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State-of-the-art wireless Gateways (GW) used in Internet of Things (IoT) offer a single channel radio link,
which limits the capabilities of the IoT network controlled by the GW, as the GW can only use a single
channel at a time to communicate with the end-device(s). The quality of service (e.g., aggregate
throughput, latency) offered by a single channel GW could be substantially improved by employing a
multi-channel transceiver, which is capable of transmitting/receiving data on different radio channels
simultaneously, particularly for larger wireless networks. However, current solutions available in both
research and commercial communities only offer multi-channel receiver capabilities, and do not incorpo-
rate the multi-channel transmitter part. In addition, in terms of implementation, these multi-channel
receivers duplicate single-channel hardware functionality. In this paper, for the first time, a novel
concurrent multi-channel virtual transceiver is introduced. The virtual transceiver offers multi-channel
capabilities and uses the same single-hardware hardware implementation for the Physical (PHY) layer
by employing the virtualization technique. This new virtual transceiver concept is demonstrated for an
IEEE 802.15.4 based 8 � 8 channel transceiver, implemented on an Field Programmable Gate Array
(FPGA) of a modern Software Defined Radio and is compared with the existing duplication approach.
The duplication approach consumes 9008 LUTs, and 12120 FFs, whereas the proposed approach occupies
only 2959 LUTs and 2105 FFs, saving 67.15% LUTs and 82.63% FFs in comparison with the duplication
approach. The experimental results reveal that the virtual transceiver provides the same performance
(e.g., receiver sensitivity of �98.5dBm) as the transceiver achieved by duplicating the PHY layers but
consumes much less hardware resources.
� 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Internet of Things (IoT) is a technology that interconnects
things (e.g., objects, machines, etc.) and allows them to exchange
information with each other with or without human intervention.
No matter what type of IoT applications are considered, the IoT
infrastructure in general consists of: (1) smart end-devices capable
of processing, sensing, and actuating the environment, which are
connected to the cloud via a network device with gateway capabil-
ities (further referred to as IoT Gateway or IoT GW), (2) a IoT GW
which manages the bidirectional traffic between smart devices
and the cloud (or internet), (3) an data server infrastructure in
the cloud responsible for storing, analysing, and processing the
huge amount of data in real time, and (4) a user interface which
is tangible, visible and accessible by users [1].

While the number of end-devices connected with the Internet
in IoT network has proliferated significantly, currently, an IoT
GW is the sole way of connecting them with the internet. It is
mostly equipped with a single channel Transceiver (TRX), which
is only capable of communicating with end-device(s) over a single
channel at a time, which often appears to be a bottleneck. The
single-channel TRX is adequate for point-to-point communication
or for the scenario in which the number of smart devices directly
connected with the IoT GW is limited. A single channel TRX based
GW adversely affects the performance (in particular in terms of
latency and throughput) of an IoT network when multiple smart
devices try to access the GW at the same time. One way to improve
the performance of the GW is to use concurrent multi-channel TRX.
The advantage of the multi-channel TRX is that it has the capacity
to transmit/receive data on more than one channel simultaneously.
Such a multi-channel TRX will certainly outperform a single-
channel TRX when a large number of devices are connected. It is
important to note that the multi-channel TRX is different from a
multi-band TRX. A concurrent multi-band TRX operates simultane-
ously in different frequency bands (e.g., 2.4 GHz or 5 GHz band),
but utilizes a single channel in each band at a time [2]. While,
the multi-channel TRX utilizes multiple frequency channels within
a single frequency band.
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There are already many multi-channel radio sniffers available in
the IoT networks, which can receive data on multiple channels
simultaneously. These sniffers are achieved either by using many
single channel commercial off-the-shelf chips or by duplicating
the same hardware on a Software Defined Radio (SDR) [3,4]. An
SDR is a radio communication system on which the radio’s compo-
nents are implemented in software on a host-computer or on a
programmable hardware device (e.g., Field Programmable Gate
Array (FPGA), etc.). Since the sole purpose of these multi-channel
solutions is sniffing packets on the channels, they do not incorpo-
rate a multi-channel transmitter. The solutions do not only lack
multi-channel transmitter part, but also underutilize the potential
processing capabilities of a modern SDR or Application Specific
Integrated Chip (ASIC). For example, the parallel processing feature
of the FPGA in a modern SDR enables it to process the data at a rate
far higher (e.g., the FPGA in Zynq 7000 can provide a maximum
DSP performance of 3,634 Giga Multiply-Accumulates per Second
(GMACS) [5]) than that required by the wireless protocols in IoT
(e.g., IEEE 802.15.4 standard in the 2.4 GHz band demands about
2.1 GMACS). It is worth noting that the value of 2.1 GMACS for IEEE
802.15.4 is calculated by recompiling the works implemented in
[6,7].

In this paper, to our best knowledge, we introduce for the first
time a complete multi-channel TRX capable of both transmitting
and receiving the data on multiple channels concurrently. We have
applied Hardware Virtualization (HV) in our multi-channel TRX
prototyping by fully exploiting the high processing capability of a
modern SDR platform. HV is a technology that allows users to cre-
ate multiple logical instances from a single physical instance
implemented on hardware. It enables us to use the same hardware
of single channel TRX for multiple channels with only a limited
amount of extra logic added to manage the virtualization overhead.

To this end, we have prototyped the 8 � 8 multi-channel TRX on
an SDR in two approaches:

� The Hardware Duplication (HD) approach, in which we have
simply duplicated the hardware of a single channel IEEE
802.15.4 compliant TRX for multiple channels on the SDR. The
HD approach is implemented as a benchmark to evaluate the
proposed approach.

� Our proposed Hardware Virtualization (HV) approach, in
which we have used the same hardware of single channel TRX
for multiple channels, with some extra logic added to manage
the virtualization overhead.

By prototyping and comparing these two approaches, it is vali-
dated that the HV approach is not only efficient in terms of hard-
ware utilization but also provides the same performance as the
HD approach.
2. Related work

In the first section, SDR based multi-channel solutions pre-
sented in the literature are investigated. Next, commercially avail-
able state-of-the-art chipset based solutions are discussed.
2.1. SDR based solutions

An IEEE 802.15.4 multi-channel Receiver is described in [3].
This solution uses USRP2 [8] to capture the packets of 5 contiguous
channels located in the 2.4 GHz ISM band. Further, a dedicated Dig-
ital Down Converter (DDC) and demodulator is implemented for
each channel in GNU Radio [9]. The major downside of the solution
is that it allocates a dedicated DDC and demodulator for each chan-
nel. The duplication of these processing modules increases the load
on a Central Processing Unit (CPU), which can cause samples of
USRP to overflow and packets not being decoded. Yohe and co-
authors [10] have presented Multi-Protocol Access Point (MPAP),
HV Architecture for Heterogeneous Wireless APs. In this work, an
802.11 g and two 802.15.4 radio receivers are integrated on the
Sora platform [11], where IQ samples received by wide-band Radio
Frequency (RF) front-end are fed into multi-core Personal Com-
puter (PC). The PHY and upper layers of the respective standards
are running on the PC. The incorporation of the PC not only makes
the platform inappropriate for the solutions acquiring ultra-low
latency (e.g., factory automation) but also causes it to be costly
and bulky. Jiao et al. [12] has applied radio HV on System on Chip
(SoC), where DDC banks, related PHY layers are implemented in
FPGA, and corresponding scheduling software is running on an
embedded processing unit. The authors claim that the design can
decode 2 Wi-Fi and 8 IEEE 802.15.4 channels concurrently, but
the implementation is limited to preamble detection. In other
words, it does not decode the complete packets of the protocols.

2.2. Commercial radio transceiver based solutions

A Multi-channel packet sniffer is developed in [4], where multi-
ple IEEE 802.15.4 based commercial off-the-shelf radio are adopted
to capture the packet. The architecture inherits two disadvantages:
(1) it employs a dedicated radio device for a channel and all the
devices have their own clock source, leading to the addition of a
time synchronizer to overcome clock drifting, and (2) non-
compact, because the developer has to use a separate commercial
radio for each channel. Similarly, a special probe has been intro-
duced for multi-channel packet sniffer in [13]. The probe is com-
posed of an FPGA to act as a supervisor, and 15 IEEE 802.15.4
compliant commercial radios. In order to maintain the synchro-
nization among the radio radios, a common clock source is imple-
mented in FPGA. The probe has fixed the clock drifting issue, but it
still have the above-mentioned non-compact issue. A multichannel
Wi-Fi sniffer able to decode multiple consecutive channels in
2.4 GHz and 5 GHz is designed by Pradeep and his colleagues
[14]. They have also employed a dedicated commercial chip for
each channel.

In summary, there exists two categories of related work for our
multi-channel transceiver, i.e. the solutions based on SDR and the
solutions based on commercial chipsets. In both categories, there is
no candidate capable of multi-channel transmission, all solutions
are receiver only. The receivers on multiple channels are achieved
by duplicating software/hardware modules, leading to (i) the con-
sumption of extra resources, (ii) the increase of cost and form fac-
tor (in the case of commercial chipset based solution), and (iii)
possibly extra complications such as the need to overcome clock
drifting across multiple hardware platforms. The novelties of our
solution are following:

� Our solution CMCVT consists of a single PHY implemented on
FPGA of an SDR. It is capable of both transmit and reciver.

� The concurrent multi-channel operation is achieved by HV,
taking full advantage of the high processing capabilities of the
modern SDR.

� Lastly, because the CMCVT is working on a single device, it does
not have the clock drifting/synchronization issue.

3. SDR based Concurrent Multi-Channel Virtual Transceiver

A multi-channel TRX obtained by using HD approach is referred
to as Conventional Multi-Channel Transceiver (CMC-TRX) and is
used as a reference for comparison; while our proposed Concurrent
Multi-Channel Virtual Transceiver (CMCVT) is achieved by using
the HV approach. Fig. 1 highlights a general comparison between
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the reference HD approach and our HV approach. The common
components shared in both approaches are wideband RF front-
end, upper layers running on a processor, Digital Up Converter
(DUC) which converts the baseband signal to some Intermediate
Frequency (IF) signal, and DDC which converts IF signal back to
the baseband signal. The main differences between the HD and
the HV based architectures is the implementation of Baseband Pro-
cessing Unit (BBPU) of the PHY layer. As depicted in Fig. 1(a), the
HD approach assigns a separate BBPU to each channel, while in
HV approach, the same BBPU is timely shared among multiple
channels. We apply the overclocking concept in the HV approach:
the PHY layer is running at N � CLKbb, where N and CLKbb represent
the number of channels and baseband data rate of a wireless stan-
dard (e.g., 250kbps is the CLKbb in IEEE 802.15.4 standard),
respectively.

Fig. 1(b) elaborates the internal block diagram of HV approach
for CMCVT (see yellow box in Fig. 1). We propose three simple
but effective steps to convert any single channel transceiver into
HV based multi-channel transceiver: (1) obtain a single channel
PHY layer of any wireless standard. For this paper, we have recom-
piled and modified the existing single channel implementation
[6,7] written in Hardware Descriptive Language (HDL) of IEEE
802.15.4 standard [15]. Without the loss of generality, among the
three different PHY modes (i.e., 20 kbps, 40 kbps, 250 kbps) spec-
ified in the standard, we have chosen the PHY layer of data rate
250kbps functioning in 2.4 GHz band for the implementation. It
is worth mentioning that the chosen PHY layer uses Orthogonal
Quadrature Phase Shift Keying (O-QPSK) as a modulation scheme,
Fig. 1. A block diagram showing a general comparison between (a) the duplication appro
to implement the multi-channel transceiver.

Fig. 2. A detailed diagram showing all the mod
(2) Identify and expose the context saving and restoring signals
involved during context switching of the single channel PHY layer.
Context switching is a commonly used technique in CPU domain in
which context or states of a process are stored so that they can be
restored at a time when CPU resumes the execution of the process.
The context switching is a feature of multitasking, which enables a
CPU to be shared by multiple processes. (3) Implement a Context
Switching Finite State Machine (CS-FSM) for the context switching.
The FSM is the most important part of our HV approach. It is
responsible for the correct functioning of the CMCVT. These three
simple steps enable us to convert CMCVT from a conceptual idea
into a real-life solution. It is obvious that each CMCVT’s PHY layer
can be further decoupled into transmitter’s PHY and receiver’s PHY
layers, both are detailed in the following sections.

3.1. Physical layer of the Multi-Channel Virtual Transmitter

A detailed diagram of the Multi-Channel Virtual Transmitter
(MCVT) is elaborated in Fig. 2. The PHY layer of MCVT imple-
mented in FPGA is composed of DUC bank, and BBPU.

3.1.1. The working flow of the Multi-Channel Virtual Transmitter’s PHY
layer

The working flow of the MCVT is as follow:

� The Medium Access Control (MAC) layer running on the embed-
ded Processor System (PS) configures the BBPU and the RF
front-end (see control path in Fig. 2). For instance, the sampling
ach to implement the multi-channel transceiver and (b) the proposed HV approach

ules involved in realization of the MCVT.



4 M. Aslam et al. / Int. J. Electron. Commun. (AEÜ) 120 (2020) 153230
frequency, bandwidth of the RF front-end, and the number of
potential channels on which data is to be transmitted in BBPU
are amongst the configurable parameters.

� Then, the MAC layer starts sending data to BBPU through DMA
(see data path in Fig. 2). The BBPU keeps storing the data into
Random Access Memory (RAM), until it receives the corre-
sponding data of all the channel(s) defined in step (1).

� Lastly, the BBPU initiates the transmission, and by generating
interrupts, it updates the MAC layer about the status of
transmission.

3.1.2. Implementation of the Multi-Channel Virtual Transmitter’s PHY
layer

The HV is applied for the BBPU. Instead of allocating a separate
BBPU for each channel, the HV allows to utilize the same BBPU for
multiple channels. We leverage expertise in multitasking, pipelin-
ing, and multi-clock domains to achieve virtualization of the BBPU.
The technologies are detailed in the following sub-sections.

3.1.2.1. Multitasking. Similar to multitasking in CPU, our design also
inherits the context storing-restoring problem. In principle, any
functional block/program that has delay, memory, pipeline, and
internal states in multitasking requires context saving and restor-
ing operation. To this end, we introduce a CS-FSM and Block RAM
(BRAM) in our design (as shown in Fig. 2). In the BBPU, we have
identified that only three modules require context switching,
namely: data FSM (due to internal states), Cyclic Redundancy
Check (CRC) (due to memory), and chip to sample (due to delay).
After each processing time unit, hereafter referred to as a tick,
the context of these modules needs to be saved and the context
for next channel needs to be restored. The CS-FSM is responsible
for all these operations. Fig. 3 shows the state diagram of the
FSM. At the beginning, the FSM enters into the first state (indicated
by state 0 in the Fig. 3) when an ‘Enable’ signal is high. Then, the
Fig. 3. The state diagram of context switching finite state machine.

Fig. 4. Applying pipelining in the Mu
FSM instructs the BBPU to start processing the data, meanwhile
it enables corresponding BRAM in the BRAM bank (see Fig. 2)) to
read/write the IQ samples. After a tick, the FSM enters into second
state (indicated by state 1 in Fig. 3) and during the transition, it
stores states of the current channel and restores states of the next
channel. The FSM keeps the record of the current and next channel
number in an 8 bit register (indicated by ‘ch’ in the Fig. 3). When
channel number reaches maximum supported channels (indicated
by ‘Max_ch’ in the Fig. 3), FSM is wrapped around to the first chan-
nel. Instead of using a dedicated state for each channel, the FSM
always has three states, irrespective to the number of channels
that the MCVT supports. This FSM design ensures the correct oper-
ation of the MCVT and at the same time offers high efficiency in
terms of hardware utilization.

3.1.2.2. Pipelining. Taking advantage from the modular structure,
we have further included pipelining in the BBPU. The pipelining
helps to reduce the clock overhead caused by context saving and
restoring operations. An example of pipelining for n channels is
illustrated in Fig. 4, where horizontal axis represents the time
and vertical axis reflects the modules of the BBPU. At t0 time,
CRC and multiplexer module (indicated by M0 in Fig. 4) begins pro-
cessing the data of First Channel (CH1). After a tick (i.e., the time
equivalent of processing 256 IQ samples), M0 switch to CH2,
meanwhile the byte to symbol module (indicated by M1 in Fig. 4)
is enabled for CH1. During the third tick (i.e., after t3), all the mod-
ules are busy in processing the data of consecutive channels. The
output of the chip to sample(indicated by M3 in Fig. 4) module is
stored into BRAM, which decouples the BBPU from the DUC bank.
M3 generates 256 symbols after each tick. There is a separate
BRAM for each channel with each BRAM has the capacity to store
512 symbols. The BRAM behaves as a ping pong buffer, which
means the RAM can accept new symbols in the 257–512 locations
while sending out symbols in the first 256 locations, and vice versa.
This configuration prevents the DUC of a channel from processing
the wrong IQ symbols.

3.1.2.3. Multi-clock domains. To meet the critical constraints of the
specific standard, the MCVT uses three different clocks as indicated
in Fig. 2: (1) the clock specified for control and data paths, which is
100 MHz in our design (2) the clock at which BBPU is operation,
running at N � CLKbb (CLKbb is 8 MHz in our design), and (3) the
clock at which each DUC in DUC bank reads the data from ping
pong BRAM at CLKbb rate. Due to multi-clock domains, the MCVT
is prone to metastability. To mitigate the metastability situation,
we have introduced 2-flop synchronizer and dual port BRAM for
single-bit, and multi-bit data signals, respectively.

3.2. Physical layer of the Multi-Channel Virtual Receiver

Unlike MCVT, turning the Multi-Channel Virtual Receiver
(MCVR) from conceptual idea into a working solution is way more
lti-Channel Virtual Transmitter.
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challenging. Almost all the modules constituting the BBPU of
MCVR needs context saving and restoring, adding extra complexity
in the architecture. A detailed diagram of the MCVR is presented in
Fig. 5, where the corresponding PHY layer incorporates BBPU and
DDC bank is realized in FPGA.

3.2.1. The working flow of the Multi-Channel Virtual Receiver’s PHY
layer

The working flow of the MCVR is as follows:

� After the configuration of PHY layer and RF front-end by the
upper layer (indicated by control plane in Fig. 5), the DDCs of
corresponding channels in DDC bank first shift the center fre-
quency of IQ samples, down sample and then write the incom-
ing samples to the BRAMs.

� The BBPU begins to decode the samples read from the first
BRAM ping pong buffer.

� After a tick (i.e., the time equivalent of reading 8 IQ samples),
the ‘‘sample reading multiplexer” switches to the second BRAM,
meanwhile CS-FSM concurrently performs context saving for
the current channel and restoring for the subsequent channel.

� In order for the upper layer to recognize to which channel an
incoming packet belongs to, the BBPU appends one extra byte
to the decoded data representing the channel number.

3.2.2. Implementation of the Multi-Channel Virtual Receiver’s PHY
layer

Similar to MCVT, the HV is only applied on BBPU of MCVR. Like-
wise, the MCVR has benefitted frommulti-clock domain, pipelining
and multitasking, which together alleviate the clocks overhead
added during context saving and restoring. All these technologies
are already thoroughly explained in MCVT’s implementation sec-
tion. In addition to the implementation of MCVR, it requires an
Automatic Gain Controller (AGC) for each channel that tunes the
signal strength to compensate for channel-specific losses and fad-
ing required for proper decoding. Since the analog AGC (see RF
front-end in Fig. 5) of the used RF front-end works on the wide-
band RF signal, it is observed that it fails to provide enough signal
strength for each channel required to accurately decode it. The
descried issue is mitigated by implementing a dedicated digital
AGC for each channel (see DDC bank in Fig. 5), which together with
analog AGC enables the MCVR to correctly decode the data in all
possible situations.

4. Results and discussions

We have combined the MCVT and MCVR into the CMCVT, in
which the corresponding BBPUs can independently transmit/re-
ceive data on multiple channels. The SDR chosen in the particular
Fig. 5. A detailed diagram showing all the mod
setup is composed of ZedBoard [16] and FMCOMMS2 board [17].
ZedBoard is a low-cost development board for the Xilinx Zynq
7000 SoC [18] and the SoC is further comprised of Programmable
Logic (PL) (an alternative term for FPGA) and PS. The PHY layers
of CMCVT are implemented in the PL part, while FMCOMMS2
board is used as analog RF front-end. A single channel TRX pro-
posed in [6] is used as a building block to implement a multi-
channel TRX. Since the sampling rate of the TRX in [6] is 8 MHz
and maximum sampling rate supported by FMCOMMS2 is
64 MHz, the implementation of CMCVT is restricted to 8 parallel
channels. Similarly, the implementation uses the same Digital to
Analog Converter (DAC) in MCVT multi-channels decreasing the
transmission power on each channel.

The CMC-TRX, used as a benchmark for comparison, is realized
by duplicating the single channel TRX in [6]. Like every design in
FPGA, our BBPUs have logic and memory parts. The logic part of
a design is mapped on Look-up Table (LUT) and Flip-Flop (FF),
whereas the memory part is placed on RAM. The comparison
between hardware utilization efficiencies of CMCVT and CMC-
TRX is performed in terms logic and memory consumption. Instead
of directly comparing the hardware utilization of CMCVT with
CMC-TRX, MCVT and MCVR are separately compared against their
corresponding conventional counterparts. The efficiency shown is
calculated by using Eq. (1); it represents the improvement in hard-
ware resource utilization of CMCVT relative to CMC-TRX.

Improved Efficiency ¼ HWconv � HWour

HWconv

� �
� 100 ð1Þ

where HWconv and HWour represents the hardware consumed by the
duplication and our approaches, respectively, and HW can be LUT,
FF or RAM.

4.1. Evaluation of logic consumption

Table 1 depicts the comparison of hardware utilization effi-
ciency of our MCVR against Conventional Multi-Channel Receiver
(CMCR) obtained by using HD approach, while Table 2 illustrates
the comparison of our MCVT against Conventional Multi-Channel
Transmitter (CMCT). It is noteworthy that the tables only contain
LUTs and FFs (i.e., they only include logic parts of the respective
designs). It can be seen from Tables 1 and 2 that the benefit of
the proposed HV approach is more pronounced for higher number
of parallel channels. Under the setting of 2 channels, our approach
interestingly provides either negative (in MCVR case) or slightly
improved (in MCVT case) efficiency. The degraded efficiency for
the particular case is expected, because our approach involves con-
text storing-restoring, which requires extra logic. However, most
part of the extra logic do not change as the number of parallel
channels increases, resulting in more improvement in the hard-
ules involved in realization of the MCVR.



Table 1
A comparison of hardware utilization efficiency of CMCR and our MCVR in term of
logic consumption.

Channels Resource CMCR MCVR Improved Efficiency

1 LUTs 854 854 0
FFs 1073 1073 0

2 LUTs 1708 2128 �24.59
FFs 2146 1412 34.20

4 LUTs 3416 2168 36.53
FFs 4292 1432 66.64

8 LUTs 6832 2220 67.51
FFs 8584 1464 82.95

Table 2
A comparison of hardware utilization efficiency of CMCT and our MCVT in term of
logic consumption.

Channels Resource CMCT MCVT Improved Efficiency

1 LUTs 272 272 0
FFs 442 442 0

2 LUTs 544 532 2.21
FFs 884 565 36.09

4 LUTs 1088 619 43.11
FFs 1768 593 66.46

8 LUTs 2176 739 66.04
FFs 3536 641 81.87

Table 3
A comparison of BRAM utilization of CMCR, MCVR, CMCT, and MCVT.

Channels Resource CMCR MCVR CMCT MCVT

1 BRAMs 0.5 0.5 0.5 0.5
2 BRAMs 1 2 1 2
4 BRAMs 2 3 2 3
8 BRAMs 4 5 4 5
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ware utilization efficiency for higher number of channels. It is log-
ical that the best case is achieved for 8 channels, where MCVR
saves 82.95% FFs and 67.51% LUTs as compared to CMCR (shown
in Table 1), and MCVT reduces 81.87% FFs and 66.04% LUTs as com-
pared to CMCT (shown in Table 2).
Fig. 6. Magnitude response of FIR used in DDC of the CMCVT. Where, double precision and
of CMCVT, respectively.
4.2. Evaluation of memory consumption

The PL part incorporates two types of RAMs; Distributed RAM
(DRAM) and BRAM. LUTs can be configured as either logic or
DRAM. In contrast to DRAM, BRAMs are dedicated RAMs and are
located at fixed positions in FPGA. It is generally recommended
to map memory part of the design on BRAM, so that more LUTs
and FFs would be available for logic implementations. We there-
fore have mapped the memory parts of the designs onto BRAM.
The BRAMs consumed in the design for different number of chan-
nels are summarized in Table 3. There are 140 BRAMs of size 36 Kb
in ZedBoard FPGA, and the numbers in Table 3 represent the num-
bers of utilized 36 Kb BRAMs. In contrast to CMC-TRX that employs
a single memory (as shown the data BRAM in Figs. 2 and 5) to
read/store the packets, the CMCVT includes two extra memories;
a context switching BRAM to store and restore the states of corre-
sponding modules of the BBPU every time the BBPU switches to a
new channel, and a Ping Pong BRAM to store the incoming/outgo-
ing samples for further processing. Although these extra BRAMs
potentially deteriorate the memory utilization efficiency of our
approach, the increment is not significant. Our approach uses at
most one extra BRAM than the duplication approach, as shown
in Table 3.
4.3. Multi-channel receiver sensitivity measurement and analysis

Fig. 6 shows the magnitude response of Finite Impulse Response
(FIR) used in the DDC of the CMCVT. It can be seen from the Fig. 6
that the FIR provides an attenuation for more than �33 dB after
5 MHz. The IEEE 802.15.4 standard defines a channel spacing of a
5 MHz among the adjacent channels when operating in 2.4 GHz
band. Further, the values of adjacent and alternate channel inter-
ference rejection defined in the standard are 0 dB and 30 dB,
respectively. Thus, the FIR provides the required adjacent channel
interference rejection to our receiver during decoding the data
from multiple channels simultaneously. Moreover, we have mea-
sured the receiver’s sensitivity according to the requirements
defined in IEEE 802.15.4 standard [15]. The input power at which
the Packet Error Rate (PER) drops to 1% is termed as the sensitivity
of a receiver. We have transmitted 50,000 packets with each con-
taining 20 bytes in the air. The original implementation [6] has a
receiver sensitivity of �98.5dBm and we have implemented 8
fixed point magnitude responses are used as a reference and in the implementation



Fig. 7. Sensitivity measurements on all 8 channels of the multi-channel virtual receiver.
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concurrent channels in MCVR by modifying the existing single
channel receiver. We thus expect the same sensitivity values on
all the 8 channels of the MCVR. To this end, we have measured
the PER for each channel under a range of received power (in
Fig. 8. An experimental setup for the real time validation of CMCVT.

Fig. 9. Power spectrum view captured by a USRP B200 mini when the SDR

Fig. 10. Packets decoded by the SDR when it is rece
dBm). It can be seen in Fig. 7 that all 8 channels of the MCVR have
the same sensitivity value which is �98.5 dBm. Fig. 7 however
shows a minor difference of PERs among different channels. It is
because the measurements are done on a real-life setup, and it is
hard to achieve the same PERs even for the same channel.

4.4. Proof of concept experiment

After discussing the hardware utilization and sensitivity results
of the CMCVT, an experiment is performed to validate the virtual
TRX. To this end, two SDRs are used, each consisting of a ZedBoard
and an FMCOMMS2 (see Fig. 8). A USRP B200 mini [8] is used to
visualize the wideband power spectrum when CMCVT is transmit-
ting concurrently on 8 channels. The power spectrum view is
shown in Fig. 9, where the envelope of 8 signals are clearly visible.
It shows that CMCVT is capable of transmitting data on multiple
channels concurrently. Fig. 10 has displayed the packets decoded
by the other SDR. As explained before, BBPU appends one extra
(i.e., in MCVT mode) is sending packets on all 8 channels concurrently.

iving the packets from 8 consecutive channels.
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byte to the decoded packets to indicate the channel number (red
box in Fig. 10). The second byte indicates the packet length as is
defined in the standard (green box in Fig. 10), and the rest are
the payload of PHY layer.

5. Conclusions

This paper introduces a multi-channel virtual TRX architecture,
leveraging the concept of HV and the high processing capability of
FPGAs or ASICs in modern communication devices. Instead of allo-
cating a dedicated transceiver for each radio channel, our TRX cre-
ates multiple logical transceivers based on a single physical
transceiver. Such a design and implementation is highly efficient
in terms of hardware utilization, hence effectively reducing the sil-
icon footprint in ASIC design. To validate this new concept, we have
prototyped an IEEE 802.15.4 complaint multi-channel virtual TRX
on an SDR. The virtual TRX behaves as multiple dedicated transcei-
vers, which can independently transmit/receive data on up to 8
channels. Experimental evaluation of our virtual TRX reveals that
it holds the same performance as the multiple physical TRXs on
different channels, but 82.63% FFs and 67.15% LUTs hardware
resources can be saved for the particular case of 8 channels.

Our proposed method is generic, easy to implement and can
therefore be applied on any existing or future wireless standards
in IoT domain. Any single channel TRX can be easily virtualized
by performing the following 2 steps: (1) identify the context saving
and restoring signals from the original design, (2) add an extra FSM
and RAM for context storing and restoring operations. We have
verified our HV concept in a single antenna scenario, but also other
emerging wireless technologies can benefit from hardware virtual-
ization, such as non-orthogonal multiple access and massive
multiple-input multiple-output. As virtualization is entirely
applied on the digital side of a transceiver, it fully is transparent
to the RF part. In the future, we are planning to extend the pro-
posed method for virtualization towards other wireless standards,
and also the upper layers of the communication stack.
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