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ABSTRACT4

Earned Value Management (EVM) and Earned Duration Management (EDM) are established5

methodologies to monitor the project performance during execution. These methods serve as a ba-6

sis to forecast the final project duration and/or project cost. The aim of this paper is to improve the7

accuracy of project time forecasting by extending exponential smoothing for project time forecast-8

ing using EVM and EDM with the integration of corrective actions that are taken during project9

progress. In order to evaluate the forecasting accuracy of this approach, eight projects conducted in10

recent years have been followed up in real-time. Based on the nature of the observed corrective ac-11

tions, six distinct categories of corrective actions are identified. The empirical experiment showed12

that explicitly integrating the occurrence of corrective actions into the forecasting process improves13

the forecasting accuracy of traditional forecasting methods and forecasting methods using standard14

exponential smoothing, especially for the middle and late phases of projects. Consequently, by in-15

cluding corrective actions in the forecasting process, project managers can predict the final project16

duration more accurately.17
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INTRODUCTION19

Due to uncertainty and risks during project execution, deviations from the project plan are20

inevitable. These deviations often result in late project delivery. Since timely project completion21

is an essential factor for project success, project time forecasting is an important aspect of project22

management.23

The well-known project monitoring methodology Earned Value Management (EVM, Fleming24

and Koppelman (2010)) is often used to obtain accurate project duration forecasts (Vandevoorde25

and Vanhoucke 2006; Wauters and Vanhoucke 2017; Batselier and Vanhoucke 2017). EVM pe-26

riodically monitors the project performance during execution by comparing the actual progress,27

i.e., the Earned Value (EV, in monetary units), to the planned progress, i.e. the Planned Value (PV,28

in monetary units). Since the EV and PV are both cost-based measures, the EVM time forecasts29

depend on the duration and cost of the project activities. To overcome this issue, Earned Dura-30

tion Management (EDM, Khamooshi and Golafshani (2014)) has been introduced as a completely31

time-based adaptation of EVM. Recently, several studies have used EDM rather than EVM as a32

basis for project time forecasting (Khamooshi and Abdi 2016; de Andrade et al. 2019).33

In literature, EVM/EDM forecasting methods have been proposed that make use of the past34

performance of the project itself or of the progress of similar historical projects. These historical35

projects should have a high degree of similarity with the project in order to achieve a high forecast-36

ing accuracy (Batselier and Vanhoucke 2017). Since historical data are not always readily available37

to the project manager and a robust methodology to define a high degree of similarity has not yet38

been clearly defined, these techniques cannot always be applied (Batselier and Vanhoucke 2016).39

This issue is avoided by using forecasting methods that use the past performance as an indicator40

for future project performance.41

However, the past performance is not always a realistic indicator for future performance. More42

precisely, the current performance might be affected by natural improvements (e.g. due to learn-43

ing and productivity improvements) or managerial interventions (i.e. corrective actions taken on44

a limited number of activities to get the project back on track) (Batselier and Vanhoucke 2017).45
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Therefore, Leon et al. (2018) developed a system dynamics model to simulate intervention sce-46

narios by the project manager and forecast their impact on several project performance indicators.47

Further, exponential smoothing, a time series forecasting technique that assigns greater weights to48

recent observations, has been applied for project time forecasting by Khamooshi and Abdi (2016)49

and Batselier and Vanhoucke (2017) to account for these effects.50

When corrective actions have been taken in recent periods and large weights are assigned to51

these periods to apply exponential smoothing, too optimistic forecasts might be produced. In this52

paper, a project time forecasting method is introduced that accounts for the impact of managerial53

interventions in order to improve the forecasting accuracy by applying exponential smoothing with54

adaptive smoothing parameters. More specifically, adequate smoothing parameters will be selected55

to account for the impact of managerial interventions during project execution of the final project56

duration. In order to evaluate the performance of this approach, eight projects were monitored57

in real-time during recent years. The empirical experiment on these projects was executed to58

determine the most appropriate smoothing parameters during project progress and to assess the59

accuracy of the proposed approach compared to the standard project time forecasting formulas for60

EVM and EDM and to the forecasting formulas for EVM and EDM with exponential smoothing.61

The contribution of this paper is thus twofold. First, the type and timing of corrective actions62

taken during project execution have been documented by following up eight projects in realtime.63

The observed corrective actions have been classified in six categories. To the best of our knowl-64

edge, this information has not been documented before, although it affects the project outcome65

(Leon et al. 2018). Accordingly, future research studies can include this enhanced project data66

information to empirically validate their project control methods. Second, the effect of these cor-67

rective actions has been integrated in the project time forecasting process by applying exponential68

smoothing with an adaptive smoothing parameter in order to obtain more accurate project duration69

forecasts. By including this information in the project forecasting process, project managers can70

thus obtain a more accurate prediction of the final project duration.71

3 Martens, February 17, 2020



LITERATURE REVIEW72

Since project time forecasting methods use the actual project progress during execution, the73

project performance should be monitored during execution. The moments at which the project74

performance is measured are referred to as tracking periods. When the project performance at a75

tracking period is unacceptable according to the project manager, they take corrective actions to get76

the project back on track. This process is referred to as project monitoring and control. Further, the77

final project duration can be forecasted using the project performance information. This process78

is referred to as project time forecasting. In the remainder of this section, these aspects, which are79

identified as critical factors to improve the reliability of project control metrics (Orgut et al. 2020),80

are discussed in greater detail.81

Project monitoring and control82

Project monitoring entails measuring the actual project progress periodically and comparing83

this progress to the project plan to detect potential problems in a timely manner. Two established84

project monitoring methods that are used for project time forecasting are discussed in this section,85

namely Earned Value Management/Earned Schedule (EVM/ES) and Earned Duration Management86

(EDM).87

EVM is a project monitoring methodology that measures the actual progress of projects in88

monetary units and constructs performance metrics for the cost and schedule progress by compar-89

ing the actual progress to the baseline planned progress. For an extensive overview on the concepts90

of EVM, the reader is referred to Vanhoucke (2010a) and Fleming and Koppelman (2010).91

Since the EVM key indicators are all expressed in monetary units, the EVM schedule perfor-92

mance metrics, the Schedule Variance (SV) and Schedule Performance Indicator (SPI), are known93

to behave unreliably towards the end of the project. (Lipke 2003b; Henderson 2003; Corovic 2006)94

To overcome this issue, Lipke (2003b) introduced the Earned Schedule (ES) concept to monitor95

the schedule progress in time units. The corresponding schedule performance metric, the SPI(t)96

(= ES
AT ), measures the schedule performance of projects by comparing the ES to the actual time97

AT. However, while the ES translates the EV of a given time t into time units, it is still based on98
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the cost-based EVM metrics. Therefore, EDM has been developed by Khamooshi and Golafshani99

(2014) as a time-based project monitoring methodology. They introduced the Earned Duration100

concept ED, which is the completely time-based equivalent of the ES. The EDM equivalent of101

the EVM/ES schedule performance indicators is the Duration Performance Indicator DPI (= ED
AT ),102

which compares the ED to the actual time AT.103

An overview of developments in and extensions to EVM/ES and EDM is provided in Willems104

and Vanhoucke (2015). Recent extensions aimed at integrating time and cost incentives (Kerkhove105

and Vanhoucke 2017) and controlling the environmental performance of projects (Abdi et al. 2018).106

Further research efforts focused on generating warning signals for delayed projects (Martens and107

Vanhoucke 2017; Colin et al. 2015).108

When the project progress is not acceptable to meet the final project requirements, the project109

manager should take corrective actions to get the project back on track. In literature, three types of110

corrective actions are distinguished, namely fast tracking, activity crashing and variability reduc-111

ing. First, fast tracking entails overruling the original network structure of the project to reduce112

the total project duration, by executing precedence-related activities partially in parallel (Krishnan113

et al. 1997; Vanhoucke and Debels 2008; Ballesteros-Pérez 2017). Further, activity crashing is a114

technique to reduce the project duration by spending more money to reduce the duration of cer-115

tain activities (Vanhoucke 2010b; Vanhoucke 2011; Hu et al. 2016). Finally, variability reducing116

consists of reducing the variability of activity durations by applying effort to control them (Madadi117

and Iranmanesh 2012; Martens and Vanhoucke 2019).118

Project time forecasting119

Project time forecasting involves predicting the final project duration given the current project120

performance. EVM time forecasting is an established project time forecasting approach. Several121

formulas have been proposed to determine the Estimate at Completion for time or the EAC(t),122

namely the Planned Value Method (PVM, Anbari (2003)), the Earned Schedule Method (ESM,123

Lipke (2003a)) and the Earned Duration Method (EDM, Jacob and Kane (2004)). It should be124

noted that this Earned Duration Method is different from the Earned Duration Method proposed125
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by Khamooshi and Golafshani (2014). In Vandevoorde and Vanhoucke (2006), these forecasting126

techniques are compared by means of an extensive simulation study. The results of this study127

showed that the ESM method is the only method that produces reliable results during the entire128

project duration. The ESM formula to calculate the EAC(t) is as follows:129

EAC(t) = AT +
PD − ES

PF
(1)130

with AT the actual time, PD the planned duration of the project and PF the performance factor,131

which is an indicator for future performance. The equivalent EDM time forecasting formula,132

the Estimated Duration At Completion (EDAC, Khamooshi and Golafshani (2014)), is defined as133

follows:134

EDAC = AT +
PD − ED

PF
(2)135

According to Vandevoorde and Vanhoucke (2006), the most common performance factors are136

1 and SPI(t). A PF of 1 can be used when future performance is expected to follow the baseline137

schedule, while the SPI(t) is used when the future performance is expected to be in line with the138

current time performance of the project. Similarly, the DPI can be used as a PF for the EDAC when139

the future performance is expected to be in line with the current time performance of the project.140

(Khamooshi and Golafshani 2014)141

In recent literature, several studies focused on project time forecasting. Wauters and Vanhoucke142

(2015) studied the stability and accuracy of EVM forecasts by conducting a simulation study and143

using historical data. De Marco et al. (2009) conducted an empirical study to review the practicality144

and predictability of traditional forecasting methods. Further, Elshaer (2013) used Monte Carlo145

simulations to incorporate the activity sensitivity measures in the project time forecasting process.146

In Kim and Kim (2014), the sensitivity of EVM forecasting methods to the characteristics of the147

planned value and earned value S-curves of projects is examined. The concept of stochastically148

S-curves has been applied by Barraza et al. (2004) to improve the forecasting accuracy. Artificial149

Intelligence methods for project time forecasting have been in Wauters and Vanhoucke (2016) and150
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Wauters and Vanhoucke (2017). Exponential smoothing for project time forecasting, a forecasting151

method based on weighted averages of past observations, has been applied by Khamooshi and Abdi152

(2016) and Batselier and Vanhoucke (2017) to give greater weights to the project performance153

in recent periods. Both Khamooshi and Abdi (2016) and Batselier and Vanhoucke (2017) use154

simple exponential smoothing to smooth the performance factors for the project time forecasting155

formulas in equations (1) and (2). While Batselier and Vanhoucke (2017) focus on the accuracy156

of EVM time forecasting with exponential smoothing, Khamooshi and Abdi (2016) compare the157

accuracy of EVM and EDM for project time forecasting with exponential smoothing. For the EVM158

methodology, the smoothed performance factors of Khamooshi and Abdi (2016) and Batselier and159

Vanhoucke (2017) are represented by equations (3) and (4) respectively:160

SPI(t)′t,K A = αSPI(t)t + (1 − α)SPI(t)′t−1 (3)161

162

SPI(t)′t,BV =
Tt,ES

Tt,AT
=
α(ESt − ESt−1) + (1 − α)Tt−1,ES

α(ATt − ATt−1) + (1 − α)Tt−1,AT
(4)163

with SPI(t)′t,K A and SPI(t)′t,BV the smoothed performance factors at tracking period t of Khamooshi164

and Abdi (2016) and Batselier and Vanhoucke (2017), α the smoothing parameter, Tt,ES the trend165

of the ES per period and Tt,AT the trend of the actual time AT per period.166

Selecting an appropriate value for α is an important aspect to achieve accurate project time167

forecasts. Generally, the closer the smoothing parameter is set to 1, the more weight is assigned168

to recent observations. Batselier and Vanhoucke (2017) introduced two viewpoints to determine169

an appropriate value for the smoothing parameters α, namely a static viewpoint and a dynamic170

viewpoint. In the static viewpoint, the smoothing parameter is set to a constant value for each171

tracking period. The dynamic viewpoint implies that the smoothing parameter may vary for dif-172

ferent tracking periods. Batselier and Vanhoucke (2017) defined a qualitative and a quantitative173

dynamic approach. The qualitative dynamic approach entails that the smoothing parameter might174

be adjusted by the project manager, based on human insight. A quantitative dynamic approach en-175

tails using a quantitative approach to determine the smoothing parameter for each tracking period.176
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Khamooshi and Abdi (2016) applied the static viewpoint and varied α between 0.1 and 0.9,177

in steps of 0.1. They found that low values for α (e.g., α = 0.2) produced the most accurate re-178

sults. Batselier and Vanhoucke (2017) investigated both the static viewpoint and the quantitative179

dynamic viewpoint. The authors determined the static smoothing parameter using Reference Class180

Forecasting (RCF, (Kahneman and Tversky 1979; Lovallo and Kahneman 2003), by ascertaining181

the optimal α for a set of similar historical projects. Further, Batselier and Vanhoucke (2017)182

applied a quantitative dynamic approach as well, by setting the smoothing parameter for a track-183

ing period as the optimal α for the previous tracking periods. The qualitative dynamic approach184

for project forecasting using exponential smoothing has not been applied yet, since it requires the185

real-time follow up of projects. Finally, according to Leon et al. (2018), the inability to include186

the impact of managerial interventions on the future project performance is an important limi-187

tation of existing project forecasting approaches, which prevents these approaches to be used as188

decision-support tools for project managers. Therefore, Leon et al. (2018) developed a system dy-189

namics model to simulate the behavior of the real project and to predict the impact of managerial190

interventions on the future project performance.191

Although many approaches for project time forecasting have been proposed in literature, the192

inability to include the impact of corrective actions on the future project performance remains an193

important limitation (Leon et al. 2018). Therefore, the aim of this study is to tackle this limi-194

tation by integrating the occurrence of corrective actions in the project time forecasting process.195

Accordingly, the improved forecasts provide more accurate information to the project manager.196

Exponential smoothing is used since it allows to assign different weights to different tracking pe-197

riods (Batselier and Vanhoucke 2017; Khamooshi and Abdi 2016). Further, a qualitative dynamic198

smoothing parameter is applied to distinguish between periods with or without corrective actions.199

METHODOLOGY200

In this section, the data collection and documentation process is discussed. Subsequently, the201

applied approach to integrate corrective actions into project time forecasting is described and the202

settings of the empirical experiment are outlined.203
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Data collection and documentation204

Batselier and Vanhoucke (2015a) have constructed a large and diverse database of empirical205

project data that can be used to validate project control methodologies in a real-life setting. This206

database contains more than 100 projects for which the baseline schedule, risk analysis and project207

control information is documented and has been used in several studies on project control and208

project forecasting (Martens and Vanhoucke 2018; Batselier and Vanhoucke 2015b; Colin and209

Vanhoucke 2016; de Andrade et al. 2019). However, in order to evaluate the performance of the210

proposed EAC(t)-CA and EDAC-CA forecasting techniques, the corrective actions that are taken211

during progress should be registered. Since this data is not included in the database of (Batselier212

and Vanhoucke 2015a), this database is not suitable for our study. Accordingly, recent projects had213

to be followed up in real time to document the required information on the corrective actions taken214

during project progress. More precisely, eight recently executed projects have been followed up215

in real-time by Martens and Mareels (2018). The baseline schedule, project control and corrective216

actions data has been added to the database of Batselier and Vanhoucke (2015a), Which is publicly217

available at www.projectmanagement.ugent.be/research/data/realdata (project IDs C2019-01 until218

C2019-08) and can thus be used for future research studies.219

The data collection process followed by Martens and Mareels (2018) is represented in figure 1.220

Initial meetings were set up with project managers working for companies in the construction and221

production industry. When the project managers agreed to collaborate in this study and to share222

their data, one of their projects was selected to be followed up in real time. In order to be suitable223

for this study, the selected projects should be a number of criteria. First, the project should be224

started recently or in the near future, such that it could be followed up in real time. Second, both225

the planning and control data should be available at the activity level. Finally, in order to calculate226

the EVM/ES and EDM key metrics, the activity cost data should be available. Alternatively, cost227

data that are available at a higher level could be used if they could be converted to activity cost228

data after consulting the project manager. If these criteria are met, the project was followed up at229

each tracking period, by means of collected datafiles, meetings and on site visits. For each suitable230
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project, not only the baseline schedule information (i.e. the planned activity durations and costs)231

and project control information (i.e. the actual activity durations and costs) has been monitored232

and documented, but also the information on the timing and nature of the corrective actions taken233

during project execution.234

Table 1 shows the main characteristics of these projects, i.e. the baseline start and end, the235

industry, the Budget at Completion (BAC),the number of activities (# acts) and the number of236

tracking periods (# TPs). An overview of the actual performance of the monitored projects is237

given in table 2. This table lists the planned and actual duration and cost of each of the monitored238

projects. As this table shows, none of these projects has been completed on time, with delays239

ranging from negligible (0.85% of the planned duration) to substantial (58.26% of the PD). Further,240

only one project has been completed within the budget (i.e. P4, with a total cost that is 2% lower241

than the BAC).242

Finally, for each of the projects, the timing and nature of the corrective actions that occurred243

have been documented. Based on the nature of the observed corrective actions, six different cat-244

egories of corrective actions can be identified (table 3). Further, these categories are reviewed245

to determine to which type of corrective action discussed in literature (i.e. fast tracking, activity246

crashing and variability reduction) they belong. Finally, it should be noted that these six cate-247

gories are based on the observed corrective actions taken during the 8 projects, and are thus not an248

exhaustive enumeration of all possible categories of corrective actions.249

Table 3 denotes the different corrective action categories, their description and the corrective250

action type each category belongs to. Status update calls are phone calls, e-mails, personal tasks251

and informal feedback moments to apply pressure towards employees or subcontractors. Using252

a new resource/supplier entails the selection of another subcontractor, engineer or designer when253

current collaborations are likely to fail. Before this rather drastic type of action is used, the project254

manager often uses the compensation claims in contracts to apply pressure to the subcontractor,255

engineer or designer. Further, to enforce authority, the project manager might involve higher man-256

agement. Finally, working overtime might be considered to speed up the progress of the project.257
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In order to determine the type of corrective action for each category, the following approach258

has been considered. If an observed corrective action of a category was executed to start a certain259

activity before its predecessors were finished, the action is labelled as fast tracking. Further, if the260

action aimed at applying pressure and reducing miscommunications to avoid delays, the action is261

considered as a variability reducing action. Finally, actions taken to speed up the progress and262

reduce an activity’s duration are defined as activity crashing. As table 3 shows, actions from a263

specific category might belong to different types of corrective actions. For instance, status update264

calls to employees or subcontractors can be made to avoid miscommunications resulting in a delay265

(variability reducing) or to speed up the progress of a specific activity (activity crashing). Finally,266

table 4 gives an overview of the timing and type of corrective actions that have been taken during267

the execution of the eight projects. The most occurring corrective actions is making status update268

calls to employees, occurring in five of the eight projects. Using compensation claims in contracts269

and working overtime, however, both occurred only twice.270

Procedure to integrate corrective actions in project time forecasting271

In order to account for the effect of managerial interventions on the forecasting accuracy, ex-272

ponential smoothing for project time forecasting will be used. As mentioned in the literature273

review, two studies have used exponential smoothing techniques to assign a greater weight to the274

performance of recent tracking periods and/or to account for potential corrective actions by the275

management, namely Batselier and Vanhoucke (2017) and Khamooshi and Abdi (2016). The ap-276

proach used by these studies differs in three ways, namely (i) the procedure to smooth the schedule277

performance factor, (ii) the selection of an appropriate smoothing parameter value and (iii) the278

used project monitoring methodology. In the remainder of this section, these three aspects are279

discussed in greater detail and the choices made in this study are clarified. Table 5 summarises280

the settings of these aspects for the exponential smoothing procedures of Batselier and Vanhoucke281

(2017), Khamooshi and Abdi (2016) and this study.282
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Exponential smoothing procedure283

The main difference between the approaches of Batselier and Vanhoucke (2017) and Khamooshi284

and Abdi (2016) is the most pronounced when smoothing parameter α is set to 1. In this case,285

equations (3) and (4) reduce to equations (5) and (6), respectively.286

SPI(t)′t = SPI(t)t (5)287

288

SPI(t)′t =
ESt − ESt−1

ATt − ATt−1
(6)289

Hence, at tracking period t, the smoothed performance factor of Khamooshi and Abdi (2016) is290

equal to the SPI(t) (i.e., the cumulative progress of the project), while the smoothed performance291

factor of Batselier and Vanhoucke (2017) is based on the progress of the most recent tracking292

period only, and is thus more sensitive to changes in the project performance (such as incidents293

in recent periods causing severe delays or recent corrective actions that temporarily speed up the294

project progress). Thus, since the approach of Khamooshi and Abdi (2016) for smoothening the295

performance factor is less volatile than the approach of Batselier and Vanhoucke (2017) when296

corrective actions temporarily speed up the project progress, the former approach will be used in297

this study.298

Smoothing parameter selection299

Since corrective actions during project execution affect the project progress temporarily, the300

value of the smoothing parameter will be adapted when a corrective action has been taken in the301

most recent period. This entails that a qualitative dynamic approach is applied. More precisely,302

two distinct smoothing parameters will be used, namely α1 if no corrective actions have been taken303

in the previous tracking period and α2 when corrective actions have been taken in the previous304

tracking period. In order to review which values for α1 and α2 are appropriate, the forecasting305

accuracy for α1 and α2 ranging from 0.1 until 1, in steps of 0.1 will be evaluated. Hence, 10 × 10306

combinations of α1 and α2 will be analysed. In the remainder of this paper, the proposed approach307

will be referred to as EAC(t)-CA and EDAC-CA, with CA indicating ‘Corrective Actions’.308

12 Martens, February 17, 2020



Monitoring methodology309

Comparing the performance of EVM and EDM project time forecasting has shown that EDM310

performance measures are better indicators for future performance than EVM performance mea-311

sures (Khamooshi and Abdi 2016; de Andrade et al. 2019). In order to validate this observation,312

both the EAC(t) and EDAC formulas with smoothed performance factors will be evaluated in this313

study.314

Empirical experiment315

For each project, the project progress has been measured at each tracking period using EVM316

and EDM. Using this information, forecasts of the final project duration could be made at each317

tracking period. For both EVM and EDM, project time forecasts have been made using α1 and α2318

varying from 0.1 to 1. The performance of EAC(t)-CA and EDAC-CA is compared to the standard319

EAC(t) formula with PF = 1 and PF = SPI(t), the standard EDAC formula with PF = 1 and PF =320

DPI, and the static exponential smoothing approach for EAC(t) and EDAC (referred to as EAC(t)-321

XSM and EDAC-XSM), with α1 = α2, varying from 0.1 to 1. The latter approach corresponds to322

the approach of Khamooshi and Abdi (2016). Each of these forecasting methods is evaluated in323

terms of forecasting accuracy, by means of the Mean Absolute Percentage Error (MAPE):324

MAPE =
1
T

T∑
t=1

|
A − Ft

A
| (7)325

with A the actual duration at project completion, Ft the forecasted duration at tracking period t and326

T the number of tracking periods. Thus, the performance of the proposed forecasting approaches327

is evaluated by determining the average MAPE over all tracking periods of all projects.328

RESULTS AND DISCUSSION329

In this section, the results of the empirical experiment are discussed. First, the most appropriate330

values for smoothing parameters α1 and α2 are determined. Subsequently, the proposed approach331

is compared to the standard forecasting formulas and to the static exponential smoothing approach332

of Khamooshi and Abdi (2016).333
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Selection of smoothing parameters334

Table 6 depicts the forecasting accuracy for the eight projects, with α1 (columns) and α2 (rows)335

varying from 0.1 to 1. Tables 6a and 6b represent the average MAPEs for EAC(t)-CA and EDAC-336

CA respectively. Table 6c shows the percentage change between the EAC(t)-CA and EDAC-CA337

MAPEs. In each subtable, the results for equal smoothing parameters α1 and α2, which represent338

the results for static exponential smoothing (EAC(t)-XSM and EDAC-XSM), are highlighted in339

bold italic.340

From table 6, several findings can be conceived. First, the accuracy of EAC(t)-CA can be341

compared to EDAC-CA. Second, the combination of smoothing parameters α1 and α2 resulting in342

the lowest MAPE and thus the highest accuracy can be determined. Finally, the sensitivity of the343

forecasting accuracy to changes in α1 and α2 can be reviewed. In the remainder of this section,344

each of these aspects is discussed.345

EVM vs EDM346

Table 6c shows that, for each combination of α1 and α2, EDAC-CA has a lower MAPE and thus347

a higher forecasting accuracy than EAC(t)-CA. On average, the EDAC-CA MAPE is 14.49% lower348

than the EAC(t)-CA MAPE. This is in line with other recent empirical studies on project duration349

forecasting (e.g. Khamooshi and Abdi (2016)). Therefore, in the remainder of this section, the350

focus lies on the EDAC-CA results of table 6b.351

Parameter selection352

Table 6b shows that an α1 and α2 of respectively 0.1 and 0.7 ensure the highest forecasting353

accuracy (MAPE = 10.99%). Hence, when no corrective actions have been taken in the most354

recent period, a low smoothing parameter is preferred (α1 = 0.1), which is in line with the find-355

ings of Khamooshi and Abdi (2016) and Batselier and Vanhoucke (2017). However, if corrective356

actions have been taken during the most recent tracking period, a substantially higher smoothing357

parameter (α2 = 0.7) is recommended. This higher smoothing parameter allows to strike a bal-358

ance between emphasising that the project progress during the previous tracking period has been359

improved due to managerial intervention, and recognising that this improved performance is likely360
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to be temporarily.361

Sensitivity analysis362

Based on table 6b, the importance of selecting the right α1 and α2 can be assessed. In general,363

the forecasting accuracy reduces for increasing α1. For α2, the accuracy first increases for increas-364

ing α2 but starts to decrease from a certain moment on (depending on the value of α1). Further,365

the highest MAPE (14.89%) is obtained for α1 = 1 and α2 = 0.1. For this combination of smooth-366

ing parameters, the MAPE is 1.35 times higher than for the best performing combination. Due to367

the substantial difference between the forecasting accuracy of the best and worst performing com-368

bination of smoothing parameters, it can be concluded that an appropriate parameter selection is369

important to achieve a high forecasting accuracy. However, table 6b shows that the combinations370

of smoothing parameters leading to the highest forecasting accuracy are situated in the same area,371

namely a low α when no corrective actions have been taken (which is in line with recent literature)372

and a higher α after corrective actions to emphasise the performance of recent periods.373

Project specific results374

Since Vanhoucke and Vandevoorde (2007) argued that the forecasting accuracy depends on the375

completion stage of the project, the forecasting accuracy should be assessed for different stages376

of completion. Therefore, figure 2 depicts the overall MAPE and the MAPE for three project377

stages, namely the early stage (0% ≤ PC ≤ 30%), the middle stage (30% < PC ≤ 70%) and378

the late stage (70% < PC ≤ 100%) for each of the eight projects. This figure shows that the379

overall MAPE varies substantially between 2.23% and 26.25%. Further, for most projects (except380

P2 and P5), the early stage has a MAPE that is substantially higher than the MAPE of the middle381

and late stages. Moreover, the spread of the early stage MAPE (6.91% - 44.15%) is higher than382

the spread of the middle and late stages as well (0.01%-13.10% and 1.58%-8.94%), respectively.383

These observations confirm that the forecasting accuracy depends on the completion stage of the384

project. Therefore, the most accurate forecasting approach might depend on the completion stage385

of the project as well.386

To summarise, the main conclusions from this section are that (i) EDAC-CA outperforms387
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EAC(t)-CA for each combination of smoothing parameters, (ii) smoothing parameters α1 = 0.1388

and α2 = 0.7 result in the highest forecasting accuracy for EDAC-CA and (iii) the forecasting389

accuracy depends on the completion stage of the project. Accordingly, the next section compares390

the accuracy of the EDAC-CA approach with α1 = 0.1 and α2 = 0.7 to the standard forecasting391

approaches over the different stages of completion.392

Comparison with standard methods393

In this section, the forecasting accuracy of EDAC-CA is compared to the standard EDAC for-394

mulas with performance factors 1 and DPI, and to EDAC-XSM. The results are shown in table395

7. The results for EDAC-XSM are defined as the lowest MAPEs from table 6b for α1 = α2, i.e.396

α = 0.2.397

The first row of table 7 represents the average forecasting accuracy over all tracking periods398

of all projects. The following rows list the results for the early, middle and late project stages.399

The column Improvement vs. standard methods’ presents the percentage change of the EDAC-CA400

MAPEs to the best performing comparison method (i.e., the EDAC with PF=1, the EDAC with401

PF=DPI and EDAC-XSM). In order to evaluate the effect of using a qualitative dynamic smoothing402

parameter instead of a static smoothing parameter, the percentage change of the EDAC-CA MAPEs403

compared to EDAC-XSM is depicted in the column ‘Improvement vs. EDAC-XSM’.404

Overall comparison405

Over the entire project makespan, table 7 shows that EDAC-CA has the lowest MAPE (10.99%406

vs. 11.38% for EDAC with PF=1) and is thus the most accurate forecasting method. However, the407

difference in performance is rather low, i.e. a percentage change of -3.40% compared to EDAC408

with PF=1. The effect of using a qualitative dynamic smoothing parameter compared to a static409

parameter is more distinctive (-11.58%). Consequently, considering corrective actions indeed im-410

proves the accuracy of project time forecasting with exponential smoothing. However, since the411

differences between the overall results are not very distinctive, they should be reviewed for the 3412

different stages of project completion.413
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Comparison over different stages414

Generally, table 7 shows that the forecasting methods are the least accurate in the early stage of415

projects. This can be explained by the fact that little information on the project progress is available416

in this stage. When more information becomes available (i.e., in the middle and late stages), the417

accuracy of the forecasting methods improves substantially.418

More specifically, during the early stage, the standard EDAC formula with PF=1 is the most419

accurate forecasting method (17.66%) compared to the other EDAC forecasting methods. During420

the middle phase, EDAC-CA clearly outperforms EDAC-XSM and the standard EDAC formu-421

las with PF=1 and PF=DPI. More precisely, during the middle phase, the EDAC-CA MAPE is422

28.73% lower than EDAC-XSM 54.11% lower than the standard EDAC formulas. During the late423

stage of projects, EDAC-CA has a MAPE that is 9.88% lower than EDAC-XSM and 10.11% lower424

than the standard EDAC formulas. These results show that, during the early stage of projects, a425

performance factor of 1 leads to the most accurate forecasts, while from the middle stage on it426

is substantially more beneficial to use EDAC-CA. Accordingly, incorporating information on the427

timing of corrective actions during project execution and using exponential smoothing with ap-428

propriate values for the adaptive smoothing parameter generally leads to the most accurate project429

time forecasts.430

Limitations431

In this study, eight projects during which 19 corrective actions have been taken are considered.432

For each project, the timing and type of corrective actions has been documented (tables 3 and 4).433

Due to the unique character of projects, the restricted number of observed corrective actions cannot434

guarantee that the six identified categories of corrective actions are exhaustive. New categories435

can be identified by future research studies that document information on corrective actions of436

additional projects.437

Moreover, currently, only the timing of these actions has been integrated in the forecasting438

process by adapting the smoothing parameter for exponential smoothing when an action has been439

taken in the most recent period. Although different types of corrective actions might affect the440
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project progress differently, this aspect could not be investigated in this study due to the low number441

of observed corrective actions per category. In order to examine the impact of these different types442

of corrective actions and to further improve the forecasting accuracy, additional projects should be443

followed up and more information on corrective actions should be documented.444

CONCLUSION445

In this study, exponential smoothing for project time forecasting is used with a qualitative446

dynamic smoothing parameter to account for the impact of corrective actions on the project out-447

come. The forecasting accuracy of the proposed approach using EVM and EDM (EAC(t)-CA and448

EDAC-CA) has been compared to the EAC(t) and EDAC formulas with performance factors 1 and449

SPI(t) or DPI, and to exponential smoothing for EAC(t) and EDAC time forecasting with a static450

smoothing parameter.451

The results of the experiment showed that the accuracy of the EDAC forecasting formulas452

is higher than that of the EAC(t) formulas. The most accurate results are obtained for EDAC-453

CA forecasting when a low smoothing parameter (i.e., 0.1) is used in case no corrective actions454

occurred during the most recent tracking period and a higher smoothing parameter (i.e., 0.7) is used455

in a period after corrective actions (MAPE=10.99%). Especially in the middle phase of projects,456

the EDAC-CA approach (MAPE=4.85%) clearly outperforms the standard EDAC formula with457

performance factors 1 and DPI and EDAC-XSM, with a percentage change of -28.73%. In the458

early project phase, however, project time forecasting with a performance factor of 1 leads to the459

highest forecasting accuracy (MAPE = 17.66%). Therefore, to obtain the most accurate project460

time forecasts during the entire project life cycle, it is recommended to use standard project time461

forecasting with PF =1 in the early phase of projects and to apply EDAC-CA from the middle462

project phase until project completion with a smoothing parameter of 0.7 in case a corrective463

action has been taken in the most recent period and a smoothing parameter of 0.1 otherwise.464

Due to the lack of documented data on corrective actions during project execution, projects had465

to be followed up in real time from the project start until completion in order to collect the required466

data for this analysis. Future research could focus on monitoring additional projects to enhance the467
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currently available data on corrective actions during project execution. With this additional data,468

the impact of different types of corrective actions taken during project execution on the project469

outcome can be evaluated to improve the project monitoring and forecasting process further.470
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ID Project Baseline Baseline Industry BAC (e) # acts #TPsdescription start end
P1 Apartment complex 30/07/15 14/08/17 Residential building 1.192.979 86 10
P2 Social Housing 20/01/17 28/05/18 Residential building 734.602 18 10
P3 Emergency Department 15/07/16 13/02/18 Civil construction 967.878 17 22
P4 Nuclear Healthcare 06/01/16 09/06/17 Civil construction 4.318.950 33 24
P5 Fuel Tank Filter 09/05/16 20/05/18 Production 1.456.000 15 10
P6 Production line change 31/10/16 01/09/18 Production 1.512.000 23 11
P7 Gluing machine 11/09/17 06/04/18 Production 107.500 8 10
P8 Labeling machine 04/09/17 09/02/18 Production 114.700 7 9

TABLE 1. Overview of projects
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ID PD AD Deviation BAC Total Deviation
(workdays) (workdays) from PD (%) (e) Cost from BAC (%)

P1 533 672 26.08 1.192.979 1.315.820 10.30
P2 352 355 0.85 734.602 748.556 1.90
P3 413 521 26.15 967.878 1.270.876 31.31
P4 373 519 39.14 4.318.950 4.232.553 -2.00
P5 510 515 0.98 1.456.000 1.476.290 1.39
P6 480 501 4.38 1.512.000 1.534.060 1.46
P7 150 189 26.00 107.500 116.800 8.65
P8 115 182 58.26 114.700 128.200 11.77

TABLE 2. Outcome of projects
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Category Description Type of action

C1 Status update call employees variability reduction/activity crashing
C2 Status update call subcontractor variability reduction/activity crashing
C3 Use new resource/supplier activity crashing
C4 Use compensation claim in contracts activity crashing
C5 Involve higher management variability reduction/activity crashing
C6 Overtime work activity crashing

TABLE 3. Observed categories of corrective actions
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Project Timing of action (TP) Type of action

P1 3 C1
P1 6 C3
P1 9 C6
P2 4 C2
P3 1 C1
P3 5 C1
P3 7 C5
P3 15 C4
P4 9 C1
P4 20 C4
P5 3 C3
P5 8 C1
P6 2 C5
P6 4 C2
P6 8 C6
P7 1 C1
P7 7 C5
P8 4 C2
P8 7 C3

TABLE 4. Timing of corrective actions
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Batselier and Vanhoucke (2017) Khamooshi and Abdi (2016) This study

Smoothing equation (4) equation (3) SPI(t)′t = αiSPI(t)t + (1 − αi )SPI(t)′t−1
procedure DPI′t = αiDPIt + (1 − αi )DPI′t−1

Smoothing static / quantitative dynamic static qualitative dynamicparameter
Project EAC(t) EAC(t) and EDAC EAC(t) and EDACmonitoring

TABLE 5. Summary exponential smoothing methods for project time forecasting
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α1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α2

0.1 14.92 14.86 14.92 15.11 15.35 15.63 15.88 16.09 16.23 16.36
0.2 14.76 14.68 14.74 14.95 15.21 15.47 15.71 15.90 16.05 16.18
0.3 14.62 14.51 14.61 14.82 15.08 15.32 15.55 15.74 15.90 16.04
0.4 14.52 14.43 14.52 14.72 15.00 15.22 15.44 15.63 15.77 15.90
0.5 14.43 14.37 14.44 14.67 14.93 15.13 15.34 15.52 15.66 15.86
0.6 14.39 14.31 14.37 14.63 14.86 15.05 15.25 15.41 15.55 15.67
0.7 14.33 14.25 14.33 14.59 14.80 14.97 15.16 15.32 15.44 15.56
0.8 14.28 14.20 14.34 14.57 14.76 14.92 15.09 15.24 15.36 15.48
0.9 14.26 14.22 14.38 14.59 14.77 14.91 15.07 15.22 15.34 15.45
1.0 14.28 14.30 14.43 14.61 14.77 14.90 15.06 15.20 15.31 15.42

(a) Impact of α1 and α2 on EAC(t)-CA MAPE

α1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α2

0.1 12.58 12.75 13.02 13.27 13.52 13.78 14.08 14.40 14.66 14.89
0.2 12.19 12.43 12.73 13.00 13.25 13.52 13.86 14.15 14.41 14.64
0.3 11.87 12.16 12.47 12.75 13.02 13.33 13.65 13.94 14.18 14.41
0.4 11.60 11.91 12.24 12.53 12.82 13.17 13.47 13.74 13.98 14.20
0.5 11.38 11.71 12.04 12.35 12.69 13.02 13.31 13.56 13.79 14.09
0.6 11.24 11.58 11.93 12.29 12.61 12.91 13.18 13.41 13.63 13.83
0.7 10.99 11.35 11.74 12.12 12.46 12.85 13.10 13.32 13.53 13.73
0.8 11.17 11.57 11.94 12.26 12.53 12.79 13.02 13.24 13.43 13.63
0.9 11.35 11.71 12.05 12.33 12.59 12.82 13.04 13.24 13.43 13.62
1.0 11.55 11.87 12.17 12.42 12.65 12.87 13.07 13.26 13.44 13.63

(b) Impact of α1 and α2 on EDAC-CA MAPE

α1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α2

0.1 -15.68 -14.17 -12.77 -12.15 -11.91 -11.86 -11.31 -10.53 -9.69 -9.00
0.2 -31.37 -15.35 -13.64 -13.06 -12.88 -12.58 -11.79 -10.98 -10.22 -9.54
0.3 -18,78 16.23 -14.64 -13.99 -13.68 -13.00 -12.19 -11.44 -10.79 -10.18
0.4 -20.12 -17.46 -15.72 -14.91 -14.52 -13.50 -12.74 -12.08 -11.36 -10.71
0.5 -21.11 -18.51 -16.64 -15.83 -15.00 -13.97 -13.26 -12.61 -11.94 -11.15
0.6 -21.91 -19.09 -16.98 -16.02 -15.11 -14.21 -13.60 -12.96 -12.36 -11.72
0.7 -23.31 -20.36 -18.06 -16.94 -15.81 -14.18 -13.61 -13.04 -12.38 -11.78
0.8 -21.75 -18.52 -16.71 -15.88 -15.07 -14.29 -13.71 -13.15 -12.54 -11.95
0.9 -20,39 -17.64 -16.21 -15.48 -14.79 -14.02 -13.49 -13.01 -12.46 -11.84
1.0 -19.15 -17.02 -15.66 -14.98 -14.34 -13.64 -13.22 -12.76 -12.19 -11.59

(c) Percentage change between EAC(t) and EDAC

TABLE 6. Impact of α1 and α2
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EDAC EDAC EDAC-XSM EDAC-CA Improvement vs. Improvement vs.
PF=1 PF=DPI α = 0.2 α1 = 0.1, α2 = 0.7 standard methods EDAC-XSM

Overall 11.38 13.03 12.43 10.99 -3.40 -11.58
Early 17.66 21.46 22.47 20.43 15.68 -9.10
Middle 11.92 10.56 6.80 4.85 -54.11 -28.73
Late 6.47 7.11 6.46 5.82 -10.05 -9.88

TABLE 7. Comparison of EDAC MAPEs (in %)
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