update to the weights of the student network

20: end for

21: end procedure

22: procedure main

23: Input: A list of (i,j) combinations indicating the indices of the layers of

24: respectively the teacher and the student that knowledge should be

25: transferred between.

26: for each (i,j) do

27: pretrain(i, j)

28: end for

29: finetune()

30: end procedure

12



images. The CIFAR-100 dataset is very similar. The images have the same size

but are divided into 100 classes. Each class has 500 training and 100 test images205

for a total of 60 000 images.

In all our CIFAR10 and CIFAR100 experiments we use the unmodified BinaryNet

architecture[1] for our student. The teacher network is a Deep Residual Network

[39] with 32 layers. The teacher obtains an error rate of 7% for CIFAR10 and of

30% for CIFAR100. We used Pytorch [40] for all our experiments. All networks210

were trained using ADAM [41] on NVIDIA GTX1080 GPUs with batchsize 64.

4.1.1. Qualitative results: Can we visualise the transferred knowledge ?

The similarity based knowledge transfer technique introduced in the previous

section relies on layer wise pretraining where we iteratively train each layer to

mimic the behaviour of a layer in the teacher network. The loss function forces215

the student to learn a mapping where images that have a similar representation

in the teacher network also have similar representations in the student network.

To understand if our pretraining technique indeed learns a useful transformation

we look at t-SNE [42] visualizations of the intermediate representations of the

binary student network before and after pretraining each layer. These results220

are shown in Table 1. t-SNE is a dimensionality reduction technique that is

able to visualize high dimensional vectors in 2D scatter plots. Similar vectors

(according to their euclidean distance) are shown as nearby dots in the plot while

dissimilar points are further apart. Each dot corresponds to an image from the

test set and the color indicates the class label. These plots were generated before225

the finetuning step which means that no labelled information was used while

training the student.

The first scatter plot (Conv1 - before transfer) shows little to no structure

because all weights are initialised randomly. After pretraining this layer with our

Knowledge Transfer technique we can already vaguely distinguish two clusters.230

13



Upon inspection of the samples we found that one cluster contains man-made

objects such as cars, trucks and boats while the other cluster contains natural

objects such as animals.

This distinction is further emphasized as we pretrain more layers. We can

distinguish clear clusters of samples belonging to the same class after the last235

convolutional layer. The fully connected layers then further improve the decision

boundary and after the last fully connected layer we can clearly discriminate the

different classes, even though we have not used the class labels while training

the student. This experiment shows that our Knowledge Transfer technique can

train a binary neural network to distinguish between different classes based on240

the characteristics of the intermediate representations of the teacher network

and without any labelled information.

4.1.2. Quantitative results: How does pretraining affects the test accuracy and

training time ?

In our second experiment we look at the training time and the final test accuracy245

of the different Knowledge Transfer techniques applied to training BNNs. Figure

3 shows the test accuracy as a function of the training time for the different

approaches.We used an NVIDIA GTX1080 GPU to train all networks.

The red line corresponds to the training from scratch baseline. The dark blue

line shows the accuracy when the network is trained with soft targets. This250

clearly helps the network to converge faster on both datasets but the impact is

best visible on CIFAR100 where the soft targets help the network to achieve a

higher test accuracy. A possible explanation is that the 100 different classes from

the CIFAR100 dataset are grouped in 10 “super classes” with 10 fine grained

“sub classes” each. A super class would for example be “fish” with members such255

as “Shark” and “Trout”. Because of this design choice there are a lot of similar

classes. Distillation with soft targets can exploit this property because a single

example can now for example be labelled as 60 % hamster, 30 % mouse and 10 %

14



Table 1: T-SNE plots of the intermediate representations of each layer before and after

pretraining of that layer.

Conv 1 Conv 2 Conv 3 Conv 4

Before

After

Conv 5 Conv 6 FC 1 FC 2

Before

After

15



0 500 1,000

60

70

80

90

Wall clock time (minutes)

te
st

ac
cu

ra
cy

(%
)

CIFAR10

0 1,000 2,000

40

60

Wall clock time (minutes)

CIFAR100

Trained from scratch Soft targets

Similarity based (ours) Fitnets

Figure 3: Test accuracy as a function of training time for the different approaches

squirrel, providing information of all three classes to the student. Each training

sample now carriers much more information compared to a single ground truth260

label.

Both the Fitnets approach and our similarity based technique need a pretraining

stage. We start pretraining at timestamp 0 and only plot the test accuracy

during the finetuning stage.

It is somewhat surprising that Fitnets work so well when training binary neural265

networks since Fitnets explicitly use the values of both intermediate represen-

tations and these are completely different (binary vs floating point). Yet it

seems that the regressor layer that is used to change the dimensionality of the

representations also takes care of the conversion of binary to floating point values.

The regressor layer used floating point weights and activations. Fitnets result270

in a higher accuracy on both datasets compared to Distillation. On CIFAR10

this is still slightly lower than the baseline but on CIFAR100 Fitnets give us an

accuracy of 67.42% compared to 65.31% for the baseline.

16



Our Similarity based Knowledge Transfer technique has a very similar behaviour

as Fitnets. The biggest advantage of our approach compared to Fitnets is that we275

do not directly compare the intermediate representations. Therefore we do not

require that both intermediate representations have a similar spatial size and we

do not need the additional regressor layers. Instead we calculate the loss function

between two similarity matrices and the dimensions of the similarity matrices

only depend on the batch size. We believe that this decoupling is especially280

interesting when training networks with binary weights and activations since

this allows us to have a completely different architectures for the student and

the teacher. Our similarity based technique results in the highest test accuracy

on both datasets.

The final test accuracies for all approaches are summarized in Table 2.285

Table 2: Test accuracy of the BNN on CIFAR10 and CIFAR100.

Model CIFAR10 CIFAR100

Trained from scratch 88.6% 65.3%

Distillation (soft targets) 87.9% 66.2%

Fitnet 88.4% 67.4%

Similarity based (ours) 89.4% 68.7%

4.2. ImageNet

The CIFAR datasets from the previous section are small scale datasets that

are easy to experiment with but the small images are not representative of real

world applications. In this section we trained BNNs on the Imagenet dataset

[43]. The task is to distinguish between 1000 classes. The input images are290

224 by 224 pixel RGB images of real world scenes. The dataset has 1,281,167

training images. Each class has at least 732 training images.

We trained a binary version of the Alexnet architecture [3], the same network

17



architecture that was used in the original BNN paper [24] as well as in the

XNOR-net paper [31]. The drop in accuracy for a BNN compared to a floating295

point network is much more severe on this dataset than on the small scale

datasets from the previous section. Training accurate networks with binary

weights and activations remains an open problem for large and complex datasets.

Table 3 shows a summary of the accuracies obtained by the different approaches.

The baseline Alexnet network with floating point operations achieves an accuracy300

of 56.6% (80.2% top 5). We report results for three binary neural network variants.

The BNN follows the binarization approach from [24]. We reimplemented the

network and training routine in Pytorch and were able to reproduce their results.

We then applied our Knowledge Transfer technique and obtained a slightly higher

accuracy (68.8% compared to 67.8%).305

For both XNORnet and Binary Weight Networks (BWN) we were unable to

exactly reproduce the results from [31] in Pytorch, probably because of different

data augmentations and normalization techniques. We again find that our

similarity based Knowledge Transfer technique results in slightly higher test

accuracies compared to our implementations that were trained from scratch.310

5. Conclusion and future work

In this work we introduced a novel Knowledge Transfer technique that uses the

similarity between intermediate representations to guide the training of a student

network based on a trained teacher network. We focussed on training binary

neural networks for image recognition but our technique is not limited to binary315

neural networks nor to image classification tasks. We showed that pretraining a

BNN with Knowledge transfer helps to obtain higher test accuracies compared

to training from scratch. Future work will focus on improving the results on

large scale datasets like Imagenet.

18



Table 3: Test accuracy of different Binary Neural network architectures on Imagenet.

Model Top 1 Top 5

Floating point weights and activations

Alexnet [3] 56.6% 80.2%

BNN: Binary weights and activations

Trained from scratch [24] 41.8% 67.1%

Trained from scratch (our implementation) 41.4% 67.8%

Trained with similarity based knowledge transfer (ours) 44.2% 68.8%

XNORnet: Binary weights and activations

Trained from scratch [31] 44.2% 69.2%

Trained from scratch (our implementation) 42.5% 68.0%

Trained with similarity based knowledge transfer (ours) 43.6% 68.7%

Binary Weight Networks (BNN): Binary weights, floating point activations

BWN-net [31] 56.8% 79.4%

BWN-net (our implementation) 53.6% 76.8%

BWN-net trained with similarity based knowledge transfer (ours) 54.6% 77.5%

Acknowledgements320

We gratefully acknowledge the support of NVIDIA Corporation with the donation

of GPU hardware used for this research.

References

[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized

neural networks: Training deep neural networks with weights and activations325

constrained to+ 1 or-1, arXiv preprint arXiv:1602.02830.

19



[2] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al., Predicting parameters

in deep learning, in: Advances in Neural Information Processing Systems,

2013, pp. 2148–2156.

[3] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep330

convolutional neural networks, 2012, pp. 1097–1105.

[4] J. Han, D. Zhang, G. Cheng, N. Liu, D. Xu, Advanced deep-learning

techniques for salient and category-specific object detection: a survey, IEEE

Signal Processing Magazine 35 (1) (2018) 84–100.

[5] J. Han, R. Quan, D. Zhang, F. Nie, Robust object co-segmentation using335

background prior, IEEE Transactions on Image Processing 27 (4) (2018)

1639–1651.

[6] G. Cheng, C. Yang, X. Yao, L. Guo, J. Han, When deep learning meets

metric learning: remote sensing image scene classification via learning

discriminative cnns, IEEE transactions on geoscience and remote sensing340

56 (5) (2018) 2811–2821.

[7] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,

R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A. Y. Ng, Deep speech:

Scaling up end-to-end speech recognition, CoRR abs/1412.5567.

URL http://arxiv.org/abs/1412.5567345

[8] S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordina-

tion for robotic grasping with deep learning and large-scale data collection,

CoRR abs/1603.02199.

URL http://arxiv.org/abs/1603.02199

[9] G. Cheng, P. Zhou, J. Han, Duplex metric learning for image set classifica-350

tion, IEEE Transactions on Image Processing 27 (1) (2018) 281–292.

[10] J. Han, G. Cheng, Z. Li, D. Zhang, A unified metric learning-based frame-

work for co-saliency detection, IEEE Transactions on Circuits and Systems

for Video Technology.

20

http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199
http://arxiv.org/abs/1603.02199


[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,355

A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in neural

information processing systems, 2014, pp. 2672–2680.

[12] L. A. Gatys, A. S. Ecker, M. Bethge, Image style transfer using convolutional

neural networks, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 2414–2423.360

[13] A. Karpathy, L. Fei-Fei, Deep visual-semantic alignments for generating

image descriptions, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 3128–3137.

[14] J. Schmidhuber, Deep learning in neural networks: An overview, Neural

networks 61 (2015) 85–117.365

[15] Y. LeCun, J. S. Denker, S. A. Solla, Optimal brain damage, in: Advances

in neural information processing systems, 1990, pp. 598–605.

[16] B. Hassibi, D. G. Stork, et al., Second order derivatives for network pruning:

Optimal brain surgeon, Advances in neural information processing systems

(1993) 164–164.370

[17] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections

for efficient neural network, in: Advances in Neural Information Processing

Systems, 2015, pp. 1135–1143.

[18] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural

networks with low rank expansions, arXiv preprint arXiv:1405.3866.375

[19] V. Sindhwani, T. Sainath, S. Kumar, Structured transforms for small-

footprint deep learning, in: Advances in Neural Information Processing

Systems, 2015, pp. 3088–3096.

[20] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, Y. Chen, Compressing

neural networks with the hashing trick., in: ICML, 2015, pp. 2285–2294.380

21



[21] V. Vanhoucke, A. Senior, M. Z. Mao, Improving the speed of neural networks

on cpus, in: Proc. Deep Learning and Unsupervised Feature Learning NIPS

Workshop, Vol. 1, Citeseer, 2011, p. 4.

[22] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding, in: In-385

ternational Conference on Learning Representations (ICLR’16 best paper

award), 2015.

[23] M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep

neural networks with binary weights during propagations, in: Advances in

Neural Information Processing Systems, 2015, pp. 3123–3131.390

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized

neural networks: Training neural networks with low precision weights and

activations, arXiv preprint arXiv:1609.07061.

[25] D. L. Gray, A. N. Michel, A training algorithm for binary feedforward neural

networks, IEEE Transactions on Neural Networks 3 (2) (1992) 176–194.395

[26] R. Sato, T. Saito, Stabilization of desired periodic orbits in dynamic binary

neural networks, Neurocomputing 248 (2017) 19–27.

[27] J. H. Kim, S.-K. Park, The geometrical learning of binary neural networks,

IEEE transactions on neural networks 6 (1) (1995) 237–247.

[28] F. Chen, G. Chen, Q. He, G. He, X. Xu, Universal perceptron and dna-like400

learning algorithm for binary neural networks: non-lsbf implementation,

IEEE transactions on neural networks 20 (8) (2009) 1293–1301.

[29] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training

by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.

[30] Y. Bengio, N. Léonard, A. Courville, Estimating or propagating gradients405

through stochastic neurons for conditional computation, arXiv preprint

arXiv:1308.3432.

22



[31] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet

classification using binary convolutional neural networks, in: European

Conference on Computer Vision, Springer, 2016, pp. 525–542.410

[32] A. G. Anderson, C. P. Berg, The high-dimensional geometry of binary

neural networks, arXiv preprint arXiv:1705.07199.

[33] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,

K. Vissers, Finn: A framework for fast, scalable binarized neural network in-

ference, in: Proceedings of the 2017 ACM/SIGDA International Symposium415

on Field-Programmable Gate Arrays, ACM, 2017, pp. 65–74.

[34] X. Sun, X. Peng, P.-Y. Chen, R. Liu, J.-s. Seo, S. Yu, Fully parallel rram

synaptic array for implementing binary neural network with (+ 1,- 1) weights

and (+ 1, 0) neurons, in: Proceedings of the 23rd Asia and South Pacific

Design Automation Conference, IEEE Press, 2018, pp. 574–579.420

[35] C. Bucilua, R. Caruana, A. Niculescu-Mizil, Model compression, in: Pro-

ceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2006, pp. 535–541.

[36] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,

arXiv preprint arXiv:1503.02531.425

[37] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio,

Fitnets: Hints for thin deep nets, arXiv preprint arXiv:1412.6550.

[38] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny

images.

[39] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,430

CoRR abs/1512.03385.

URL http://arxiv.org/abs/1512.03385

[40] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch.

23

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


[41] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, CoRR435

abs/1412.6980.

URL http://arxiv.org/abs/1412.6980

[42] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of Machine

Learning Research 9 (Nov) (2008) 2579–2605.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,440

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, Im-

ageNet Large Scale Visual Recognition Challenge, International Jour-

nal of Computer Vision (IJCV) 115 (3) (2015) 211–252. doi:10.1007/

s11263-015-0816-y.

24

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Related work
	Resource constrained deep learning
	Binary neural networks
	Knowledge distillation

	Similarity based knowledge transfer
	Experiments
	CIFAR10 and CIFAR100
	Qualitative results: Can we visualise the transferred knowledge ?
	Quantitative results: How does pretraining affects the test accuracy and training time ?

	ImageNet

	Conclusion and future work

